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ABSTRACT

Aligning large language models (LLMs) with human preferences has proven ef-
fective for enhancing model capabilities, yet standard preference modeling using
the Bradley-Terry model assumes transitivity, overlooking the inherent complexity
of human population preferences. Nash learning from human feedback (NLHF)
addresses this by framing non-transitive preferences as a two-player zero-sum
game, where alignment reduces to finding the Nash equilibrium (NE). However,
existing algorithms typically rely on regularization, incurring unavoidable bias
when computing the duality gap in the original game. In this work, we provide the
first convergence guarantee for Optimistic Multiplicative Weights Update (OMWU)
in NLHF, showing that it achieves last-iterate linear convergence after a burn-in
phase whenever an NE with full support exists, with an instance-dependent lin-
ear convergence rate to the original NE, measured by duality gaps. Compared to
prior results in [Wei et al.|(2020), we do not require the assumption of NE unique-
ness. Our analysis identifies a novel marginal convergence behavior, where the
probability of rarely played actions grows exponentially from exponentially small
values, enabling exponentially better dependence on instance-dependent constants
than prior results. Experiments corroborate the theoretical strengths of OMWU in
both tabular and neural policy classes, demonstrating its potential for LLM appli-
cations.

1 INTRODUCTION

The emergence of large language models (LLMs) raises the challenge of aligning model outputs
with human preferences. Traditional reinforcement learning (RL) methods require explicit reward
functions, which are often difficult to obtain directly. The Bradley-Terry (BT) model (Bradley &
Terry, |1952) addresses this by assigning a scalar reward r(z, y) to a response y given a prompt x,
based on collected preference data. Specifically, the probability of preferring i over 3’ on prompt
is modeled as P(y > ¢/ | x) = o(r(z,y) — r(z,y’)), where o(t) = 1/(1 + e~ *). Building on this
framework, Direct Preference Optimization (DPO, |[Rafailov et al.|(2023)) leverages the closed-form
solution to fine-tune the policy.

However, the BT model implicitly assumes that human preferences are transitive. Empirical studies
(May, 1954) provide evidence of intransitivity at the population level. To address this limitation,
Munos et al.| (2023) introduced Nash Learning from Human Feedback (NLHF), which formulates
alignment as finding a Nash equilibrium (NE) of the preference game. Since P(y > ' | z)+P(y’ >
y | ) = 1, the problem naturally reduces to a two-player constant-sum game.

For NLHF to be deployable in the LLM setting, the algorithm must satisfy additional requirements:

First, it must achieve last-iterate convergence, meaning the final policy produced by training is
close to a Nash equilibrium. In contrast, average-iterate convergence guarantees only that the time-
averaged policy approximates equilibrium, which is impractical for deployment.

Second, the algorithm should be implementable with neural network parameterizations. This rules
out certain methods such as Optimistic Gradient Descent Ascent (OGDA, [Wei et al.|(2020)), which
requires orthogonal projections onto the probability simplex.
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Table 1: Comparison of OMWU results in the NLHF setting. The comparison between “exponential

dependence” and ”polynomial dependence” is explained towards end of Section[I.T]
Assumptions Unique Equilibrium Multiple Equilibria Full-Support Equilibrium

Linear convergence
Full-Support Equilibrium Exists || exponential dependence (Wei et al.,[2020)
polynomial dependence (ours)

Linear convergence
polynomial dependence (ours)

Third, the algorithm should avoid nested optimization, e.g., ett+) = arg ming Linner(0; O(t)),
which is widely adopted by almost all prior works in NLHF (Munos et al.l 2023} [Swamy et al.,
2024 Wu et al., [2024} [Shani et al., [2024} [Zhang et al., 2024} /Wang et al., 2024; [Zhang et al., [2025)).
In practice, there is a trade-off between the number of gradient descent steps on Ly to approxi-
mate §(+1) and the approximation error, while more steps incur significantly higher computational
overhead.

Motivated by these requirements, we revisit the Optimistic Multiplicative Weights Update (OMWU,
Daskalakis & Panageas| (2018)) algorithm to assess its potential for more complex tasks such as
NLHF.[Wei et al.|(2020) proved that under the assumption of a unique NE, OMWU achieves last-iterate
linear convergence after a burn-in period, with an instance-dependent convergence rate for two-
player zero-sum games. However, general preference matrices typically have infinitely many NEs.
Furthermore, their analysis yields burn-in times and convergence rates with exponential dependence
on instance-dependent constants, which may be prohibitive for NLHF tasks.

1.1 MAIN CONTRIBUTIONS

This paper provides new theoretical guarantees for OMWU in the NLHF setting. Our contributions
are as follows:

¢ Improved efficiency under milder assumptions. Under the natural assumption that a full-support
Nash equilibrium exists (rather than the uniqueness of NE), we establish polynomial (rather than ex-
ponential) dependence on instance-dependent constants for both convergence rate and burn-in time,
while maintaining last-iterate linear convergence over the number of updates. This substantially
reduces concerns about the practicality of OMWU for NLHF.

¢ New analytical framework for escaping behavior. We introduce a novel method for analyzing
how OMWU escapes undesirable regions of the strategy space. To our knowledge, this is the first work
to formalize such escaping dynamics, even beyond OMWU, opening a new direction for understanding
dynamics in game-theoretical problems.

We compare our results with those of [Wei et al.| (2020) in Table E}

Under the unique equilibrium assumption, the orders of the burn-in time and convergence rate in
Wei et al.|(2020)) are

In(A) )
o do(n°C —3In(A
<n401% exp(—41In(A) /@) and O (n°Cp exp(—31n(A4)/z))

when initialization is uniform, which is in stark contrast with our orders

Dy, (m* |7 ())3(n L) A2 Cpe'A ’ 232
o ( (1= 47202050 -max< 1, )2 and O(n°e°C%),

which does not depend exponentially on In(A)/c. Here, A is the size of action space, 7(!) is the
initialization, 7* is the equilibrium, 7 is the learning rate, and readers may reder to Section[3|for the
precise definitions of €, L, and Cp.

1.2 PAPER OVERVIEW

We begin by introducing the NLHF framework and the OMWU algorithm in Section[3] In Section 4]
we present our main theoretical result, together with an overview of the convergence behavior and
the analytical techniques used in our proofs. We then validate our theory with empirical results in

Section
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Table 2: Comparison of algorithms with convergence guarantees to 6-NE in NLHF. Convergence
to 6-NE: the number of steps required to find a policy with duality gap at most 6. O hides
poly(log(|A| /n)) factors. When poly(6~!) terms exist, poly(log(6—1)) factors are also hidden.
Last-iterate convergence: “Yes” indicates that the convergence rate applies to the final policy;
“No” indicates that it applies only to the average policy. Efficient update: “Yes” indicates a single-

step gradient update suffices, while “No” indicates nested optimization is required.
. Last-iterate .
Algorithm Convergence to J-NE Convergence Efficient Update
g

OMD O(67?) No Yes

SPPO (Wu et al.|[2024) O(57?) No No
MPO (Wang et al.|[2024) O(57?) Yes No
ONPO (Zhang et a1:2025) o6 1) No No
EGPO (Zhou et al.| 2025) o) Yes Yes
OMWU O(log(6~ 1)) (linear) Yes Yes

2 RELATED WORKS

NLHEF. Since the introduction of the NLHF framework by |Munos et al.|(2023)), a growing body of
work has studied algorithms for solving NLHF, most of which rely on regularization. The Nash-MD
algorithm proposed in Munos et al.| (2023) achieves linear convergence in the regularized setting.
The MPO algorithm Wang et al.[(2024) provides an O(§~?2) last-iterate convergence to a 5-NE. More
recently, the EGPO algorithm of [Zhou et al.[(2025) achieves an improved 0(5 ~1) convergence rate
compared to MPO, while eliminating the need for nested optimization. Additional studies of NLHF
include Wu et al.| (2024)); [Swamy et al.| (2024)); |Ye et al.| (2024); Rosset et al.| (2024)); |Calandriello
et al.[(2024); Zhang et al.| (2024; [2025)). Table E] summarizes the theoretical guarantees of several
algorithms in the NLHF setting.

Computing Nash equilibria in two-player zero-sum games. Computing Nash equilibria in two-
player zero-sum games was a central research topic long before NLHF was proposed. Online Mirror
Descent (OMD, |Cesa-Bianchi & Lugosil (2006); Lattimore & Szepesvari (2020)), originally devel-
oped for online convex learning, naturally applies to this setting but guarantees only average-iterate
convergence. In contrast, OMWU and Optimistic Gradient Descent Ascent (OGDA) have been shown
to enjoy instance-dependent linear convergence (Wei et al., 2020). Among these methods, OGDA
uses direct parametrization (using 6, ,, directly as the probability), making it less applicable; how-
ever, its convergence holds even when the equilibrium is non-unique.

OMWU. The Optimistic Multiplicative Weights Update (OMWU) algorithm was first proposed by
Daskalakis & Panageas| (2018)), who established its last-iterate convergence under the uniqueness
assumption, though without a convergence rate. Later, [Wei et al.|(2020) proved linear convergence
at an instance-dependent rate for general saddle-point optimization problems under the same as-
sumption. On the negative side, (Cai et al.| (2024) showed that last-iterate convergence must be
arbitrarily slow for a broad class of algorithms including OMWU, even in simple two-action settings.
Other studies of OMWU include Lee et al.| (202 1)); |Daskalakis et al.|(2021);/Anagnostides et al.|(2022).

3 PRELIMINARIES

3.1 MULTI-ARMED BANDITS

A multi-armed bandit has an action space A (the reward function is irrelevant in our setting). A
contextual bandit additionally has a context space X, where the agent chooses an action a € A for
each context x € X. In our fine-tuning setting, X corresponds to the prompt space and A to the
response space. For clarity, we state our theory in the multi-armed bandit setting.
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A policy 7 is a probability distribution over A. For computational convenience, we parametrize 7
with a vector @ such that
exp(fa)

a — Za/GA eXp(ea/) :
Note that 6 is a valid parametrization of 7 if and only if it differs from log 7r by a constant shift.

3.2 NLHF

In the NLHF problem (see Munos et al.| (2023)), each pair of actions a,a’ € A is associated with
a probability P(a > a’), representing the probability that a is preferred over a’. Clearly, P(a >
@)+ P(a’ > a) = 1 when a # o/, and we set P(a > a) = % so that this relation also holds for
a=ad.
We define the preference matrix P as

P,w =Pla>ad) -3
By construction, P is skew-symmetric (P + PT = 0

The goal of NLHF is to find a policy 7w* that maximizes its probability of being preferred against an
adversarial policy 7/, i.e.,
m* = argmax min P(w > '),
™ L
where

P(Tr > ﬂ-/) = Ea~7‘r,a’~7r’P(a > a/) = 7TTP7T/ + %
By von Neumann’s minimax theorem |v. Neumann| (1928)),

maxmins ' P’ = minmaxw | P’
T 7/ T/ g

7

and since P is skew-symmetric,

maxmin 7' P’ = minmaxn ' Pn’' =0=a' Pa Va.
g il Fid T

Thus, if 7v* is an optimizer of the minimax objective, then
min(7*) " Pr’ = max ' Pr* = 0.
In this case, we call w* a Nash equilibrium of
We denote the set of all Nash equilibria by M. For any policy 7, the duality gap is defined as
DualGap(w) = max(7’) " Pw — minn ' Px’ = Qma‘g{(PTr)a.
7’ 7’ ae

The duality gap is always nonnegative and equals zero if and only if 7r is a Nash equilibrium. We
say a policy m is 6-NE when DualGap(w) < 4.

3.3 OPTIMISTIC MULTIPLICATIVE WEIGHTS UPDATE (OMWU)
The Optimistic Multiplicative Weights Update (OMWU) algorithm was introduced by |Daskalakis &

Panageas| (2018)) for solving equilibria in zero-sum games and later extended to saddle-point prob-
lems. In the NLHF setting, the algorithm simplifies to

71 = arg min {n<7r, Prt-by 4 DKL(TfHﬁ'(t))} ,
™

'Some works define the preference matrix without subtracting % This choice has little impact in practice,
but in our case, the current definition ensures skew-symmetry.

’Formally, a Nash equilibrium of a zero-sum game matrix P is a pair (1, 7r2) such that 7] Pmwy =
min,s w{ P’ = max,/ (w’)" Pms. For skew-symmetric P, (71, 72) is a Nash equilibrium if and only if
(w1, 1) and (72, 7w2) are Nash equilibria. Hence, our notational simplification is justified.
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#+Y — arg min {77<7r, Pr®y 4 DKL(TFHfT(t))} ,

where 1) is the learning rate, and 7(?) = #(1) are initializations.
In the parametrized form, OMWU reduces to
0® =0tV 4 ppr®, (1)
61+ — ) 4 npPa®), 2)

3.4 REGULARIZATION IN NLHF

Although regularization is not part of OMWU, it appears in related algorithms. For a reference policy
Tref, define

Dualgapg(m) = max ((w’)TPW — BDxy (7| 7ret) + BDKL(ﬂ-Hﬂ-ref))
~ min (m Pr" — BDjct (] m) + it (I ).

This transforms NLHF into a convex optimization problem in Dualgap(7r) at the cost of introduc-
ing regularization error.

3.5 ASSUMPTIONS

Throughout, we impose the following assumption on P:
Assumption 1. For every a € A, there exists a Nash equilibrium 7 of P such that 7, > 0.

Remark 1. This is equivalent to the existence of a Nash equilibrium 7r with 7, > 0 for all a € A.
It is well known that the set M of Nash equilibria is convex.

We define the KL projection of a policy 7 onto M as

p(m) = arg min D, (7’| ).
w/eM

Under Assumption [I] we obtain the following:

Lemma 1. If 7 satisfies 7, > 0 for all a € A, then p() is well-defined, unique, and satisfies
p(m)q > 0 forall a.

Lemma 2. Under Assumption|l| the OMWU algorithm satisfies
p(FM) = p(P) = ... = p(&W) = ...
Proofs are deferred to Appendix[A] By Lemma[2] we define
n* = p(a®).

Remark 2. If Lemma holds and the sequence 7(*) converges as t — o0, then the limit must be
7*. This plays the role of the uniqueness assumption in prior work, allowing us to predict the con-
vergence point without taking infinite steps. Moreover, with uniform initialization, 7v* corresponds
to the equilibrium with minimal negative entropy.

Finally, we introduce constants used in later proofs:
Definition 1 (Instance-dependent constants).
P,
e=min7), L= max |P, |, Cp= w
ach a,a’€A ’ mTeA(A)\M Hﬂ' *p(TF)Hl
Clearly ¢ > 0 by Assumption|[I] and the proof of Cp > 0 is given in Appendix [B}

The constant C'p is novel but crucial. This conveys the idea that if some policy 7 is far from the
predicted convergence point p(7r), then there must be a large update following OMWU algorithm in
the parametrized space at some coordinate.
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4 MAIN THEOREM AND PROOF SKETCH

4.1 STATEMENT OF MAIN THEOREM

Our main contribution is to establish a last-iterate linear convergence guarantee for OMWU in zero-
sum games with a full-support Nash equilibrium. This extends the uniqueness-based result of [Wei
et al.| (2020), providing a broader characterization of OMWU dynamics.

Theorem 2. For any skew-symmetric matrix P satisfying Assumption any initialization #), and

any learning rate 1 such that nL < % there exists a burn-in time

#(|4(1))3 21 A 12 2 4 3
7 — o Pre@ w0 @LNAR LCPE A
(1 —4n2L?)Cpebd (nL)?

such that

23,12
(s n?e*Ce(t—T)
Dip(m*|7#®) < eexp (—O ((1_12772112)

forallt = T.

A complete proof is given in Appendix [C} Here we highlight the key ideas behind the analysis.
Remark 3. Several observations follow from our theorem:

« Although the result is expressed in terms of Dy, (7* |7 (")), the guarantee directly implies
convergence in terms of the duality gap via Pinsker’s inequality (Lemma 7)):

Dy (m*|#®") > JL-DualGap(#(")2.

e The burn-in time 7' simplifies under mild assumptions. For uniform initialization,
D (m*|7#(1)) = O(log |A]). Moreover, since ¢ < |A| under Assumptionand Cp <1,
Che|Al

the term CIAE

is typically smaller than 1, except when 7 is chosen extremely small.

4.2 PROOF SKETCH
Non-increasing KL-projection. We begin by showing that the quantity Dk, (7*| ;) decreases
over time, up to a small perturbation. Specifically, define
0, = DKL(TF* Hﬁ'(t)) + 4772L2DKL(7?I'(7:) Hﬂ't_l).

It can be shown that

O — Op1 = (1 — 4n°L?) (DKL(WW |#1) + Dyp, (£0+Y \|7r<t>)).
This inequality, adapted from Lemma 10 of [Wei et al| (2020), ensures that O, strictly decreases
whenever 7 < 1/(2L). The main task is therefore to quantify how fast ©; converges to 0.

Figure([T]illustrates the trajectory of ©, — ©,; on a cyclic-preference matrix with initialization near
(1,0,0). The dynamics naturally split into two phases:

* a burn-in stage, with oscillatory behavior;

* a convergence stage, with nearly linear decay.

Burn-in Stage: Subgame Case. The subgame case arises when some action a satisfies both:
() # (or #4V) is large, and (ii) the update |n(Pw®)),| is also large. Here the policy shifts
significantly. Define

KD — max 20V |n(Pa®),], KUY = max 2 |n(Pa®),).
ach a€eA
One can then show that there exists a constant C’ > 0 such that
DKL (ﬂ,(t) Hﬁ,(t)) + DKL (ﬁ,(t+1) Hﬂ,(t)) > Cl maX{K(t+1), K(t+1) }2’
following the argument of Appendix D.3 in|Wei et al.| (2020).
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Evolution of Theta Difference

H
2

Theta difference

0 500 Y Ul:d(]al)tes: . 1500 2000
0 12 -1/2
Figure 1: Evolution of ©;—0;, for P = | —1/2 0 1/2 | with initialization near (1,0, 0).
12 -1/2 0

Burn-in Stage: Marginal Case. In contrast, the marginal case occurs when neither K(‘*1) nor
K(+1) is large, so updates in probability space are small. However, if Dy, (7% |7#(®) is still large,
at least one coordinate of # () must drift in its logarithmic value, ensuring continued progress. To
capture this, we introduce the potential

~ {og#™) —logm*, nP&Y)

)
¢ (O, + 2e—1)2

and analyze ®; — ®;;. The leading term reduces to
Pm® qPr®) > [nPr®|Z,,

using the update rule and the closeness of 7w(*) and #(**1) (guaranteed by small KDy After
controlling approximation and residual terms, we obtain

InPx |2, nLIAJ(K® + K0+ 4 [+ .
S, —Py 1> ———2 _0 B ¢ _
t t+1 (O 1 20-1)2 26, + 20 1)2 (minor terms)

Remark 4. The dependence on ¢ arises naturally from Assumption |1} Intuitively, if #(*) and 7(*)
concentrate near a non-equilibrium policy 7’ with restricted support, then escaping requires roughly
—log ﬁ',gt)

a: (IIJI}\'I’I)IQ>O (Pﬂ'/)a

steps. If w* = 0, then — log fr,(f) — o0, making such bounds impossible without the assumption
e > 0.

Burn-in Stage: Combined Analysis. To unify both subcases, we introduce an augmented expres-
sion
Or = O¢—1 + 101 + 2Py,

for constants ¢y, co > 0. One can show

42T 2\ 6
@t—9t+120< (1—4n*L?)Cpe >

?L?AP(O; + 2¢71)?
whenever ©; > ¢, while ensuring ©; > ©,. Consequently, we obtain

63 (nL)*A?
1—4n?2L?)Cheb )~

Or <e for T—O<(
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Convergence Stage. Once O < &, we can use the subgame bound together with lower bounds

on min, 75" and max, |(P7(®),] to establish exponential convergence:

Dy (m*|#") < cexp(— O(*e*Ch(t —T))).

Remark 5. Neither stage is analyzed tightly. In the burn-in phase, the lower bound on ©; — ©;
stems mainly from the transition region, which may not dominate in practice. In the convergence
stage, our rate can be loose when arg min, #Y 2 arg max,, |(P7("),|. Improving both bounds
is left for future work.

5 EXPERIMENTS

We present simulation results comparing the performance of OMWU against several existing NLHF
algorithms (OMD, SPPO, MPO, ONPO, and EGPO).

5.1 GAME MATRICES

We construct P as follows: fix n (the matrix size) and an integer 0 < m < n which roughly denotes
the rank of the NE polytope. Generate m random policies, and let M be the n x (n — m) matrix

whose columns span their orthogonal complement. Then generate a random (n—m) x (n—m) skew-

symmetric matrix A and set P = M AM . Finally, normalize P so that P + % is nonnegative.

Refer to Algorithm [I] for more details. We choose n = 10 for tabular and n = 100 for neural
policy setting, respectively, and 0 < m < n/2. Note that Assumptioncan fail when m = 0.

5.2 IMPLEMENTATION

Using the notation in |[Zhou et al.| (2025), OMWU update can be written as: 8(~1/2) = (0 = 0, for
t>0

9112 _ g(t) 4 pprlt=1/2),
9+ _ gt) 4 pprlt+1/2),

Define a generalized TPO (Azar et al.l 2023) loss using separate distributions for (y,y’) and y” (here
we assume they are independent of €, and simply choose 3 = 1):

o (y)ﬂ'ref (yl) " / " 2
Lipo(0; res, py 1) = Eyy)~p l(log m —EyrnulPly>y") =Pl >y")] .

The result in Section 4.2 of [Zhou et al.| (2025) gives us the update:

A
9(t+1/2) _ g(t) _ %WTW Vo Liwo(60); sg[x )], Uniform, zt-1/2)).
———

= ‘Moptimizer

p(t+1) _ gt _ %“vaeﬁlpo(o“); sg 1], Uniform, r(e+1/2))

where Uniform is the uniform distribution over A x A, and sg[-] means stopping-gradient.

The choice of codebase and implementation of the baselines are detailed in Appendix The
hyperparameters when running the experiments are listed in Appendix [D.3]

5.3 RESULTS

We select one matrix from the tabular and neural policy setting, respectively. They are shown in Fig-
ure 2] while the full experiment results are shown in Appendix [D.4] In the title of each experiment,
we report € and Ay, the smallest positive singular value of P, which is related to the constant C'p.
Refer to Definition[I] for the definitions of € and Cp.
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Figure 2: Selected results under the tabular (left) and neural (right) policy setting.

5.4 REMARKS

We make several remarks based on results in this section as well as those in Appendix [D.4]

e In tabular setting, OMWU consistently achieves linear convergence in terms of the duality gap across
all matrices, corroborating our main theorem. In neural setting, OMWU still outperforms other base-
lines. Meanwhile, regularized algorithms can only converge to the value related to the regularization
coefficient 5. Convergence of OMWU accelerates when A;;, is large.

o Figure [3]illustrates the stark contrast between the last-iterate and average-iterate behavior of
OMD (regularized). This result highlights the advantage of algorithms with last-iterate convergence
guarantees.

e In our constructed game matrices, all the algorithms requiring nested-optimization (SPPO, MPO,
ONPO) fail to converge even with extensive hyperparameter search. This might be a direct result
of insufficient inner optimization steps (we choose 10 steps). However, more inner optimization
steps are not acceptable, as currently these algorithms already consume 3 to 10 more running time
compared to OMD, EGPO, and OMWU.

e The duality gap of OMWU (and occasionally of other algorithms) exhibits noise. This highlights the
necessity of analyzing Dxr,(7* | 7)) rather than relying solely on the duality gap.

6 CONCLUSION

We have analyzed the OMWU algorithm in the context of NLHF. Compared with|(Wei et al.[(2020), our
results relax the uniqueness assumption, improve the convergence rate and burn-in characterization,
and eliminate the exponential dependence on Dk, (7*||71)/e.

This work provides a theoretical guarantee for non-regularized preference-based learning, high-
lighting the potential of OMWU as an alternative to regularizer-dependent methods. However, we are
currently not able to reproduce our result on a fine-tuning problem of large language models due to
resource constraints.

However, one limitation of our work is that the result still does not hold for any preference matrix.
In addition, the burn-in time and convergence rate are not proved to be of tightest order given the
related terms (and we believe they are not tight). We leave the generalization and order problem to
future research.
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Appendix

USE STATEMENT OF LARGE LANGUAGE MODELS

Large language models have been used to polish writing, including correcting grammatical errors
and making content presentation more cohesive.

A PROOFS OF LEMMAS ON KL PROJECTION

This appendix establishes several basic properties of the KL projection p(7r).
Lemma 3. Under Assumption|[l| we have w € M if and only if Pm = 0.

Proof. We only prove the “only if”” direction, as the reverse is immediate.
By Assumption|[]] there exists some 7" € M such that 7/, > 0 for all a € A. Since both 7 and 7’ are
equilibria, we have
' Pmw=0.
Expanding, we obtain

Y (Pr)q = 0.

ach
Because € M, each (P7), < 0. Moreover, 7/, > 0 for all a € A by our choice of 7’. These two
facts force (Pm), = Oforalla € A, ie., P = 0. O

Lemma 4. Under Assumptionl[l] for any policy m with full support, there exists a unique equilibrium
7’ € M such that
7/ = arg min Dy, (7”||7).
M

Moreover, the minimizer satisfies w!, > 0 for all a € A.

Proof. By Lemma3] the set M is compact. Since 7’ — Dy, (' | ) is continuous on M, existence
follows.

To show positivity of all coordinates, note that there exists some 7" € M with 77/ > 0 for every
a € A. Consider
SN = Dxr(An” + (1 = A&’ | ), 0<A<1.
Since M is convex, Aw” + (1 — \)z’ € M. Minimality of 7" implies that f(\) attains its minimum
at A = 0. Differentiating,
Al 4+ (1= X)),
g —4+———~19

Ta

P = Y (mg =) lo

ach
If 7/, > 0, the limit as A — 07 is finite. If 7/, = 0, then 7"/ — «/, > 0, and the limit becomes —o0,
contradicting minimality. Hence 7/, > 0 for all a.
For uniqueness, suppose 7’ and 7" are two minimizers with Dy, (7’| 7w) = Dy (w”| ). Define
f()\) = Dk, ()\ﬂ'/ + (1 — /\)7\'” H 71').

Differentiating,
A’ 1-\N)xa”
PO = D, — ) tog e U VT
Ta
ach
(ﬂ_/ _ 7T_//)2

=Y e " T
I %Aﬂ'&‘#(l*)\)ﬂ'g

Thus f is convex. Since f(0) = f(1) achieves the minimum, f must be constant, forcing f”(\) = 0.
Therefore 7/ = 7”.
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Lemma 5. Under Assumption[I} we have

p(aM) = p(a®) = - = p(&®) = p(a+D) =

Proof. From the update rule in Equation , there exists a constant M (*+1) such that
log #*YD = log #® 4 nPx® 4 pt+D, t>1.
Let v* € M be any Nash equilibrium. Then
Dy (7% |7 = (7% log w*) — (7*, log (11
= Dy, (%7 ®) — (o, Pe®) — (¥, MUV,

Since (w*, Pr()y = —(Px*, 7(1)) = 0, the difference reduces to — M (**1), a normalization term.
Thus the projection target does not change with ¢, i.e.,

p(aD) = p(a®).

B PROOF OF MATRIX-DEPENDENT CONSTANT

This section establishes that C'p is well defined and strictly positive.

Lemma 6. Let N < R"™ be a subspace. Then there exists a constant C(N) < 1 such that the
Sollowing holds: if a,b € R™ and r € N satisfy sgn(a) = sgn(b) and b € N+, then

(@)l < CN) vz a2

Proof. Since sgn(a) € {—1,0, 1}™ has only finitely many possibilities, it suffices to fix any nonzero
sign pattern s € {—1,0,1}" and show the claim holds with some C(N, s) < 1 under sgn(a) =
sgn(b) = s. By scaling, we may assume ||r|2 = |al2 = 1.

If no b € N+ has sign pattern s, then the claim is vacuous and we may take C(N, s) = 0. Otherwise,
fix such a vector b € N+ with sgn(b) = s.

Define
S:{aeR":HaHQ:I, a; =0ifs; =1, a; =0if s; =0, ai<Oifsi:—1}.

By construction, {a, by > 0 for all @ € S. Moreover, equality cannot hold because a # 0 and every
nonzero coordinate of @ agrees in sign with b. Thus S does not intersect N (since b € N1).

It follows that for every » € N and @ € S with ||r||z = 1, we must have |(r, a)| < 1. Compactness
of S then ensures
C(N,s)= max [(r,a)|<1.

reN, [r|2=1

aesS
Taking C'(N) = maxs C(N, s) proves the claim. O
‘We now show that
Cp = mln 7HP7THOO
|7 —p(m)[1

is well defined and positive under Assumption|I]

Let
N:{'reRlAl : Pr =0, 27“@:0},
aeA
and let 7v" denote the orthogonal projection of 7 onto p(7) + N, i.e.,
' = argmin |7 — 7|2,
w'ep(mw)+N

13
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where 7’ need not be a distribution. Since p(7), > 0 for all ¢ € A by Lemmal(l| for any r € N the
perturbed strategy p(7) + Ar is also a Nash equilibrium for sufficiently small [A| by Lemmal[3] By
first-order optimality of p(7r), we obtain

{r,logmw —logp(w)) =0, VreN,

which implies
log ™ — log p(m) € N*.
Since
sgn(log 7 —log p(m)) = sgu(w — p(m)),
Lemma@ guarantees the existence of C(N) < 1 such that

(" = p(m), m = p(m))| < CN) 7" — p(m)|2 | — p(7)]|2-
Since 7’ is the projection of 7r onto p(7) + N, we also have
(n' —p(w), # —=') = 0.
Combining these facts yields
|7 = p(m)|2 < C(N) | — p()|2,

and by the Pythagorean theorem,

|mw — =2 = \/H7r —p(m)3 — |7 = p(m)[3 = /1= C(N)? |7 — p(7)]|-

Next, we relate |7 — 7|2 to | Pr| . Note that w — 7’ € N n N+, where N' = {r : Y _, r, = 0}.
Since N is the null space of P|y, elementary linear algebra gives

| P(m — W/)HQ = Amin |7 — 7TIH27
where Ay is the smallest positive singular value of Py .

Finally, combining all inequalities:

| Px]o = +/]A] | P
> AminV/[A] |7 — 7[5
> AminV/[A[(1 = C(N)?) | — p()|2
> AminlAlv/1— C(N)? | — p()] 1.

Thus we may take

Cp = Amin|A\/1 = C(N)2 > 0.
C PROOF OF THE MAIN THEOREM

C.1 BASIC LEMMAS
Lemma 7 (Pinsker’s Inequality). If 7 and ©' are probability distributions, then
Dxu(m|n’) = 3w — |3

Lemma 8. Let {z,}!,_, be a decreasing sequence. Suppose there exists a nonnegative, non-
increasing, continuously differentiable function f on [z, xo| such that

Ty — Tpy1 = fay)

o q

foralln =0,1,...,t — 1. Then

14
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Proof. Since f is non-increasing, we have

1<$n*17n+1_[z" dx <Jm" dx
= f(xn) Tl f(xn) h Tyl f(l‘)

foralln =0,1,...,t — 1. Summing over n gives
‘< o dx
e, fl2)

O

Lemma 9. Let {z,}!,_, be a decreasing sequence. Suppose there exists a nonnegative, non-
decreasing, continuously differentiable function f on [z, zo| such that

Tp — Tn+1 = f(xn-&-l)

Z0) JIO
+ JR—
o f
Proof. Let F'(z) = x + f(x). Then F'(x) = 1 + f/(x) > 0, so F'is strictly increasing and has an
inverse F~1 on [F(z¢), F(x¢)]. Denote y,, = F(z,,). Then
Yn+1 S Yn — f(mn) = Yn — f(F_l(yn>)

forn=20,1,...,t — 1. Applying Lemmato the sequence {y, } yields

F(zo) dy
Py fFE7HY)

Now substitute y = F'(z) = = + f(x). Then dy = (1 + f'(x))dz, so

foralln =0,1,...,t — 1. Then

JF(wo) dy _ fxo 1+ f’ J- J*f(xo) ﬁ
F(xy) f(F_l(y)) Ty Ty f fxe) t
The second term equals In ! E"L‘); giving the claim. O

C.2 MONOTONICITY OF Oy

Define
@t = DKL('?T* ||7A'l'(t)) + 4772.[/2 DKL(ﬁ(t) H7T(t_1)),

where L = max, pea P p-
Lemma 10.

O — Opyy = (1 _ 4772L2) (DKL(W(t)Hﬁ-(t)) + DKL(ﬁ'(tH)Hﬂ'(t)))-

In particular, if nL < 35, then ©y is strictly decreasing.

Proof. From the update rule Equation (2),
(r* —w® Jog 7Dy = (m* — 7@ Jog &) + nPr®),
Since 7r* is an equilibrium and P is skew-symmetric,
(¥, Py = «(Pr*, 7y >0, (x Pr®) =0,

hence
(¥ —e® log DY = (n* — 7 log 1)),

Therefore,

Dyer,(* (7)) — Dp (% |7 D) = (* log 7+ — (m*, log 1))

15
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> (m® log #TD —log #®)),

Subtracting Dy, (71| 7(Y)) and rearranging gives

Dy (m *HW )) — Dxp(m*| &) — Dgy (70 |7 ))
> (r® — 7D 1og 7D _log w®y 4 Dy (w® |7 ®).

Meanwhile, by Lemma 7]
Hﬂ_(t) _ ﬁ_(t-&-l)HQ < DKL( (t)H A (t+1)) + DKL( S (t+1)||ﬂ_(t))
_ <ﬂ_(t A+1) logﬂ'(t) _ logﬂ(tﬂ)}
—(x® — 7D Pt — £ O
<la® — 7V [Pl — 7)o
<nLja® — &7 — 7D,
Thus,
| — &V < gLfa® - xO-D)y.
Plugging back,
|<ﬂ,(t) _ ﬁ'(tJrl) IOng'(Hl) logﬂ,(t)>| < ,’72L2”ﬂ_(t) _ 7,‘,(tfl)”%
<2’L*(|o® — 7O} + |7®) — 7 =DIR)
4

< 4L (Dxr (7W | 7#0) + Dyr, (7w =1)).

Combining with the earlier inequality proves the claim. O

C.3 OTHER IMPORTANT INEQUALITIES

Let
M® =log(w®) exp(nPm*=1)), MUY = log(w"), exp(nPm®))

be the normalizing constants chosen so that
log7® = log#® + nPxt=1 — M®  log#t) = log#® 4+ nPx® — prt+1),
Also, denote

K® — max#® |nPrt=1)| KO — max 70 nPr®|,.
ach ¢ @ ach ¢ @

Lemma 11.

(t+1) _

[ log 7 log 7", < 2nL.

Proof. Recall the update rule Equation (2):
log w1 =1og#®) + nPx® — prt+1), 3)
From the definition of M (1) we have |M V| < |P7x® .. Hence
[log #+1) —log #®)| ., < 2|nPw®|., < 2nL.

Lemma 12.
|M(t+1)| < enL|A|f((t+1), |M(t)| < enL|A|K(t)

16



Under review as a conference paper at ICLR 2026

Proof. From the convexity of the exponential function, we have
enl _
Ui
Since n(P7®), € [-nL,nL], it follows that

1
l+z<e” <1+ x forallz € [0,nL].

enl _

1
1+ 77(P7'r(t))a < exp(n(Pﬂ(t))a) <1+ HlaX{’l](PTl'(t))a,O}.

Recall that .
exp(MHD) = 3 70 exp(n(Pr?),).

ach
Hence
e nk 1
1+ |Alpminz® (Px®), < M <4 8 |A| max{n max #Y (Px®"),, 0}.
ach 77L ach

Thus,

r(t+1

en
The other inequality follows analogously. O
Lemma 13. N

|7 — 20, < (€ —1)(e"" + 1)|A[K Y
h 2nL '

Also,

(e —1)(e" + 1)|A|K®

O _ A0, <
70 — 70, < i

Proof. From the update rule Equation (2),
) 720 — 20 exp((nPr®), — MEFD) — 71,

When (nPr®)), — M#+1) > 0, convexity and the trivial bound |(nPw(®)), — M*+1| < 2qL
give
el 1

exp(1Pr)o — M) <14 =5 —

(P, — MUHD),

Hence,
(e2nL _ 1)(7%((1t)‘M(t+1)‘ + f((t+1))

< 2D _ 20 ¢
0<my, 9 onL

When (nPr®), — M+ <0, we use
exp((nPa®), — MDY > 1 + (nPa®), — MY,
which implies
0> rﬁ-((lt+1) — 70 > _ﬁz(zt)|M(t+l)| _ R+

a

Combining the two cases and noting that "% > 1 4 2nL, we obtain

@) a0 < T L AR

[ — 7 < —(|M K .

7 = & Oy < S e (W] 4 AR

Applying Lemma [I2] yields the claimed bound. The second inequality follows by the same reason-
ing. O

Recall that € = minges 7.
Lemma 14. If 7, > 0 forall a € A, then

el logw* — log ||y < Dyp(7*|m) 4+ 2¢ 1.
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Proof. We first note
ellogw* — log 7|y < | (log 7 — log ).

Thus it suffices to prove
|7*(log w* — log 7)||1 < Dkp(7*|7) + 271,
Rearranging, this is equivalent to showing

2 ¥ (logmy — logm¥) < et

aeh:in¥ <m,

Define

S = Z T, S% = 2 mr.

achim¥<m, ach:ir¥ <m,

By Jensen’s inequality,
Z ) (logmg — log w)) < S*log(S/S™).
amE <m,
Since S < 1, we further have
S*log(S/S*) < —S*log S* < e
This completes the proof. O

Lemma 15.

|7* — 7l > 2e4/1 — exp(—Dxu (%) /).

Proof. Let
1
Q=N\(nt —ma)™ = S (mk —ma)* = gt — .

aeA ach

Note that for fixed Q < ¢, m, > 0 for all a € A. Hence in this regime Dky,(7*||7r) is finite, so it
attains a maximum at some 7. We restrict to such maximizers.

Pick a € A with ¥ = ¢. If multiple exist, choose a minimizing 7,. We claim no a’ # a can satisfy
T < m¥. Suppose such a’ exists. Set

pP=TE, =TS, T=T)—Ta Y=T. —Ta.
Consider replacing (7, 7o) With (7, — (¢ — 7ar), ¢). The KL contribution changes from
—plog(p — z) — qlog(q — y)
to

—plog(p —x —y) — qlogq.

Thus we need to check
q

a—y

qlog <plog—2—2 (4)
P

7x7y-
Define f(q) = qlog L. Then

fla) =log (1+:5) = 75 <0,

since ¢ = p > x + y > y. Hence f(q) < f(p). Moreover,

p—l’
f(p) < plog———
p—x—y

is equivalent to p(p — x — y) < (p — z)(p — y), which holds.

Now, equality in Equation (E]) would require simultaneously f(q) = f(p) and p(p — z — y) =
(p — z)(p — y). The first condition holds only when p = ¢, and the second only when 2 = 0 (since
by assumption y > 0). Thus equality would force p = ¢, z = 0, and y > 0, which contradicts
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the choice of a: in that case 7} = 7 but 1, < m,. Therefore strict inequality holds, and the KL
strictly increases, contradicting maximality.

This proves uniqueness of such a. A symmetric argument shows there is also a unique b € A with
T > Ty

Hence
* * T * Ty e?
Dy (m H7T)=7Talogﬂ_:_Q+7Tb logﬂg_’_Q\elog aerh
Solving for @) gives
Q = e+/1 — exp(— Dy (7% ) /e),
which implies the desired bound since |7* — 7|, = 2Q. O

C.4 UNIFIED ANALYSIS OF ALL CASES

Lemma 16.
1 —4n?L?

- (t+1) (t+1)12
(VanL 1 2032 max{K K }

SHEC

Proof. From Equation (2), we have
log 7+ — (7D 1og #HDY = log 7 + n(P7®), — (7D log#® + nPr®).
Rearranging gives

n(Pr®), = (nPr® 70Ty 4 (log 7D —log 7)) — Dgy (7D |7 ™).

Since (P7®) () = 0, the first term satisfies

<77p71-(t)7 ﬁ-(t+1)> = <77P7T(t)77?‘-(t+1) — 71-(t)> < 77LH,@-(tJrl) —x® 1.

For the second term, using

la — 0] - exp(|loga — logbl)

1 —logb| < < —bl,

[loga —log min{a, b} max{a, b} jo = 9]
together with Lemma|[TT] we obtain

L
log D) g 0] <« —S | 0],
1tnax{fr((f),7Arc(f+1 }
Thus,
e2nL A A .
PRl < A(m)}uw“*”fw“)nl+nL|\w<t“>ﬂr<t>H1.
max{7g’, Ta

Multiplying both sides by max{wa , 7ra } and taking the maximum over a € A, we obtain

maX{K(t-H) K(t+1)} < eZv]LHﬂ_(t+1) o) Hl + 77LH ~(t+1) _ 7T(t) Hl

By Lemmal[7]

Dyer, (w7 ")) 4+ Drp (7Y 7)) = @ — 7O 4 Ja 0D — 7@

=1
> H#0D - 702,

Hence,

(VanL + 2627%) \/DKL 7@ 71) + Dy, (7D |7 ®)

SL[FRD = w0 + 2L [FED — 7O,
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> max{ K+, g+,

Thus, by Lemma([I0]
1—4n?L?

S(t41) o (E1)12
(VanL 1 202102 max{K K 3.

®t — ®t+1 =

Remark 6. For notational simplicity, define
1 —4n?L?
(V2nL + 2e21L)2°

1=

Recall that
5. — Jog 71 — log 7w*, nP#(1))
k (O + 2 1)2 '
Thus,
- _(og &Y —logw*, nP7r® — nP#r(H1D)) 4 dog 7)) —log #HD) nP7W)
b (0 + 2e-1)2
1 1
+ 1 ~ (t+1) —1 *’ Pﬂ(t-‘rl) o
log# AN C A e R Ry

_ (log w1t _logw*, nPa®) — nPa*+DY 4+ (Jog#® —log# D nP# 1)
- (@t + 26_1)2
L] log 7D —log w*[1(Or41 + O1 + 4e71)

(O + 2¢71)2(0, 11 + 2e71)2 (O — O41).

We bound each term separately.
Lemma 17.

|A‘3€2nL(K(t+1))2
a 4

2
Qog &) —log #+V P& > | P

2nL _ 1 nL 1
_le 2)5(6 DA + Ouir + 4 KD,

Proof. From the update rules,

Jog & —log Y nPx®) = dog #®) —log#+V) nP#® — nPr®)
+ Pr® 4+ MY pPr®)y,

Since n| P ® |, = [M+1)|, and for some a € A, n(Pw®), = 5| Px®|., we obtain

nPr® 4 N0 pPr®y > (| Pr®|, + D) | Pr®), — Al =1 vrerny2
! 4
aen)? AL
= (nHPﬂ-(t) loo + %M(t-&-l)) _ %(M(t+l))2
2 3 onL(fr(t+1)\2
> %Hpﬂ‘(t)Hgo _APem ElK( +1)) .

Moreover,
{log w0 —logat+t) pPa® — 77P1r(t)> > —nL(||log w0 —log 7*|1 + | log w1 _log 7r*\|1)\|fr(t) —x® 1
(el — 1) (e + 1)

> — o |A|(©; + O111 + 4™ HKW),
where the last step follows from Lemma|13|and Lemma O
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Lemma 18.

ek — 1) (e + 1)
2e

(Qog#*) ~log n* P — pP(+1) > - A1 +2¢7 ) KEHD,

Proof. By Lemma[I3]and Lemma|[T4]

Qog #* YD —logmw* nP7a® — nPat+Yy > L] log#tHY —log ||, [#®) — ¢+,
(el — 1) (e + 1)

o |A[(©41 + 27 H KD,

O

Lemma 19.

Op41 + O, +4e! - 163
(@t + 26_1)2(@,54,_1 + 26_1)2 = 47"

Proof. Consider f(u,v) = %54 for u,v > 0. Then

u+ 20 A 2u + v
— e < O7 OUf(U,U) = _W < 0.

Ouf(u,v) = —

udv?
Thus,
f(Or+2e7, 01 +2e71) < f(2e7h,2e7) = 26

Combining Lemma|[I7} Lemma|[T8] Lemma[T9] and ©; > ©,, 1, we obtain

PIPTOR,  [APIL(RED)? (b 1)t + 1)
(O 4 2e71)2 4(0¢ +2e71)2 e(0y +2e71)
(e®E — 1) (e + 1)

— 25(@t n 2e*1) |A|K(t+1) _ inLe?’(@t o @t+1)~

Q¢ — i1 24 |A|K®

Define

_ A[A|(e27E — 1)(e"” 4+ 1
6, — 0, 1 Al 2)(e +1)
en

(@t + 26_1).
Lemma 20. Forallt = 0,

PR, JAPETEECDR (@ et 1) e,

Or+2e71)2 A0y +2e71)2 2 (O + 271

O — Q41 =
O — O41 X

Proof. From the definition of ©, and the bound on ®, — ®, 1,
4|A|(e*F — 1) (e + 1)
en?

4(0; +2e 1) (P — Dy yq)
n? '
Substituting the bound on ®; — ®;; completes the proof. O

Or — 0111 = (0 — O441) +

(O — O¢41)

> (0 —O441) +

Next, we show that O, decreases sufficiently fast in each iteration.
Lemma 21. Forallt > 0,

~ ~ 1
- =
O — O¢41 16

W max{HPr(“Hio, (K(Hl))Z} .
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Proof. From Lemma[20] it suffices to show

PO JAPETERCD) (@ )E 1) )
40 +2e71)2  4n2(O; + 2e71)2 2en?(©; +2e71)

is at least
1

m maX{HPﬂ'(t) Hio, (K(Hl))Q} .

If | P, > 2K (+1) the negative terms are dominated by the positive part, yielding

~ _ 1
0,-011>— | PrW|2.
t t+1 8(@15"‘2871)2 H ™ HOO

Otherwise, K (*+1) > %HPﬂ'(t) |00 Substituting this relation, the inequality simplifies to

L 1
— 2 e —
Ot = Ot 16(0; + 2e~1)2

This completes the proof. O

(k(t-&-l))Q.

Combining Lemma 21| with Lemma 8] yields a global bound on the time to reach the region ©; < ¢.
Theorem 3. There exists a constant

272|A12(©3
7 =o(" L7A[F(7 +1)
(1— 4n2L2)Cheb

such that O, < e.

Proof. If ©; > ¢ forall t < T, then Lemma [2T)and Lemma 8] imply

cH 2nL _ 1\2(ankL 2 —1\2[A |2 2721A12(D3
T71<J 3(e 1*(e™ + 1) (SU4+2€‘ )2 |A] de = O L4 |A] (@1E1) '
6 (1—e1HCCpe’ (1 —4n2L2)Cpe’

Hence such a T3 exists with the stated asymptotic bound. O

Next we handle the phase after O enters the small region 6, < ¢.
When O, < £ we have the lower bound
O; — Oy = Oy (KHH)?

and the trivial estimate )
KD = min 7l P,

Using
) = e— |70 — ¥y = (1 — /1 — exp(—0¢/e)),
we obtain
O — Opp1 = A°C1Che* (1 — /1 — exp(—6,/e)) (1 — exp(—Oy/e)).
Set

w = /1 —exp(—0Oy/e), W =4/1—e"L

Applying Lemmaand the substitution u = /1 — exp(—z/¢) (so dz = %) gives

W2(1— W) J da
t— T1 < In +
2(1 —w) o, 4n2C1C%e*(1 — /1 — exp(—z/e))(1 — exp(—z/e))
2 _ w
A=W, 1 | du 5)
w?(l—w)  2n2C1C%e3 ), u(l —u)(1 —u?)
_ W2(17W)+ 1 JW 1. 1+ u—u? 4
- w(l—w)  2n2C1C%e3 J, \u (1 —u)(l—u?) "
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1
con L (1nW+cz),
w

w
where Cy = SO mixmdx is an absolute constant. The estimate in equation used the substi-
tution indicated above.

Finally, since
0; = —eIn(1 — w?) < —eIn(1 — W?)w? = cw?,

we deduce exponential decay:

@t<6Wexp( (4+ n2Criop? ’3)(t—T1—Cg)).

This completes the analysis: after 73 iterations to reach the small region, ©; decreases exponentially
fast with the stated rate.

D EXPERIMENT DETAILS AND ADDITIONAL RESULTS

This sections provides additional experiment details and results.

D.1 GAME MATRIX CONSTRUCTION

We sample preference matrices using Algorithm|[T]

Algorithm 1: Preference Matrix Sampling Algorithm

Require: Size of game n, rank of full-support equilibrium space m.

1: Sample m positive vectors vy, Vs, -+ - , ¥y, and a random (n —m) x (n —m) matrix A.

2: Find an orthonormal basis u;, us, - - - , U,—qn, Of the orthogonal complement of the subspace
span{vy, va, -, Um}.

3: Set M « [u; us -+ Up_pm]and P — M(A—-AT)MT

4: return P.

maxi<i,j<n | Pijl

For m > 1, this guarantees that Pv; = 0, so is an equilibrium.

Hv H

D.2 CODEBASE AND BASELINES

‘We chose the codebaseE] open-sourced by [Zhou et al.| (2025 because OMD (regularized) and EGPO
have been included. Necessary modifications and extensions have been made, and for complete-
ness, we describe the implementation of baselines here. We use 7 as the step size and [ as the
regularization coefficient.

OMD. The update is
0+ = o) 4 pPr®),

The implementation uses the generalized online IPO (where we choose 8 = 1):

IAI

00+ — 9 — LTy Lipo(0W); sg[ "], Uniform, sg[71)]).

OMD (regularized). The update is shown as Equation (8) in Munos et al.|(2023):

7Y — argmax{nm' Pr® — Dy (w||7 M)},

Shttps://github.com/zhourunlong/EGPO
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where 7 ®) (y)oc(7r® ()= (et (y))"?. In Appendix E.1 of Zhou et al | (2025), it is shown be to
equivalent to

Pr®
o+l — g(t) —np <g(f) Oref — g ) ]

The implementation uses the generalized online IPO:

A
ettt 9 _ 775‘ |V9£|po( 8): Tt ref, Uniform, sg[ () ]).

SPPO. The update is shown as Equation (4.6) in|[Wu et al.|(2024):

. 1Y
at+D) — arg minE, o) (log (t()??)> n <P(y >t — 2)) .

Nested-optimization is used to update the parameters: for each iteration of ¢, we apply gradient
descent using a learning rate 7inner independent of 7 for at most 10 steps, or until successive objects
deviates by at most 107°.

MPO. The update is shown as Equation (8) in|Wang et al.[(2024):

1
7D~ arg By e | Pl = ) — 3Dl mar) = Dy 7).

As detailed in Algorithm 1 in [Wang et al.| (2024), each iteration of ¢ is solved with nested-
optimization similar as in SPPO. Algorithm 1 in |Wang et al.| (2024) incorporates two tricks: (1)
step size annealing: 7; = max{1 — ¢/T,5 x 107*} (where ¢ starts from 0); (2) reference policy
refreshing: with every 7 = 1000 (our choice) steps, update 7 « (7).

ONPO. The update is shown in Section 4.2 of Zhang et al.| (2025):

") — arg max {nﬂ‘TPﬂ'(t*l) - DKL(ﬂ‘Hﬁ‘(t))} ,
#0FD — arg max {HWTPﬂ(t) - DKL(TI'Hﬁ'(t))} .
Each iteration of ¢ is solved with nested-optimization twice, similar as in SPPO.

EGPO. The update is shown in Equations (2) and (3) inZhou et al.| (2025)):

Prx®
9(t+1/2) _ (1 — nﬁ)@(t) +nB (9,—ef + ;) ,
Prt+1/2)
00t = (1-1B)8" + 1 <0ref + wﬁ> :

The implementation uses the generalized online IPO:

A
pU+12) — g 1Y ' VAL G 19089 e, Uniform, sg[")]),

A
6(t+1) e B(t) — Lﬁi |V9,C|Po(0(t); TCref, Uniform,ﬂ'(H'l/Q)).

D.3 HYPERPARAMETERS

Neural network architecture. We use a 3-layer MLP with ReLU activation as the neural policy.
The hidden dimension d is set to be 10. Since we consider multi-armed bandit environments, there
is no input to this policy. Hence, we use a random Gaussian noise N (0, I7) as input.

Reference policy. For tabular policies, we initialize all the parameters to be 0 to assign the refer-
ence policy with the uniform policy. For neural policies, we use Xavier normal initialization (Glorot;
& Bengio, 2010) in all the middle layers, and zero initialization in the output layer, also assigning
the reference policy with the uniform policy while avoiding symmetry weights and homogeneous
gradients.
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Training arguments. For each algorithm under each scenario (tabular v.s. neural), we performed
a grid search over all hyperparameters V;, x V.

Vy,={ix107 : 1<i<10,—-4<j <1},
Vi = 10.00003, 0.0001,0.0003,0.001,0.003, 0.01,0.03, 0.1}.

For MPO, since 7, is defined, we did not search over V,; for OMD, OMD (regularized), EGPO and
OMWU, since no nested-optimization is needed, we did not search over V.

inner *

We use Algorithm T|to sample 100 game matrices, and select the hyperparameters by first ensuring
convergence in the most games, then prioritizing the minimal final duality gap. The final chosen
hyperparameters are listed in Table

Table 3: Hyperparameters for different algorithms across tabular and neural settings.

Algorithm Tabular LR | Tabular n || Neural LR | Neural
OMD 0.4 10
OMD (regularized) 0.001 0.0002

SPPO 0.03 0.1 0.03 0.1
MPO 0.0003 0.09

ONPO 0.01 0.01 0.01 0.01
EGPO 0.01 0.09

OMWU 9 100

D.4 FULL RESULTS

Here we present full experiment results. In all the mentioned figures, duality gap values are cut off
below 106 due to floating point precision.

Last-iterate v.s. average-iterate convergence. In Figure 3] we display the duality gap of OMD
(regularized) on tabular policies. These results illustrate the importance of last-iterate convergence
guarantees.

Comparisons between algorithms. Figures [4] and [5] are results of different algorithms on both
tabular and neural policies. For algorithms with only average-iterate convergence guarantees, we
only display the duality gap curves of their average policies. Even with extensive hyperparameter
search, SPPO, MPO, and ONPO all fail due to slow and unstable nested-optimization.
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Figure 3: Duality gaps of OMD (regularized) applied to tabular policies, when evaluating the last-

iterate policy 7r() and the average-iterate policy % Z;
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Figure 4: Duality gaps of different algorithms applied to tabular policies.
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Figure 5: Duality gaps of different algorithms applied to neural policies.
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