
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GFLAGENT: GREEN FEDERATED LEARNING AGENT
FOR ALLEVIATING HETEROGENEITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Learning (FL), as a privacy-preserving distributed machine learning
paradigm, faces significant challenges in terms of data and device heterogeneity
in practical applications. In this paper, we present a novel Large Language Model
Agent decision system, called Green Federated Learning Agent (GFLAgent), for
alleviating the challenges arising from data and device heterogeneity within the
FL tasks. GFLAgent is efficient and energy friendly, and meets the requirements
of green computing. GFLAgent dynamically monitors the status of each client,
selects and reasonably allocates them to different layers to achieve efficient asyn-
chronous training, and responds to unexpected situations during training. Further-
more, to optimize overall system expenditure, we implement a strategy that min-
imizes local training overhead and the updates costs for clients with historically
subpar performance. The experimental results show that GFLAgent outperforms
SOTA methods and can be quickly ported to other distributed machine learning
frameworks to improve efficiency.

1 INTRODUCTION

Distributed machine learning has improved the efficiency of artificial intelligence model training, but
it has also exposed the issue of customer data privacy. Participants from different institutions tend not
to transmit private data when participating in training tasks. For this reason, Federated Learning (FL)
McMahan et al. (2017)is proposed. FL is crafted to aggregate local model updates from distributed
devices without centralizing data, thereby safeguarding privacy and ensuring robust model training
through iterative global refinement. Nonetheless, FL can incur significant computational, network,
and performance expenses during the training phase. This trade-off may stem from the inherent
architectural features Lo et al. (2022) of FL and the challenges posed by statistical heterogeneity
Luo et al. (2022) across the distributed datasets.

The key challenge in FL is statistical heterogeneity, where data is frequently imbalanced and non-
identically independently distributed (non-IID) Zhao et al. (2018). Thus, the indiscriminate training
of all clients and the subsequent model updates, without considering the distribution and quality
of data, can degrade model performance. Given these challenges, a pertinent question arises: is it
possible to devise a model that selects clients in a more scientific and effective manner for each
training round? This question is central to the evolving field of client selection algorithms in FL.

There have been many attempts to address heterogeneity issues. In the early days, many studies
emphasized the issue of lagging behind, which was caused by uneven distribution of computational
data and computing power. To solve this problem, Tier-based Federated Learning System (TiFL)
Chai et al. (2020a) utilize a multi-layer mechanism to mitigate the impact of stragglers. However, it
calls for well-designed layer to avoid excessive loss of model information. Besides, it may also have
a bias problem that tends to choose faster layers. Federated learning method with Asynchronous
Tiers (FedAT) Chai et al. (2020b) has taken a step further by adopting a novel weighted aggregation
heuristic algorithm, assigning higher weights to slower layers to prevent the preferences.

Nevertheless, all these traditional scheduling optimization requires engineers to spend a lot of time
to design the weights and optimize models. The Large Language Models (LLM) have shown the
potential in improving current work Zhao et al. (2023) since it has experienced explosive growth in
the past two years and is proven to make amazing progress in generative tasks. Based on LLMs, we
use LLM-based agent Wang et al. (2024) to improve automatic logical reasoning.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

What’s also noteworthy is that current algorithms ignore the situation that the unexpected discon-
nection of a client with other tasks could result in anomalies within a particular tier, which can
negatively influence the communication efficiency.

To avoid these unexpected situations impacting model performance and time of communication, we
build a buffer zone to involve abnormal clients during training, storing their updates while uploading
selectively. What’s more, compared with elaborate strategy of clients allocation in different tiers and
model weight, GFLAgent use LLM-based agent to adjust the server’s decision automatically with
less parameter engineering. The Agent uses a carefully designed method to evaluate the actual con-
tribution of clients to overall performance, selects some clients to participate in training, improves
task efficiency, and reduces energy costs. These aspects demonstrate that our methods align with
Green FL, promoting sustainable environmental development Kim & Saad (2024).

To sum up, our contributions are as follows:

• We have designed a FL system for alleviating the heterogeneity of data and devices in dis-
tributed learning, which we name GFLAgent. Within this system, we have constructed an
efficient and robust asynchronous federated learning framework, integrated with an LLM-
based Agent serving as the scheduler for the entire system. This scheduler is also readily
transferable to other FL systems.

• Innovatively addressing potential issues within the Tiers framework, we propose a buffer
designed specifically for outlier clients operating within the Tiers. Accompanying this
buffer is a vigilant monitor, capable of swiftly identifying these outlier clients and relo-
cating them into the buffer. This mechanism significantly enhances the robustness of the
heterogeneous FL system.

• We conducted experiments on standard datasets and compared them with other advanced
algorithms. The results demonstrate that our method outperforms existing methods signifi-
cantly. Compared to the FL algorithm with full clients participation, our method maintains
similar accuracy. Besides, in some cases of heterogeneous data distribution, our model
performs better than other SOTA methods.

2 RELATED WORKS

2.1 FEDERATED LEARNING

In recent times, Federated Learning (FL) has emerged to help protect information security by en-
abling model training without the need for central data storage, whose protocol requires the selected
clients to update their model using local data, while asking the server to aggregate updates from the
clients to make the model better Nishio & Yonetani (2019).

Several classic FL algorithms, including Federated Averaging (FedAvg) McMahan et al. (2017),
FedProx Tian et al. (2018), and Stochastic Controlled Averaging for Federated Learning (SCAF-
FOLD) Karimireddy et al. (2020), have been introduced to enhance the quality of FL. FedAvg
leverages local stochastic gradient descent (SGD) Goodfellow et al. (2016) on each client, with a
server performing model averaging. This method is robust against unbalanced and non-IID data
distributions and effectively reduces the number of communication roundsMcMahan et al. (2017).

FedProx expands on FedAvg by tackling statistical heterogeneity among clients, thus enhancing
convergence behavior in realistic, heterogeneous networks McMahan et al. (2017). Algorithms like
SCAFFOLD further optimize FedAvg by employing control variates to counteract client-drift in
updates, a strategy known as variance reduction Karimireddy et al. (2020).

Given that each client may handle varying amounts of data, this discrepancy can affect subsequent
communications and the quality of the updated model Nishio & Yonetani (2019). Moreover, these
variations can profoundly influence model accuracy, convergence rate, and fairness across clients Fu
et al. (2023).

Addressing both system heterogeneity (variations in hardware configurations among clients) and
statistical heterogeneity (differences in data distributions among clients) is essential to overcoming
similar challenges in FL McMahan et al. (2017). Client sampling and selection are pivotal in solv-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ing these problems. Here are two main strategies: client classification for improved asynchronous
training and bolstering communication efficiency between clients and servers.

Asynchronous training is a response to the delays caused by stragglers. Extensive research Stich
(2018) Li et al. (2019b) Karimireddy et al. (2020) Yang et al. (2021) has concentrated on reducing
their impact in distributed networks to avoid performance deterioration. However, the outright ex-
clusion of stragglers might result in the loss of critical data needed for model enhancement. Hybrid
Federated Learning (HFL) Truex et al. (2019), which incorporates techniques such as Asynchronous
Decentralized SGD (AD-SGD) Lian et al. (2018), mitigates this by integrating delayed local updates
into the central model Li et al. (2021).

An alternative approach to managing straggler clients involves a synchronous intra-tier model up-
dating strategy. Yet, this method may induce biases due to its favoring certain clients. In contrast,
Federated learning method with Asynchronous Tiers (FedAT) improves upon Tier-based Federated
Learning System (TiFL) by combining synchronous intra-tier training with asynchronous cross-tier
training, effectively reducing the straggler effect and enhancing both convergence speed and test
accuracy.

Another pioneering method focuses on minimizing communication frequency in FL by selectively
choosing clients based on model update thresholdsRibero & Vikalo (2020). This strategy, inspired
by Ornstein-Uhlenbeck processes and SGD Mandt et al. (2016), ensures that only updates that sur-
pass a certain significance are conveyed to the server, thereby streamlining communication effi-
ciency.

We have also seen some other advanced models. FedBalancer Shin et al. (2022) is a case in point,
which exemplifies a notable model that refines time-to-accuracy performance by harmonizing client-
server interactions. It selects samples with substantial statistical utility and dynamically forecasts
optimal deadlines for each training round, contingent on the variability of client training data, which
in turn optimizes the learning trajectory.

These advancements underscore the ongoing efforts to refine FL methodologies, balancing the com-
plexities of client heterogeneity with the need for efficient and effective model training across dis-
tributed environments.

2.2 LARGE LANGUAGE MODELS AGENTS

The rise of large language models (LLMs) Radford et al. (2019) has been a cross-age change in AI,
with GPT-3 Dale (2021) from OpenAI being a standout example. These models use a transformer
architecture and are trained on huge amounts of text, making them great at producing text that feels
like it was written by a person Kasneci et al. (2023). However, scaling up model size alone has not
proved effective for achieving greater performance on tasks such as arithmetic, commonsense, and
symbolic reasoning Rae et al. (2021).

To help LLMs handle complex reasoning, researchers have come up with new ideas like ”Chain
of Thought prompting” (CoT) and ”Tree of Thought” (ToT). Unlike expensive rationale-augmented
trainingLing et al. (2017) and fine-tuning methodsCobbe et al. (2021), CoT Wei et al. (2022) lever-
ages the <input, chain of thought, output>template, enabling LLMs to perform few-shot prompting
for reasoning tasks efficiently. While ToT Yao et al. (2024) allows LLMs to self-assess and choose
between advancing or backtracking along different reasoning paths during global decision-making.
Furthermore,Graph of Thought (GoT) Besta et al. (2024) generalizes CoT and ToT to more intricate
thought patterns, enhancing reasoning without the need for model updates.

The progression to LLM agents signifies a transformative leap in AI’s capability for complex rea-
soning and task execution. LLMs can be applied to more than just conversation-based language
tasks. Researchers are now looking at how LLM agents can be used in real-life situations to solve
complex problems. For example, they are working on improving reasoning in games like Werewolf
Xu et al. (2023) and in AI environments like Smallville Park et al. (2023), as well as developing new
ways for agents to think and make decisions.

By applying the strengths of LLMs and techniques like CoT and ToT, we aim to make progress in
how LLM-based agents tackle real-world challenges.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 PROBLEM STATEMENT

Suppose we have a federation of m clients engaged in a collaborative training endeavor, each pos-
sessing a unique dataset that is not to be disclosed to other clients or the central server. Our primary
aim, akin to the foundational goals of federated learning, is the optimization of the global objective
function to ensure the model’s performance is minimized in a collective sense.

min
{w,i}

FG(w) =
1

m

m∑
i=1

Fi(w) (1)

Given the distributed nature of machine learning, it is imperative to account for the overall time
cost associated with the tasks. During training, the time expenditure for each round may initially be
denoted as trG = max (tr1, t

r
2 . . . , t

r
m), representing the global perspective. Upon the implementation

of client selection strategies, such as those aimed at optimizing the process, the time cost could be
further refined to tr|S| = max ([tri in |S|]). Here, |S| symbolizes the time cost incurred in the r-th
round for the subset of clients that have been selected.

min
{i}

T =
R∑

r=1

tr (2)

Ultimately, in a distributed system, we also aim to minimize energy expenditure while meeting
the task requirements. The term τi represents the average computational power of device i, which
signifies the operational duration of the i-th client during the r-th round.

min
{FS<x̂,i}

C =

m∑
i=1

R∑
r=1

τi · tri (3)

Additionally, the server’s time cost and energy consumption are linearly related to the number of
computation rounds and the number of clients participating in the submission and aggregation tasks
per round. Although this aspect is relatively minor compared to the training costs incurred by the
clients and is relatively straightforward, it will not be elaborated upon extensively here. However, it
will be taken into account and compared in the experimental section.

4 PROPOSED SCHEME

4.1 FRAMEWORK

Initially, we define the common practice problem encountered by FL as having statistical hetero-
geneity. Therefore, following by FedProx, we set the basic model update strategy hk(·) for the
client as follows:

hi(wi) = F (wi) +
λ

2
||wi − w||2 (4)

There is no denying the excellence of employing a tiered asynchronous design approach. In the
realm of federated learning, traditional resource scheduling techniques like task offloading and load
balancing are inapplicable due to the non-shareability of client data. Efforts to offload non-sensitive
computational tasks from slower clients to cloud servers, as seen in prior research, were attempts to
navigate these challenges within the federated learning paradigm.

Our comprehensive design draws inspiration from the tiered asynchronous learning model, but we
have identified potential issues that arise when there is a significant variance in client data volume
or device capabilities. Such disparities could necessitate the creation of numerous tiers, each with
substantial waiting times. The unexpected disconnection or preoccupation of a client with other
tasks could lead to anomalies within a particular tier. To mitigate this, our design minimizes the
number of tiers and incorporates buffers to manage outlier clients effectively.

The client selection mechanism is a cornerstone of our approach. Historically, such mechanisms
were governed by rule-based algorithms that had to account for time expenditure, computational ef-
ficiency, and communication overhead, evaluating clients’ historical performance to determine their

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

...

......

...

...

...

...

Buffer Inactivated

Monitor Selection

Agent

Activted
Clients

Aggregation

Recording

Global Records

Wights

Records

Global
Weight

Asyn
Upload

Asyn
Download

Each �
Rounds

Each �
Rounds

Figure 1: The diagram on the left represents the update process using the naive FedAvg algorithm,
whereas the diagram on the right showcases the comprehensive framework of our innovative GFLA-
gent system. Initially, the task is updated using the method depicted on the left. After several itera-
tions, we transition to the framework on the right, where the GFLAgent selects clients and allocates
them to suitable tiers for processing. Once the tasks within each tier are completed by the clients,
the weights are uploaded to the server for aggregation. Upon successful aggregation, the server dis-
seminates the updated model to all clients engaged in computations across various tiers. Meanwhile,
clients operating in the buffer, as well as those in the active client pool, will only receive the most
recent aggregated model during the subsequent selection cycle. The GFLAgent’s client selection is
primarily guided by the global operational data retrieved from or provided by the server.

participation in subsequent tasks. This process was highly experience-dependent and demanded
extensive hyperparameter tuning. To streamline this, we have developed an automated Selection
Agent, GFLAgent, leveraging Large Language Models (LLMs). GFLAgent utilizes historical train-
ing data to determine which clients should be involved in the next round and assigns them to the
appropriate tiers. It also integrates data processing tools to supply the LLMs with more coherent
operational data.

In summary, our framework encompasses three main components: (1) a tiered federated learning
system with defined update strategy rules (2) buffers and strategies to safeguard outlier clients within
the tiers, and (3) a decision-making Agent for client selection and allocation in federated learning,
powered by LLMs. For detailed insights, one can refer to the framework’s pseudo-code and Fig 3.

4.2 BUFFER FOR OUTLIER

Regardless of how client selection is optimized, the naive single-column parallel structure will in-
evitably generate waiting time for laggards due to differences in data volume and computing power.
The method of setting up different levels can alleviate this issue; however, the updates within each
level are always problematic. For instance, in earlier studies, the experimental settings had a large
time redundancy for each level, and the number of levels was fixed. In our scheme, we only set a
default of three levels to accommodate these data, and we have designed a buffer to accommodate
outliers that are selected, adopting different update strategies.

Firstly, we introduce different Tiers to enable asynchronous updates in federated learning. Assum-
ing we set up K layers to accommodate selected activations, considering that layers with fast update
speeds may have bias effects on the entire model due to more submissions over a period of time. we
introduce model bias compensation weights due to differences in update speed. Optimized aggrega-
tion method shows in 5. In the equation, Ttierk represents the time cost by Tierk, and max(Ttier)
represents the longest time cost among all Tiers.

F (w) =

K∑
k=1

Ttierk

max(Ttier)
hi(wi)

{tierk,i∈||s||}
(5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 GFLAgent Workflow
Input: m clients with their respective datasetsDi, inital global model wight w, R: the global iteration
round. R̂: the round of introducing GFLAgent
Output: Finished global model

1: for round r = R̂, ...,R do
2: Run FedAvg algorithm and write records
3: end for
4: for round r = R̂, ..., R do
5: for each r̂ rounds do
6: Agent selects clients and distribute to Tiers
7: Tiers parallel do:
8: Clients train in Di

9: Monitor move abnormal client i to Buffer
10: Send wi to server until all train done
11: Server aggregate wi send back to client w
12: Clients in buffer train and keep best wi

13: Server aggregate wi send back to all client w
14: end for
15: Server write the latest information to records
16: end for
17: return finished model weight w

Algorithm 2 Buffer Monitor Algorithm
Input: m clients with their respective datasets Di, initial global model wight w, R: the global
iteration round. R̂: the round of introducing GFLAgent
Output: Client in Tiers and Buffer

1: if r at client selection round then
2: tmax, tmin ← Agent decision
3: end if
4: for Client in Tiers do
5: if Client training time ti > tmax or ti < tmin then
6: Move client to Buffer
7: end if
8: for Each round all client in Tier finished training do
9: Use Monitor(·) by Equation 7.

10: end for
11: end for

Using the above method may not be reasonable, due to ignore clients in the system that have a large
amount of high-quality data and run quickly. Simply compensating for weights based on time is
unfair to them. Therefore, we introduce a data contribution parameter to optimize this weight. The
improved formula is as follows, in which△ℓ represent the difference between the loss function and
the local update before and after the previous round. Norm(·) is the normalize operator, which
normalizes all the parameters in this round. wi, w respectively represent the weight parameters of
client i and the model after the previous iteration aggregation.

Norm(
△ℓ

log(1 + λ
2 ||wi − w||2)

)

K∑
k=1

Ttierk

max(Ttier)
hi(wi)

{tierk,i∈||s||}
(6)

Specifically, clients are selected based on their historical performance to participate in subsequent
training rounds. After being selected, they are allocated to different levels according to their histori-
cal speed. Previous reseaches assumed that the performance of clients would remain consistent, they
would fully meet the time expectations designed for different tier. However, issues such as device
occupation and communication failures could lead to sudden slowdowns that might recover within

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Prompt Structure:
Role requirements: ...
Input interpretation: ...
Output format: ...
Available tools: ...
Record content:...

Role Requirements:
You are an expert in distributed
machine learning scheduling,
and your task is to select the
appropriate client to call based
on historical performance.

Tools:
Here are the tools you can use for
analysis:
a. loss analysis tool: loss_analysis_tool. py
b . e f f i c i e n c y a n a l y s i s t o o l :
efficiency_analysis_tool. py which can be
used to analyze.
c . h i s t o r i c a l s e l e c t i o n a n a l y s i s :
his_select_analysis.py

Input interpretation:
T h e i n p u t i n c l u d e s
information such as test
results on each client,
locally trained loss, and
t ime consumption for
each epoch.

Output format:
Analyze why you made this
choice. If based on the analysis,
you feel that you can make a
choice, then output the selected
client number in the form of a
list such as [1,3,4,..., 9]

Figure 2: Prompt and Content

a certain period. Or the device may suddenly go offline during training and not recover. The detail
shows in Algorithm 2.

The following formula shows the Monitor evaluation whether or not move the client to Buffer from
Tier, where σ2(Ttier) is the variance of the running time in this tier, and T̄tier is the average training
time per round. This formula has been improved based on the variance contribution ratio method.
Default relaxation factor default relaxation factor φ = 1 and referring to Li et al. (2019a), to ensure
system stability, Monitor only employed for the time-cost top 20% or bottom 20% of clients.
Monitor will move client to buffer if Monitor(·) > φ.

Monitor(·) = (ti−T̄tier)
2

σ2(Ttier)·(n−1)

(7)

The design of this buffer is immediate; all selected outliers are placed in this buffer. We do not need
to particularly consider the updates within the buffer and the external updates. The buffer is isolated
from the external environment until the redistribution round arrives. Clients in the buffer complete
updates independently, and each round of updates is stored within the buffer. If the update is useful,
the buffer stores this update, a mechanism that ensures the updates within the buffer remain optimal.
Finally, at the set redistribution round, the buffer will upload the optimal model parameters of each
client to the server for aggregation. It should be noted that if a client in the buffer recovers to meet
the expected speed of a certain level after several updates, the client will be released from the buffer
to the appropriate level with the optimal model parameters.

4.3 LLMS BASED AGENT FOR EFFICIENCY IMPROVEMENT

In contrast to traditional methods, which often rely on mathematical techniques to meticulously
craft evaluation functions or rules, our approach involves scoring the performance of all clients after
a comprehensive run using these functions. The selection process is refined by setting thresholds
or selecting a certain percentage of clients for participation. Recognizing the potential loss of data
or computational resources that may occur when some clients are discarded, we employ a random
supplementation strategy to include those initially overlooked. For example, FedBalance incorpo-
rates this strategy by merging selected and unselected data into a parallel data processing mode. To
transcend the limitations of manual configuration, we have integrated an LLM-based Agent as an
embedded decision-making tool to assess client participation and adjust the server’s overall hyper-
parameters dynamically, allowing for tailored adjustments to the training process at various stages.
The architecture we’ve designed, as depicted in the figure, is built on a server with a high baseline
computational capacity to optimize the system’s overall performance.

4.3.1 BASIC SCHEME.

To minimize the learning curve, we’ve adopted a straightforward approach using prompt words for
task management. The beauty of this method lies in its simplicity; by tweaking the prompt templates
and key elements, one can effectively manage task scheduling. This process is accessible to engi-
neers with basic knowledge, enabling them to perform system optimizations that yield immediate,
observable results. The rationale behind these adjustments is also transparent, as the outputs from
LLMs provide clear insights into the decision-making process.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.3.2 AGENT-BASED SCHEME.

In the past two years, there has been a proliferation of concepts and schemes based on Large Lan-
guage Models (LLMs) Agents. Agents endowed with tools, reflection, and memory have become the
mainstream design paradigm. In response to this, we have crafted an Agent optimized for federated
learning.

• Memory: In our framework, memory is segmented into short-term and long-term facets.
While short-term memory retains recent operations and dialogues, our primary focus lies
with long-term memory, which documents execution adjustments. The term ”other” indi-
cates a comprehensive archive of task records post-execution. Our method involves extract-
ing and analyzing these records to generate metadata that captures participant involvement,
client outcomes, temporal engagement, and accuracy. This dataset further explains client
selection patterns and the decision logic of LLMs across successive rounds.

• Tools: LLMs have demonstrated that their capacity for mathematical reasoning is not as
robust as initially anticipated. To address this, we have designed a suite of tools to augment
LLMs, compensating for their deficiencies in computational aspects. These tools consist
of text transformation utilities, key information extraction, data processing capabilities,
and foundational machine learning model scripts. The design of Contribution Evaluation
Module with analysis is demonstrated in Appendix A.

• Chain of Thought: The implementation of CoT in this scenario essentially follows a
prompt template to completion. This allows LLMs to assess whether the requirements
are met and to output templates that more closely align with the demands. Drawing inspi-
ration from the React method, we have constructed the CoT for our scenario, which we will
illustrate through a set of indicative words and processes that represent our CoT framework.

5 EXPERIMENTS

5.1 SETUP

5.1.1 INFRASTRUCTURE.

Our experimental environment is anchored in servers deployed with the Linux Ubuntu 22.04 Server
operating system. The server is powered by two Intel Xeon Platinum 8352V CPUs, complemented
by 256 GB of RAM. It is further endowed with 8X NVIDIA RTX3090 GPUs, facilitating the ca-
pability to perform heterogeneous simulations that adeptly harness the combined strengths of CPU
and GPU resources.

The federated learning framework employed in our experiments is derived from PFLlib Zhang et al.
(2023), a code library that serves as a robust platform for investigating federated learning and per-
sonalized federated learning scenarios. The machine learning models engaged in our experimental
tasks, including Deep Neural Networks (DNNs), Convolutional Neural Networks (CNNs), and the
ResNet-18 He et al. (2016), leverage PyTorch as their underlying architecture, ensuring a high de-
gree of flexibility and performance. The default training batch size for each client is set to 10, with
each client training only one epoch locally in each round

5.1.2 BASELINE MODELS.

In our investigation, we have incorporated a suite of recent baseline models related to client selection
and the robust efficiency of federated learning for comparative analysis. These include FedAT, TiFL,
and FedBalancer, with FedAvg also integrated as a comparative benchmark. Additionally, we will
contrast these models against several regular client selection strategies to evaluate their performance
comprehensively.

5.1.3 STATISTICAL HETEROGENEITY.

In our experiments, we have configured a variety of data heterogeneity challenges of varying diffi-
culty to comprehensively assess the performance of our proposed methods. Regarding independent
and IID data, we have simply established two types of distributions where each client possesses

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

approximately the same or varying amounts of data. Additionally, we have employed two widely-
used settings for statistical heterogeneity: the pathological setting and the practical setting. In the
pathological setting, each client receives a fraction of the total number of classes in the dataset, such
as one-fifth for the MNIST dataset LeCun et al. (2010), which has 10 classes. Consequently, while
the entire FL task is conducted across the full dataset, each client is allocated data corresponding
to only two classes. For the practical setting, we have assigned the data distribution across clients
following a Dirichlet distribution Lin et al. (2020), which is the default configuration.

5.2 PERFORMANCE

In this section, we conducted accuracy assessment experiments for all selected models. The experi-
mental setup involved 20 participating clients. As demonstrated in Table 1, our experiments utilized
a time-constraint mode, given that we strategically selected a subset of clients for training; had we
adopted the same number of global rounds for training, our model’s performance would likely be
inferior to that of models trained with the full complement of clients. Additionally, we compared
our results with those obtained by FedAvg after 1000 full rounds of training (denoted as FedAvg-F).
Please note, the average rate at which GFLAgent completes 1000 global rounds is 5.7× faster than
that of FedAvg-F.

Table 1: The test results compare the accuracy (%) of all algorithms under the condition of GFLA-
gent completing 1000 training rounds. Notably, FedAvg-F represents the outcome of FedAvg’s
1000 full training rounds without time constraints. In Practical setting, β = 0.05 is employed as the
Dirichlet distribution parameter.

Settings IID Pathological Practical

Dataset MNIST MNIST Cifar-10 Cifar-100 Cifar-10 HAR AG News

FedAvg-Full 97.63±0.45 93.79±0.23 54.10±0.33 24.15±0.40 59.71±0.42 81.17±0.38 78.72±0.27

FedAvg 96.10±0.17 91.99±0.42 49.50±0.29 16.01±0.45 51.97±0.22 77.52±0.45 75.39±0.31
TiFL 96.21±0.24 89.71±0.37 50.32±0.28 17.55±0.43 52.67±0.34 78.62±0.30 77.21±0.41
FedAT 97.21±0.41 92.12±0.26 52.21±0.35 19.28±0.25 56.41±0.31 78.20±0.29 77.82±0.36
FedBalancer 96.05±0.27 92.61±0.14 52.07±0.08 21.97±0.10 55.67±0.12 79.15±0.20 78.12±0.25

GFLAgent 97.58±0.32 93.75±0.39 55.75±0.27 23.25±0.42 57.51±0.37 81.07±0.23 77.95±0.38

5.3 ROBUSTNESS

5.3.1 DATA HETEROGENEITY

As shown in Table 2 Robustness to data heterogeneity is also a key focus of our attention. In
this section, we have adjusted the parameters of the Dirichlet distribution, specifically setting β =
0.1, 0.3, 0.7 for the purpose of simulating data heterogeneity.

Table 2: On this experiment, the framework we proposed demonstrates the highest efficiency, using
the same benchmark as before, which is GFLAgent operating over 1000 global rounds. GFLA-
gent(0.7T) represents the performance of GFLAgent at 0.7 times as the general time. At the same
time, we also used 50% accuracy as a cross-section to study the time (in seconds) for different
methods to achieve this accuracy on all datasets three times.

Cifar-10 β = 0.1 β = 0.3 β = 0.7 Cifar-10@Acc50% [5,5,5,5] [10,0,10,0] [8,2,2,8]

FedAvg-F 64.33±0.15 67.39±0.11 69.97±0.12 FedAvg 2789 1439 2910

FedAvg 48.70±0.41 63.64±0.31 65.96±0.12 FedAvg-1T 2931 1557 3021
TiFL 59.08±0.27 65.12±0.19 67.88±0.22 TiFL 771 720 1028
FedAT 60.43±0.20 66.82±0.20 69.08±0.33 FedAT 788 656 802
FedBalance 61.02±0.30 66.76±0.23 69.33±0.41 FedBalance 2107 1051 2759
FedProto 58.24±0.15 60.16±0.32 63.63±0.31 FedProto 3872 1957 3315

GFLAgent(0.7T) 60.94±0.26 66.39±0.31 68.65±0.29 -
GFLAgent 62.14±0.21 67.20±0.20 69.25±0.18 GFLAgent 591 488 789

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.3.2 DEVICE HETEROGENEITY

We have also conducted relevant tests on the robustness of heterogeneous devices and the occur-
rence of errors on the client side in the system. The tests have shown that our solution also performs
well in addressing such issues. We have set different device heterogeneity and abnormal situa-
tions: for heterogeneous device situations, we use [GPU, 1

2GPU, CPU, 1
2CPU] to represent the

allocation of heterogeneous devices, and [10,0,10,0] represents a situation with 10 GPU devices, 0
half-performance CPU device. Details are shown in the right part of Tabel 2

5.3.3 ABNORMAL STATE

Consider that each device will have ζ% performance fluctuations or training delay anomalies. In
addition, we also discussed the delay time caused by offline or long-term client downtime. Other
methods do not have the ability to handle this situation. Due to the buffer and monitoring mechanism
we designed, GFLAgent can quickly handle such faults. The results indicate that GFLAgent’s ability
to handle occasional delay situations is quantitatively one order of magnitude higher. Details are
illustrated in Appendix Table 5

5.4 EFFICIENCY PERFORMANCE

The client selection mechanism not only enhances performance in terms of data heterogeneity but,
more importantly, it conserves energy. We conducted a straightforward energy consumption test,
which was a cross-sectional study. All clients run on the same device, and our training efficiency
has improved by 37.6% compared to FedAvg. Compared to its other best model FedAT (3 Tiers), it
has improved by 8.9%. The training energy consumption is 21.4% lower than FedAvg, and 10.2%
higher than its other best model FedBalancer-S. Details in Appendix Figure 3

5.5 ABLATION EXPERIMENT

We conducted ablation experiments with the default baseline set at 3.4.1, which mainly includes
three aspects of ablation: buffer handling of abnormal situations, agent construction (as set in 3.4.2),
and contribution calculation module for overall efficiency improvement. We tested the impact of the
proposed different modules on the overall method. The w/o Agent module represents that there is
only one large language model and prompt word template as a simple scheduler, but both the buffer
and contribution evaluation modules are available, and we introduced the usage of the latter in the
prompt word template. It can be seen that the buffer module is designed to prevent delay exceptions
and does not have a significant impact on accuracy.

Table 3: Results for Ablation Experiment
Time = 200s Accuracy(%)

GFLAgent 54.15
w/o Tier Buffer 53.29
w/o Agent Module 50.91
w/o Contribution Evaluation 51.78

FedAvg 45.56

6 CONCLUSION

To address the heterogeneity challenges inherent in federated learning and to boost the efficiency
of such systems, we have introduced a framework known as GFLAgent. This methodology lever-
ages a tiered federated learning strategy and incorporates a buffer mechanism to address the outlier
scenarios that may arise among clients within tiers. Moreover, we have pioneered the use of an
LLMs-based Agent, tailored for client selection in federated learning, to function as the orchestrator
of the system. Our experiments have substantiated the efficacy of our approach. Importantly, the
framework we have developed is not only versatile but also capable of enhancing the efficiency of
existing federated learning frameworks when integrated with them.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 17682–17690, 2024.

Zheng Chai, Ahsan Ali, Syed Zawad, Stacey Truex, Ali Anwar, Nathalie Baracaldo, Yi Zhou, Heiko
Ludwig, Feng Yan, and Yue Cheng. Tifl: A tier-based federated learning system. In Proceedings
of the 29th international symposium on high-performance parallel and distributed computing, pp.
125–136, 2020a.

Zheng Chai, Yujing Chen, Liang Zhao, Yue Cheng, and Huzefa Rangwala. Fedat: A
communication-efficient federated learning method with asynchronous tiers under non-iid data.
ArXivorg, 2020b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Robert Dale. Gpt-3: What’s it good for? Natural Language Engineering, 27(1):113–118, 2021.

Lei Fu, Huanle Zhang, Ge Gao, Mi Zhang, and Xin Liu. Client selection in federated learning:
Principles, challenges, and opportunities. IEEE Internet of Things Journal, 2023.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pp. 5132–5143. PMLR, 2020.

Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank
Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke Hüllermeier, et al. Chatgpt for
good? on opportunities and challenges of large language models for education. Learning and
individual differences, 103:102274, 2023.

Minsu Kim and Walid Saad. Toward green federated learning. In Handbook of Trustworthy Feder-
ated Learning, pp. 409–428. Springer, 2024.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Li Li, Haoyi Xiong, Zhishan Guo, Jun Wang, and Cheng-Zhong Xu. Smartpc: Hierarchical pace
control in real-time federated learning system. In 2019 IEEE Real-Time Systems Symposium
(RTSS), Dec 2019a. doi: 10.1109/rtss46320.2019.00043. URL http://dx.doi.org/10.
1109/rtss46320.2019.00043.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019b.

Xingyu Li, Zhe Qu, Bo Tang, and Zhuo Lu. Stragglers are not disaster: A hybrid federated learning
algorithm with delayed gradients. arXiv preprint arXiv:2102.06329, 2021.

Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized parallel stochastic
gradient descent. In International Conference on Machine Learning, pp. 3043–3052. PMLR,
2018.

Tao Lin, Long Kong, SebastianU. Stich, and Martin Jaggi. Ensemble distillation for robust model
fusion in federated learning. Neural Information Processing Systems,Neural Information Pro-
cessing Systems, Jan 2020.

11

http://dx.doi.org/10.1109/rtss46320.2019.00043
http://dx.doi.org/10.1109/rtss46320.2019.00043

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gener-
ation: Learning to solve and explain algebraic word problems. arXiv preprint arXiv:1705.04146,
2017.

Sin Kit Lo, Qinghua Lu, Liming Zhu, Hye-Young Paik, Xiwei Xu, and Chen Wang. Architectural
patterns for the design of federated learning systems. Journal of Systems and Software, 191:
111357, 2022.

Bing Luo, Wenli Xiao, Shiqiang Wang, Jianwei Huang, and Leandros Tassiulas. Tackling system
and statistical heterogeneity for federated learning with adaptive client sampling. In IEEE INFO-
COM 2022-IEEE conference on computer communications, pp. 1739–1748. IEEE, 2022.

Stephan Mandt, Matthew Hoffman, and David Blei. A variational analysis of stochastic gradient
algorithms. In International conference on machine learning, pp. 354–363. PMLR, 2016.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Shijie Na, Yuzhi Liang, and Siu-Ming Yiu. Gpfl: A gradient projection-based client selection frame-
work for efficient federated learning. arXiv preprint arXiv:2403.17833, 2024.

Takayuki Nishio and Ryo Yonetani. Client selection for federated learning with heterogeneous
resources in mobile edge. In ICC 2019-2019 IEEE international conference on communications
(ICC), pp. 1–7. IEEE, 2019.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings
of the 36th annual acm symposium on user interface software and technology, pp. 1–22, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Monica Ribero and Haris Vikalo. Communication-efficient federated learning via optimal client
sampling. arXiv preprint arXiv:2007.15197, 2020.

Jaemin Shin, Yuanchun Li, Yunxin Liu, and Sung-Ju Lee. Fedbalancer: Data and pace control
for efficient federated learning on heterogeneous clients. In Proceedings of the 20th Annual
International Conference on Mobile Systems, Applications and Services, pp. 436–449, 2022.

Sebastian U Stich. Local sgd converges fast and communicates little. arXiv preprint
arXiv:1805.09767, 2018.

Li Tian, AnitKumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. arXiv: Learning,arXiv: Learning, Dec 2018.

Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig, Rui Zhang, and
Yi Zhou. A hybrid approach to privacy-preserving federated learning. In Proceedings of the 12th
ACM workshop on artificial intelligence and security, pp. 1–11, 2019.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yuzhuang Xu, Shuo Wang, Peng Li, Fuwen Luo, Xiaolong Wang, Weidong Liu, and Yang Liu.
Exploring large language models for communication games: An empirical study on werewolf.
arXiv preprint arXiv:2309.04658, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Haibo Yang, Minghong Fang, and Jia Liu. Achieving linear speedup with partial worker participa-
tion in non-iid federated learning. arXiv preprint arXiv:2101.11203, 2021.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024.

Jianqing Zhang, Yang Liu, Yang Hua, Hao Wang, Tao Song, Zhengui Xue, Ruhui Ma, and Jian Cao.
Pfllib: Personalized federated learning algorithm library. arXiv preprint arXiv:2312.04992, 2023.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX A: CONTRIBUTION EVALUATION ANALYSIS

The decrease of local loss which shows that the model performs well on local datasets doesn’t natu-
rally guarantee the good performance of global model because of the inconsistent data distribution.
We will prove this in later paragraph.

Fedbalancer Shin et al. (2022) capitalizes on the local loss magnitude during client training to select
key contributors. Additionally, to counteract the potential for neglect, it assigns a chance for clients
who have previously been overlooked by the efficiency selection algorithm to be included. However,
discrepancies in data distribution between local and global datasets may lead to inflated local loss
values. Influenced by GPFL Na et al. (2024), we have designed a new selection metric. Our method
takes into account the information contained in the loss, as well as the role of the client within the
global context. In the calculation, we can approximate the distance between individual and overall
data distributions based on differential fuzziness as follows:

Disti = ||
∑
j∈N
∇f (wj)−∇f (wi) ||22 (8)

The smaller the Disti, the closer the direction between local and global aggregation updates. Then,
we can analyze the loss. It’s easy to draw a conclusion that the decrease of loss combined with the
increase of accuracy promises the data distribution consistency.

To further analyze the problem, we have the following assumptions:

Assumption 1: In each round, agent i has a quality µi drawn from a distribution with mean µi and
variance σ2

i . µi contains two parameters, acci and lossi respectively.

Assumption 2: Since we only need to select clients in a whole, it’s fine to draw a rough conclusion
without fine-tuning complex parameters.

Under the above assumptions, we get 9.

Cont = (acct+1
i − accti) · (losst−1

i − lossti) · log(1 +
1

Disti
) (9)

We are going to illustrate the reasonability of this equation. Cont is a controllable item, determining
clients used for updates. acct+1

i −accti and losst−1
i −lossti represent the accuracy and loss difference

between two continue updates. These two should be positive to ensure the improvement of model.

We use log(1+ 1
Disti

) to adjust clients’ contributions to ensure the global convergence and stability
of the model. Specifically, when Disti is large, meaning that the client’s data distribution differs
significantly from the global data distribution, 1

Disti
will be small, which in turn makes log(1 +

1
Disti

) also small. This reduces the contribution of that client’s update to the global model update.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 3: Comparison of Training Efficiency

B APPENDIX B: SUPPLEMENTARY EXPERIMENTAL RESULTS

We describe the impact of different modules on method efficiency in Fig 4 , and the impact of
different modules on energy overhead in Fig 5. At the same time, we also provided a Prompt
template that we used in B.5

B.1 PERFORMANCE COMPARISON OF DIFFERENT BASE LLMS

We conducted relevant tests on different pedestal models before conducting all experiments. The
results indicate that the input length of qwen-14b is only 2k tokens, and with prompt words, it can
only accommodate about 3 rounds of training records (with approximately 12-20 clients participat-
ing). For performance evaluation, we simply used the time to achieve the same training accuracy as
a comparison metric. Qwen-14b, as a scheduler, is not considered due to the significant difference
in distance between multiple experiments. All times in the table represent the average time it takes
to generate usable results under the maximum input context (although the results are not simply a
list containing client numbers, we use text rules to match and extract a list of content that matches
our experiment). In the end, we chose Moonshot as the LLM base model for this experiment. The
result detail in

Table 4: Results of Performance Comparison.
Model The longest read round Average Performance Time Consumption Per Call (s)

Qwen-14B Local 3 - 14.6
GLM-4-9B-chat-1m Local 650 100% 200.7
moonshot-v1-32k 42 117% 28.1
GLM-4-Long 650 119% 175.6
Qwen-Max-128k 85 112% 72.9

B.2 SUPPLEMENTS OF EFFICIENCY EXPERIMENT

In the efficiency test, we set a global deadline of 1000 iterations to compare the accuracy perfor-
mance of different methods at the same time scale. The results in 3 show that our method can
achieve higher accuracy in the same time, and the final result of our method is only slightly lower
than FedAvg with full client participation. After meeting 1000 rounds, Fedbalancer stops first, fol-
lowed by GFLAgent, then FedAT with slightly lower performance than our method, and finally
FedAvg.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 4: Ablation Experiment for Efficiency.

B.3 SUPPLEMENTS OF ABNORMAL STATE

Each client has a probability of experiencing a delay failure of 10 seconds, and the following time
is the delay compared to the average completion time without failure. Due to delayed failures,
FedBalancer deadline estimation will increase, leading to further increase in overall time costs. In
our experiment, other methods were unable to handle offline and long-term downtime failures. The
unit of all delay time is second.

Table 5: Results for Abnormal State.
Method ζ=0.1% ζ%=1% ζ%=5% Processing Delay

FedAvg 196.27 1758.9 6932.88 -
FedAT 127.81 867.9 2376.25 -
FedBalancer 278.51 1891.24 5416.52 -

GFLAgent 28.87 216.06 614.78 0.53

B.4 SUPPLEMENTS FOR ABLATION EXPERIMENT

From the time accuracy description figure 4, it can be seen that thanks to the client selection and
stratification strategy of the basic LLM, GFLAgent and other ablation methods performed better
than the baseline FedAvg. Due to the hierarchical aggregation scheme, the faster layer method has
a significantly faster iteration time per round than FedAvg.

It can be seen in Figure 5 that although there is not much difference in performance improvement
when GFLAgent and other modules are ablated, this may be because LLM has already evaluated
the energy training loss performance in response and made choices that are more in line with green
computing

B.5 PROMPT EXAMPLE

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 5: Ablation Experiment for Power Consuming.

Algorithm 3 An Example for Prompt of Agent Construction
1: Role: {You are a distributed machine learning expert who can choose by analyzing training

records}
2: Input instruction: {You can read the training records, the most basic training records are: {round

- number of rounds, testing accuracy on all participating clients in that round, performance of
participating clients {client number, local epoch, corresponding epoch loss, time consumed per
epoch} and overall training}}

3: Output requirement: {It is possible to output an analysis, but the final result that needs to be
output is a list []. If you feel that all the information is sufficient to output, then simply follow
the required list}

4: Tools: {Your available tools include analysis tools, which you can use to analyze existing train-
ing evaluation logs and combine analysis, include ’a.py’, ’b.py’}

5: History: {} (History records are mainly used to build agents to reflect on previous actions and
generate more appropriate answers)

6: Training log: {} (read from file)

17

	Introduction
	Related Works
	Federated Learning
	Large Language Models Agents

	Problem Statement
	Proposed Scheme
	Framework
	Buffer for Outlier
	LLMs based Agent for Efficiency Improvement
	Basic Scheme.
	Agent-based Scheme.

	Experiments
	Setup
	Infrastructure.
	Baseline Models.
	Statistical Heterogeneity.

	Performance
	Robustness
	Data Heterogeneity
	Device Heterogeneity
	Abnormal State

	Efficiency Performance
	Ablation Experiment

	Conclusion
	Appendix A: Contribution Evaluation Analysis
	Appendix B: Supplementary Experimental Results
	Performance Comparison of Different Base LLMs
	Supplements of Efficiency Experiment
	Supplements of Abnormal State
	Supplements for Ablation Experiment
	Prompt Example

