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ABSTRACT

Federated Learning (FL), as a privacy-preserving distributed machine learning
paradigm, faces significant challenges in terms of data and device heterogeneity
in practical applications. In this paper, we present a novel Large Language Model
Agent decision system, called Green Federated Learning Agent (GFLAgent), for
alleviating the challenges arising from data and device heterogeneity within the
FL tasks. GFLAgent is efficient and energy friendly, and meets the requirements
of green computing. GFLAgent dynamically monitors the status of each client,
selects and reasonably allocates them to different layers to achieve efficient asyn-
chronous training, and responds to unexpected situations during training. Further-
more, to optimize overall system expenditure, we implement a strategy that min-
imizes local training overhead and the updates costs for clients with historically
subpar performance. The experimental results show that GFLAgent outperforms
SOTA methods and can be quickly ported to other distributed machine learning
frameworks to improve efficiency.

1 INTRODUCTION

Distributed machine learning has improved the efficiency of artificial intelligence model training, but
it has also exposed the issue of customer data privacy. Participants from different institutions tend not
to transmit private data when participating in training tasks. For this reason, Federated Learning (FL)
McMahan et al. (2017)is proposed. FL is crafted to aggregate local model updates from distributed
devices without centralizing data, thereby safeguarding privacy and ensuring robust model training
through iterative global refinement. Nonetheless, FL can incur significant computational, network,
and performance expenses during the training phase. This trade-off may stem from the inherent
architectural features Lo et al. (2022) of FL and the challenges posed by statistical heterogeneity
Luo et al. (2022) across the distributed datasets.

The key challenge in FL is statistical heterogeneity, where data is frequently imbalanced and non-
identically independently distributed (non-IID) Zhao et al. (2018). Thus, the indiscriminate training
of all clients and the subsequent model updates, without considering the distribution and quality
of data, can degrade model performance. Given these challenges, a pertinent question arises: is it
possible to devise a model that selects clients in a more scientific and effective manner for each
training round? This question is central to the evolving field of client selection algorithms in FL.

There have been many attempts to address heterogeneity issues. In the early days, many studies
emphasized the issue of lagging behind, which was caused by uneven distribution of computational
data and computing power. To solve this problem, Tier-based Federated Learning System (TiFL)
Chai et al. (2020a) utilize a multi-layer mechanism to mitigate the impact of stragglers. However, it
calls for well-designed layer to avoid excessive loss of model information. Besides, it may also have
a bias problem that tends to choose faster layers. Federated learning method with Asynchronous
Tiers (FedAT) Chai et al. (2020b) has taken a step further by adopting a novel weighted aggregation
heuristic algorithm, assigning higher weights to slower layers to prevent the preferences.

Nevertheless, all these traditional scheduling optimization requires engineers to spend a lot of time
to design the weights and optimize models. The Large Language Models (LLM) have shown the
potential in improving current work Zhao et al. (2023) since it has experienced explosive growth in
the past two years and is proven to make amazing progress in generative tasks. Based on LLMs, we
use LLM-based agent Wang et al. (2024) to improve automatic logical reasoning.
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What’s also noteworthy is that current algorithms ignore the situation that the unexpected discon-
nection of a client with other tasks could result in anomalies within a particular tier, which can
negatively influence the communication efficiency.

To avoid these unexpected situations impacting model performance and time of communication, we
build a buffer zone to involve abnormal clients during training, storing their updates while uploading
selectively. What’s more, compared with elaborate strategy of clients allocation in different tiers and
model weight, GFLAgent use LLM-based agent to adjust the server’s decision automatically with
less parameter engineering. The Agent uses a carefully designed method to evaluate the actual con-
tribution of clients to overall performance, selects some clients to participate in training, improves
task efficiency, and reduces energy costs. These aspects demonstrate that our methods align with
Green FL, promoting sustainable environmental development Kim & Saad (2024).

To sum up, our contributions are as follows:

• We have designed a FL system for alleviating the heterogeneity of data and devices in dis-
tributed learning, which we name GFLAgent. Within this system, we have constructed an
efficient and robust asynchronous federated learning framework, integrated with an LLM-
based Agent serving as the scheduler for the entire system. This scheduler is also readily
transferable to other FL systems.

• Innovatively addressing potential issues within the Tiers framework, we propose a buffer
designed specifically for outlier clients operating within the Tiers. Accompanying this
buffer is a vigilant monitor, capable of swiftly identifying these outlier clients and relo-
cating them into the buffer. This mechanism significantly enhances the robustness of the
heterogeneous FL system.

• We conducted experiments on standard datasets and compared them with other advanced
algorithms. The results demonstrate that our method outperforms existing methods signifi-
cantly. Compared to the FL algorithm with full clients participation, our method maintains
similar accuracy. Besides, in some cases of heterogeneous data distribution, our model
performs better than other SOTA methods.

2 RELATED WORKS

2.1 FEDERATED LEARNING

In recent times, Federated Learning (FL) has emerged to help protect information security by en-
abling model training without the need for central data storage, whose protocol requires the selected
clients to update their model using local data, while asking the server to aggregate updates from the
clients to make the model better Nishio & Yonetani (2019).

Several classic FL algorithms, including Federated Averaging (FedAvg) McMahan et al. (2017),
FedProx Tian et al. (2018), and Stochastic Controlled Averaging for Federated Learning (SCAF-
FOLD) Karimireddy et al. (2020), have been introduced to enhance the quality of FL. FedAvg
leverages local stochastic gradient descent (SGD) Goodfellow et al. (2016) on each client, with a
server performing model averaging. This method is robust against unbalanced and non-IID data
distributions and effectively reduces the number of communication roundsMcMahan et al. (2017).

FedProx expands on FedAvg by tackling statistical heterogeneity among clients, thus enhancing
convergence behavior in realistic, heterogeneous networks McMahan et al. (2017). Algorithms like
SCAFFOLD further optimize FedAvg by employing control variates to counteract client-drift in
updates, a strategy known as variance reduction Karimireddy et al. (2020).

Given that each client may handle varying amounts of data, this discrepancy can affect subsequent
communications and the quality of the updated model Nishio & Yonetani (2019). Moreover, these
variations can profoundly influence model accuracy, convergence rate, and fairness across clients Fu
et al. (2023).

Addressing both system heterogeneity (variations in hardware configurations among clients) and
statistical heterogeneity (differences in data distributions among clients) is essential to overcoming
similar challenges in FL McMahan et al. (2017). Client sampling and selection are pivotal in solv-
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ing these problems. Here are two main strategies: client classification for improved asynchronous
training and bolstering communication efficiency between clients and servers.

Asynchronous training is a response to the delays caused by stragglers. Extensive research Stich
(2018) Li et al. (2019b) Karimireddy et al. (2020) Yang et al. (2021) has concentrated on reducing
their impact in distributed networks to avoid performance deterioration. However, the outright ex-
clusion of stragglers might result in the loss of critical data needed for model enhancement. Hybrid
Federated Learning (HFL) Truex et al. (2019), which incorporates techniques such as Asynchronous
Decentralized SGD (AD-SGD) Lian et al. (2018), mitigates this by integrating delayed local updates
into the central model Li et al. (2021).

An alternative approach to managing straggler clients involves a synchronous intra-tier model up-
dating strategy. Yet, this method may induce biases due to its favoring certain clients. In contrast,
Federated learning method with Asynchronous Tiers (FedAT) improves upon Tier-based Federated
Learning System (TiFL) by combining synchronous intra-tier training with asynchronous cross-tier
training, effectively reducing the straggler effect and enhancing both convergence speed and test
accuracy.

Another pioneering method focuses on minimizing communication frequency in FL by selectively
choosing clients based on model update thresholdsRibero & Vikalo (2020). This strategy, inspired
by Ornstein-Uhlenbeck processes and SGD Mandt et al. (2016), ensures that only updates that sur-
pass a certain significance are conveyed to the server, thereby streamlining communication effi-
ciency.

We have also seen some other advanced models. FedBalancer Shin et al. (2022) is a case in point,
which exemplifies a notable model that refines time-to-accuracy performance by harmonizing client-
server interactions. It selects samples with substantial statistical utility and dynamically forecasts
optimal deadlines for each training round, contingent on the variability of client training data, which
in turn optimizes the learning trajectory.

These advancements underscore the ongoing efforts to refine FL methodologies, balancing the com-
plexities of client heterogeneity with the need for efficient and effective model training across dis-
tributed environments.

2.2 LARGE LANGUAGE MODELS AGENTS

The rise of large language models (LLMs) Radford et al. (2019) has been a cross-age change in AI,
with GPT-3 Dale (2021) from OpenAI being a standout example. These models use a transformer
architecture and are trained on huge amounts of text, making them great at producing text that feels
like it was written by a person Kasneci et al. (2023). However, scaling up model size alone has not
proved effective for achieving greater performance on tasks such as arithmetic, commonsense, and
symbolic reasoning Rae et al. (2021).

To help LLMs handle complex reasoning, researchers have come up with new ideas like ”Chain
of Thought prompting” (CoT) and ”Tree of Thought” (ToT). Unlike expensive rationale-augmented
trainingLing et al. (2017) and fine-tuning methodsCobbe et al. (2021), CoT Wei et al. (2022) lever-
ages the <input, chain of thought, output>template, enabling LLMs to perform few-shot prompting
for reasoning tasks efficiently. While ToT Yao et al. (2024) allows LLMs to self-assess and choose
between advancing or backtracking along different reasoning paths during global decision-making.
Furthermore,Graph of Thought (GoT) Besta et al. (2024) generalizes CoT and ToT to more intricate
thought patterns, enhancing reasoning without the need for model updates.

The progression to LLM agents signifies a transformative leap in AI’s capability for complex rea-
soning and task execution. LLMs can be applied to more than just conversation-based language
tasks. Researchers are now looking at how LLM agents can be used in real-life situations to solve
complex problems. For example, they are working on improving reasoning in games like Werewolf
Xu et al. (2023) and in AI environments like Smallville Park et al. (2023), as well as developing new
ways for agents to think and make decisions.

By applying the strengths of LLMs and techniques like CoT and ToT, we aim to make progress in
how LLM-based agents tackle real-world challenges.
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3 PROBLEM STATEMENT

Suppose we have a federation of m clients engaged in a collaborative training endeavor, each pos-
sessing a unique dataset that is not to be disclosed to other clients or the central server. Our primary
aim, akin to the foundational goals of federated learning, is the optimization of the global objective
function to ensure the model’s performance is minimized in a collective sense.

min
{w,i}

FG(w) =
1

m

m∑
i=1

Fi(w) (1)

Given the distributed nature of machine learning, it is imperative to account for the overall time
cost associated with the tasks. During training, the time expenditure for each round may initially be
denoted as trG = max (tr1, t

r
2 . . . , t

r
m), representing the global perspective. Upon the implementation

of client selection strategies, such as those aimed at optimizing the process, the time cost could be
further refined to tr|S| = max ([tri in |S|]). Here, |S| symbolizes the time cost incurred in the r-th
round for the subset of clients that have been selected.

min
{i}

T =
R∑

r=1

tr (2)

Ultimately, in a distributed system, we also aim to minimize energy expenditure while meeting
the task requirements. The term τi represents the average computational power of device i, which
signifies the operational duration of the i-th client during the r-th round.

min
{FS<x̂,i}

C =

m∑
i=1

R∑
r=1

τi · tri (3)

Additionally, the server’s time cost and energy consumption are linearly related to the number of
computation rounds and the number of clients participating in the submission and aggregation tasks
per round. Although this aspect is relatively minor compared to the training costs incurred by the
clients and is relatively straightforward, it will not be elaborated upon extensively here. However, it
will be taken into account and compared in the experimental section.

4 PROPOSED SCHEME

4.1 FRAMEWORK

Initially, we define the common practice problem encountered by FL as having statistical hetero-
geneity. Therefore, following by FedProx, we set the basic model update strategy hk(·) for the
client as follows:

hi(wi) = F (wi) +
λ

2
||wi − w||2 (4)

There is no denying the excellence of employing a tiered asynchronous design approach. In the
realm of federated learning, traditional resource scheduling techniques like task offloading and load
balancing are inapplicable due to the non-shareability of client data. Efforts to offload non-sensitive
computational tasks from slower clients to cloud servers, as seen in prior research, were attempts to
navigate these challenges within the federated learning paradigm.

Our comprehensive design draws inspiration from the tiered asynchronous learning model, but we
have identified potential issues that arise when there is a significant variance in client data volume
or device capabilities. Such disparities could necessitate the creation of numerous tiers, each with
substantial waiting times. The unexpected disconnection or preoccupation of a client with other
tasks could lead to anomalies within a particular tier. To mitigate this, our design minimizes the
number of tiers and incorporates buffers to manage outlier clients effectively.

The client selection mechanism is a cornerstone of our approach. Historically, such mechanisms
were governed by rule-based algorithms that had to account for time expenditure, computational ef-
ficiency, and communication overhead, evaluating clients’ historical performance to determine their

4
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Figure 1: The diagram on the left represents the update process using the naive FedAvg algorithm,
whereas the diagram on the right showcases the comprehensive framework of our innovative GFLA-
gent system. Initially, the task is updated using the method depicted on the left. After several itera-
tions, we transition to the framework on the right, where the GFLAgent selects clients and allocates
them to suitable tiers for processing. Once the tasks within each tier are completed by the clients,
the weights are uploaded to the server for aggregation. Upon successful aggregation, the server dis-
seminates the updated model to all clients engaged in computations across various tiers. Meanwhile,
clients operating in the buffer, as well as those in the active client pool, will only receive the most
recent aggregated model during the subsequent selection cycle. The GFLAgent’s client selection is
primarily guided by the global operational data retrieved from or provided by the server.

participation in subsequent tasks. This process was highly experience-dependent and demanded
extensive hyperparameter tuning. To streamline this, we have developed an automated Selection
Agent, GFLAgent, leveraging Large Language Models (LLMs). GFLAgent utilizes historical train-
ing data to determine which clients should be involved in the next round and assigns them to the
appropriate tiers. It also integrates data processing tools to supply the LLMs with more coherent
operational data.

In summary, our framework encompasses three main components: (1) a tiered federated learning
system with defined update strategy rules (2) buffers and strategies to safeguard outlier clients within
the tiers, and (3) a decision-making Agent for client selection and allocation in federated learning,
powered by LLMs. For detailed insights, one can refer to the framework’s pseudo-code and Fig 3.

4.2 BUFFER FOR OUTLIER

Regardless of how client selection is optimized, the naive single-column parallel structure will in-
evitably generate waiting time for laggards due to differences in data volume and computing power.
The method of setting up different levels can alleviate this issue; however, the updates within each
level are always problematic. For instance, in earlier studies, the experimental settings had a large
time redundancy for each level, and the number of levels was fixed. In our scheme, we only set a
default of three levels to accommodate these data, and we have designed a buffer to accommodate
outliers that are selected, adopting different update strategies.

Firstly, we introduce different Tiers to enable asynchronous updates in federated learning. Assum-
ing we set up K layers to accommodate selected activations, considering that layers with fast update
speeds may have bias effects on the entire model due to more submissions over a period of time. we
introduce model bias compensation weights due to differences in update speed. Optimized aggrega-
tion method shows in 5. In the equation, Ttierk represents the time cost by Tierk, and max(Ttier)
represents the longest time cost among all Tiers.

F (w) =

K∑
k=1

Ttierk

max(Ttier)
hi(wi)

{tierk,i∈||s||}
(5)
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Algorithm 1 GFLAgent Workflow
Input: m clients with their respective datasetsDi, inital global model wight w, R: the global iteration
round. R̂: the round of introducing GFLAgent
Output: Finished global model

1: for round r = R̂, ...,R do
2: Run FedAvg algorithm and write records
3: end for
4: for round r = R̂, ..., R do
5: for each r̂ rounds do
6: Agent selects clients and distribute to Tiers
7: Tiers parallel do:
8: Clients train in Di

9: Monitor move abnormal client i to Buffer
10: Send wi to server until all train done
11: Server aggregate wi send back to client w
12: Clients in buffer train and keep best wi

13: Server aggregate wi send back to all client w
14: end for
15: Server write the latest information to records
16: end for
17: return finished model weight w

Algorithm 2 Buffer Monitor Algorithm
Input: m clients with their respective datasets Di, initial global model wight w, R: the global
iteration round. R̂: the round of introducing GFLAgent
Output: Client in Tiers and Buffer

1: if r at client selection round then
2: tmax, tmin ← Agent decision
3: end if
4: for Client in Tiers do
5: if Client training time ti > tmax or ti < tmin then
6: Move client to Buffer
7: end if
8: for Each round all client in Tier finished training do
9: Use Monitor(·) by Equation 7.

10: end for
11: end for

Using the above method may not be reasonable, due to ignore clients in the system that have a large
amount of high-quality data and run quickly. Simply compensating for weights based on time is
unfair to them. Therefore, we introduce a data contribution parameter to optimize this weight. The
improved formula is as follows, in which△ℓ represent the difference between the loss function and
the local update before and after the previous round. Norm(·) is the normalize operator, which
normalizes all the parameters in this round. wi, w respectively represent the weight parameters of
client i and the model after the previous iteration aggregation.

Norm(
△ℓ

log(1 + λ
2 ||wi − w||2)

)

K∑
k=1

Ttierk

max(Ttier)
hi(wi)

{tierk,i∈||s||}
(6)

Specifically, clients are selected based on their historical performance to participate in subsequent
training rounds. After being selected, they are allocated to different levels according to their histori-
cal speed. Previous reseaches assumed that the performance of clients would remain consistent, they
would fully meet the time expectations designed for different tier. However, issues such as device
occupation and communication failures could lead to sudden slowdowns that might recover within
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Prompt Structure:
Role requirements: ...
Input interpretation: ...
Output format: ...
Available tools: ...
Record content:...

Role Requirements:
You are an expert in distributed 
machine learning scheduling, 
and your task is to select the 
appropriate client to call based 
on historical performance.

Tools:
Here are the tools you can use for 
analysis: 
a. loss analysis tool:  loss_analysis_tool. py
b .  e f f i c i e n c y  a n a l y s i s  t o o l : 
efficiency_analysis_tool. py  which can be 
used to analyze. 
c .  h i s t o r i c a l  s e l e c t i o n  a n a l y s i s : 
his_select_analysis.py 

Input interpretation:
T h e  i n p u t  i n c l u d e s 
information such as test 
results on each client, 
locally trained loss, and 
t ime consumption for 
each epoch.

Output format:
Analyze why you made this 
choice. If based on the analysis, 
you feel that you can make a 
choice, then output the selected 
client number in the form of a 
list such as [1,3,4,..., 9]

Figure 2: Prompt and Content

a certain period. Or the device may suddenly go offline during training and not recover. The detail
shows in Algorithm 2.

The following formula shows the Monitor evaluation whether or not move the client to Buffer from
Tier, where σ2(Ttier) is the variance of the running time in this tier, and T̄tier is the average training
time per round. This formula has been improved based on the variance contribution ratio method.
Default relaxation factor default relaxation factor φ = 1 and referring to Li et al. (2019a), to ensure
system stability, Monitor only employed for the time-cost top 20% or bottom 20% of clients.
Monitor will move client to buffer if Monitor(·) > φ.

Monitor(·) = (ti−T̄tier)
2

σ2(Ttier)·(n−1)

(7)

The design of this buffer is immediate; all selected outliers are placed in this buffer. We do not need
to particularly consider the updates within the buffer and the external updates. The buffer is isolated
from the external environment until the redistribution round arrives. Clients in the buffer complete
updates independently, and each round of updates is stored within the buffer. If the update is useful,
the buffer stores this update, a mechanism that ensures the updates within the buffer remain optimal.
Finally, at the set redistribution round, the buffer will upload the optimal model parameters of each
client to the server for aggregation. It should be noted that if a client in the buffer recovers to meet
the expected speed of a certain level after several updates, the client will be released from the buffer
to the appropriate level with the optimal model parameters.

4.3 LLMS BASED AGENT FOR EFFICIENCY IMPROVEMENT

In contrast to traditional methods, which often rely on mathematical techniques to meticulously
craft evaluation functions or rules, our approach involves scoring the performance of all clients after
a comprehensive run using these functions. The selection process is refined by setting thresholds
or selecting a certain percentage of clients for participation. Recognizing the potential loss of data
or computational resources that may occur when some clients are discarded, we employ a random
supplementation strategy to include those initially overlooked. For example, FedBalance incorpo-
rates this strategy by merging selected and unselected data into a parallel data processing mode. To
transcend the limitations of manual configuration, we have integrated an LLM-based Agent as an
embedded decision-making tool to assess client participation and adjust the server’s overall hyper-
parameters dynamically, allowing for tailored adjustments to the training process at various stages.
The architecture we’ve designed, as depicted in the figure, is built on a server with a high baseline
computational capacity to optimize the system’s overall performance.

4.3.1 BASIC SCHEME.

To minimize the learning curve, we’ve adopted a straightforward approach using prompt words for
task management. The beauty of this method lies in its simplicity; by tweaking the prompt templates
and key elements, one can effectively manage task scheduling. This process is accessible to engi-
neers with basic knowledge, enabling them to perform system optimizations that yield immediate,
observable results. The rationale behind these adjustments is also transparent, as the outputs from
LLMs provide clear insights into the decision-making process.

7
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4.3.2 AGENT-BASED SCHEME.

In the past two years, there has been a proliferation of concepts and schemes based on Large Lan-
guage Models (LLMs) Agents. Agents endowed with tools, reflection, and memory have become the
mainstream design paradigm. In response to this, we have crafted an Agent optimized for federated
learning.

• Memory: In our framework, memory is segmented into short-term and long-term facets.
While short-term memory retains recent operations and dialogues, our primary focus lies
with long-term memory, which documents execution adjustments. The term ”other” indi-
cates a comprehensive archive of task records post-execution. Our method involves extract-
ing and analyzing these records to generate metadata that captures participant involvement,
client outcomes, temporal engagement, and accuracy. This dataset further explains client
selection patterns and the decision logic of LLMs across successive rounds.

• Tools: LLMs have demonstrated that their capacity for mathematical reasoning is not as
robust as initially anticipated. To address this, we have designed a suite of tools to augment
LLMs, compensating for their deficiencies in computational aspects. These tools consist
of text transformation utilities, key information extraction, data processing capabilities,
and foundational machine learning model scripts. The design of Contribution Evaluation
Module with analysis is demonstrated in Appendix A.

• Chain of Thought: The implementation of CoT in this scenario essentially follows a
prompt template to completion. This allows LLMs to assess whether the requirements
are met and to output templates that more closely align with the demands. Drawing inspi-
ration from the React method, we have constructed the CoT for our scenario, which we will
illustrate through a set of indicative words and processes that represent our CoT framework.

5 EXPERIMENTS

5.1 SETUP

5.1.1 INFRASTRUCTURE.

Our experimental environment is anchored in servers deployed with the Linux Ubuntu 22.04 Server
operating system. The server is powered by two Intel Xeon Platinum 8352V CPUs, complemented
by 256 GB of RAM. It is further endowed with 8X NVIDIA RTX3090 GPUs, facilitating the ca-
pability to perform heterogeneous simulations that adeptly harness the combined strengths of CPU
and GPU resources.

The federated learning framework employed in our experiments is derived from PFLlib Zhang et al.
(2023), a code library that serves as a robust platform for investigating federated learning and per-
sonalized federated learning scenarios. The machine learning models engaged in our experimental
tasks, including Deep Neural Networks (DNNs), Convolutional Neural Networks (CNNs), and the
ResNet-18 He et al. (2016), leverage PyTorch as their underlying architecture, ensuring a high de-
gree of flexibility and performance. The default training batch size for each client is set to 10, with
each client training only one epoch locally in each round

5.1.2 BASELINE MODELS.

In our investigation, we have incorporated a suite of recent baseline models related to client selection
and the robust efficiency of federated learning for comparative analysis. These include FedAT, TiFL,
and FedBalancer, with FedAvg also integrated as a comparative benchmark. Additionally, we will
contrast these models against several regular client selection strategies to evaluate their performance
comprehensively.

5.1.3 STATISTICAL HETEROGENEITY.

In our experiments, we have configured a variety of data heterogeneity challenges of varying diffi-
culty to comprehensively assess the performance of our proposed methods. Regarding independent
and IID data, we have simply established two types of distributions where each client possesses

8
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approximately the same or varying amounts of data. Additionally, we have employed two widely-
used settings for statistical heterogeneity: the pathological setting and the practical setting. In the
pathological setting, each client receives a fraction of the total number of classes in the dataset, such
as one-fifth for the MNIST dataset LeCun et al. (2010), which has 10 classes. Consequently, while
the entire FL task is conducted across the full dataset, each client is allocated data corresponding
to only two classes. For the practical setting, we have assigned the data distribution across clients
following a Dirichlet distribution Lin et al. (2020), which is the default configuration.

5.2 PERFORMANCE

In this section, we conducted accuracy assessment experiments for all selected models. The experi-
mental setup involved 20 participating clients. As demonstrated in Table 1, our experiments utilized
a time-constraint mode, given that we strategically selected a subset of clients for training; had we
adopted the same number of global rounds for training, our model’s performance would likely be
inferior to that of models trained with the full complement of clients. Additionally, we compared
our results with those obtained by FedAvg after 1000 full rounds of training (denoted as FedAvg-F).
Please note, the average rate at which GFLAgent completes 1000 global rounds is 5.7× faster than
that of FedAvg-F.

Table 1: The test results compare the accuracy (%) of all algorithms under the condition of GFLA-
gent completing 1000 training rounds. Notably, FedAvg-F represents the outcome of FedAvg’s
1000 full training rounds without time constraints. In Practical setting, β = 0.05 is employed as the
Dirichlet distribution parameter.

Settings IID Pathological Practical

Dataset MNIST MNIST Cifar-10 Cifar-100 Cifar-10 HAR AG News

FedAvg-Full 97.63±0.45 93.79±0.23 54.10±0.33 24.15±0.40 59.71±0.42 81.17±0.38 78.72±0.27

FedAvg 96.10±0.17 91.99±0.42 49.50±0.29 16.01±0.45 51.97±0.22 77.52±0.45 75.39±0.31
TiFL 96.21±0.24 89.71±0.37 50.32±0.28 17.55±0.43 52.67±0.34 78.62±0.30 77.21±0.41
FedAT 97.21±0.41 92.12±0.26 52.21±0.35 19.28±0.25 56.41±0.31 78.20±0.29 77.82±0.36
FedBalancer 96.05±0.27 92.61±0.14 52.07±0.08 21.97±0.10 55.67±0.12 79.15±0.20 78.12±0.25

GFLAgent 97.58±0.32 93.75±0.39 55.75±0.27 23.25±0.42 57.51±0.37 81.07±0.23 77.95±0.38

5.3 ROBUSTNESS

5.3.1 DATA HETEROGENEITY

As shown in Table 2 Robustness to data heterogeneity is also a key focus of our attention. In
this section, we have adjusted the parameters of the Dirichlet distribution, specifically setting β =
0.1, 0.3, 0.7 for the purpose of simulating data heterogeneity.

Table 2: On this experiment, the framework we proposed demonstrates the highest efficiency, using
the same benchmark as before, which is GFLAgent operating over 1000 global rounds. GFLA-
gent(0.7T) represents the performance of GFLAgent at 0.7 times as the general time. At the same
time, we also used 50% accuracy as a cross-section to study the time (in seconds) for different
methods to achieve this accuracy on all datasets three times.

Cifar-10 β = 0.1 β = 0.3 β = 0.7 Cifar-10@Acc50% [5,5,5,5] [10,0,10,0] [8,2,2,8]

FedAvg-F 64.33±0.15 67.39±0.11 69.97±0.12 FedAvg 2789 1439 2910

FedAvg 48.70±0.41 63.64±0.31 65.96±0.12 FedAvg-1T 2931 1557 3021
TiFL 59.08±0.27 65.12±0.19 67.88±0.22 TiFL 771 720 1028
FedAT 60.43±0.20 66.82±0.20 69.08±0.33 FedAT 788 656 802
FedBalance 61.02±0.30 66.76±0.23 69.33±0.41 FedBalance 2107 1051 2759
FedProto 58.24±0.15 60.16±0.32 63.63±0.31 FedProto 3872 1957 3315

GFLAgent(0.7T) 60.94±0.26 66.39±0.31 68.65±0.29 -
GFLAgent 62.14±0.21 67.20±0.20 69.25±0.18 GFLAgent 591 488 789

9
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5.3.2 DEVICE HETEROGENEITY

We have also conducted relevant tests on the robustness of heterogeneous devices and the occur-
rence of errors on the client side in the system. The tests have shown that our solution also performs
well in addressing such issues. We have set different device heterogeneity and abnormal situa-
tions: for heterogeneous device situations, we use [GPU, 1

2GPU, CPU, 1
2CPU] to represent the

allocation of heterogeneous devices, and [10,0,10,0] represents a situation with 10 GPU devices, 0
half-performance CPU device. Details are shown in the right part of Tabel 2

5.3.3 ABNORMAL STATE

Consider that each device will have ζ% performance fluctuations or training delay anomalies. In
addition, we also discussed the delay time caused by offline or long-term client downtime. Other
methods do not have the ability to handle this situation. Due to the buffer and monitoring mechanism
we designed, GFLAgent can quickly handle such faults. The results indicate that GFLAgent’s ability
to handle occasional delay situations is quantitatively one order of magnitude higher. Details are
illustrated in Appendix Table 5

5.4 EFFICIENCY PERFORMANCE

The client selection mechanism not only enhances performance in terms of data heterogeneity but,
more importantly, it conserves energy. We conducted a straightforward energy consumption test,
which was a cross-sectional study. All clients run on the same device, and our training efficiency
has improved by 37.6% compared to FedAvg. Compared to its other best model FedAT (3 Tiers), it
has improved by 8.9%. The training energy consumption is 21.4% lower than FedAvg, and 10.2%
higher than its other best model FedBalancer-S. Details in Appendix Figure 3

5.5 ABLATION EXPERIMENT

We conducted ablation experiments with the default baseline set at 3.4.1, which mainly includes
three aspects of ablation: buffer handling of abnormal situations, agent construction (as set in 3.4.2),
and contribution calculation module for overall efficiency improvement. We tested the impact of the
proposed different modules on the overall method. The w/o Agent module represents that there is
only one large language model and prompt word template as a simple scheduler, but both the buffer
and contribution evaluation modules are available, and we introduced the usage of the latter in the
prompt word template. It can be seen that the buffer module is designed to prevent delay exceptions
and does not have a significant impact on accuracy.

Table 3: Results for Ablation Experiment
Time = 200s Accuracy(%)

GFLAgent 54.15
w/o Tier Buffer 53.29
w/o Agent Module 50.91
w/o Contribution Evaluation 51.78

FedAvg 45.56

6 CONCLUSION

To address the heterogeneity challenges inherent in federated learning and to boost the efficiency
of such systems, we have introduced a framework known as GFLAgent. This methodology lever-
ages a tiered federated learning strategy and incorporates a buffer mechanism to address the outlier
scenarios that may arise among clients within tiers. Moreover, we have pioneered the use of an
LLMs-based Agent, tailored for client selection in federated learning, to function as the orchestrator
of the system. Our experiments have substantiated the efficacy of our approach. Importantly, the
framework we have developed is not only versatile but also capable of enhancing the efficiency of
existing federated learning frameworks when integrated with them.
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A APPENDIX A: CONTRIBUTION EVALUATION ANALYSIS

The decrease of local loss which shows that the model performs well on local datasets doesn’t natu-
rally guarantee the good performance of global model because of the inconsistent data distribution.
We will prove this in later paragraph.

Fedbalancer Shin et al. (2022) capitalizes on the local loss magnitude during client training to select
key contributors. Additionally, to counteract the potential for neglect, it assigns a chance for clients
who have previously been overlooked by the efficiency selection algorithm to be included. However,
discrepancies in data distribution between local and global datasets may lead to inflated local loss
values. Influenced by GPFL Na et al. (2024), we have designed a new selection metric. Our method
takes into account the information contained in the loss, as well as the role of the client within the
global context. In the calculation, we can approximate the distance between individual and overall
data distributions based on differential fuzziness as follows:

Disti = ||
∑
j∈N
∇f (wj)−∇f (wi) ||22 (8)

The smaller the Disti, the closer the direction between local and global aggregation updates. Then,
we can analyze the loss. It’s easy to draw a conclusion that the decrease of loss combined with the
increase of accuracy promises the data distribution consistency.

To further analyze the problem, we have the following assumptions:

Assumption 1: In each round, agent i has a quality µi drawn from a distribution with mean µi and
variance σ2

i . µi contains two parameters, acci and lossi respectively.

Assumption 2: Since we only need to select clients in a whole, it’s fine to draw a rough conclusion
without fine-tuning complex parameters.

Under the above assumptions, we get 9.

Cont = (acct+1
i − accti) · (losst−1

i − lossti) · log(1 +
1

Disti
) (9)

We are going to illustrate the reasonability of this equation. Cont is a controllable item, determining
clients used for updates. acct+1

i −accti and losst−1
i −lossti represent the accuracy and loss difference

between two continue updates. These two should be positive to ensure the improvement of model.

We use log(1+ 1
Disti

) to adjust clients’ contributions to ensure the global convergence and stability
of the model. Specifically, when Disti is large, meaning that the client’s data distribution differs
significantly from the global data distribution, 1

Disti
will be small, which in turn makes log(1 +

1
Disti

) also small. This reduces the contribution of that client’s update to the global model update.
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Figure 3: Comparison of Training Efficiency

B APPENDIX B: SUPPLEMENTARY EXPERIMENTAL RESULTS

We describe the impact of different modules on method efficiency in Fig 4 , and the impact of
different modules on energy overhead in Fig 5. At the same time, we also provided a Prompt
template that we used in B.5

B.1 PERFORMANCE COMPARISON OF DIFFERENT BASE LLMS

We conducted relevant tests on different pedestal models before conducting all experiments. The
results indicate that the input length of qwen-14b is only 2k tokens, and with prompt words, it can
only accommodate about 3 rounds of training records (with approximately 12-20 clients participat-
ing). For performance evaluation, we simply used the time to achieve the same training accuracy as
a comparison metric. Qwen-14b, as a scheduler, is not considered due to the significant difference
in distance between multiple experiments. All times in the table represent the average time it takes
to generate usable results under the maximum input context (although the results are not simply a
list containing client numbers, we use text rules to match and extract a list of content that matches
our experiment). In the end, we chose Moonshot as the LLM base model for this experiment. The
result detail in

Table 4: Results of Performance Comparison.
Model The longest read round Average Performance Time Consumption Per Call (s)

Qwen-14B Local 3 - 14.6
GLM-4-9B-chat-1m Local 650 100% 200.7
moonshot-v1-32k 42 117% 28.1
GLM-4-Long 650 119% 175.6
Qwen-Max-128k 85 112% 72.9

B.2 SUPPLEMENTS OF EFFICIENCY EXPERIMENT

In the efficiency test, we set a global deadline of 1000 iterations to compare the accuracy perfor-
mance of different methods at the same time scale. The results in 3 show that our method can
achieve higher accuracy in the same time, and the final result of our method is only slightly lower
than FedAvg with full client participation. After meeting 1000 rounds, Fedbalancer stops first, fol-
lowed by GFLAgent, then FedAT with slightly lower performance than our method, and finally
FedAvg.
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Figure 4: Ablation Experiment for Efficiency.

B.3 SUPPLEMENTS OF ABNORMAL STATE

Each client has a probability of experiencing a delay failure of 10 seconds, and the following time
is the delay compared to the average completion time without failure. Due to delayed failures,
FedBalancer deadline estimation will increase, leading to further increase in overall time costs. In
our experiment, other methods were unable to handle offline and long-term downtime failures. The
unit of all delay time is second.

Table 5: Results for Abnormal State.
Method ζ=0.1% ζ%=1% ζ%=5% Processing Delay

FedAvg 196.27 1758.9 6932.88 -
FedAT 127.81 867.9 2376.25 -
FedBalancer 278.51 1891.24 5416.52 -

GFLAgent 28.87 216.06 614.78 0.53

B.4 SUPPLEMENTS FOR ABLATION EXPERIMENT

From the time accuracy description figure 4, it can be seen that thanks to the client selection and
stratification strategy of the basic LLM, GFLAgent and other ablation methods performed better
than the baseline FedAvg. Due to the hierarchical aggregation scheme, the faster layer method has
a significantly faster iteration time per round than FedAvg.

It can be seen in Figure 5 that although there is not much difference in performance improvement
when GFLAgent and other modules are ablated, this may be because LLM has already evaluated
the energy training loss performance in response and made choices that are more in line with green
computing

B.5 PROMPT EXAMPLE
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Figure 5: Ablation Experiment for Power Consuming.

Algorithm 3 An Example for Prompt of Agent Construction
1: Role: {You are a distributed machine learning expert who can choose by analyzing training

records}
2: Input instruction: {You can read the training records, the most basic training records are: {round

- number of rounds, testing accuracy on all participating clients in that round, performance of
participating clients {client number, local epoch, corresponding epoch loss, time consumed per
epoch} and overall training}}

3: Output requirement: {It is possible to output an analysis, but the final result that needs to be
output is a list []. If you feel that all the information is sufficient to output, then simply follow
the required list}

4: Tools: {Your available tools include analysis tools, which you can use to analyze existing train-
ing evaluation logs and combine analysis, include ’a.py’, ’b.py’}

5: History: {} (History records are mainly used to build agents to reflect on previous actions and
generate more appropriate answers)

6: Training log: {} (read from file)
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