
SWIFTVI: TIME-EFFICIENT PLANNING AND LEARNING WITH MDPS

Kasper Overgaard Mortensen 1 Konstantinos Skitsas 1 Emil Morre Christensen 1 Mohammad Sadegh Talebi 2

Andreas Pavlogiannis 1 Davide Mottin 1 Panagiotis Karras 1 2

ABSTRACT
Markov decision process (MDPs) find application wherever a decision-making agent acts and learns in an un-
certain environment from facility management to healthcare and service provisioning. However, the tasks of
learning model parameters and planning the optimal policy such an agent should follow raise a high compu-
tational cost, calling for solutions that scale to large numbers of actions and states. In this paper, we propose
SwiftVI, a suite of algorithms that plan and learn with MDPs scalably by organizing the set of actions for each
state in priority queues and deriving bounds for backup Q-values. Our championed solution prunes the set of
actions at each state utilizing a tight upper bound and a single priority queue. A thorough experimental study
confirms that SwiftVI algorithms achieve high efficiency gains robustly to model parameters.

1 INTRODUCTION

A Markov decision process (MDP) features an agent who
transitions from one state to another by choosing, in each
state, an action that determines a reward as well as a
next-state sampled from probability distribution, as in a
Markov process (Gagniuc, 2017), hence affects future re-
wards through an induced probability distribution. The
decision-making capacity of the agent raises the problem
of determining how to act in each state to maximize an ob-
jective as a function of the collected rewards.

We consider finite infinite-horizon discounted MDPs, in
which the agent’s objective is to find an action selection
rule applicable at any state—i.e., a policy—that maximizes
the sum of future discounted rewards in expectation (Puter-
man, 2014). Such MDPs capture decision-making scenar-
ios arising in many real-life systems and serve as a math-
ematical model underlying many reinforcement learning
scenarios (Szepesvári, 2010). While the set of possible
policies could become arbitrarily complex, a seminal re-
sult due to Bellman (1957) ensures the existence of a sta-
tionary deterministic optimal policy fully characterized by
Bellman’s optimality equations. These can be solved by
the value iteration (VI) algorithm, which improves an ap-
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proximate solution across iterations considering the inter-
dependence among states and asymptotically converges to
an optimal policy (Bellman, 1957; Howard, 1960). Never-
theless, the task becomes overwhelming as the number of
possible actions grows. Despite its well-established con-
vergence, the computational efficiency and robustness of
the VI algorithm has been scarcely examined.

Besides its application in known MDPs, VI is extensively
used as a routine in several provably-efficient reinforce-
ment learning algorithms under different learning perfor-
mance metrics and in various MDP settings, including
the average-reward setting (Jaksch et al., 2010; Filippi
et al., 2010; Bourel et al., 2020; Burnetas & Katehakis,
1997; Saber et al., 2024), the discounted setting (Strehl &
Littman, 2008; Lattimore & Hutter, 2014; Li et al., 2024),
and the episodic setting (Dann & Brunskill, 2015). Fur-
thermore, VI plays a key role in discrete structured MDPs
and their corresponding RL problems. For instance, it is
used in algorithms for factored MDPs (Talebi et al., 2021),
robust MDPs (Hau et al., 2023), MDPs with reward ma-
chines (Bourel et al., 2023). These works flatten the struc-
tured (non-tabular) MDP and apply a VI routine to obtain a
near-optimal policy.

Contributions In this paper, we propose scalable value
iteration algorithms that solve discounted MDPs, exploit-
ing their monotonicity properties and apt initial values to
prune the search space. In view of the widespread use of
value iteration in a variety of reinforcement learning al-
gorithms, we believe that our proposals have a direct im-
pact on the practicability of those methods, enabling their
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application in time-critical problem instances and in en-
vironments of constrained computational resources. Be-
sides, our contributions apply to any process that itera-
tively selects actions maximizing a value function over an
MDP, such as the policy improvement step of policy itera-
tion (Puterman, 2014; Howard, 1960). For the sake of con-
creteness, we present them in the context of value iteration.

2 BACKGROUND AND RELATED WORK

A finite discounted infinite-horizon MDP M is a tuple M =
(S,A, P,R, γ), where S is a finite set of states called the
state-space; A = ∪s∈SA(s) is the action-space, with A(s)
specifying the finite set of possible actions in state s ∈
S; P : S × S × A → [0, 1] is a transition func-
tion, with P (s′|s, a) denoting the probability of transit-
ing to s′ ∈ S upon executing a ∈ A(s) in s ∈ S;
R : S × A → R is a reward function, with R(s, a)
specifying the distribution of (possibly random) rewards
when a ∈ A(s) is selected in s ∈ S; γ ∈ (0, 1) is
a factor that discounts future rewards (Puterman, 2014).
We consider uniformly bounded rewards, that is, Rabs

max
def
=

maxs∈S,a∈A(s) {|R(s, a)|} < ∞. The interaction with an
MDP M proceeds as follows. At each time step t ≥ 0,
the agent is in state st ∈ S—with s0 decided by nature—
and chooses an action at ∈ A(st) by some rule. Then, M
generates a reward rt ∼ R(st, at) and a next state st+1 ∼
P (·|st, at). The agent receives the reward (at once or in
phases) before the next time step t+ 1 begins, in which M
transits to st+1.

A mapping π : S → A is called a stationary deter-
ministic policy. The value function of π is a mapping
V π : S → R defined as: for all s ∈ S, V π(s) =
Eπ

[∑∞
t=0 γ

tR (st, at)
∣∣s0 = s

]
, where Eπ signifies that

the expectation is taken with respect to trajectories gen-
erated by following π, i.e., over all infinitely long se-
quences (st, at)t≥0, where at = π(st) and st+1 ∼
P (·|st, at) for all t, with s0 = s. The action-value
function of π, also called its Q-value, is defined as fol-
lows: for all s ∈ S and a ∈ A(s), Qπ(s, a) =
Eπ

[∑∞
t=0 γ

tR (st, at)
∣∣s0 = s, a0 = 0

]
.

The optimal value is defined as V ∗(s)
def
= supπ V

π(s) for
any s ∈ S, where ‘sup’ is taken over all possible policies.
Any policy that attains V ∗ is an optimal policy, denoted
as π∗; hence, V π∗

= V ∗. Furthermore, given ε ≥ 0, an ε-
optimal policy is any policy π such that V π(s) ≥ V ∗(s)−ε
for all s ∈ S. We call such a V π an ε-approximation to V ∗.
Problem 1. Given M = (S,A,R, P, γ), find a policy π∗

that maximizes V π at each state. Further, given an ac-
curacy ε, find a policy π such that V π(s) ≥ V ∗(s) − ε at
each state s.

Even though stationary deterministic policies constitute the

simplest class of MDP policies, by a fundamental result,
for any finite MDPs there exists an optimal policy which is
stationary deterministic (Puterman, 2014).

The optimal value V ∗ satisfies the following: for all s ∈ S,

V ∗(s)= max
a∈A(s)

{
R(s, a)+γ

∑
s′∈S

P
(
s′|s, a

)
· V ∗(s′)

}
. (1)

Alternatively, one has: for all s ∈ S and a ∈ A(s),

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a) max
b∈A(s′)

Q∗(s′, b) .

Equation (1), called optimal Bellman equation, amounts
to a system of |S| fixed-point equations, which admits a
unique solution V ∗ (Bellman, 1957) and can be solved nu-
merically via, e.g., value iteration (cf. Section 2.1). An
optimal policy π∗ corresponds to V ∗ in choosing, in each
state s, the action maximizing future reward: for all s ∈ S,

π∗(s)=argmax
a∈A(s)

{
R(s, a)+γ

∑
s′∈S

P
(
s′|s, a

)
· V ∗(s′)

}
.

2.1 The Value Iteration Algorithm (VI)

We begin with recalling the definition of Optimal Bellman
Operator (Puterman, 2014):
Definition 2 (Optimal Bellman Operator). Given V ∈R|S|,
we define the operator B : R|S| → R|S|, for all s∈S, as:

BV (s)
def
= max

a∈A(s)

{
R(s, a) + γ

∑
s′∈S

P
(
s′ | s, a

)
· V (s′)

}

Recursively, Bn : R|S| → R|S| with B1 = B and Bn+1 =
B ◦Bn, n ≥ 1.

By Definition 2, Equation (1) becomes V ∗ = BV ∗; that
is, the optimal value V ∗ is the (unique) fixed point of the
optimal Bellman operator B. Applying B to any vec-
tor V ̸= V ∗ brings V closer to the optimal value V ∗ in the
infinity-norm; this fact motivates us to define the greedy
policy with respect to V as follows: for all s ∈ S:

πV (s)
def
= argmax

a∈A(s)

{
R(s, a) + γ

∑
s′∈S

P (s′ | s, a) · V (s′)
}

Consequently, this fact naturally gives rise to the value it-
eration (VI) algorithm (Bellman, 1957), presented in Al-
gorithm 1, which iterates the computation V i+1 = BV i

for i ∈ N, starting from arbitrarily chosen initial val-
ues V 0 ∈ R|S|, preferably close to the unknown opti-
mal values V ∗. Thus, VI yields a sequence (V i)i≥0 such
that V i =BV i−1 = · · ·=BiV 0, converging to V ∗ (Puter-
man, 2014) for any V0 ∈ R|S|: limi→∞ V i = V ∗. More
formally, for i ∈ N0 and V i = BV i−1,

max
s∈S

{∣∣∣V i(s)− V ∗(s)
∣∣∣}≤γi max

s∈S

{∣∣V 0(s)− V ∗(s)
∣∣} . (2)
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Hence, for any V0 ∈ R|S|, limi→∞BiV 0 = V ∗. Be-
sides these asymptotic convergence guarantees that lead
to π∗, VI can stop according to another criterion (Puterman,
2014): given ε > 0, when the error between two consecu-
tive iterations is ∥V i − V i−1∥∞ ≤ ε 1−γ

γ , then the output
policy πV VI (with V VI = V i) is guaranteed to be ε-optimal,
i.e., ∥V VI−V ∗∥∞<ε. Thus, it yields an ε-approximation
to Problem 1.

Algorithm 1: Value Iteration (VI)
Data: MDP M = (S,A, P,R, γ), threshold ε, initial V 0 ∈ R|S|

Result: An ε-approximation Ṽ ∗ to V ∗

1 i← 0
2 repeat
3 i← i + 1
4 forall s ∈ S do
5 V i(s)←

max
a∈A(s)

{
R(s, a)+γ

∑
s′∈S

P (s′ |s, a)·V i−1(s′)

}
6 until maxs∈S

{
|V i(s)− V i−1(s)|

}
< ε 1−γ

γ

7 return
{
V i(s)

}
s∈S

Evidently, −Rabs
max

1−γ ≤ V π(s) ≤ Rabs
max

1−γ for any s ∈ S and
π. This result leads to an upper bound on the number of
iterations of VI:

Theorem 3. If V 0(s) ∈ [−Rabs
max/1− γ,Rabs

max/1− γ]
for all s ∈ S, then Algorithm 1 conducts at
most

⌈
log(ϵ·(1−γ))−log(2Rabs

max)
log γ

⌉
iterations.

In Section 3, we design more efficient solutions to Prob-
lem 1 that share a common core with the VI algorithm, as
defined below:

Definition 4 (Value Iteration Skeleton). An algorithm ad-
heres to the value iteration skeleton if it:

1. iterates over its core, possibly after pre-processing;
2. treats states as equals, as Algorithm 1 does (Line 4);
3. finds the same V i, for all i, when starting with V 0;
4. provably returns an ε-approximation of V ∗.

The time complexity of VI is O(I|S|2|A|), considering all
states and all actions per state in I iterations. Our proposals
aim to find the maximizing action per state (Line 5) without
considering all actions; some algorithms (Haddad & Mon-
mege, 2014) calculate two VI instances, V i

L and V i
U . While

the initial vector V 0 should preferably be close to V ∗,
the literature scarcely considers it, given that VI converges
from any initial value (see (2)). Contrariwise, we utilize the
initial V 0 to ensure the monotonicity of the (V i)i≥0 series.

2.2 Bounded Value Iteration (BVI)

The bounded value iteration (BVI) algorithm applies in-
terval iteration (Haddad & Monmege, 2014; Brázdil et al.,
2014; Baier et al., 2017) in a discounted infinite horizon
context. The core idea of interval iteration is to maintain

lower and upper bounds to the value function via value iter-
ation. One VI instance, V i

L, approaches V ∗ from lower val-
ues and another instance, V i

U , approaches V ∗ from higher
values, hence V i

L ≤ V ∗ ≤ V i
U . Thereby, apart from the

convergence guarantee of VI – i.e., ∥V VI−V ∗∥∞ < ε –,
which we omit from the pseudocode for clarity, we utilize
a simpler criterion: if maxs∈S |V i

U (s)−V i
L(s)| < 2ϵ, then,

as Theorem 5 states, the mean of the two bounds is prov-
ably an ε-approximation of V ∗.

Theorem 5. If V i
L ≤ V ∗ ≤ V i

U and ∥V i
U (s)− V i

L(s)∥∞ <

2ε, then ∥V ∗−Ṽ ∗∥∞ < ε, with Ṽ ∗
def
= 1

2 (V
i
L+V i

U ). Hence,
Ṽ ∗ is an ε-approximation of V ∗.

Further, BVI calls for starting bounds V 0
L and V 0

U that en-
sure the monotonicity as the following theorem, adapted
from (Baier et al., 2017), specifies.

Theorem 6. Consider V 0
L , V

0
U ∈ R|S|. (i) if V 0

L ≤ V ∗

and V 0
L ≤ BV 0

L , then (BnV 0
L )n∈N converges monoton-

ically to V ∗; and (ii) if V 0
U ≥ V ∗ and V 0

U ≥ BV 0
U ,

then (BnV 0
U )n∈N converges monotonically to V ∗.

This theorem is easily derived from the proposition:

Proposition 7. For V1, V2 ∈ R|S|, V1 ≤ V2 implies BV1 ≤
BV2.

Proof. Let s ∈ S. Since V1(s) ≤ V2(s), we have

BV1(s) ≤ max
a∈A(s)

{
R(s, a) + γ

∑
s′∈S

P (s′ | s, a)V2(s
′)

}
= BV2(s),

hence BV1 ≤ BV2.

The criterion of Theorem 5 may hold before two consecu-
tive iterations in an instance differ by at most ε(1−γ)

γ , as the
condition ∥V VI−V ∗∥∞ < ε requires; yet, as BVI doubles
the computational cost per iteration, it is worthwhile when
the savings by earlier convergence outweigh that overhead.
Still, BVI serves as a starting point for our action elimina-
tion variants exploiting the monotonicity of V i

L and V i
U .

2.3 Action Elimination

We first introduce the backup of an action a ∈ A(s) in
state s ∈ S with respect to value functions VL ≤ V ∗ ≤ VU :

Definition 8 (Backup action). For any s ∈ S, a ∈ A(s),

QU (s, a)
def
= R(s, a) + γ

∑
s′∈S P (s′ | s, a) · VU (s

′)

QL(s, a)
def
= R(s, a) + γ

∑
s′∈S P (s′ | s, a) · VL(s

′)

We say that we back up an action when we calculate one
of the above Q-values and back up a state when we find the
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maximum Q-value over all actions, i.e., apply the Bellman
operator. Action elimination (MacQueen, 1967; Puterman,
2014) is based on the following theorem:

Theorem 9 (Suboptimal action). Consider value vec-
tors VL and VU such that VL ≤ V ∗ ≤ VU . If an
action a ∈ A(s) at state s ∈ S has QU (s, a) <
maxa′∈A(s) {QL(s, a

′)}, then a is never chosen in the max-
imization step, i.e., it is suboptimal.

Proof. From the assumption and the bounds it follows that:

R(s, a) + γ
∑
s′∈S

P (s′ | s, a) · VU (s
′)

< max
a′∈A(s)

{
R(s, a′) + γ

∑
s′∈S

P (s′ | s, a′) · VL(s
′)

}

≤ max
a′∈A(s)

{
R(s, a′) + γ

∑
s′∈S

P (s′ | s, a′) · V ∗(s′)

}
def
= V ∗(s) .

Thus, the value gained by a ∈ A(s) at s is suboptimal.

The above bounds are based on arbitrary VL and VU . We
apply action elimination within the VI skeleton of Defini-
tion 4 to discover suboptimal actions.

Corollary 10 (Suboptimal action—iterative). In itera-
tion i ≥ 1 of a VI skeleton-based algorithm by Defini-
tion 4, assume we have value functions V i−1

L and V i−1
U ,

such that V i−1
L ≤ V ∗ ≤ V i−1

U . If an action a ∈ Ai(s)
at state s ∈ S has Qi

U (s, a) < maxa′∈Ai(s)

{
Qi

L(s, a
′)
}

,
then a is never chosen in the maximization step from itera-
tion i onward, hence may be eliminated and disregarded in
subsequent iterations as suboptimal.

Action elimination thus enables the convergence crite-
rion (Puterman, 2014):

Remark 11 (Action elimination stopping criterion).
Let Ai(s) be the reduced action set remaining, due to ac-
tion elimination, in state s at iteration i; we can terminate
VI in the first iteration i with only one action remaining in
each state, ∀s ∈ S : |Ai(s)| = 1.

2.4 Best-Actions Only (BAO)

The Best Actions Only (BAO) algorithm (Grzes & Hoey,
2011; 2012; 2013) keeps updating the best actions of each
state until the maximum Q-value difference between two
successive iterations, known as Bellman error, is suffi-
ciently small and utilizes Theorem 6 to perform the VI
maximization step without backing up all actions in each
iteration. We build upon this idea in Section 3.1.

2.5 Model-based Reinforcement Learning

In reinforcement learning (Sutton & Barto, 2018), an agent
tries to find a near-optimal policy in an environment with
initially unknown transition and reward functions via its
collected experience. In the model-based design paradigm,
where an approximate MDP is maintained, value iteration
arises as a subroutine that finds a near-optimal policy on the
approximate model of the environment. Here, we consider
online reinforcement learning in discounted MDPs, where
the agent has no prior knowledge on the underlying envi-
ronment, beyond the state-action space, and its goal is to
learn an ε-optimal policy. This gives rise to the exploration-
exploitation tradeoff: the agent must balance between ex-
ploration of the environment to gain new information and
exploitation of past knowledge.

To demonstrate the applicability of our proposals in
this settings, we focus on two model-based algorithms,
MBIE (Strehl & Littman, 2005) and UCRLγ (Lattimore
& Hutter, 2014), designed for this setting. Both algorithms
implement the celebrated principle of optimism in the face
of uncertainty in a model-based fashion. More precisely,
they maintain high probability confidence sets for unknown
transition function P and reward function R of the under-
lying MDP built around their empirical estimates P̂ and R̂.
This leads to a continuum of MDPs,M, that are defined on
the same state-action space as M , while trapping M with
high probability. To implement the abovementioned opti-
mism principle, one must perform VI overM, which leads
to finding an optimal policy over all plausible environment
models collected inM. MBIE and UCRLγ differ mainly in
the choice of confidence sets they maintain and some algo-
rithmic aspects including the frequency policy computation
happens. Both algorithms are PAC-MDP, i.e., they admit
high-probability sample complexity bounds that depends
polynomially on |S|, |A|, 1/(1−γ), ε, and log(1/δ), where
δ denotes an input failure probability (Strehl & Littman,
2008). Specifically, instead of conducting updates in fixed
intervals, UCRLγ operates in contiguous blocks of time-
steps with unfixed length, each each block ending with an
update of the estimators of the single last observed state-
action pair, based on observations accumulated since its
last update. Thereafter, it updates the policy and starts a
new block. To end a block, the number of observations
of the last selected state-action pair must have doubled
since its last update, or, in the first update, reached a min-
imum. We finally mention that both algorithms are PAC-
MDP, i.e., they admit high-probability sample complexity
bounds that depend polynomially on |S|, |A|, 1/(1− γ), ε,
and log(1/δ), where δ denotes an input failure probability
(Strehl & Littman, 2008).
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2.6 Monotonic Tight Bounds

We now outline tight initial lower and upper bounds, V 0
L

and V 0
U , for a VI-based algorithm by Definition 4 and show

that they satisfy the monotonicity property of Theorem 6.
Objective 12 (Initial values objective). We need initial val-
ues V 0

L and V 0
U that satisfy the following requirements:

1. V 0
L ≤ V ∗ ≤ V 0

U ;

2. Lower V 0
L and Upper bounds V 0

U are computed effi-
ciently from the MDP instance M = (S,A, P,R, γ);

3. V 0
L ≤ BV 0

L and V 0
U ≥ BV 0

U as Theorem 6 assumes;

4. ∥V 0
U − V ∗∥∞ and ∥V 0

L − V ∗∥∞ should be small.

Puterman (2014) shows that monotonicity follows
when V 0 = 0 and all rewards are either non-negative or
non-positive, and proposes initial bounds. We show that
these bounds adhere to Objective 12, using the following
MDP reward matrix variables.
Definition 13 (R-matrix quantities). For all s∈S, define:

r∗(s)
def
= max

a∈A(s)
{R(s, a)}

r∗min
def
= min

s∈S
{r∗(s)} = min

s∈S

{
max

a∈A(s)
{R(s, a)}

}
r∗max

def
= max

s∈S
{r∗(s)} = max

s∈S

{
max

a∈A(s)
{R(s, a)}

}
We note the asymmetry: whereas r∗max is the overall maxi-
mum reward, r∗min is not the overall minimum reward. We
obtain these values by scanning the R-matrix. We hence-
forward use κ

def
= γ

1−γ . We obtain initial bound values
from the above quantities (Puterman, 2014) and prove them
based on the policy-based definition of the optimal value.
Theorem 14. For all s ∈ S, it holds that
r∗min

1−γ ≤r∗(s) + κ·r∗min≤V ∗(s)≤r∗(s) + κ·r∗max≤
r∗max

1−γ

Proof. Consider a concrete lower bound policy, πmin(s)
def
=

argmaxa∈A(s){R(s, a)}, which simply chooses the action
of highest reward in each state, with value bounded as:

V πmin(s) = Eπmin

[ ∞∑
t=0

γtR (st, πmin(st))
∣∣∣s0 = s

]
def
= Eπmin

[ ∞∑
t=0

γt · r∗(st)
∣∣∣s0 = s

]

≥ r∗(s) +

∞∑
t=1

γt · r∗min = r∗(s) + κ · r∗min

The lower bound thus follows. On the other hand, for an
arbitrary π, we have:

V π(s) = Eπ

[ ∞∑
t=0

γtR (st, π(st))
∣∣∣s0 = s

]

≤ r∗(s) + Eπ

[ ∞∑
t=1

γt · r∗max

]
= r∗(s) + κ · r∗max

The upper bound on the optimal value follows.

We now show that these bounds can be used as V 0
L and V 0

U

to ensure monotonicity with minimal pre-processing.

Proposition 15. Assume V 0
L (s) = κ · r∗min + r∗(s)

and V 0
U (s) = κ · r∗max + r∗(s), for all s ∈ S. Then,

BV 0
L ≥ V 0

L and BV 0
U ≤ V 0

U .

Proof. It follows that:

BV 0
L (s) = max

a∈A(s)

{
R(s, a) + γ

∑
s′∈S

P (s′ |s, a) · V 0
L (s
′)

}

= max
a∈A(s)

{
R(s, a) + γ

∑
s′∈S

P (s′ |s, a) · (κr∗min + r∗(s))

}

= max
a∈A(s)

{
R(s, a) + γ

∑
s′∈S

P (s′ |s, a) · r∗(s)

}
+ γ2

1−γ r
∗
min

≥ max
a∈A(s)

{R(s, a)}+ γ · r∗min + γ2

1−γ r
∗
min

= r∗(s) + r∗minκ = V 0
L (s)

where we use that for all s, r∗min ≤ r∗(s) and r∗max ≥
r∗(s), and for all a ∈ A(s),

∑
s′∈S P (s′ | s, a) = 1. The

proof for BV 0
U (s) is derived similarly.

3 PROPOSED ALGORITHMS

Here, we introduce our algorithms for efficient VI.

3.1 VI with Heap Maximization (VIH)

We first present our main algorithm, upper VI with heap
maximization (VIH), and the associated backup technique
by heap maximization. The correctness of VIH rests on the
monotonicity of a well-chosen initial upper value presented
in Section 2.6. We commence with showing a consequence
of a monotonically decreasing V i

U on the backup of each
action a ∈ A(s) in state s ∈ S.

Theorem 16. Under the assumptions of Theorem 6,

∀s ∈ S, ∀a ∈ A(s), ∀i ∈ N0 : Qi+1
U (s, a) ≤ Qi

U (s, a) .
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Proof. Theorem 6 asserts that V i
U ≤ V i−1

U for all i ∈ N0.
Then, for any s ∈ S and a ∈ A(s),

Qi+1
U (s, a)

def
= R(s, a) + γ

∑
s′∈S

P (s′ | s, a) · V i
U (s
′)

≤ R(s, a) + γ
∑
s′∈S

P (s′ | s, a) · V i−1
U (s′)

def
= Qi

U (s, a)

hence the theorem follows.

We now show the crucial property that VIH utilizes to ef-
ficiently perform the maximization step in Line 5 of Algo-
rithm 1.

Theorem 17. If the assumptions of Theorem 6 hold such
that V i

U converges, monotonically decreasing, to V ∗ and
for s ∈ S, i ∈ N0, ∃a ∈ A(s) such that ∀a′ ∈
A(s), ∃ja′ ≤ i : Q

ja′
U (s, a′) ≤ Qi

U (s, a), then Qi
U (s, a) =

maxa′∈A(s)

{
Qi

U (s, a
′)
}

, hence we can return this value in
Line 5 of Algorithm 1.

Proof. By Theorem 16, for j ≤ i, Qi
U (s, a

′) ≤ Qj
U (s, a

′)

and thus if ∀a′ ∈ A(s),∃ja′ ≤ i with Q
ja′
U (s, a′) ≤

Qi
U (s, a) then

∀a′ ∈ A(s) : Qi
U (s, a

′) ≤ Q
ja′
U (s, a′) ≤ Qi

U (s, a)

hence Qi
U (s, a) = maxa′∈A(s)

{
Qi

U (s, a
′)
}

.

By Theorem 17, if the backup value for action a at state s
in iteration i, Qi

U (s, a), is not less than the backup of each
other action a′ ∈ A(s) in some previous iteration ja′ ≤ i,
then we may stop backing up actions at state s, and as-
sign Qi

U (s, a) to V i
U (s) in Line 6 of Algorithm 3. Thus we

get the following state backup technique.

Observation 18 (State backup by heap maximization). At
state s ∈ S and for each a ∈ A(s), we maintain in a heap
data structure a value Q̃U (s, a) = Qja

U (s, a) for some pre-
vious iteration ja. In iteration i ≥ ja, we do the following:

1. Find the maximum Q̃U (s, a) over all a′ ∈ A(s),

Q̃U (s, a) = maxa′∈A(s)

{
Q̃U (s, a

′)
}

and its asso-

ciated a ∈ A(s).

2. Back up Q̃U (s, a) to Qi
U (s, a)

def
= R(s, a) +

γ
∑

s′∈S P (s′ | s, a) · V i−1
U (s′).

3. Repeat until Q̃U (s, a) remains unchanged in two
consecutive iterations; by Theorem 17, this is the
maximum value at state s in iteration i, hence we
set V i

U (s)← Q̃U (s, a).

VIH only manages upper bounds V i
U and Qi

U (s, a), and
not V i

L and Qi
L(s, a), as there are no lower-bound equiv-

alents of Theorems 16 and 17. A lower-bound version of

Theorem 17 would yield the minimum of Qi
L(s, a), which

bears no effect to our problem.

Algorithm 2: Upper VI with Heap Maximization
Data: An MDP M = (S,A, P,R, γ), threshold ε

Result: An ε-approximation Ṽ ∗ to V ∗

1 r∗min, r
∗
max, {r

∗(s)}s∈S ← get r values(R)

2 forall s ∈ S do
3 V 0

U (s)← γ
1−γ · r

∗
max + r∗(s)

4 Make max-heap Heapsmax
of a ∈ A(s) :

(
Q0

U (s, a)← V 0
U (s), a

)
entries

5 i← 0
6 repeat
7 i← i + 1
8 forall s ∈ S do
9 repeat

10 aold
max ← Heaps

max.get top action()

11 Qi
U (s, aold

max)← R(s, aold
max) + γ

∑
s′∈S P (s′ |

s, aold
max) · V

i−1
U (s′)

12 Heaps
max.insert lower max q value(Qi

U (s, aold
max))

13 anew
max ← Heaps

max.get top action()

14 until aold
max = anew

max

15 V i
U (s)← Heaps

max.get top value()

16 until maxs∈S

{
|V i

U (s)− V i−1
U (s)|

}
< ε 1−γ

γ

17 return
{
V i
U (s)

}
s∈S

Algorithm 2 presents the VIH algorithm, which leverages
the four properties in Objective 12, Theorem 17, and a
max-heap structure to achieve efficient value iteration. In
Line 14, it determines termination by comparing actions,
eschewing unreliable value equality checks. To ensure
that it re-selects the same action in consecutive calls in
case of maximum Q-value ties, it orders tied actions by
IDs. Yet VIH computes the same V i(s) values as stan-
dard VI starting from the same initial values, as it finds
the same maximum value in each iteration. VIH orga-
nizes the Q̃U (s, a) values, a ∈ A(s), in each state s ∈
S in a max-heap data structure (Cormen et al., 2009)
of value-action pairs, which allows for efficient retrieval
of maxa∈A(s)

{
Q̃U (s, a)

}
and an associated maximizing

action amax ∈ argmaxa∈A(s)

{
Q̃U (s, a)

}
.

It is noteworthy that the VIH algorithm performs implicit
action eliminations. We say that an action a ∈ A(s)
in state s is implicitly eliminated in some iteration i be-
fore convergence if a does not contribute to any compu-
tation in any iteration after iteration i, i.e., in VIH terms,
does not participate in any max-heap re-organization op-
eration after it finds itself at the top of the heap and has its
value decreased. As more actions are implicitly eliminated,
the VIH algorithm performs progressively fewer and more
lightweight re-organization operations of that kind, hence
gaining efficiency. Starting from the following section, we
propose algorithms that eliminate actions explicitly, aim-
ing to avoid action backups while still finding correct max-
imum Q-values.
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3.2 VI with Action Elimination (VIAE)

We now enrich the BVI algorithm with an action-
elimination provision using bounds directly correspond-
ing to VI instances. As Corollary 10 states, if an ac-
tion a ∈ A(s) is never chosen at state s in a future it-
eration’s maximization step, we may prune a from A(s).
Such pruning invests computational effort to prune actions
and hence save resources in later iterations, which consider
smaller action sets, while retaining the number of iterations
intact. Algorithm 4 in Appendix A.2 shows the ensuing al-
gorithm, value iteration with action elimination (VIAE),
which targets the case where the sets of actions are large.
VIAE obtains bounds for each state value using two VI in-
stances, hence differs from the regular use of action elimi-
nation (Puterman, 2014), which derives a pruning threshold
applicable to all states using the change of state values in
the current iteration of a single VI instance.

3.3 Delayed Action Elimination, VIAEH

We now augment VIAE (Algorithm 4) to a heap-based ver-
sion, VIAEH, using a max-heap and a min-heap to or-
ganize ∀s ∈ S :

{
Q̃U (s, a)

}
a∈A(s)

values, similarly to

VIH (Section 3.1). We thus lower the computational load
of each iteration, leading to the concept of delayed action
elimination; while action elimination becomes less dras-
tic, we expect that the overall runtime to be improved vs.
VIAE. These structures return, upon request, the following
pairs:
(vmax,amax)←

(
maxa∈Ai−1(s)

{
Q̃U (s, a)

}
, argmaxa∈Ai−1(s)

{
Q̃U (s, a)

})
(vmin,amin)←

(
mina∈Ai−1(s)

{
Q̃U (s, a)

}
, argmina∈Ai−1(s)

{
Q̃U (s, a)

})
Algorithm 5 in Appendix A.3 shows how VIAEH backs
up each state; it first finds V i

L(s) by regular VI (Lines 1–6)
and V i

U (s) as in VIH (Lines 7–13); then it performs delayed
action elimination, where it backs up the lowest-value ac-
tion amin (Lines 16 and 21) and, as long as its new Q-value
qualifies, prunes amin (Lines 14–22). By Theorem 16, the
Q-value is monotonically non-increasing, thus, unlike the
highest-value action, amin remains the same when backed
up. Notably, Q̃U (s, a) values serve a dual purpose in Al-
gorithm 5: they serve to calculate V i

U (s) in Lines 7–13,
where we find their maximum per state using a max-heap,
and to prune actions in Lines 14–22, where we find their
minimum per state using a min-heap.

Unlike VIAE (Algorithm 4), VIAEH (Algorithm 5) does
not necessarily eliminate an action in the earliest itera-
tion possible. In iteration i of VIAEH, the Q̃U (s, a) value
for each a ∈ Ai−1(s) may represent a backup Qja

U (s, a)
from a different previous iteration ja ≤ i, while we only
backup an action when it acquires the largest Qja

U (s, a)
value (Lines 7–12), until the same action stays on top after

backed up. The action elimination process (Lines 18–22),
ends when we backup the current smallest value in Line 21
and thereafter find that Qi

U (s,amin) ≥ Qi
L. Thus we can-

not eliminate any actions based on the values available in
the end of iteration i. Still, there may be an action a′ that
never assumed the minimum Q-value in the action elimina-
tion stage (Lines 18–22) and was thus not backed up in the
current iteration, yet, had it been backed up, it would have
attained a value Qi

U (s, a
′) < Qi

L ≤ Qi
U (s,amin). Thus,

VIAEH may miss a chance to prune a′ as VIAE would do.

3.4 LB-mirroring and the VIAEHL Algorithm

While the VIAEH backup (Algorithm 5) serves to elimi-
nate actions, albeit delayed, it is impeded by the need to
calculate V i

L lower bounds via backing up all actions in the
reduced action set Ai−1(s) (Lines 1–6), where the heap-
based technique used for V i

U is inapplicable. We develop
a variant, VIAEHL, that eschews backing up all actions
in Ai−1(s) and caters to lower bounds differently.

We have hitherto used V i
L and V i

U as single VI instances
that can ensure an ε-approximation either individually, in
view of ∥V VI−V ∗∥∞ < ε, or in unison, by Theorem 5.
Yet we may facilitate action elimination via a less tight
lower bound Ṽ i

L, not being a VI instance, such that Ṽ i
L ≤

V i
L ≤ V ∗ ≤ V i

U : we may check convergence individually
for the VI instance V i

U and also perform action elimination
using Ṽ i

L. Using a less tight lower bound shall delay action
elimination, yet we may gain efficiency by calculating Ṽ i

L

rather than maintaining V i
L. To calculate Ṽ i

L in each itera-
tion i, we define the following operator.

Definition 19 (Bellman subset-operator). Given a re-
stricted action-space Ã = ∪s∈SÃ(s) with Ã(s) ⊆ A(s).
We define the associated optimal Bellman operator to Ã,
BÃ : R|S| → R|S|, for any V ∈ R|S| and s ∈ S, as:

BÃV (s)
def
= max

a∈Ã(s)

{
R(s, a) + γ

∑
s′∈S

P
(
s′ | s, a

)
· V (s′)

}

Given initial Ṽ 0
L , we then define Ṽ i

L
def
= BÃi Ṽ

i−1
L , where Ãi

the action space of actions sets reduced due to pruning till
iteration i.

Theorem 20 (Bellman subset-operator lower-bound invari-
ance). Let Ṽ 0

L
def
= V 0

L . Then Ṽ i
L ≤ V i

L for all i ∈ N0.

Proof. We construct the proof by induction. Assume
that Ṽ i−1

L ≤ V i−1
L . Then, for all s ∈ S,

Ṽ i
L(s)

def
= max

a∈Ãi(s)

{
R(s, a) + γ

∑
s′∈S

P (s′ | s, a) · Ṽ i−1
L (s′)

}
≤ max

a∈A(s)

{
R(s, a)+γ

∑
s′∈S

P (s′ |s, a)·V i−1
L (s′)

}
def
= V i

L(s)

Since Ṽ 0
L

def
= V 0

L , the theorem follows inductively.
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Accordingly, in each iteration i, we aim to dynamically
choose a subset Ãi(s) ⊆ Ai(s) such that |Ãi(s)| ≪
|Ai(s)| and |V i

L(s)− Ṽ i
L(s)| is small, and the delay caused

in action elimination by the less tight bound is small, so
that any additional backups due to delayed action elimi-
nation are compensated by backups saved by using Ṽ i

L(s)
rather than V i

L(s). We choose Ãi(s) using the informa-
tion we get by calculating V i

U (s). In particular, we follow
the backups in the heap for the sake of V i

U (s) and back
up the same actions to find Ṽ i

L(s), as actions backed up
by being at the top of the max-heap are likely to also have
high Q̃i

L(s, a)
def
=R(s, a)+γ

∑
s′∈S P (s′ | s, a) · Ṽ i−1

L (s′).

3.5 Learning

We now show how our methods can accelerate algorithms
for learning near-optimal policies in environments de-
scribed by finite discounted MDPs. Multiple such meth-
ods use Value Iteration as a subroutine to find an ε-
approximate optimal policy for an incompletely known
environment (Strehl & Littman, 2005; 2008; Auer et al.,
2008; Lattimore & Hutter, 2014), running VI optimisti-
cally for an estimate M̃ =

(
S,A, P̃ , R̃, γ

)
of the real un-

known model M , where R̃ = R̂+βn(s,a) and
∥∥P̃ (·|s, a)−

P̂ (·|s, a)
∥∥
1
≤ β′n(s,a), with R̂ and P̂ being respective em-

pirical estimates of R and P , and βn(s,a) and β′n(s,a) be-
ing respective method-specific confidence radii that decay
with the number n(s, a) of observations for state-action
pair (s, a). From Definition 13 and Theorem 14, assum-
ing that the confidence bounds hold, it follows that:

V ∗(s)≤r∗(s) + κ·r∗max≤ max
a∈A(s)

{R̃(s, a)}

+κ·max
s∈S

{
max

a∈A(s)
{R̃(s, a)}

}
,

which enables the use of our upper bound-based VI variants
in the learning setting, without prior knowledge of R.

Value Iteration is likely to be a bottleneck for such learn-
ing methods. Each time-step may update the reward and
transition estimates and hence the policy estimate. In time-
critical RL applications, MBIE and similar approaches may
be impractical due to the cost of repeated VI, and this prob-
lem exacerbates in quality-critical scenarios with low ε tol-
erance for the ε-approximate policy, as a low ε tightens the
VI termination criterion, demanding further runtime.

4 EXPERIMENTAL STUDY

We conduct experiments to assess our proposals among
each other, vs. the baselines Value Iteration (VI), Inter-
val Value Iteration (IVI), Value Iteration with Upper Bound
(VIU), and vs. the state-of-the-art BAO solution (Grzes &

Hoey, 2011; 2012; 2013) and AncVI (Lee & Ryu, 2023), a
VI method that leverages an anchor point to smoothen con-
vergence. We implemented1 all algorithms in C++ 17 and
ran planning experiments on a 378GB Linux server with
Intel(R) Xeon(R) E5-2687W v3 @3.10GHz and learning
experiments on a 128GB RAM Ubuntu 24.04 machine with
Intel® Core™ 13700HX @3.70Ghz. We initialize algo-
rithms based on the optimal monotonic bounds discussed
in Section 2.6 as required.

4.1 Results on Random Models

We try out randomly generated MDPs. Every MDP is
based on a triple (S,A, SS) featuring numbers of states S,
actions A, supported states SS, and a reward distribution.
Each state has the same number of actions and each action
the same number of supported states. The rewards matrix
follows a normal (Gaussian) distribution (ND) with param-
eters µ = 1000, σ2 = 10. We choose specific supported
states and transition probabilities at random.
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Figure 1. ND; time vs. states (10 A), actions (100 S), 10 SS.
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Figure 2. ND; time vs. states (100 actions) with S
10

SS, vs. actions
(100 states) with 10 supported states.

Figure 1 plots the running time vs. number of states (left)
and actions (right). Interval Value Iteration performs the
worst, as its enhanced stopping criterion does not com-
pensate for the double bound calculations. Plain VI and
VIU are slower than action-elimination algorithms. VIAE
improves over VI, and VIAEH, implemented with two
heaps,improves over VIAE. Yet the top three top perform-
ers are VIAEHL, BAO, and VIH. VIH performs the best.

1
https://github.com/constantinosskitsas/SwiftVI

https://github.com/constantinosskitsas/SwiftVI
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Figure 2 presents the scalability of the three top-
performers. BAO manages the growth of states relatively
well, even under supported states per action growing pro-
portionally to states. However, as the number of actions
grows, VIAEHL and VIH outperform BAO.

4.2 Planning on Real-world Models

We next experiment on two real-world MDPs.
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Figure 3. VM; time vs. states (10 actions), actions (500 states).

4.2.1 Cloud management

We first try an MDP for elastic cloud management (Lo-
los et al., 2017; Skitsas et al., 2022) described in Ap-
pendix A.4. Figure 3 presents our runtime results with
increasing states and actions. Remarkably, VIAEHL and
VIH are again the best-performing algorithms, even in this
sparse-action setting, while VIAE without heap does not
perform well. Besides, BAO is outperformed by regular VI,
VIU, and all heap-based solutions. As the number of ac-
tions grows, BAO overtakes VIU only. VIAEHL and VIH
stand out; VIAEHL has a slight advantage as the number of
states grows, while usually the implicit action elimination
of VIH dominated the explicit one of VIAEHL.

4.2.2 Terrain-Maze MDP

We try a Terrain-Maze MDP (Chen et al., 2021) in 2D
and 3D. In 2D, we create a square grid with one termi-
nal and up to 8 actions per state, one for each possible
movement to a neighboring grid cell; we remove each ac-
tion with probability 0.1, while ensuring each state has at
least 2 actions. Given a selected action, the agent moves
to the associated state with probability 0.8 and to one of
up to 4 other neighboring locations with probability shared
among them. We express terrain information via action
costs, varying from−1 to−10 by a linearly decreasing dis-
tribution. In 3D, we use an additional axis z, with up to 26
actions per state and up to 10 supported states per action.
Figure 4 shows our results. We exclude AncVI, which per-
forms mediocrely in previous experiments. Simple action
elimination falters, as there are too few actions with similar
values to choose from and a few supported states per ac-

tion. BAO is slow, as it keeps examining similarly-valued
actions in each step. VIH achieves a tangible gain in 3D.
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Figure 4. Terrain-Maze; left: 2D; right: 3D.

4.3 Learning on Incomplete Models

We apply VIH to the policy updates of MBIE and UCRLγ,
to build algorithms SwiftMBIE and SwiftUCRLγ, respec-
tively. For MBIE we further try a BAO-based variant
to examine whether previously observed trends persevere.
We set the initial upper bound value as in Section 3.5,
and test the methods in incomplete MDP learning environ-
ments. We set discount factor γ = 0.99, failure probabil-
ity δ = 0.01 and report results for a range of ε choices.

4.3.1 Results on incomplete random models

We try learning incomplete random MDPs constructed as
in Section 4.1 with the reward matrix following a Gaussian
distribution (ND) with µ = 0.5 and σ2 = 0.05.
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Figure 5. Runtime for MBIE variants vs. ε and number of states,
Random MDPs (100 A, 50 SS); policy updates at each 104 steps.

MBIE. Figure 5 shows runtimes with MBIE variants on
random MDPs. The first plot examines runtime vs. ε
for 106 iterations on an MDP of 100 states. SwiftMBIE
drastically outperforms MBIE at low ε and maintains a
lead over BAOMBIE. Low ε calls for more value iterations,
whereby confidence bounds tighten to multiple unique val-
ues, rendering heap-based updates more worthwhile. The
second plot presents runtime vs. MDP size for 106 iter-
ations with ε = 0.05. Here BAOMBIE trails the normal
MBIE, while SwiftMBIE remains the fastest. As the al-
gorithms are still exploring, heaps contain multiple similar
values which must be all updated per iteration. We expect
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the SwiftMBIE addvantage to grow with more iterations.
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Figure 6. Runtime for UCRLγ variants vs. ε and number of states
for Random MDPs (100 A and 50 SS).

UCRLγ. Figure 6 presents the runtime for UCRLγ vari-
ants on the same random MDPs, with increased time hori-
zons to accommodate infrequent updates. The benefit of
heap-based updates grows as ε diminishes, while a notable
gap appears even with a shorter time-horizon.

4.3.2 Results on incomplete 4-Room Grids

We also try learning in a 4-room grid, where the agent starts
from the top left corner and receives a reward of 1 at the
bottom right corner. The agent chooses between actions,
up, left, down, and right, with a probability of 0.3 to stay in
the same state instead or slide perpendicularly to the chosen
action. The agent stays in the same state if it hits a wall.

Figure 7 presents results for MBIE variants in grid world
MDPs. For high ε, triggering fewer value iterations,
BAOMBIE is slower than MBIE, yet SwiftMBIE stays
comparable. As ε falls both outperform MBIE. We ob-
served a similar trend for SwiftUCRLγ.
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Figure 7. Runtime for MBIE variants in 4-Room Gridworld with
different epsilon; T = 106; policy updates at each 104 steps.

4.3.3 Results on 4-Room Grids with known rewards

We also try 4-room grids with known rewards, using the
upper bound of Section 2.6. Figure 8 presents results for
MBIE variants with different update frequency. Interest-
ingly, with more frequent (103) updates, SwiftMBIE per-
forms worse at high ε = 0.1, as it updates often, before
obtaining information for a sufficient amount of transitions,
hence several values in the heap remain similar, as only one

state provides a reward and must first be visited to impact
other states. With less frequent updates (104), SwiftM-
BIE is the fastest. Figure 9 shows that SwiftUCRLγ re-
mains faster than UCRLγ under known rewards. All vari-
ants achieve shorter runtimes, as known rewards tighten the
initial bounds, leading to quicker updates.
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Figure 8. Runtime for MBIE variants for 4-Room Gridworlds
with known reward; T = 106.
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Figure 9. Runtime for UCRLγ variants for 4-Room Gridworlds
with known reward; T = 107.

5 CONCLUSION

We proposed time-efficient algorithms for planning and
learning with MDPs, which use heaps to avoid backing up
all actions per iteration. We also crafted schemes that per-
form action elimination by deploying two VI instances and
let lower-bound updates mirror upper-bound ones. In our
experimental evaluation vs. baselines and the state-of-the-
art solutions on diverse MDP instances for planning and
learning, our proposals stand out in efficiency, while the
mirroring variant has an advantage in larger state spaces.
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A APPENDIX

A.1 Bounded Value Iteration

Algorithm 3 illustrates bounded value iteration (BVI).

Algorithm 3: Bounded Value Iteration (BVI)
Data: M = (S,A, P,R, γ), threshold ε, V 0

L(s), V 0
U (s) ∀s ∈ S

Result: An ε-approximation Ṽ ∗ to V ∗

1 i← 0
2 repeat
3 i← i + 1
4 forall s ∈ S do

5 V
i
L(s)← max

a∈A(s)

R(s, a)+γ
∑
s′∈S

P (s
′ |s, a)·V i−1

L (s
′
)


6 V

i
U (s)← max

a∈A(s)

R(s, a)+γ
∑
s′∈S

P (s
′ |s, a)·V i−1

U (s
′
)


7 until maxs∈S{V i

U (s)− V i
L(s)} < 2ε

8 return
{
Ṽ ∗(s)

}
s∈S
←

{
V i
L(s)+V i

U (s)

2

}
s∈S

A.2 VI with Action Elimination

Algorithm 4 illustrates value iteration with action elimination (VIAE).

Algorithm 4: VI with Action Elimination
Data: An MDP M = (S,A, P,R, γ), a precision threshold ε

Result: An ε-approximation Ṽ ∗ to V ∗

1 r∗min, r
∗
max, {r

∗(s)}s∈S ← get r values(R)

2 forall s ∈ S do
3 V 0

U (s)← γ
1−γ · r

∗
max + r∗(s); V 0

L(s)← γ
1−γ · r

∗
min + r∗(s)

4 A0(s)← A(s)

5 i← 0
6 repeat
7 i← i + 1
8 forall s ∈ S do
9 Qi

L ← −∞; Qi
U ← −∞ /* initialize as lowest possible value */

10 forall a ∈ Ai−1(s) do
11 Qi

L(s, a)← R(s, a) + γ
∑

s′∈S P (s, s′, a) · V i−1
L (s′)

12 if Qi
L(s, a) > Qi

L then
13 Qi

L ← Qi
L(s, a) /* update new highest lower bound */

14 Qi
U (s, a)← R(s, a) + γ

∑
s′∈S P (s, s′, a) · V i−1

U (s′)

15 if Qi
U (s, a) > Qi

U then
16 Qi

U ← Qi
U (s, a) /* update new highest upper bound */

17 Ai(s)← Ai−1(s) /* initialize new relevant set of actions */

18 forall a ∈ Ai−1(s) do
19 if Qi

U (s, a) ≤ Qi
L then

20 Ai(s)← Ai(s) \ {a} /* prune actions */

21 V i
L(s)← Qi

L; V i
U (s)← Qi

U /* update bounds */

22 until maxs∈S{V i
U (s)− V i

L(s)} < 2ε

23 return
{
Ṽ ∗(s)

}
s∈S
←

{
V i
L(s)+V i

U (s)

2

}
s∈S

A.3 State Backup in VIAEH

Algorithm 5 shows how VIAEH backs up each state.

A.4 Cloud Management Platoform

The cloud management platform we study (Lolos et al., 2017; Skitsas et al., 2022) receives read requests. In each step,
the coordinating agent may add or remove Virtual Machines (VMs) in the cluster to serve the incoming load. Model
states express the current number of VMs and incoming load. We let the agent learn model parameters first and use
them in evaluation period. We assume that the cluster size may vary from 1 to 50 Virtual Machines, while at any action
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the agent may add or remove VMs within capacity. The incoming load for training is a sinusoidal function, load(t) =
50 + 50 sin

(
2πt
250

)
; the frequency doubles in the evaluation period. The percentage of read request in the incoming load is

given by the function r(t) = 0.75 + 0.25 sin( 2πt340 ). The RAM size is 1024 in the first 220 steps and 2048 for the next 220,
and this pattern continues. The I/O operations per second are given by the function io(t) = 0.6 + 0.4 sin

(
2πt
195

)
. The

capacity of the cluster at any time t is capacity(t) = (10r(t)− io penalty − ram penalty)vms(t), where vms(t) is the
number of VMs in the cluster at time t; the parameter io penalty is 0 when io < 0.7, 10io(t)−0.7 when 0.7 ≤ io(t) ≤ 0.9
and 2 otherwise; ram penalty = 0.3 when the RAM size is 1024 and 0 otherwise. The reward for an action is:

reward(t) = min(capacity(t+ 1), load(t+ 1))− 2vms(t+ 1)

Thus, the agent is rewarded when the capacity of the system suffices to serve the load and penalized if it over- or under-
delivers. After training, we treat the model as a fully observable MDP.

Algorithm 5: Backup of state s in VIAEH
Data: State s ∈ S,

{
Q̃U (s, a)

}
a∈Ai−1(s)

1 Qi
L ← Qi−1

L /* initialize as lowest possible value */

2 forall a ∈ Ai−1(s) do
3 Qi

L(s, a)← R(s, a) + γ
∑

s′∈S P (s′ | s, a) · V i−1
L (s′)

4 if Qi
L(s, a) > Qi

L then
5 Qi

L ← Qi
L(s, a) /* update new highest lower bound */

6 V i
L(s)← Qi

L /* update lower bound */
7 repeat

8
(
vold

max, a
old
max

)
←

(
max

a∈Ai−1(s)

{
Q̃U (s, a)

}
, argmax
a∈Ai−1(s)

{
Q̃U (s, a)

})
9 Qi

U

(
s, aold

max

)
← R

(
s, aold

max

)
+ γ

∑
s′∈S P

(
s′ | s, aold

max

)
· V i−1

U (s′)

10 Q̃U

(
s, aold

max

)
← Qi

U

(
s, aold

max

)
/* record upper bound */

11
(
vnew

max, a
new
max

)
←

(
max

a∈Ai−1(s)

{
Q̃U (s, a)

}
, argmax
a∈Ai−1(s)

{
Q̃U (s, a)

})
12 until aold

max = anew
max

13 V i
U (s)← vnew

max /* update upper bound */

14 Ai(s)← Ai−1(s) /* initialize new relevant set of actions */

15 (vmin, amin)←
(
mina∈Ai(s)

{
Q̃U (s, a)

}
, argmina∈Ai(s)

{
Q̃U (s, a)

})
16 Qi

U (s, amin)← R(s, amin) + γ
∑

s′∈S P (s′ | s, amin) · V i−1
U (s′)

17 Q̃U (s, amin)← Qi
U (s, amin) /* record upper bound */

18 while Qi
U (s, amin) < Qi

L do
19 Ai(s)← Ai(s) \ {amin} /* prune away actions */

20 (vmin, amin)←
(
mina∈Ai(s)

{
Q̃U (s, a)

}
, argmina∈Ai(s)

{
Q̃U (s, a)

})
21 Qi

U (s, amin)← R(s, amin) + γ
∑

s′∈S P (s′ | s, amin) · V i−1
U (s′)

22 Q̃U (s, amin)← Qi
U (s, amin) /* record upper bound */


