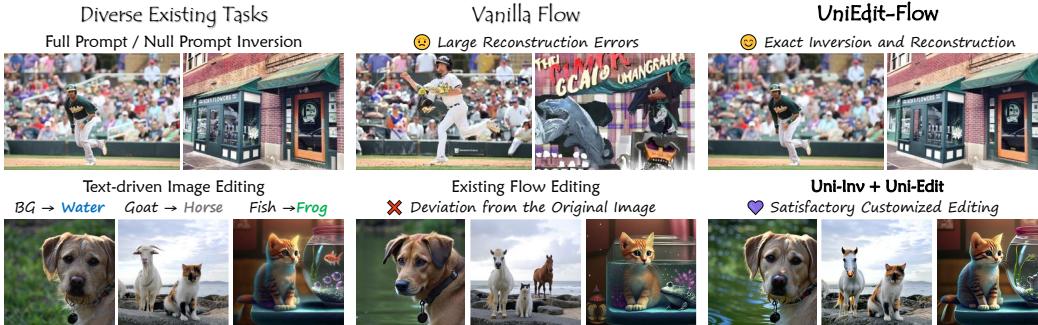


000 001 002 003 004 005 UNIEDIT-FLOW: UNLEASHING INVERSION AND EDIT- 006 ING IN THE ERA OF FLOW MODELS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023

ABSTRACT

011 Flow matching models have emerged as a strong alternative to diffusion mod-
012 els, but existing inversion and editing methods designed for diffusion are often
013 ineffective or inapplicable to them. The straight-line, non-crossing trajectories
014 of flow models pose challenges for diffusion-based approaches but also open av-
015 enues for novel solutions. In this paper, we introduce a predictor-corrector-based
016 framework for inversion and editing in flow models. First, we propose Uni-Inv,
017 an effective inversion method designed for accurate reconstruction. Building on
018 this, we extend the concept of delayed injection to flow models and introduce Uni-
019 Edit, a region-aware, robust image editing approach. Our methodology is tuning-
020 free, model-agnostic, efficient, and effective, enabling diverse edits while ensuring
021 strong preservation of edit-irrelevant regions. Extensive experiments across var-
022 ious generative models demonstrate the superiority and generalizability of Uni-Inv
023 and Uni-Edit, even under low-cost settings.



024
025 **Figure 1: UniEdit-Flow for image inversion and editing.** Our approach proposes a *highly accu-*
026 *rate and efficient, model-agnostic, training and tuning-free* sampling strategy for flow models to
027 tackle image inversion and editing problems. Cluttered scenes are difficult for inversion and recon-
028 struction, leading to failure results on various methods. Our Uni-Inv achieves **exact reconstruction**
029 even in such complex situations (1st line). Furthermore, existing flow editing always maintain un-
030 desirable affects, out region-aware sampling-based Uni-Edit showcases excellent performance for
031 **both editing and background preservation** (2nd line).
032
033
034

035 1 INTRODUCTION 036 037

038 Diffusion models have revolutionized the field of image generation and created well-known text-
039 to-image foundation models (Ramesh et al., 2022; Rombach et al., 2022; Ho et al., 2020; Peebles
040 & Xie, 2023). They have also enabled a suite of applications ranging from personalized image
041 generation (Gal et al., 2022; Ruiz et al., 2023; Ye et al., 2023; Wang et al., 2024c), image editing
042 (Avrahami et al., 2022; 2023; Zhang et al., 2023; Bar-Tal et al., 2023), using image models as
043 a prior for 3D generation (Poole et al., 2022; Tang et al., 2023; Yi et al., 2024; Ren et al., 2023),
044 to even non-generative tasks (Sepehri et al., 2024; Yin et al., 2023; Li et al., 2023; Di et al., 2023).
045 Among these, the application of real image editing uniquely leverages the fact that diffusion models
046 learn a mapping between the prior (noise) distribution and the distribution of real images. By simply
047 adding noise to a real-image, which mimicks the training process, and performing denoising with a
048 new condition (e.g. a modified prompt), a pre-trained diffusion model can be naturally repurposed
049
050
051
052
053

054 to an image editor. This has led to a multitude of *inversion* methods (Song et al., 2020a;b; Lu et al.,
 055 2022; Wallace et al., 2023; Wang et al., 2025), and a myriad of *training-free, inversion-based* image
 056 editing methods (Avrahami et al., 2022; Han et al., 2023; Couairon et al., 2022; Bai et al., 2024;
 057 Qian et al., 2024; Brack et al., 2023).

058 Recently, a new class of models similar to diffusion models known as *flow* models have gained fa-
 059 vor and dominated text-to-image tasks such as Stable Diffusion 3 (SD3) (Esser et al., 2024) and
 060 Flux (Labs, 2024). These models differ from the the previous generation of models based on diffu-
 061 sion in two key aspects:

- 063 1. *Formulation Change* – Flow models are based on deterministic probability flow ordinary
 064 differential equations (PF-ODEs), in contrast to diffusion models which are based on SDEs.
 065 More specifically, SD3 and Flux uses the rectified flow formulation which models straight
 066 lines between the two distributions.
- 067 2. *Architecture Change* – In conjunction, there was a shift in architecture from U-Nets with
 068 cross-/self-attention layers to using DiTs (Peebles & Xie, 2023) and MM-DiTs (Esser et al.,
 069 2024) to improve their *data scaling* ability.

070 As a result, many methods effective in diffusion models face challenges when applied to flow mod-
 071 els. To bridge this gap, recent works have introduced specialized modifications to joint attention in
 072 MM-DiTs (Xu et al., 2024b; Avrahami et al., 2024; Wang et al., 2024b; Dalva et al., 2024). Mean-
 073 while, other approaches attempt to reintroduce stochasticity into flow models (Rout et al., 2024;
 074 Wang et al., 2024a; Singh & Fischer, 2024), effectively aligning them with diffusion models. How-
 075 ever, many of these methods ultimately retrace the trajectory of diffusion models, raising questions
 076 about their differences with respect to diffusion and long-term impact.

077 Our paper aims to re-design inversion and editing by explicitly accounting for the two design
 078 changes in the foundation model. We first examine the diffusion-based techniques that fail to transfer
 079 effectively to flow models, analyzing their behavior across different architectures. Specifically, we
 080 investigate the degradation of the so-called “delayed injection” in flow models, along with the im-
 081 pact of trajectory properties—where vanilla inversion leads to localized sampling errors, as shown in
 082 Fig. 1. We argue that the straight-line and non-crossing trajectories of flow models make them prone
 083 to accumulating significant errors and even collapsing when velocity estimation is inaccurate during
 084 inversion and reconstruction. Furthermore, these properties complicate conditional trajectory guid-
 085 ance, posing challenges for tuning-free editing. Despite these difficulties, we focus on leveraging
 086 these characteristics strategically, aiming to unlock the unexplored potential of flow models.

087 We introduce a novel predictor-corrector-based inversion method for flow models, aiming for accu-
 088 rate and stable reconstruction. Furthermore, we propose a robust sampling-based editing strategy
 089 with region-adaptive guidance and velocity fusion, enabling effective and interpretable text-driven
 090 image editing. Through both theoretical and empirical analyses, we validate our approach on several
 091 benchmarks and demonstrate state-of-the-art performance across diverse generative models, includ-
 092 ing flow models (Stable Diffusion 3 (Esser et al., 2024) and FLUX (Labs, 2024)) as well as diffusion
 093 models (results in Appendix E).

094 2 RELATED WORK

095 **Inversion.** Modern generative models, particularly diffusion models, aim to map a standard Gaus-
 096 sian distribution to the real data distribution (Goodfellow et al., 2020; Ho et al., 2020). Inversion, the
 097 reverse of the generation process, seeks to recover the latent noise corresponding to a given image
 098 by reconstructing the diffusion trajectory (Song et al., 2020a; Wallace et al., 2023). The introduc-
 099 tion of DDIM (Song et al., 2020a) marked a significant step forward, inspiring a series of high-precision
 100 solvers designed to enhance sampling efficiency and minimize inversion errors (Zhang et al., 2024;
 101 Lu et al., 2022; Wang et al., 2025; Lu et al., 2022). To further improve alignment between input
 102 images and their reconstructions, tuning-based methods have been developed to mitigate reconstruc-
 103 tion bias (Mokady et al., 2023; Garibi et al., 2024; Ju et al., 2024; Tumanyan et al., 2023; Yang et al.,
 104 2025). More recently, the emergence of flow models has driven the adoption of deterministic sam-
 105 plers, introducing alternative approaches to inversion (Rout et al., 2024; Wang et al., 2024b; Deng
 106 et al., 2024; Song & Lai, 2024; Singh & Fischer, 2024). These methods design sampling strategies
 107 to reduce discretization errors in inversion. However, their non-reconstruction-oriented designs and

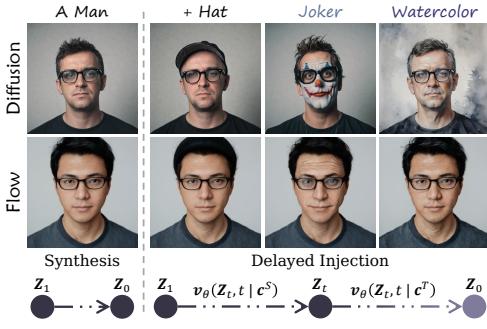


Figure 2: **Delayed injection**, which retains the source condition during the early denoising steps and introduces the edit condition at a middle timestep (illustrated in the bottom part), is a widely used technique in diffusion-based editing (top row). However, when applied to flow models (second row), it is ineffective. While flow-based editing exhibits a mild tendency toward the target edit, it fails to produce sufficiently strong effects.

restrictions on sampler selection limit their applicability to downstream tasks such as image editing. In this work, we focus on the inversion and reconstruction process, designing Uni-Inv to achieve high reconstruction reliability and local exactness, making it well-suited for applications.

Text-driven Image Editing. For image editing tasks, early training-based approaches explored generative models to achieve controllable modifications (Zhu et al., 2017; Karras et al., 2019). With the advancement of generative models, the focus has shifted toward training-free editing methods, which offer greater flexibility and efficiency. Tuning-based methods have demonstrated impressive results but require iterative optimization during generation, leading to increased computational costs (Ju et al., 2024; Parmar et al., 2023; Dong et al., 2023; Wu et al., 2023). Meanwhile, attention-manipulation-based techniques leverage multi-branch frameworks for precise control, but their applicability is often restricted to specific model architectures (Cao et al., 2023; Xu et al., 2024a). Sampling-based methods introduce controlled randomness or guidance mechanisms to achieve more flexible editing (Wang et al., 2023; Tsaban & Passos, 2023; Brack et al., 2024; Huberman-Spiegelglas et al., 2024; Kulikov et al., 2024; Mao et al., 2025). More recently, the rise of flow models built on MM-DiT (Esser et al., 2024) has attracted significant attention in the editing domain due to their strong generative capabilities (Patel et al., 2024; Liu et al., 2023; Sun et al., 2024; Martin et al., 2024; Hu et al., 2024). In this work, we rethink the design of efficient and generalizable image editing methods in the era of flow models, introducing Uni-Edit, a model-agnostic and adaptable approach tailored for text-driven image editing tasks.

3 BACKGROUND

3.1 FLOW MATCHING

Generative models aim at generating data that follows the real data distribution π_0 from noise that follows some known distribution π_1 (e.g., Gaussian distribution). Flow matching (Lipman et al., 2022; Liu et al., 2022; Albergo et al., 2023) proposed to learn a velocity field that is parameterized by a neural network to move noise to data via straight trajectories. The training objective is to solve the following optimization problem:

$$\min_{\theta} \mathbb{E}_{Z_0, Z_1, t} \left[\| (Z_1 - Z_0) - v_{\theta}(Z_t, t) \|^2 \right], \quad (1)$$

$$Z_t = tZ_1 + (1-t)Z_0, \quad t \in [0, 1],$$

where data $Z_0 \in \pi_0$ and noise $Z_1 \in \pi_1$. $Z_1 - Z_0$ is the target velocity and $v_{\theta}(\cdot)$ is the learnable velocity field. The trained model is expected to estimate a velocity field to map a randomly sampled Gaussian noise $Z_1 \in \mathcal{N}(0, I)$ to generated data Z_0 in a deterministic way. This generation process can be viewed as solving an ordinary differentiable equation (ODE) characterized by $dZ_t = v_{\theta}(Z_t, t) dt$. This ODE can be discretized and then numerically solved by solvers such as the Euler method:

$$Z_{t_{i-1}} = Z_{t_i} + (t_{i-1} - t_i) v_{\theta}(Z_{t_i}, t_i), \quad (2)$$

where $i \in \{N, \dots, 0\}$, t_i monotonically increases with i , $t_0 = 0$, and $t_N = 1$.

3.2 DELAYED INJECTION

Previous works have introduced delayed injection, a simple yet effective technique that helps maintain image consistency during editing. This method preserves the original conditions or reuses the

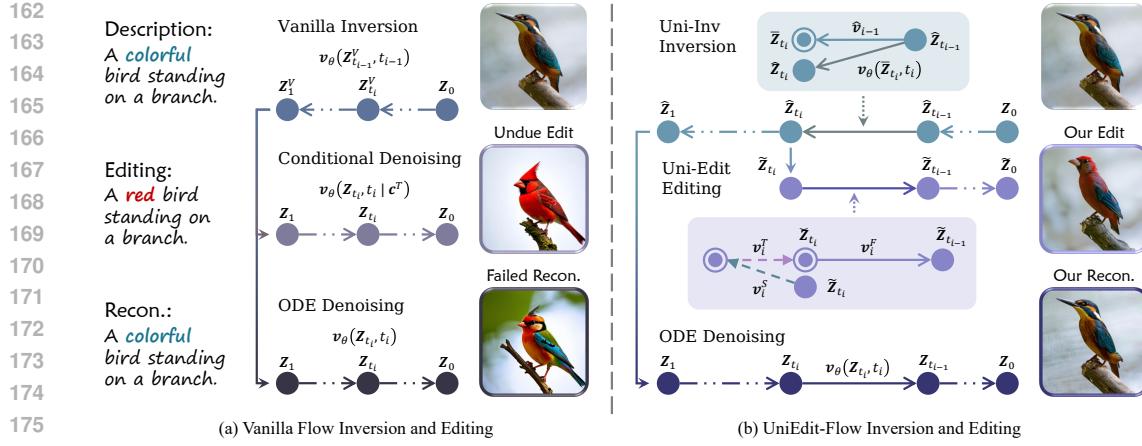


Figure 3: **An overview** of our proposed Uni-Inv and Uni-Edit (bird \rightarrow red bird). (a) indicates that vanilla flow inversion is incapable for both exact image inversion and controllable editing. (b) demonstrates our proposed Uni-Inv and Uni-Edit, which perform efficient and effective inversion and editing. \hat{v}_{i-1} indicates the previous velocity. v_i^S, v_i^T, v_i^F are c^S -conditioned, c^T -conditioned, and fused velocities. $Z_t, \hat{Z}_t, \tilde{Z}_t$ denote samples of sampling, inversion, and editing, respectively.

latent representations from the inversion process before a specific timestep while injecting the editing conditions afterward, enabling a balanced trade-off between content preservation and targeted modifications (Xiao et al., 2024; Couairon et al., 2022; Wu & De la Torre, 2023). As illustrated in Fig. 2, the top row demonstrates a diffusion-based example, where delayed injection enables an effective trade-off between preserving editing-irrelevant content and achieving the intended editing. Due to the non-linear and intersecting sampling trajectories of diffusion models, modifying conditions midway allows for trajectory transitions, facilitating more flexible and localized image editing (Patel et al., 2024). However, flow models exhibit straight-line and non-intersecting trajectories, which makes it difficult for points on one sampling trajectory to transfer to other trajectories midway (Liu et al., 2022). Such attributes fundamentally hinder the effectiveness of delayed injection, particularly in image editing. As shown in the middle of Fig. 2, applying delayed injection under similar conditions leads to limited improvements in flow-based editing. In this work, we take a deeper look into how to design effective guidance strategies for delayed injection, aiming to unlock more controllable and reliable flow-based image editing.

4 METHOD

Fig. 3 provides a brief illustration of image inversion, reconstruction, and editing based on vanilla ODE sampling methods, as well as an overview of our approach. In Fig. 3 (a), due to the mismatch between Z and t used in each corresponding forward step, it's difficult for direct inversion to ensure consistency between the reconstructed image and the original one. Besides, conditional denoising without proper guidance cannot enable controllable image editing and leads to undesirable results. In Fig. 3 (b), we implement the idea of correction in two distinct forms for inversion and editing, respectively. In this section, we will present our proposed Uni-Inv and Uni-Edit with the technical contributions for inversion and editing, respectively.

4.1 UNI-INV

The motivation of Uni-Inv is to conduct an accurate inversion capable of inverting ODE solutions back to the initial value for particular deterministic samplers. We take the flow model (Liu et al., 2022; Esser et al., 2024) with an Euler method solver as a simple instance of deterministic iterative generation methods facilitated by its concise formula. Denote \hat{Z}_t as the latent in the inversion process. Eq. (2) describes one iteration step in which we estimate $Z_{t_{i-1}}$ from Z_{t_i} by a denoising step. Through this formulation, given the initial value $\hat{Z}_0 = Z_0$, the exact value of the inverted latent \hat{Z}_{t_i} can be derived by the implicit Euler method:

$$\hat{Z}_{t_i} = \hat{Z}_{t_{i-1}} - (t_{i-1} - t_i) v_\theta(\hat{Z}_{t_i}, t_i). \quad (3)$$

However, since there is no access to $\widehat{\mathbf{Z}}_{t_i}$ in the inversion process, $v_\theta(\widehat{\mathbf{Z}}_{t_i}, t_i)$ in Eq. (3) is unknown. Previous tuning-free approaches replace $v_\theta(\widehat{\mathbf{Z}}_{t_i}, t_i)$ with an approximation, *e.g.*, $v_\theta(\widehat{\mathbf{Z}}_{t_{i-1}}, t_{i-1})$ in DDIM Inversion (Song et al., 2020a;b). Such an approximation assumes that model predictions are consistent across timesteps, which is bound to have errors. Empirically, we find that evaluating $v_\theta(\widehat{\mathbf{Z}}_{t_{i-1}}, \cdot)$ using t_i , which is similar to the implicit Euler method, instead of t_{i-1} , which is adopted in DDIM Inversion, yields more accurate inversion results. This is because eliminating the error of t in function v_θ can lower the error bound between inversion and sampling. As shown in Fig. 4, using $v_\theta(\widehat{\mathbf{Z}}_{t_{i-1}}, t_{i-1})$ (♦) constantly achieves a larger local error compared to $v_\theta(\widehat{\mathbf{Z}}_{t_{i-1}}, t_i)$ (■), and ultimately it reconstructs the noise with mismatched background. Nevertheless, the error accumulation of both strategies is non-trivial, as inaccurate velocity estimates continually deviate from the original trajectory. Thus, we propose that the key of inversion for gaining accurate reconstruction lies in finding an approximation $\bar{\mathbf{Z}}_{t_i}$ of $\widehat{\mathbf{Z}}_{t_i}$ via $\widehat{\mathbf{Z}}_{t_{i-1}}$ to align the velocity of the implicit Euler method.

To estimate a proper $\bar{\mathbf{Z}}_{t_i}$, methods like ReNoise (Garibi et al., 2024) suggest utilizing recursive sampling, but this approach significantly increases computational cost. Inspired by the straight trajectories of Rectified Flow (Liu et al., 2022), we propose reusing the previously obtained velocity $\widehat{\mathbf{v}}_{i-1}$ at the current time step t_i to push the previous sample $\widehat{\mathbf{Z}}_{t_{i-1}}$ as $\bar{\mathbf{Z}}_{t_i}$ for the implicit Euler evaluation while avoiding extra model forward. We first use the previous velocity to backtrack the sample from t_{i-1} to t_i as a correction, then obtain the velocity $\widehat{\mathbf{v}}_i$ using $\bar{\mathbf{Z}}_{t_i}$, which is better aligned with the current timestep t_i .

Alg. 1 provides an overview of Uni-Inv. Intuitively, Uni-Inv introduces a correction procedure before performing the inversion step. It first transitions to the high-noise step and estimates the velocity by simulating a denoising procedure. Then it returns to the original low-noise step and performs inversion using the latest “denoising-like” velocity, which can be seen as a closed-form solution of the implicit Euler method. Fig. 4 also provides the error accumulation curves of Uni-Inv (♦), showcasing its superior accuracy. We have the following proposition that bounds the local error, *i.e.*, the one-step error, of Uni-Inv for inversion and reconstruction. It gives the theoretical justification for the high quality of Uni-Inv for reconstruction. The proof is in Appendix A.

Proposition 4.1. *Suppose the velocity field v_θ is Lipschitz, and there is a constant C such that $\|\mathbf{Z}_{t_p} - \mathbf{Z}_{t_q}\| \leq C \|t_p - t_q\|, \forall t_p, t_q \in [0, 1]$, where \mathbf{Z}_{t_p} and \mathbf{Z}_{t_q} come from the same sampling process. Then for any two consecutive steps t_{i-1} and t_i , the local error of inversion and reconstruction using Uni-Inv is $\mathcal{O}(\Delta t_i^3)$, where $\Delta t_i = t_i - t_{i-1}$.*

4.2 UNI-EDIT

Sec. 3.2 provides a case study that highlights the challenges faced by flow models in image editing tasks. As shown in Fig. 5, delayed injection aims to establish an intermediate state between the original and editing trajectories. However, due to the non-intersecting nature of flow trajectories, it is difficult to obtain significantly different directions from middle steps, often resulting in **inchoate**

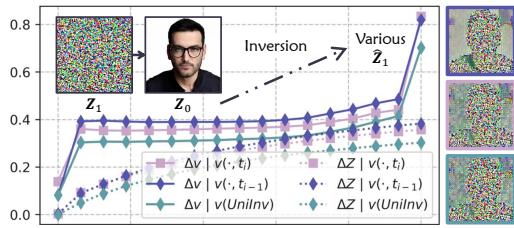


Figure 4: **Per-step error of the velocities and samples** of vanilla inversions. We first synthesis an image \mathbf{Z}_0 from random noise \mathbf{Z}_1 , then conduct inversions to get various inverted noises $\widehat{\mathbf{Z}}_1$ with velocity of $v_\theta(\widehat{\mathbf{Z}}_{t_{i-1}}, t_{i-1})$ (♦), $v_\theta(\widehat{\mathbf{Z}}_{t_{i-1}}, t_i)$ (■), and Uni-Inv (◆), respectively. We plot the per-step local error of samples (ΔZ) velocities (Δv). The right shows various inverted $\widehat{\mathbf{Z}}_1$, while their border colors correspond to different inversion methods.

Algorithm 1 Uni-Inv (Euler)

Input:

Velocity Function v_θ , Initial Image $\mathbf{Z}_0 \sim \pi_0$, Time Steps $t = \{t_0, \dots, t_N\}$, $t_0 = 0$, $t_N = 1$.

Initial:

$\widehat{\mathbf{v}}_0 \leftarrow v_\theta(\mathbf{Z}_0, t_0)$
 $\widehat{\mathbf{Z}}_{t_0} \leftarrow \mathbf{Z}_0$

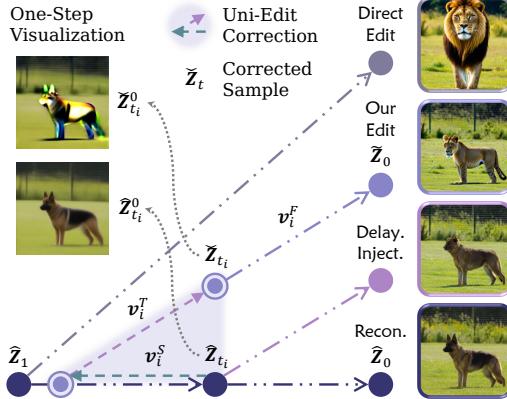
For $i = 1$ **to** N **do**

- 1: $\bar{\mathbf{Z}}_{t_i} \leftarrow \widehat{\mathbf{Z}}_{t_{i-1}} - (t_{i-1} - t_i) \widehat{\mathbf{v}}_{i-1}$
- 2: $\widehat{\mathbf{v}}_i \leftarrow v_\theta(\bar{\mathbf{Z}}_{t_i}, t_i)$
- 3: $\widehat{\mathbf{Z}}_{t_i} \leftarrow \bar{\mathbf{Z}}_{t_{i-1}} - (t_{i-1} - t_i) \widehat{\mathbf{v}}_i$

End for

Output: $\widehat{\mathbf{Z}}_1$

270 results. On the other hand, unrestricted direct sampling with editing conditions often leads to **undesirable edit**, as the generated sample diverges from the original trajectory from the outset.
271
272



286 **Figure 5: Demonstration of various sampling-
287 based image editing methods** (dog → lion).
288 Directly utilizing c^T as condition leads to an
289 undue editing. Leveraging delayed injection,
290 which is widely used in diffusion-based meth-
291 ods, inevitably results in an inchoate perfor-
292 mance when using deterministic models. Our
293 Uni-Edit mitigates early steps obtained com-
294 ponents that are not conducive to editing, ult-
295 imately achieving satisfying results.
296

297 sirable components introduced in early sampling
298 that may hinder effective editing. Then, we
299 apply v_i^F (introduced in next part) to move from \tilde{Z}_{t_i} to $\tilde{Z}_{t_{i-1}}$, and finally achieving a **proper edit**.
300

4.3 REGION-ADAPTIVE GUIDANCE AND VELOCITY FUSION

301 To further precisely correct concepts that need to
302 be edited while avoiding excessive damage to the
303 background, a simple idea is to use a mask to
304 determine the edit-relevant regions. Previous
305 works have observed that the difference between
306 latents conditioned on different prompts high-
307 lights regions crucial for editing (Couairon et al.,
308 2022; Han et al., 2024). Building on this insight,
309 we leverage this difference v_i^- to construct a
310 mask $m_i = \text{MASK}(v_i^-)$, which serves as regional
311 guidance for correction and velocity prediction,
312 thereby improving the controllability of Uni-Edit.
313 Here, $\text{MASK}(\cdot)$ denotes the min-max normaliza-
314 tion of the channel-wise mean map. To guide the
315 correction step, we first apply a weighting factor
316 of $(1 + m_i)$, encouraging edit-relevant regions to
317 backtrack with a larger stride, thereby enhancing
318 the removal of original concepts crucial for the
319 intended modification. The region guided correc-
320 tion step is $s_i = \omega(t_{i-1} - t_i)(1 + m_i) \odot v_i^-$,
321 where ω indicates the guidance strength. For the
322 subsequent sample update, we fuse the target and source velocities using m_i and $(1 - m_i)$ as re-
323 spective weights, thus forming the velocity fusion: $v_i^F = m_i \odot v_i^T + (1 - m_i) \odot v_i^S$. Then the
324 sample is updated by $\tilde{Z}_{t_{i-1}} = \tilde{Z}_{t_i} + (t_{i-1} - t_i)v_i^F$. The complete editing procedure is outlined
325 in Alg. 2. The delayed injection framework, parameterized by the delay rate α , strikes a balance

326 To address these issues, an intuitive strategy is to
327 inject editing conditions earlier while mitigating
328 excessive modifications using information from
329 the current latent state. Instead of simply inject-
330 ing conditions earlier, we propose additional cor-
331 rection steps during the editing procedure solely
332 based on the current latent \tilde{Z}_{t_i} . At the injection
333 step, this variable is initialized as the inver-
334 sion latent, i.e., $\tilde{Z}_{t_{\alpha N}} = \hat{Z}_{t_{\alpha N}}$, where α denotes
335 the delay rate and N is the total number of sam-
336 pling steps. As shown in Fig. 3 and 5, given
337 a source condition c^S that describes the source
338 image and a target condition c^T that specifies the
339 editing objective, we compute two different
340 velocity estimates, $v_i^S = v_\theta(\tilde{Z}_{t_i}, t_i | c^S)$ and
341 $v_i^T = v_\theta(\tilde{Z}_{t_i}, t_i | c^T)$, via the velocity field v_θ .
342 To introduce a correction step, \tilde{Z}_{t_i} is first transi-
343 tioned to a previous step with higher noise along
344 the direction of v_i^S . It is then mapped back to \tilde{Z}_{t_i}
345 via v_i^T , which is aligned with the current timestep
346 t_i . Thus, the sample \tilde{Z}_{t_i} is corrected by the cor-
347 rection step $s_i \sim (t_{i-1} - t_i)(v_i^T - v_i^S)$ to an
348 edit-friendly stage $\tilde{Z}_{t_i} = \tilde{Z}_{t_i} + s_i$, as the visual-
349 ization in Fig. 5. This procedure corrects unde-
350 sirable components introduced in early sampling
351 that may hinder effective editing. Then, we
352 apply v_i^F (introduced in next part) to move from \tilde{Z}_{t_i} to $\tilde{Z}_{t_{i-1}}$, and finally achieving a **proper edit**.
353

Algorithm 2 Uni-Edit (Euler)

Input:

Velocity Function v_θ , Initial Image $Z_0 \sim \pi_0$,
Source Condition c^S , Target Condition c^T ,
Guidance Strength ω , Delay Rate α ,
Time Steps $t = \{t_0, \dots, t_{\alpha N}\}$, $t_0 = 0$, $t_{\alpha N} \leq 1$.

Initial:

$\hat{Z}_{t_{\alpha N}} \leftarrow \text{Uni-Inv}(v_\theta, Z_0, t)$
 $\tilde{Z}_{t_{\alpha N}} \leftarrow \hat{Z}_{t_{\alpha N}}$

For $i = \alpha N$ **to** 1 **do**

- 1: $v_i^S, v_i^T \leftarrow v_\theta(\tilde{Z}_{t_i}, t_i | c^S), v_\theta(\tilde{Z}_{t_i}, t_i | c^T)$
- 2: $v_i^- \leftarrow v_i^T - v_i^S$
- 3: $m_i \leftarrow \text{Mask}(v_i^-)$
- 4: $s_i \leftarrow \omega(t_{i-1} - t_i)(1 + m_i) \odot v_i^-$
- 5: $\tilde{Z}_{t_i} \leftarrow \tilde{Z}_{t_i} + s_i$
- 6: $v_i^F \leftarrow m_i \odot v_i^T + (1 - m_i) \odot v_i^S$
- 7: $\tilde{Z}_{t_{i-1}} \leftarrow \tilde{Z}_{t_i} + (t_{i-1} - t_i)v_i^F$

End for

Output: \tilde{Z}_0

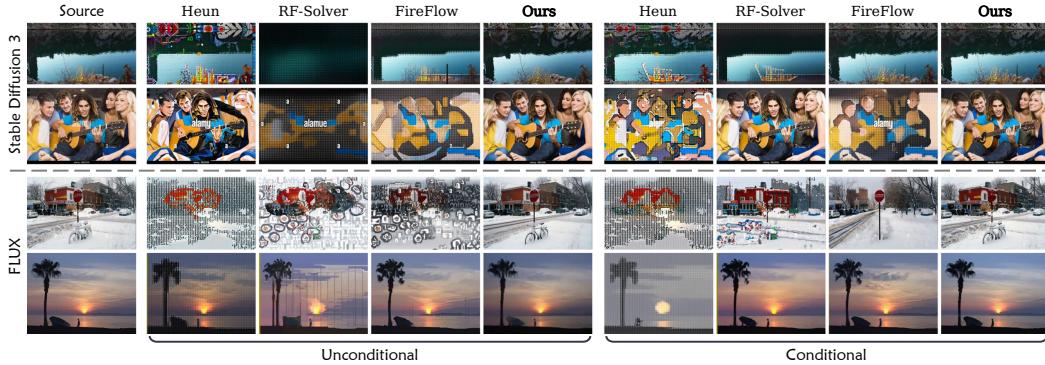


Figure 6: **Qualitative comparison on inversion & reconstruction.** Our method ensures stable reconstruction results in both situations with description accessible (conditional) and unaccessible (unconditional), while taking into account both overall and detail consistency.

between preserving background details and achieving effective modifications, while simultaneously reducing inference costs. By integrating regionally enhanced guidance with velocity fusion, we ultimately obtain an adaptive and computationally efficient editing approach. Furthermore, our velocity fusion method offers advantages over existing latent fusion techniques (Couairon et al., 2022; Han et al., 2024) by providing better performance without additional memory overhead, as illustrated in Fig. 8. We further provide the theoretical analysis of Uni-Edit in Appendix B and details of our model variants in Appendix D.

5 EXPERIMENTS

5.1 SETUP

Baselines: We conduct experiments on two tasks: 1) image inversion and reconstruction; 2) text-driven image editing. For image inversion and reconstruction, we compare our Uni-Inv with the Euler and the Heun method, as well as flow-based methods like RF-Solver (Wang et al., 2024b) and FireFlow (Deng et al., 2024). For text-driven image editing, we compare our Uni-Edit with diffusion-based methods: P2P (Hertz et al., 2022), PnP (Tumanyan et al., 2023), PnP-Inversion (Ju et al., 2024), EditFriendly (Huberman-Spiegelglas et al., 2024), MasaCtrl (Cao et al., 2023), and InfEdit (Xu et al., 2024a), along with the aforementioned two flow-based methods. More tuning-based (Mokady et al., 2023; Garibi et al., 2024) and training-based methods (Wu et al., 2024; Brooks et al., 2023; Shi et al., 2024; Wei et al., 2024) are discussed in Appendix E.

Benchmarks and Metrics: For inversion and reconstruction, we report the average MSE, PSNR (Huynh-Thu & Ghanbari, 2008), SSIM (Wang et al., 2004), and LPIPS (Zhang et al., 2018) of reconstructed images on the Conceptual Captions validation dataset (Sharma et al., 2018), which consists of 13.4K images annotated with captions. These metrics are evaluated in both conditional (using image captions as prompts) and unconditional (using null text only) settings. For text-driven image editing, we conduct experiments on PIE-Bench (Ju et al., 2024), which contains 700 images with 10 different editing types. To evaluate edit-irrelevant context preservation, we use structure distance (Tumanyan et al., 2022), along with PSNR and SSIM for annotated unedited regions. The performance of the edits is assessed using CLIP similarity (Radford et al., 2021) for both the whole image and the edited regions. More ablations and results are provided in the Appendix C, D, and H.

Implementation: We primarily conduct experiments using stable-diffusion-3-medium (SD3) (Esser et al., 2024) and FLUX.1-dev (Labs, 2024) models. For inversion and reconstruction, we set the sampling step to 50 for SD3 and 30 for FLUX, while for image editing, we use 15 steps with a delay rate α of 0.6 or 0.8. The relationship between the delay rate and NFE is $NFE = 3\alpha N + 1$. The guidance strength ω is fixed at 5 for all experiments. Additional results of our method applied to diffusion models (Podell et al., 2023) and various datasets (Hui et al., 2024; Zhao et al., 2024) are provided in Appendix I.

Table 1: **Quantitative results for inversion and reconstruction.** For Stable Diffusion 3 (SD3) (Esser et al., 2024), we keep each method’s NFE close to 100, which means we set sampling step to 50 for once-forward methods (*i.e.*, Euler, FireFlow, and Ours) and to 25 for twice-forward methods (*i.e.*, Heun and RF-Solver). For FLUX (Labs, 2024), we keep NFE close to 60 (*i.e.*, 30 for once-forward methods and 15 steps for twice-forward methods). We adopt the official implementations of baselines for FLUX, and reimplement their methods for SD3. The best and second best results are **bolded** and underlined, respectively. Cells are highlighted from **worse** to **better**.

Method	Model	Unconditional				Conditional			
		$MSE_{10^3}^{\downarrow}$	$PSNR^{\uparrow}$	$SSIM_{10^2}^{\uparrow}$	$LPIPS_{10^2}^{\downarrow}$	$MSE_{10^3}^{\downarrow}$	$PSNR^{\uparrow}$	$SSIM_{10^2}^{\uparrow}$	$LPIPS_{10^2}^{\downarrow}$
Euler	SD3	29.98	16.54	58.97	29.03	29.14	16.80	57.54	29.92
Heun		25.34	16.98	67.25	26.63	26.32	16.89	64.14	27.70
RF-Solver		45.24	15.43	56.57	33.67	26.54	18.52	64.10	26.38
FireFlow		20.27	19.60	66.96	25.29	16.95	20.85	68.89	22.83
Ours		11.52	21.81	78.89	12.85	7.86	23.41	82.23	9.53
Euler	FLUX	90.59	11.10	40.51	43.13	85.69	11.43	37.64	44.31
Heun		83.04	11.77	42.10	39.96	76.79	12.17	40.17	41.18
RF-Solver		29.32	16.97	57.17	31.75	34.71	16.38	55.64	32.43
FireFlow		23.31	18.15	63.85	27.96	30.78	17.59	62.51	28.30
Ours		8.85	22.15	79.45	17.10	14.36	20.91	77.09	20.27

Figure 7: **Qualitative comparison on image editing.** Our method consistently achieves more appropriate editing with better background preservation across various flow models.

5.2 REAL IMAGE INVERSION & RECONSTRUCTION

Quantitative Comparison: Tab. 1 provides the quantitative results for reconstruction across various flow-based methods. We reconstruct images using only the inverted noise, without utilizing latent features from the inversion process. The results demonstrate that our proposed Uni-Inv consistently outperforms the baselines across different models and settings, including the unconditional case where text description is absent.

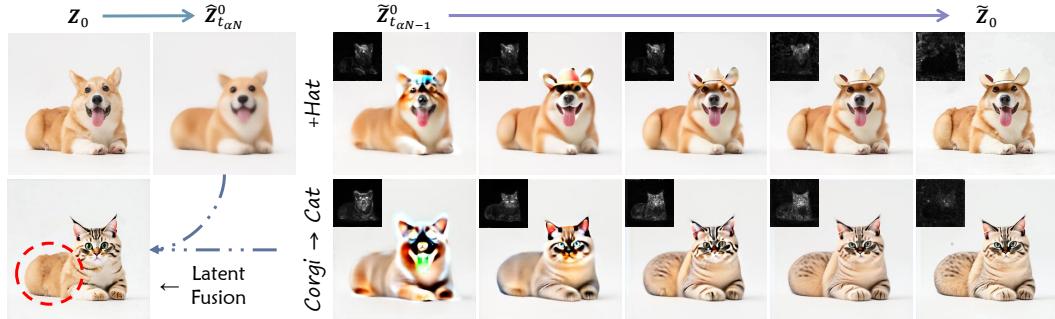
Qualitative Comparison: Fig. 6 shows the qualitative comparison of inversion and reconstruction across methods. Our method achieves nearly identical reconstruction results in both unconditional and conditional settings for various flow models. In contrast, other methods struggle with reconstruction without text conditions and show weaker performance even when image captions are available. These results strongly highlight the effectiveness of our Uni-Inv.

5.3 TEXT-DRIVEN IMAGE EDITING

Quantitative Comparison: Tab. 2 presents the quantitative results for text-driven image editing. Our method, Uni-Edit, consistently outperforms other approaches, particularly excelling in CLIP similarity. Based on SD3, Uni-Edit achieves a balance between background preservation and editing

432 Table 2: **Text-driven image editing comparison** on PIE-Bench (Ju et al., 2024). We report the
 433 peer-reviewed results of each baseline, and evaluate our proposed Uni-Edit using the relatively
 434 lightweight Stable Diffusion 3 (SD3) (Esser et al., 2024) and FLUX (Labs, 2024) to demonstrate
 435 the effectiveness. We set $\omega = 5$ and mark (N, α) in the subscript. The best and second best results
 436 are **bolded** and underlined, respectively. Cells are highlighted from **worse** to **better**.

Method	Model	Struc.	BG Preservation				CLIP Sim.↑		Steps	NFE
			Dist.↓ _{10³}	PSNR↑	LPIPS↓ _{10³}	MSE↓ _{10⁴}	SSIM↑ _{10²}	Whole	Edited	
P2P	Diff.	69.43	17.87	208.80	219.88	71.14	25.01	22.44	50	100
PnP	Diff.	28.22	22.28	113.46	83.64	79.05	25.41	22.55	50	100
PnP-Inv.	Diff.	24.29	22.46	106.06	80.45	79.68	25.41	22.62	50	100
EditFriendly	Diff.	-	24.55	91.88	95.58	81.57	23.97	21.03	50	100
MasaCtrl	Diff.	28.38	22.17	106.62	86.97	79.67	23.96	21.16	50	100
InfEdit	Diff.	<u>13.78</u>	<u>28.51</u>	47.58	<u>32.09</u>	85.66	25.03	22.22	12	72
RF-Inv.	FLUX	40.60	20.82	159.62	96.01	71.92	25.20	22.11	28	56
RF-Solver	FLUX	31.10	22.90	146.11	80.70	81.90	26.00	22.88	15	60
FireFlow	FLUX	28.30	23.28	130.61	71.01	82.82	25.98	<u>22.94</u>	15	32
Ours (15, 0.6)	SD3	21.40	24.96	89.78	49.20	86.11	26.39	22.72	15	28
Ours (15, 0.8)	FLUX	26.85	24.10	112.71	61.30	84.86	26.97	23.51	15	37
Ours (15, 0.6)	FLUX	10.14	29.54	<u>64.77</u>	18.30	90.42	25.80	22.33	15	28



453
 454 Figure 8: **Visualization of Uni-Edit process**. The guidance mask of each denoising step is shown
 455 at the upper right of the image. We also demonstrate the “Sphinx” phenomenon that existing latent
 456 fusion approaches may cause at the lower left of the figure.

470 effectiveness, outperforming existing flow-based methods in both areas. On FLUX, it surpasses
 471 the inherent limitations of training-free approaches in background preservation while maintaining
 472 competitive editing performance. More results on diffusion models are given in Appendix E.

473 **Qualitative Comparison:** Fig. 7 compares the visual editing outcomes across methods. Attention-
 474 based approaches often transfer attributes to unrelated areas (e.g., P2P, PnP, and PnP-Inversion add
 475 purple to the overall image rather than focusing on specific regions, like lipstick). Sampling-based
 476 methods without regional constraints suffer from mis-edits or insufficient editing (e.g., RF-Solver
 477 and FireFlow). In contrast, our method provides precise guidance for both local modification and
 478 global stylization. Additional results on various datasets (Zhao et al., 2024; Hui et al., 2024) are
 479 provided in Appendix I.

480 **Procedure Analysis:** Fig. 8 visualizes the editing procedure. The superscript 0 indicates the result
 481 is directly transitioned from the sample to $t = 0$ using its current velocity. Early steps focus on
 482 broader areas with stronger editing intensity to eliminate original concepts, while later steps refine
 483 details, reducing the influence of m_i . We also show results from the existing latent fusion method
 484 (Couairon et al., 2022; Han et al., 2024), which uses masks to fuse inversion and edit latents. These
 485 results lead to unnatural, “Sphinx”-like outputs, highlighting the adaptability and efficiency of our
 486 approach. More ablation studies, applications, and video editing results are shown in the Appendix.

486

6 CONCLUSION

488 We introduce a novel, tuning-free, model-agnostic methodology that combines the reconstruction-
 489 effective inversion method Uni-Inv with a region-aware, training-free image editing strategy Uni-
 490 Edit. To exploit the properties of flow models, we design robust, region-adaptive guidance in Uni-
 491 Edit to enhance the delayed injection framework, supported by Uni-Inv. Extensive experiments
 492 validate the effectiveness of our approach, demonstrating remarkable results while maintaining low
 493 inference costs. We will explore more diverse conditions (e.g., adopt an image as a personalization
 494 prompt) that can be injected for further customized image editing in the future.

496

REFERENCES

498 Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
 499 framework for flows and diffusions. *arXiv preprint arXiv:2303.08797*, 2023.

500 Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended diffusion for text-driven editing of
 501 natural images. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 502 *recognition*, pp. 18208–18218, 2022.

503 Omri Avrahami, Ohad Fried, and Dani Lischinski. Blended latent diffusion. *ACM transactions on*
 504 *graphics (TOG)*, 42(4):1–11, 2023.

505 Omri Avrahami, Or Patashnik, Ohad Fried, Egor Nemchinov, Kfir Aberman, Dani Lischinski, and
 506 Daniel Cohen-Or. Stable flow: Vital layers for training-free image editing. *arXiv preprint*
 507 *arXiv:2411.14430*, 2024.

508 Lichen Bai, Shitong Shao, Zikai Zhou, Zipeng Qi, Zhiqiang Xu, Haoyi Xiong, and Zeke Xie. Zigzag
 509 diffusion sampling: Diffusion models can self-improve via self-reflection. In *The Thirteenth*
 510 *International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=MKvQH1ekeY>.

511 Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel. Multidiffusion: fusing diffusion paths for
 512 controlled image generation. In *Proceedings of the 40th International Conference on Machine*
 513 *Learning*, ICML’23. JMLR.org, 2023.

514 Manuel Brack, Felix Friedrich, Dominik Hintersdorf, Lukas Struppek, Patrick Schramowski, and
 515 Kristian Kersting. Sega: Instructing text-to-image models using semantic guidance. *Advances in*
 516 *Neural Information Processing Systems*, 36:25365–25389, 2023.

517 Manuel Brack, Felix Friedrich, Katharia Kornmeier, Linoy Tsaban, Patrick Schramowski, Kristian
 518 Kersting, and Apolinário Passos. Ledits++: Limitless image editing using text-to-image models.
 519 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 520 8861–8870, 2024.

521 Arwen Bradley and Preetum Nakkiran. Classifier-free guidance is a predictor-corrector. *arXiv*
 522 *preprint arXiv:2408.09000*, 2024.

523 Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
 524 editing instructions. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 525 *recognition*, pp. 18392–18402, 2023.

526 Mingdeng Cao, Xintao Wang, Zhongang Qi, Ying Shan, Xiaohu Qie, and Yinqiang Zheng. Masactrl:
 527 Tuning-free mutual self-attention control for consistent image synthesis and editing. In *Proceed-
 528 ings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 22560–22570,
 529 October 2023.

530 Pinaki Nath Chowdhury, Aneeshan Sain, Ayan Kumar Bhunia, Tao Xiang, Yulia Gryaditskaya, and
 531 Yi-Zhe Song. Fs-coco: Towards understanding of freehand sketches of common objects in con-
 532 text. In *European conference on computer vision*, pp. 253–270. Springer, 2022.

533 Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion
 534 posterior sampling for general noisy inverse problems. *arXiv preprint arXiv:2209.14687*, 2022.

540 Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and Matthieu Cord. Diffedit: Diffusion-
 541 based semantic image editing with mask guidance. *arXiv preprint arXiv:2210.11427*, 2022.
 542

543 Yusuf Dalva, Kavana Venkatesh, and Pinar Yanardag. Fluxspace: Disentangled semantic editing in
 544 rectified flow transformers. *arXiv preprint arXiv:2412.09611*, 2024.

545 Yingying Deng, Xiangyu He, Changwang Mei, Peisong Wang, and Fan Tang. Fireflow: Fast inver-
 546 sion of rectified flow for image semantic editing, 2024. URL <https://arxiv.org/abs/2412.07517>.
 547

548 Yan Di, Chenyangguang Zhang, Pengyuan Wang, Guangyao Zhai, Ruida Zhang, Fabian Manhardt,
 549 Benjamin Busam, Xiangyang Ji, and Federico Tombari. Ccd-3dr: Consistent conditioning in
 550 diffusion for single-image 3d reconstruction. *arXiv preprint arXiv:2308.07837*, 2023.

552 Wenkai Dong, Song Xue, Xiaoyue Duan, and Shumin Han. Prompt tuning inversion for text-driven
 553 image editing using diffusion models. In *Proceedings of the IEEE/CVF International Conference*
 554 *on Computer Vision*, pp. 7430–7440, 2023.

555 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 556 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
 557 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
 558 2024.

559 Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel
 560 Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual
 561 inversion. *arXiv preprint arXiv:2208.01618*, 2022.

562 Daniel Garibi, Or Patashnik, Andrey Voynov, Hadar Averbuch-Elor, and Daniel Cohen-Or. Renoise:
 563 Real image inversion through iterative noising, 2024.

564 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 565 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the*
 566 *ACM*, 63(11):139–144, 2020.

567 Ligong Han, Song Wen, Qi Chen, Zhixing Zhang, Kunpeng Song, Mengwei Ren, Ruijiang Gao,
 568 Anastasis Stathopoulos, Xiaoxiao He, Yuxiao Chen, et al. Improving tuning-free real image
 569 editing with proximal guidance. *arXiv preprint arXiv:2306.05414*, 2023.

570 Ligong Han, Song Wen, Qi Chen, Zhixing Zhang, Kunpeng Song, Mengwei Ren, Ruijiang Gao,
 571 Anastasis Stathopoulos, Xiaoxiao He, Yuxiao Chen, et al. Proxedit: Improving tuning-free real
 572 image editing with proximal guidance. In *Proceedings of the IEEE/CVF Winter Conference on*
 573 *Applications of Computer Vision*, pp. 4291–4301, 2024.

574 Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.
 575 Prompt-to-prompt image editing with cross attention control. *arXiv preprint arXiv:2208.01626*,
 576 2022.

577 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 578 *neural information processing systems*, 33:6840–6851, 2020.

579 Vincent Tao Hu, Wei Zhang, Meng Tang, Pascal Mettes, Deli Zhao, and Cees Snoek. Latent space
 580 editing in transformer-based flow matching. *Proceedings of the AAAI Conference on Artificial*
 581 *Intelligence*, 38(3):2247–2255, Mar. 2024. doi: 10.1609/aaai.v38i3.27998. URL <https://ojs.aaai.org/index.php/AAAI/article/view/27998>.

582 Inbar Huberman-Spiegelglas, Vladimir Kulikov, and Tomer Michaeli. An edit friendly ddpm noise
 583 space: Inversion and manipulations. In *Proceedings of the IEEE/CVF Conference on Computer*
 584 *Vision and Pattern Recognition*, pp. 12469–12478, 2024.

585 Mude Hui, Siwei Yang, Bingchen Zhao, Yichun Shi, Heng Wang, Peng Wang, Yuyin Zhou, and
 586 Cihang Xie. Hq-edit: A high-quality dataset for instruction-based image editing. *arXiv preprint*
 587 *arXiv:2404.09990*, 2024.

594 Quan Huynh-Thu and Mohammed Ghanbari. Scope of validity of psnr in image/video quality as-
 595 sessment. *Electronics letters*, 44(13):800–801, 2008.
 596

597 Xuan Ju, Ailing Zeng, Yuxuan Bian, Shaoteng Liu, and Qiang Xu. Pnp inversion: Boosting
 598 diffusion-based editing with 3 lines of code. *International Conference on Learning Represen-
 599 tations (ICLR)*, 2024.

600 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
 601 adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
 602 recognition*, pp. 4401–4410, 2019.
 603

604 Vladimir Kulikov, Matan Kleiner, Inbar Huberman-Spiegelglas, and Tomer Michaeli. Flowedit:
 605 Inversion-free text-based editing using pre-trained flow models. *arXiv preprint arXiv:2412.08629*,
 606 2024.

607 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.
 608

609 Ziyi Li, Qinye Zhou, Xiaoyun Zhang, Ya Zhang, Yanfeng Wang, and Weidi Xie. Open-vocabulary
 610 object segmentation with diffusion models. In *Proceedings of the IEEE/CVF International Con-
 611 ference on Computer Vision*, pp. 7667–7676, 2023.

612 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 613 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.
 614

615 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 616 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.

617 Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, et al. Instaflow: One step is enough for
 618 high-quality diffusion-based text-to-image generation. In *The Twelfth International Conference
 619 on Learning Representations*, 2023.
 620

621 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
 622 solver for guided sampling of diffusion probabilistic models. *arXiv preprint arXiv:2211.01095*,
 623 2022.

624 Jianda Mao, Kaibo Wang, Yang Xiang, and Kani Chen. Tweezeedit: Consistent and efficient image
 625 editing with path regularization, 2025. URL <https://arxiv.org/abs/2508.10498>.
 626

627 Ségalène Martin, Anne Gagneux, Paul Hagemann, and Gabriele Steidl. Pnp-flow: Plug-and-play
 628 image restoration with flow matching. *arXiv preprint arXiv:2410.02423*, 2024.

629 Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for
 630 editing real images using guided diffusion models. In *Proceedings of the IEEE/CVF conference
 631 on computer vision and pattern recognition*, pp. 6038–6047, 2023.
 632

633 Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun Li, Jingwan Lu, and Jun-Yan Zhu.
 634 Zero-shot image-to-image translation. In Erik Brunvand, Alla Sheffer, and Michael Wimmer
 635 (eds.), *ACM SIGGRAPH 2023 Conference Proceedings, SIGGRAPH 2023, Los Angeles, CA,
 636 USA, August 6-10, 2023*, pp. 11:1–11:11. ACM, 2023. doi: 10.1145/3588432.3591513. URL
 637 <https://doi.org/10.1145/3588432.3591513>.

638 Maitreya Patel, Song Wen, Dimitris N. Metaxas, and Yezhou Yang. Steering rectified flow models
 639 in the vector field for controlled image generation. *arXiv preprint arXiv:2412.00100*, 2024.
 640

641 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of
 642 the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

643 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 644 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 645 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

646 Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Arbeláez, Alexander Sorkine-Hornung, and
 647 Luc Van Gool. The 2017 davis challenge on video object segmentation. *arXiv:1704.00675*, 2017.

648 Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
 649 diffusion. *arXiv preprint arXiv:2209.14988*, 2022.

650

651 Qi Qian, Haiyang Xu, Ming Yan, and Juhua Hu. Siminversion: A simple framework for inversion-
 652 based text-to-image editing. *arXiv preprint arXiv:2409.10476*, 2024.

653 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 654 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 655 models from natural language supervision. In *International conference on machine learning*, pp.
 656 8748–8763. PMLR, 2021.

657 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 658 conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022.

659

660 Jiawei Ren, Liang Pan, Jiaxiang Tang, Chi Zhang, Ang Cao, Gang Zeng, and Ziwei Liu. Dream-
 661 gaussian4d: Generative 4d gaussian splatting. *arXiv preprint arXiv:2312.17142*, 2023.

662 Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing for data: Ground
 663 truth from computer games. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (eds.),
 664 *Computer Vision – ECCV 2016*, pp. 102–118, Cham, 2016. Springer International Publishing.
 665 ISBN 978-3-319-46475-6. doi: 10.1007/978-3-319-46475-6_7.

666

667 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 668 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 669 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

670 Litu Rout, Yujia Chen, Nataniel Ruiz, Constantine Caramanis, Sanjay Shakkottai, and Wen-Sheng
 671 Chu. Semantic image inversion and editing using rectified stochastic differential equations. *arXiv
 672 preprint arXiv:2410.10792*, 2024.

673 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 674 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *Pro-
 675 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
 676 22500–22510, June 2023.

677 Dvir Samuel, Barak Meiri, Haggai Maron, Yoad Tewel, Nir Darshan, Shai Avidan, Gal Chechik, and
 678 Rami Ben-Ari. Lightning-fast image inversion and editing for text-to-image diffusion models. In *Pro-
 679 ceedings of the International Conference on Learning Representations (ICLR)*, 2025.

680 Mohammad Shahab Sepehri, Zalan Fabian, Maryam Soltanolkotabi, and Mahdi Soltanolkotabi.
 681 Mediconfusion: Can you trust your ai radiologist? probing the reliability of multimodal medi-
 682 cal foundation models. *arXiv preprint arXiv:2409.15477*, 2024.

683

684 Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned,
 685 hypernymed, image alt-text dataset for automatic image captioning. In *Proceedings of ACL*, 2018.

686

687 Yichun Shi, Peng Wang, and Weilin Huang. Seededit: Align image re-generation to image editing.
 688 *arXiv preprint arXiv:2411.06686*, 2024.

689

690 Saurabh Singh and Ian Fischer. Stochastic sampling from deterministic flow models. *arXiv preprint
 691 arXiv:2410.02217*, 2024.

692

693 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv
 694 preprint arXiv:2010.02502*, 2020a.

695

696 Kaiyu Song and Hanjiang Lai. Leveraging previous steps: A training-free fast solver for flow
 697 diffusion. *arXiv preprint arXiv:2411.07627*, 2024.

698

699 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 700 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint
 701 arXiv:2011.13456*, 2020b.

702

703 Zhicheng Sun, Zhenhao Yang, Yang Jin, Haozhe Chi, Kun Xu, Liwei Chen, Hao Jiang, Yang Song,
 704 Kun Gai, and Yadong Mu. Rectifid: Personalizing rectified flow with anchored classifier guid-
 705 ance. *Advances in Neural Information Processing Systems*, 37:96993–97026, 2024.

702 Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dreamgaussian: Generative
 703 gaussian splatting for efficient 3d content creation. *arXiv preprint arXiv:2309.16653*, 2023.
 704

705 Jiale Tao, Yanbing Zhang, Qixun Wang, Yiji Cheng, Haofan Wang, Xu Bai, Zhengguang Zhou,
 706 Ruihuang Li, Linqing Wang, Chunyu Wang, et al. Instantcharacter: Personalize any characters
 707 with a scalable diffusion transformer framework. *arXiv preprint arXiv:2504.12395*, 2025.

708 InstantX Team. Instantx flux.1-dev ip-adapter page, 2024.
 709

710 Linoy Tsaban and Apolinário Passos. Ledits: Real image editing with ddpm inversion and semantic
 711 guidance. *arXiv preprint arXiv:2307.00522*, 2023.

712 Narek Tumanyan, Omer Bar-Tal, Shai Bagon, and Tali Dekel. Splicing vit features for semantic
 713 appearance transfer. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 714 Recognition*, pp. 10748–10757, 2022.

715 Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel. Plug-and-play diffusion features
 716 for text-driven image-to-image translation. In *IEEE/CVF Conference on Computer Vision and
 717 Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023*, pp. 1921–1930.
 718 IEEE, 2023. doi: 10.1109/CVPR52729.2023.00191. URL <https://doi.org/10.1109/CVPR52729.2023.00191>.
 719

720 Bram Wallace, Akash Gokul, and Nikhil Naik. Edict: Exact diffusion inversion via coupled trans-
 721 formations. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 722 nition*, pp. 22532–22541, 2023.

723 Fangyikang Wang, Hubery Yin, Yue-Jiang Dong, Huminhao Zhu, Hanbin Zhao, Hui Qian, Chen
 724 Li, et al. Belm: Bidirectional explicit linear multi-step sampler for exact inversion in diffusion
 725 models. *Advances in Neural Information Processing Systems*, 37:46118–46159, 2025.

726 Fu-Yun Wang, Ling Yang, Zhaoyang Huang, Mengdi Wang, and Hongsheng Li. Rectified diffusion:
 727 Straightness is not your need in rectified flow. *arXiv preprint arXiv:2410.07303*, 2024a.

728 Jiangshan Wang, Junfu Pu, Zhongang Qi, Jiayi Guo, Yue Ma, Nisha Huang, Yuxin Chen, Xiu Li,
 729 and Ying Shan. Taming rectified flow for inversion and editing. *arXiv preprint arXiv:2411.04746*,
 730 2024b.

731 Kuan-Chieh Wang, Daniil Ostashev, Yuwei Fang, Sergey Tulyakov, and Kfir Aberman. Moa:
 732 Mixture-of-attention for subject-context disentanglement in personalized image generation. In
 733 *SIGGRAPH Asia 2024 Conference Papers*, pp. 1–12, 2024c.

734 Qian Wang, Biao Zhang, Michael Birsak, and Peter Wonka. Mdp: A generalized framework for
 735 text-guided image editing by manipulating the diffusion path. *arXiv preprint arXiv:2303.16765*,
 736 2023.

737 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 738 from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–
 739 612, 2004.

740 WanTeam, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
 741 Haiming Zhao, Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai
 742 Wang, Jixuan Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi
 743 Zhang, Pandeng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang,
 744 Tianxing Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng
 745 Zhou, Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan
 746 Kou, Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You
 747 Wu, Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen
 748 Han, Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models.
 749 *arXiv preprint arXiv:2503.20314*, 2025.

750 Cong Wei, Zheyang Xiong, Weiming Ren, Xinrun Du, Ge Zhang, and Wenhui Chen. Om-
 751 ninedit: Building image editing generalist models through specialist supervision. *arXiv preprint
 752 arXiv:2411.07199*, 2024.

756 Chen Henry Wu and Fernando De la Torre. A latent space of stochastic diffusion models for zero-
 757 shot image editing and guidance. In *Proceedings of the IEEE/CVF International Conference on*
 758 *Computer Vision*, pp. 7378–7387, 2023.

759

760 Qiucheng Wu, Yujian Liu, Handong Zhao, Ajinkya Kale, Trung Bui, Tong Yu, Zhe Lin, Yang Zhang,
 761 and Shiyu Chang. Uncovering the disentanglement capability in text-to-image diffusion models.
 762 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 763 1900–1910, 2023.

764 Zongze Wu, Nicholas Kolkin, Jonathan Brandt, Richard Zhang, and Eli Shechtman. Turboedit:
 765 Instant text-based image editing. In *European Conference on Computer Vision*, pp. 365–381.
 766 Springer, 2024.

767 Guangxuan Xiao, Tianwei Yin, William T Freeman, Frédo Durand, and Song Han. Fastcomposer:
 768 Tuning-free multi-subject image generation with localized attention. *International Journal of*
 769 *Computer Vision*, pp. 1–20, 2024.

770 Sihan Xu, Yidong Huang, Jiayi Pan, Ziqiao Ma, and Joyce Chai. Inversion-free image editing with
 771 language-guided diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer*
 772 *Vision and Pattern Recognition (CVPR)*, pp. 9452–9461, June 2024a.

773 Yu Xu, Fan Tang, Juan Cao, Yuxin Zhang, Xiaoyu Kong, Jintao Li, Oliver Deussen, and Tong-Yee
 774 Lee. Headrouter: A training-free image editing framework for mm-dits by adaptively routing
 775 attention heads. *arXiv preprint arXiv:2411.15034*, 2024b.

776 Xiaofeng Yang, Chen Cheng, Xulei Yang, Fayao Liu, and Guosheng Lin. Text-to-image rectified
 777 flow as plug-and-play priors. In *The Thirteenth International Conference on Learning Representations*,
 778 2025. URL <https://openreview.net/forum?id=SzPZK856iI>.

779

780 Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
 781 adapter for text-to-image diffusion models. *arXiv preprint arXiv:2308.06721*, 2023.

782

783 Taoran Yi, Jiemin Fang, Junjie Wang, Guanjun Wu, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu,
 784 Qi Tian, and Xinggang Wang. Gaussiaandreamer: Fast generation from text to 3d gaussians by
 785 bridging 2d and 3d diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer*
 786 *Vision and Pattern Recognition*, pp. 6796–6807, 2024.

787

788 Haonan Yin, Guanlong Jiao, Qianhui Wu, Borje F Karlsson, Biqing Huang, and Chin Yew Lin.
 789 Lafite: Latent diffusion model with feature editing for unsupervised multi-class anomaly detec-
 790 tion. *arXiv preprint arXiv:2307.08059*, 2023.

791

792 Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
 793 Construction of a large-scale image dataset using deep learning with humans in the loop. *arXiv*
 794 *preprint arXiv:1506.03365*, 2015.

795

796 Guoqiang Zhang, Jonathan P Lewis, and W Bastiaan Kleijn. Exact diffusion inversion via bidi-
 797 rectional integration approximation. In *European Conference on Computer Vision*, pp. 19–36.
 798 Springer, 2024.

799

800 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 801 diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 802 pp. 3836–3847, 2023.

803

804 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 805 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on*
 806 *computer vision and pattern recognition*, pp. 586–595, 2018.

807

808 Haozhe Zhao, Xiaojian Ma, Liang Chen, Shuzheng Si, Rujie Wu, Kaikai An, Peiyu Yu, Minjia
 809 Zhang, Qing Li, and Baobao Chang. Ultraedit: Instruction-based fine-grained image editing at
 810 scale, 2024. URL <https://arxiv.org/abs/2407.05282>.

811

812 Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
 813 using cycle-consistent adversarial networkss. In *Computer Vision (ICCV), 2017 IEEE Interna-
 814 tional Conference on*, 2017.

810	APPENDIX	
811		
812		
813	A Proof of Proposition 4.1	2
814		
815	B Theoretical Analysis of Uni-Edit	3
816		
817	C Ablation Studies of Uni-Edit	4
818		
819	C.1 Component Ablations	4
820	C.2 Hyper-parameter Selection	6
821		
822		
823	D Uni-Inv on Different Generation Methods	6
824		
825	D.1 Heun Method based Uni-Inv	6
826	D.2 DDIM based Uni-Inv	7
827	D.3 Comparison between Iterative Inversion Methods and Uni-Inv	7
828		
829	E Uni-Edit on Diffusion Models	8
830		
831	F Diverse Applications	8
832		
833		
834	G Application Utilizing Diversified Plugins	9
835		
836	G.1 Introducing of New Conditions	9
837	G.2 Enhancement of Controllability	11
838		
839	H Additional Qualitative Comparison	11
840		
841	H.1 Uni-Inv	11
842	H.2 Uni-Edit	12
843		
844	I Additional Results on Editing Tasks	15
845		
846	I.1 Image Editing	15
847	I.2 Video Editing	18
848		
849	J Limitations and Future Works	18
850		
851	K LLM Usage Statement	18
852		
853		
854		
855		
856		
857		
858		
859		
860		
861		
862		
863		

864 A PROOF OF PROPOSITION 4.1
865

866 Prop. 4.1: Suppose the velocity field \mathbf{v}_θ is Lipschitz, and there is a constant C such that
867 $\|\mathbf{Z}_{t_p} - \mathbf{Z}_{t_q}\| \leq C \|t_p - t_q\|$, $\forall t_p, t_q \in [0, 1]$, where \mathbf{Z}_{t_p} and \mathbf{Z}_{t_q} come from the same sampling
868 process. Then for any two consecutive steps t_{i-1} and t_i , the local error of inversion and reconstruc-
869 tion using Uni-Inv is $\mathcal{O}(\Delta t_i^3)$, where $\Delta t_i = t_i - t_{i-1}$.

870 **Assumption 1.** The velocity function $\mathbf{v}_\theta(\cdot, \tau)$ is X_1 -Lipschitz for $\forall \tau \in [0, 1]$, i.e., given a τ ,
871 $\|\mathbf{v}_\theta(\zeta_1, \tau) - \mathbf{v}_\theta(\zeta_2, \tau)\| \leq X_1 \|\zeta_1 - \zeta_2\|$ for $\forall \zeta_1, \zeta_2$.

872 **Assumption 2.** The velocity function $\mathbf{v}_\theta(\zeta, \cdot)$ is X_2 -Lipschitz for $\forall \zeta$, i.e., given a ζ ,
873 $\|\mathbf{v}_\theta(\zeta, \tau_1) - \mathbf{v}_\theta(\zeta, \tau_2)\| \leq X_2 \|\tau_1 - \tau_2\|$ for $\forall \tau_1, \tau_2$.

874 **Assumption 3.** $\|\mathbf{Z}_{t_p} - \mathbf{Z}_{t_q}\| \leq C \|t_p - t_q\|$, $\forall p, q \in [0, 1]$ when \mathbf{Z}_{t_p} and \mathbf{Z}_{t_q} come from the same
875 trajectory.

876 *Proof.* Given a deterministic solver, e.g. Euler's method:

$$879 \quad \mathbf{Z}_{t_{i-1}} = \mathbf{Z}_{t_i} + (t_{i-1} - t_i) \mathbf{v}_\theta(\mathbf{Z}_{t_i}, t_i). \quad (\text{A.1})$$

880 The corresponding inversion step of Uni-Inv is denoted by:

$$882 \quad \widehat{\mathbf{Z}}_{t_i} = \widehat{\mathbf{Z}}_{t_{i-1}} - (t_{i-1} - t_i) \widehat{\mathbf{v}}_i, \quad (\text{A.2})$$

883 where $\widehat{\mathbf{v}}_i$ is obtained via Algo. 1 and can be expressed as:

$$885 \quad \widehat{\mathbf{v}}_i = \mathbf{v}_\theta\left(\widehat{\mathbf{Z}}_{t_{i-1}} - (t_{i-1} - t_i) \bar{\mathbf{v}}_{i-1}, t_i\right). \quad (\text{A.3})$$

887 Define the estimation error \mathcal{E}_i as $\mathcal{E}_i = \|\mathbf{Z}_{t_i} - \widehat{\mathbf{Z}}_{t_i}\|$. Bringing Eq. A.1 and Eq. A.2 into it, we
888 obtain that:

$$889 \quad \mathcal{E}_i = (t_{i-1} - t_i) \|\widehat{\mathbf{v}}_i - \mathbf{v}_\theta(\mathbf{Z}_{t_i}, t_i)\|. \quad (\text{A.4})$$

890 Denote $\mathcal{E}_i^1 = \|\widehat{\mathbf{v}}_i - \mathbf{v}_\theta(\mathbf{Z}_{t_i}, t_i)\|$, we can bring in Eq. A.3:

$$892 \quad \mathcal{E}_i^1 = \left\| \mathbf{v}_\theta\left(\widehat{\mathbf{Z}}_{t_{i-1}} - (t_{i-1} - t_i) \bar{\mathbf{v}}_{i-1}, t_i\right) - \mathbf{v}_\theta(\mathbf{Z}_{t_i}, t_i) \right\|. \quad (\text{A.5})$$

894 Using the Lipschitz continuity of $\mathbf{v}_\theta(\cdot, \tau)$, we have:

$$896 \quad \mathcal{E}_i^1 \leq X_1 \left\| \widehat{\mathbf{Z}}_{t_{i-1}} - (t_{i-1} - t_i) \bar{\mathbf{v}}_{i-1} - \mathbf{Z}_{t_i} \right\|. \quad (\text{A.6})$$

898 Bring in Eq. A.1 for \mathbf{Z}_{t_i} , there is:

$$900 \quad \mathcal{E}_i^1 \leq X_1 \left\| \left(\widehat{\mathbf{Z}}_{t_{i-1}} - \mathbf{Z}_{t_{i-1}} \right) + (t_{i-1} - t_i) (\mathbf{v}_\theta(\mathbf{Z}_{t_i}, t_i) - \bar{\mathbf{v}}_{i-1}) \right\| \\ 901 \quad \leq X_1 \left\| \widehat{\mathbf{Z}}_{t_{i-1}} - \mathbf{Z}_{t_{i-1}} \right\| + X_1 (t_{i-1} - t_i) \|\mathbf{v}_\theta(\mathbf{Z}_{t_i}, t_i) - \bar{\mathbf{v}}_{i-1}\|. \quad (\text{A.7})$$

904 The first term is the accumulative error of the previous steps. We denote it as $\mathcal{E}_i^A = \|\widehat{\mathbf{Z}}_{t_{i-1}} - \mathbf{Z}_{t_{i-1}}\|$
905 and it should be neglected for local error analysis. We further denote $\mathcal{E}_i^2 = \|\mathbf{v}_\theta(\mathbf{Z}_{t_i}, t_i) - \bar{\mathbf{v}}_{i-1}\|$.
906 To analyse this item, we first consider a second-order case, i.e., utilizing an additional function
907 evaluation step to calculate $\bar{\mathbf{v}}_{i-1} = \mathbf{v}_\theta(\widehat{\mathbf{Z}}_{t_{i-1}}, t_{i-1})$. Then we have:

$$909 \quad \mathcal{E}_i^2 = \left\| \mathbf{v}_\theta(\mathbf{Z}_{t_i}, t_i) - \mathbf{v}_\theta\left(\widehat{\mathbf{Z}}_{t_{i-1}}, t_{i-1}\right) \right\|. \quad (\text{A.8})$$

911 Using the Lipschitz continuity of $\mathbf{v}_\theta(\cdot, \tau)$ and $\mathbf{v}_\theta(\zeta, \cdot)$, we have:

$$913 \quad \mathcal{E}_i^2 = \left\| \mathbf{v}_\theta(\mathbf{Z}_{t_i}, t_i) - \mathbf{v}_\theta(\mathbf{Z}_{t_i}, t_{i-1}) + \mathbf{v}_\theta(\mathbf{Z}_{t_i}, t_{i-1}) - \mathbf{v}_\theta\left(\widehat{\mathbf{Z}}_{t_{i-1}}, t_{i-1}\right) \right\| \\ 914 \quad \leq \|\mathbf{v}_\theta(\mathbf{Z}_{t_i}, t_i) - \mathbf{v}_\theta(\mathbf{Z}_{t_i}, t_{i-1})\| + \left\| \mathbf{v}_\theta(\mathbf{Z}_{t_i}, t_{i-1}) - \mathbf{v}_\theta\left(\widehat{\mathbf{Z}}_{t_{i-1}}, t_{i-1}\right) \right\| \\ 915 \quad \leq X_1 \left\| \mathbf{Z}_{t_i} - \widehat{\mathbf{Z}}_{t_{i-1}} \right\| + X_2 \|t_i - t_{i-1}\|. \quad (\text{A.9})$$

918 We denote $\Delta t_i = t_i - t_{i-1}$. Using the Assumption 3, we have:

$$\begin{aligned} 919 \quad \mathcal{E}_i^2 &\leq X_1 \left(\|\mathbf{Z}_{t_i} - \mathbf{Z}_{t_{i-1}}\| + \|\mathbf{Z}_{t_{i-1}} - \widehat{\mathbf{Z}}_{t_{i-1}}\| \right) + X_2 \Delta t_i \\ 920 \quad &\leq (CX_1 + X_2) \Delta t_i + X_1 \mathcal{E}_i^A. \\ 921 \end{aligned} \quad (\text{A.10})$$

923 Ultimately, the estimation error is as follows:

$$\begin{aligned} 924 \quad \mathcal{E}_i &\leq \Delta t_i \mathcal{E}_i^1 \leq \Delta t_i (X_1 \mathcal{E}_i^A + X_1 \Delta t_i \mathcal{E}_i^2) \\ 925 \quad &\leq \Delta t_i (X_1 \mathcal{E}_i^A + X_1 \Delta t_i ((CX_1 + X_2) \Delta t_i + X_1 \mathcal{E}_i^A)) \\ 926 \quad &= X_1 (CX_1 + X_2) \Delta t_i^3 + (X_1^2 \Delta t_i^2 + X_1 \Delta t_i) \mathcal{E}_i^A. \\ 927 \end{aligned} \quad (\text{A.11})$$

928 For local error analysis, we neglect the global accumulated error \mathcal{E}_i^A , then we have the local error
929 \mathcal{E}_i^L :

$$930 \quad \mathcal{E}_i^L \leq X_1 (CX_1 + X_2) \Delta t_i^3 = \mathcal{O}(\Delta t_i^3). \quad (\text{A.12})$$

932 Furthermore, since the step count of the iterative algorithm is $\mathcal{O}(1/\Delta t_i)$, we can have the global
933 error: $\mathcal{E}^G = \mathcal{O}(\max_i(\Delta t_i^2))$.

935 Now, let's go back to the second-order case assumption $\bar{\mathbf{v}}_{i-1} = \mathbf{v}_\theta(\widehat{\mathbf{Z}}_{t_{i-1}}, t_{i-1})$ we mentioned
936 earlier. From a practical perspective, Algo. 1 provides an additional function evaluation in the
937 initialization stage, making its first step the standard second-order case. After that, in the ideal case,
938 each $\bar{\mathbf{v}}_i$ should converge to \mathbf{v}_i , and thus the first-order approximation of the algorithm does not
939 significantly affect the error. Theoretically, since that:

$$\begin{aligned} 940 \quad \bar{\mathbf{v}}_{i-1} &= \mathbf{v}_\theta(\widehat{\mathbf{Z}}_{t_{i-1}}, t_{i-1}), \\ 941 \quad \bar{\mathbf{Z}}_{i-1} &= \widehat{\mathbf{Z}}_{i-2} - (t_{i-2} - t_{i-1}) \bar{\mathbf{v}}_{i-2}, \\ 942 \end{aligned} \quad (\text{A.13})$$

943 neglecting the last-step accumulated error, we can derive that

$$944 \quad \|\widehat{\mathbf{Z}}_{i-1} - \bar{\mathbf{Z}}_{i-1}\| \leq \Delta t_{i-1} \|\widehat{\mathbf{v}}_{i-2} - \bar{\mathbf{v}}_{i-2}\|. \quad (\text{A.14})$$

945 Using the Lipschitz continuity of $\mathbf{v}_\theta(\cdot, \tau)$, we can get:

$$946 \quad \|\widehat{\mathbf{v}}_{i-2} - \bar{\mathbf{v}}_{i-2}\| \leq X_1 \|\widehat{\mathbf{Z}}_{i-2} - \bar{\mathbf{Z}}_{i-2}\|. \quad (\text{A.15})$$

947 Neglecting the last-step accumulated error of velocity estimation for local error calculation, we note
948 that the one-order approximation brings no change to the conclusion of $\mathcal{E}_i^L = \mathcal{O}(\Delta t_i^3)$.

949 This local error serves the dual processes of inversion and reconstruction, theoretically ensuring the
950 effectiveness of our proposed inversion in practical applications. Moreover, our approach does not
951 utilize the derivative approximation to achieve the result, only expects the velocity function to have
952 good mathematical properties.

953 B THEORETICAL ANALYSIS OF UNI-EDIT

954 Conducting a mathematical perspective, our proposed Uni-Edit can be compressed into a single
955 arithmetic representation. As shown in Algo. 2, we have the editing result:

$$\begin{aligned} 956 \quad \widetilde{\mathbf{Z}}_{t_{i-1}} &= \check{\mathbf{Z}}_{t_i} + (t_{i-1} - t_i) \mathbf{v}_i^F \\ 957 \quad &= \check{\mathbf{Z}}_{t_i} + \mathbf{s}_i + (t_{i-1} - t_i) \mathbf{v}_i^F \\ 958 \quad &= \widetilde{\mathbf{Z}}_{t_i} + \omega (t_{i-1} - t_i) (\mathbf{1} + \mathbf{m}_i) \odot (\mathbf{v}_i^T - \mathbf{v}_i^S) \\ 959 \quad &\quad + (t_{i-1} - t_i) (\mathbf{m}_i \odot \mathbf{v}_i^T + (\mathbf{1} - \mathbf{m}_i) \odot \mathbf{v}_i^S) \\ 960 \quad &= \widetilde{\mathbf{Z}}_{t_i} + (t_{i-1} - t_i) \mathbf{v}_i^*, \\ 961 \end{aligned} \quad (\text{B.16})$$

962 and the reformed velocity is:

$$\begin{aligned} 963 \quad \mathbf{v}_i^* &= \omega (\mathbf{1} + \mathbf{m}_i) \odot (\mathbf{v}_i^T - \mathbf{v}_i^S) + (\mathbf{m}_i \odot \mathbf{v}_i^T + (\mathbf{1} - \mathbf{m}_i) \odot \mathbf{v}_i^S) \\ 964 \quad &= \mathbf{v}_i^S + (\omega (\mathbf{1} + \mathbf{m}_i) + \mathbf{m}_i) \odot (\mathbf{v}_i^T - \mathbf{v}_i^S), \\ 965 \end{aligned} \quad (\text{B.17})$$

Figure C.1: Illustrations of insufficient editing and background destruction. $CLIP_w$ indicates the whole CLIP similarity.

Table C.1: Component ablation studies of Uni-Edit on PIE-Bench using Stable Diffusion 3. We set step = 15, $\alpha = 0.6$, and $\omega = 5.0$ in these experiments. “w/o Uni-Inv” means using DDIM Inversion-like Euler inversion to replace Uni-Inv in the editing procedure. “w/o Uni-Edit” indicates using naive delayed injection (using v_i^T after inversion) for editing. “Corr.” represents the Correction s_i in Uni-Edit. “Corr. w/o 1+” indicates using m_i as the mask weight of s_i instead of $(1 + m_i)$. “ $m_i^{\text{in V.F.}} = 1$ ” means using **1** to replace the mask m_i in Velocity Fusion v_i^F ($v_i^F = v_i^T$), which can be seen as Uni-Edit without Velocity Fusion. “ $m_i^{\text{in V.F.}} = 0$ ” means using **0** to replace the mask m_i in v_i^F ($v_i^F = v_i^T$). “ $m_i^{\text{in Corr.}} = 1$ ” indicates using **1** to replace the mask m_i in the Correction s_i , which can be seen as Uni-Edit without Correction. “ $m_i = 1$ ” claims performing editing without region-adaptive guidance, which is equivalent to using simple classifier-free guidance (CFG).

Method	Structure	Background Preservation		CLIP Similarity↑	
	Distance $_{10^3}^{\downarrow}$	PSNR $^{\uparrow}$	SSIM $_{10^2}^{\uparrow}$	Whole	Edited
w/o Uni-Inv	40.87	21.93 <small>(-3.03)</small>	74.90 <small>(+11.21)</small>	25.54 <small>(-0.85)</small>	21.93 <small>(-0.79)</small>
w/o Uni-Edit	9.78	27.92 <small>(+2.96)</small>	89.62 <small>(+3.51)</small>	24.26 <small>(-2.13)</small>	20.92 <small>(-1.80)</small>
w/o Corr.	9.45	28.00 <small>(+3.04)</small>	89.67 <small>(+3.56)</small>	23.78 <small>(-2.61)</small>	20.52 <small>(-2.20)</small>
Inv. $v(\cdot, t_i)$	36.95	23.82 <small>(-1.14)</small>	80.25 <small>(-5.86)</small>	25.99 <small>(-0.40)</small>	22.08 <small>(-0.64)</small>
Corr. w/o 1+	11.33	27.44 <small>(+2.48)</small>	89.31 <small>(+3.20)</small>	25.16 <small>(-1.23)</small>	21.72 <small>(-1.00)</small>
$m_i^{\text{in V.F.}} = 1$	22.92	24.62 <small>(-0.34)</small>	85.50 <small>(-0.61)</small>	26.39 <small>(-0.00)</small>	22.74 <small>(+0.02)</small>
$m_i^{\text{in V.F.}} = 0$	21.78	25.01 <small>(+0.05)</small>	86.13 <small>(+0.02)</small>	26.22 <small>(-0.18)</small>	22.57 <small>(-0.15)</small>
$m_i^{\text{in Corr.}} = 1$	28.98	23.36 <small>(-1.60)</small>	83.13 <small>(-2.98)</small>	26.55 <small>(+0.16)</small>	22.80 <small>(+0.08)</small>
$m_i = 1$	30.48	23.07 <small>(-1.89)</small>	82.52 <small>(-3.59)</small>	26.53 <small>(+0.14)</small>	22.83 <small>(+0.11)</small>
Ours	21.40	24.96	86.11	26.39	22.72

It's interesting that we finally obtain a velocity v_i^* which is very similar to the classifier-free guidance (CFG) (Chung et al., 2022) but with a per-pixel-variant weight instead of a single constant value. Some previous works consider CFG as a predictor-corrector (Song et al., 2020a; Bradley & Nakkiran, 2024). From this perspective, whereas we take a different yet more interpretable approach to conduct a predictor-corrector, and eventually obtain a method with adaptive guidance strength for different regions. In the manuscript, we experimentally validate that the mask obtained from our designed sampling strategy is rationally adaptive to vary with the editing objective and the iteration step. Therefore, our method ensures to achieve per-pixel adaptive guidance strength within the framework of predictor-corrector, which in turn confers effectiveness for text-driven image editing to flow models.

C ABLATION STUDIES OF UNI-EDIT

C.1 COMPONENT ABLATIONS

Preliminary, as shown in Fig. C.2, text-driven image editing tasks pursue a trade-off between editing effect and background preservation. The result we hope for is to preserve non-editing regions while also achieving the editing requirements of the image. Empirically, on PIE-bench (Ju et al., 2024),

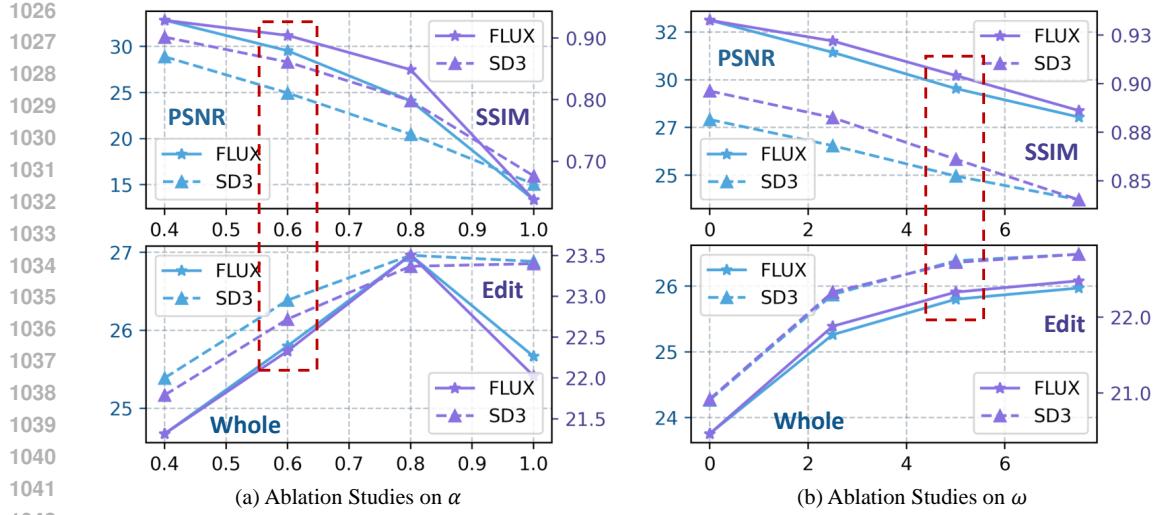


Figure C.2: **Ablation studies of Uni-Edit** on (a) delay rate α and (b) guidance strength ω . The top indicates the background preservation, while the bottom refers to CLIP scores of editing.

CLIP_w < 25 always means the editing impact is insignificant (as the blue box in Fig. C.2), while SSIM < 84 usually indicates the background is destructed (as the red circle in Fig. C.2).

We provide ablation studies of the main components of Uni-Edit in Tab. C.1, discussing the impacts of Uni-Inv, Uni-Edit, Correction, Velocity Fusion, and the mask in image editing tasks. Without Uni-Inv (w/o Uni-Inv), the background preservation decreases significantly, indicating that inverted noisy latent, which is capable of accurate reconstruction, is necessary for controllable editing. The results of naive delayed injection (w/o Uni-Edit) show the importance of well-designed guidance for flow-based image editing, which is just as discussed in the manuscript. Meanwhile, the Correction provides guidance targeted to the editing objective, thus unleashing image editing of flow models. When disabling the Correction (w/o Corr.), the result shows almost no editing. Regarding the mask m_i , we can demonstrate through relative experiments that it plays an important role in the trade-off between background preservation and editing effect. The mask m_i enhances the correction and editing strength of editing-related regions, while avoiding undesirable influence of these effects on editing-unrelated regions, thereby improving the editing effect and avoiding serious damage to the background. No matter which component disables the mask, it will cause the background preservation to be evidently worse, while the editing effect only has a marginal improvement, showcasing the effectiveness and necessity of the region-adaptive guidance.

To make the ablation studies clearer, we further provide qualitative visual comparisons of the editing results in Fig. C.3. The results in (a) indicate that, without the accurately reconstructable latent provided by Uni-Inv (utilizing a DDIM-Inversion-like inversion method), editing using flow models is likely to crash. Even though inversion using $v(\cdot, t_i)$ has appropriately improved the inversion accuracy, it is still insufficient to support reliable real image editing. Meanwhile, the simple delayed injection without Uni-Edit provides low editing effects, resulting in unchanged images.

Furthermore, (b) shows the results after replacing the fused velocity v^F with v^T or v^S . ① illustrates that directly utilizing v^T to move the sample can lead to the background not remaining unchanged. ② demonstrates that if we adopt only v^S as the velocity, even with the correction step, the results can be unnatural (it should have turned into a cup but did not). Additionally, the second row of (b) also indicates that velocity fusion can make the details of the results more reliable (velocity fusion provides the strawberry with a fuller color). Although the velocity itself may not have a strong impact on editing (just like the failure of delayed injection), velocity fusion can still enhance the editing details and provide regional sensitivity, thus making editing more precise and reliable.

Subsequently, (c) provides the editing results of using different inversion velocity functions. The velocity functions here are consistent with Fig. 4. It is evident that without precise inversion like Uni-Inv, achieving success in image editing is difficult, especially for flow models that are suscepti-

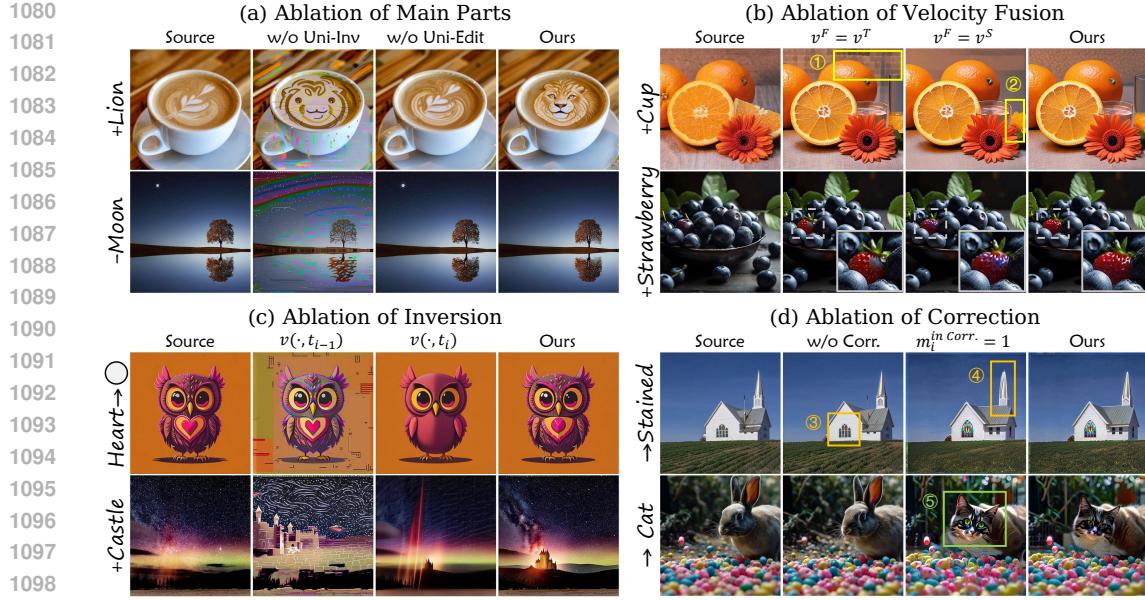


Figure C.3: **Qualitative comparison for ablation studies of Uni-Edit.** (a) Comparison of ablation in the main parts. (b) Comparison of different kinds of editing velocities. (c) Comparison of different kinds of inversion methods. (d) Ablation of correction in Uni-Edit.

ble to cumulative errors. Additionally, (d) presents the visualization of correction’s ablation studies. “w/o Corr.” means setting the correction step as $s_i = 0$, and $m_i^{\text{in Corr.}} = 1$ denotes turning the correction step into $s_i = \omega(t_{i-1} - t_i)(\mathbf{1} + \mathbf{1}) \odot \mathbf{v}_i^-$. The former is similar to the simple delayed injection (instead of using fused velocity), which represents weakening the editing ability of Uni-Edit, while the latter means maintaining the editing ability of Uni-Edit but eliminating region-adaptive guidance. In these cases, ③ shows that without correction the method will significantly reduce editing ability, and ④ indicates that correction without region-adaptive guidance can easily cause changes in editing-irrelevant regions. Not only that, as shown in ⑤, correction without regional restrictions can also easily cause overexposure, which is similar to large classifier-free guidance (CFG). These visualizations of ablation results further demonstrate the roles and significance of the components in our proposed method.

C.2 HYPER-PARAMETER SELECTION

Additionally, we present the ablation studies of our proposed Uni-Edit with step = 15 for various hyper-parameters in Fig. C.2. The results demonstrate that different hyper-parameters bring rational skews to the trade-off between background preservation and editing effectiveness. Nevertheless, our approach improves the overall level of the trade-off, making it effortless to bring benefits to both aspects.

D UNI-INV ON DIFFERENT GENERATION METHODS

D.1 HEUN METHOD BASED UNI-INV

To validate the transferability and effectiveness of our method on different samplers, we reimplement our Uni-Inv based on the Heun method. To be specific, since the Heun method is formulated as:

$$\mathbf{Z}_{t_{i-1}} = \mathbf{Z}_{t_i} + (t_{i-1} - t_i) \frac{\mathbf{v}_\theta(\mathbf{Z}_{t_i}, t_i) + \mathbf{v}_\theta(\mathbf{v}_\theta(\mathbf{Z}_{t_i}, t_i), t_i)}{2}, \quad (\text{D.18})$$

we directly reform the velocity function as:

$$\mathbf{v}_\theta^H(\zeta, \tau) = \frac{\mathbf{v}_\theta(\zeta, \tau) + \mathbf{v}_\theta(\mathbf{v}_\theta(\zeta, \tau), \tau)}{2}, \quad (\text{D.19})$$

Table D.2: **Quantitative results for inversion and reconstruction** of our Uni-Inv based on Heun method with Flow models and DDIM with Diffusion models. We set the step to 50 for SDXL (Podell et al., 2023), 25 for SD3 (Esser et al., 2024), and 15 for FLUX models to conduct the experiments. The best results are **bolded**.

Method	Model	Unconditional				Conditional			
		MSE $_{10^3}^{\downarrow}$	PSNR \uparrow	SSIM $_{10^2}^{\uparrow}$	LPIPS $_{10^2}^{\downarrow}$	MSE $_{10^3}^{\downarrow}$	PSNR \uparrow	SSIM $_{10^2}^{\uparrow}$	LPIPS $_{10^2}^{\downarrow}$
DDIM	SDXL	8.99	22.19	75.57	12.76	7.35	23.21	77.73	10.20
Ours (DDIM)		6.32	24.18	79.05	8.60	5.17	25.04	80.63	6.95
Heun	SD3	25.34	16.98	67.25	26.63	26.32	16.89	64.14	27.70
Ours (Heun)		20.23	20.10	76.38	15.76	12.75	22.31	79.62	12.43
Heun	FLUX	83.04	11.77	42.10	39.96	76.79	12.17	40.17	41.18
Ours (Heun)		57.39	13.63	57.45	26.95	32.35	16.79	67.33	21.25

Table D.3: Inversion comparison between iterative inversion methods and Uni-Inv on the first 500 images of CC3M.

Method	Model	Unconditional			Conditional			Steps	NFE
		PSNR \uparrow	SSIM $_{10^2}^{\uparrow}$	LPIPS $_{10^2}^{\downarrow}$	PSNR \uparrow	SSIM $_{10^2}^{\uparrow}$	LPIPS $_{10^2}^{\downarrow}$		
ReNoise	Diffusion	24.14	78.71	11.99	24.29	78.95	11.66	50	150
GNRI	Diffusion	23.90	78.07	8.68	23.88	78.03	8.79	50	150
Ours	Diffusion	24.41	79.67	7.96	25.24	81.08	6.31	50	101
ReNoise	SDXL-Turbo	17.59	57.23	28.43	16.81	55.10	29.27	4	16
GNRI	SDXL-Turbo	13.46	49.43	39.82	13.20	48.56	38.68	4	12
Ours	SDXL-Turbo	20.08	71.15	14.32	20.63	71.86	13.14	4	9

then using v_θ^H to replace the original velocity function in Algo. 1. As shown in Tab. D.2, our approach improves the reconstruction accuracy of the Heun method across the board. This demonstrates the flexibility and adaptability of Uni-Inv to different samplers and reflects its effectiveness.

D.2 DDIM BASED UNI-INV

DDIM (Song et al., 2020a) provides an efficient sampling method for the stochastic-differential-equation-based diffusion models and allows access to the sampling strategy with the form of ordinary differential equations. Benefiting from this, we are able to migrate Uni-Inv to diffusion models by simply treating the predicted initial noise as a velocity, utilizing the cached last-step predicted noise to push forward the current samples to the next timestep, thus performing our inversion. We evaluate the above strategy on SDXL (RealVisXL_V4.0) (Podell et al., 2023). The results are shown in Tab. D.2. Though DDIM has already demonstrated strong feasibility in numerous applications, our approach can still take it to the next level and bring about an overall improvement in reconstruction accuracy. It also indicates that our work does not just face a particular methodology. We expect to build approaches that can continuously provide insights into the developing trend of generative models.

D.3 COMPARISON BETWEEN ITERATIVE INVERSION METHODS AND UNI-INV

We further compare iterative inversion methods (Garibi et al., 2024; Samuel et al., 2025) with our proposed Uni-Inv on inversion and reconstruction experiments. As there are no flow-based implementations of these methods, we compare inversion on diffusion using official code and settings in D.3. For fairness, we set the optimization steps on SDXL-Turbo of ReNoise (Garibi et al., 2024) to 2 as GNRI (Samuel et al., 2025) does. We adopt the same experimental settings as the manuscript, except for the sampling steps (50 for diffusion models and 4 for SDXL-Turbo). The experiments on

1188 the first 500 samples of the CC3M (Sharma et al., 2018) dataset further provide Uni-Inv’s superiority
 1189 compared with the mentioned iterative inversion methods.
 1190

1191 E UNI-EDIT ON DIFFUSION MODELS

1194 **Table E.4: Text-driven image editing comparison** on PIE-Bench (Ju et al., 2024) based on Diffusion
 1195 models. We evaluate our proposed Uni-Edit using SDXL (Podell et al., 2023). We keep the
 1196 same hyper-parameter setting with our main experiments (*i.e.*, $\alpha = 0.6$ and $\omega = 5$), and adopt 50 and
 1197 15 as steps. Besides tuning-based methods are marked in gray, the best and second best results are
 1198 **bolded** and underlined, respectively.
 1199

1200 Method	1201 Model	1202 Struc.	1203 BG Preservation				1204 Whole	1205 CLIP Sim. \uparrow	1206 Steps	1207 NFE
			1208 Dist. $_{10^3}^{\downarrow}$	1209 PSNR \uparrow	1210 LPIPS. $_{10^3}^{\downarrow}$	1211 MSE. $_{10^4}^{\downarrow}$		1212 SSIM. $_{10^2}^{\uparrow}$		
1203 Null-Text Inv	1204 Diff.	1205 13.44	1206 27.03	1207 60.67	1208 35.86	1209 84.11	1210 24.75	1211 21.86	1212 50	1213 -
1204 ReNoise	1205 Diff.	1206 -	1207 27.11	1208 49.25	1209 31.23	1210 72.30	1211 23.98	1212 21.26	1213 50	1214 -
1205 P2P	1206 Diff.	1207 69.43	1208 17.87	1209 208.80	1210 219.88	1211 71.14	1212 25.01	1213 22.44	1214 50	1215 100
1206 P2P-Zero	1207 Diff.	1208 61.68	1209 20.44	1210 172.22	1211 144.12	1212 74.67	1213 22.80	1214 20.54	1215 50	1216 100
1207 PnP	1208 Diff.	1209 28.22	1210 22.28	1211 113.46	1212 83.64	1213 79.05	1214 <u>25.41</u>	1215 <u>22.55</u>	1216 50	1217 100
1208 PnP-Inv.	1209 Diff.	1210 24.29	1211 22.46	1212 106.06	1213 80.45	1214 79.68	1215 <u>25.41</u>	1216 <u>22.62</u>	1217 50	1218 100
1209 EditFriendly	1210 Diff.	1211 -	1212 24.55	1213 91.88	1214 95.58	1215 81.57	1216 23.97	1217 21.03	1218 50	1219 100
1210 MasaCtrl	1211 Diff.	1212 28.38	1213 22.17	1214 106.62	1215 86.97	1216 79.67	1217 23.96	1218 21.16	1219 50	1220 100
1211 InfEdit	1212 Diff.	1213 13.78	1214 28.51	1215 47.58	1216 32.09	1217 85.66	1218 25.03	1219 22.22	1220 12	1221 72
1212 Ours	1213 Diff.	1214 <u>15.59</u>	1215 <u>25.64</u>	1216 <u>78.83</u>	1217 <u>43.05</u>	1218 <u>83.42</u>	1219 26.33	1220 22.78	1221 15	1222 28

1214 Similar to Uni-Inv, since our proposed Uni-Edit is completely sample-based and model-
 1215 agnostic, it is also capable of migrating to diffusion models effortlessly. We adopt the SDXL
 1216 (RealVisXL v4.0) (Podell et al., 2023) as our base model, conducting evaluation experiments
 1217 on PIE-Bench (Ju et al., 2024). The results are shown in Tab. E.4. Here we enumerate the previous
 1218 SOTA of diffusion-based approaches, wherein compared to the manuscript, we additionally present
 1219 the results of tuning-based inversion (Mokady et al., 2023; Garibi et al., 2024) applied to editing.
 1220 In contrast to these approaches, the CLIP similarity metrics exemplify our proposed Uni-Edit’s
 1221 capability to drive the diffusion-based editing to new heights and maintain highly competitive back-
 1222 ground preservation. Meanwhile, we significantly improve the editing efficiency by reducing NFE
 1223 extremely compared to previous diffusion-based approaches. These experiments strongly demon-
 1224 strate the effectiveness, adaptability, and generalizability of our proposed approaches, providing new
 1225 insights into image inversion and editing in the era of flow models.

1226 Furthermore, there are still many training-based methods (Wu et al., 2024; Brooks et al., 2023; Shi
 1227 et al., 2024; Wei et al., 2024) to learn how to reasonably edit images from the provided training
 1228 data. Most of them focus on conducting flexible editing through user-provided instructions. Such
 1229 ideas are very practical and effective. Nonetheless, before embarking on this kind of approach, it is
 1230 crucial to clearly learn about the properties of the base generation methods. This is also the main
 1231 concentration of this paper.

1232 F DIVERSE APPLICATIONS

1235 In addition to general text-driven image editing, the interpretable design of our method enables a
 1236 wide range of applications. Fig. F.4 showcases its use for sketch-to-image (1st line) and stroke-to-
 1237 image (2nd line) tasks (Yu et al., 2015; Chowdhury et al., 2022). For these applications, we set $\alpha =$
 1238 0.8 to enhance the editing effect. By exploiting the binary nature of sketches and fixing m_i as their
 1239 grayscale value, we achieve more robust results for sketch-to-image tasks. Moreover, thanks to the
 1240 advanced flow matching-based video generation model Wan (WanTeam et al., 2025), we further test
 1241 Uni-Edit on video editing tasks. We directly consider the latent containing the temporal dimension
 1242 as Z , and apply Uni-Edit to Wan’s sampling process without any modification. Setting $\alpha = 0.8$ and

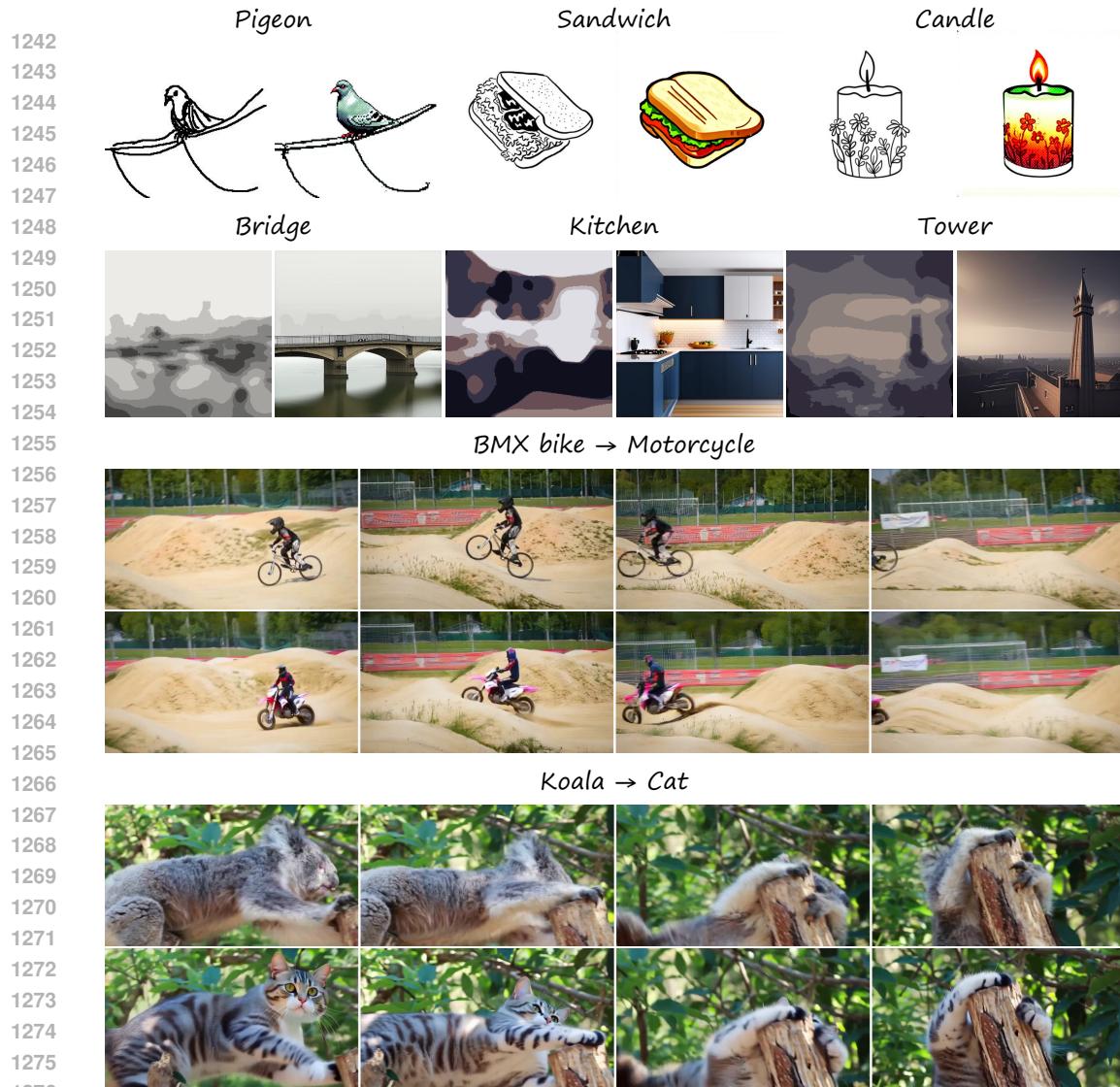


Figure F.4: **Diverse application of Uni-Edit.** The top is sketch to image, and the bottom is stroke to image. The left of a image pair is the source image, and the right is the editing result.

$N = 25$, we achieve reliable editing results (3rd and 4th parts) using `Wan2.1-T2V-1.3B` model. These results further highlight the generalizability and effectiveness of our approach.

G APPLICATION UTILIZING DIVERSIFIED PLUGINS

Since our proposed method is model-agnostic, various plugins that can insert flow models can be applied to provide different editing conditions or to achieve specific editing objectives. These plugins can generally provide ***new conditions*** or help enhance ***controllability***, enabling image editing to meet different specific needs. Therefore, in the era of rapid development of generative models represented by flow models, our method can stably and continuously integrate into stronger models or more complex tasks.

G.1 INTRODUCING OF NEW CONDITIONS

Many previous works achieve personalized generation based on images by inserting image features into prompt embeddings or attentions, among which IP-Adapter (Ye et al., 2023) is one of the most

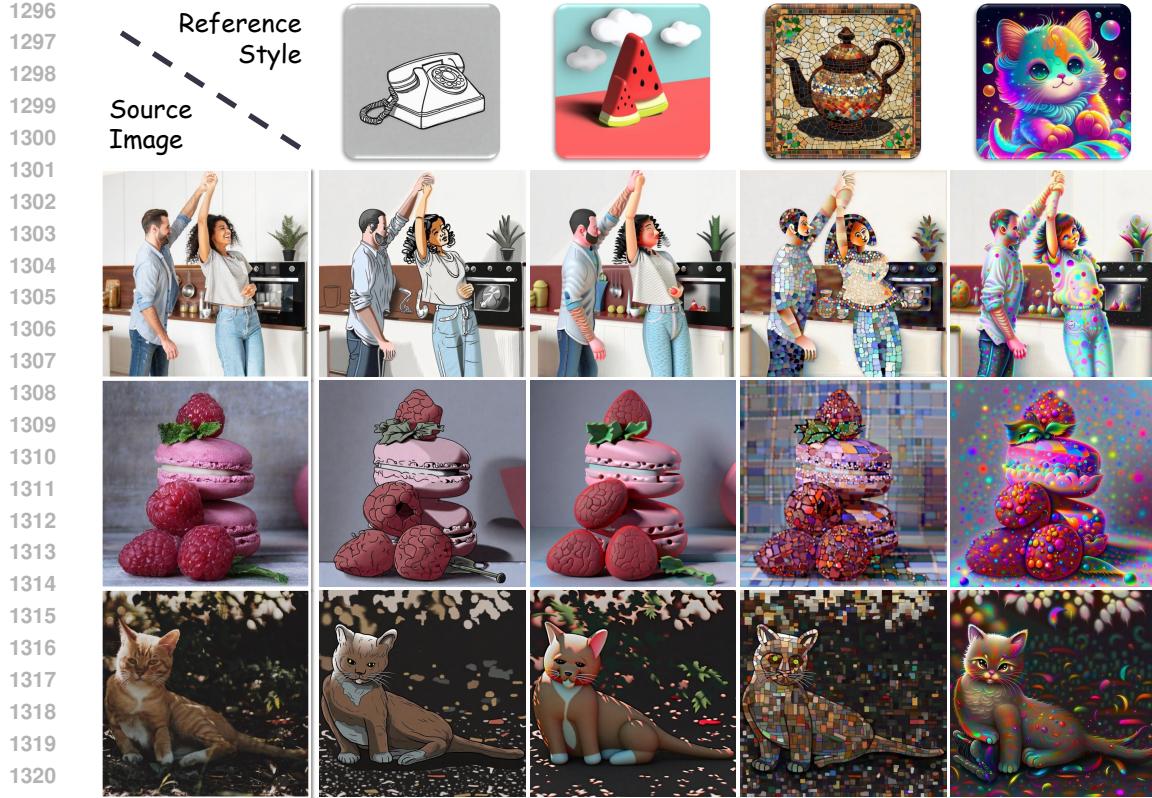


Figure G.5: **Applications of Uni-Edit utilizing IP-Adapter (Ye et al., 2023; Team, 2024) for reference-based style transfer.** The first column is the source image, and the first row is the reference style image.

representative approaches. Taking inspiration from this, we first attempted to apply an IP-Adapter that facilitates style transformation (Team, 2024) to our pipeline. During the editing process of Uni-Edit, we load InstantX/FLUX.1-dev-IP-Adapter into the FLUX model and differentiate between source and target conditions by distinguishing among different image inputs.

Specifically, we first employ the original Uni-Inv conditioned on null text, and then modify the v_i^S and v_i^T in Uni-Edit. After adopting the IP-Adapter, the velocity function becomes $v = v_\theta(\tilde{Z}_t, t | c_{\text{txt}}, c_{\text{img}})$, where c_{img} denote the input image of the IP-Adapter. Subsequently, in order to make the image editing focus on style transfer, we keep the text conditions of v_i^S and v_i^T consistent with c_{txt}^S , without introducing any changes to the content:

$$v_i^S = v_\theta(\tilde{Z}_t, t | c_{\text{txt}}^S, c_{\text{img}}^S), \quad v_i^T = v_\theta(\tilde{Z}_t, t | c_{\text{txt}}^S, c_{\text{img}}^T). \quad (\text{G.20})$$

Fig. G.5 shows the results of style transfer using our proposed Uni-Edit on IP-Adapter-injected FLUX model. We set $\alpha = 0.6, \omega = 5.0, N = 15$ for Uni-Edit here. We adopt the source image as c_{img}^S and the reference style image as c_{img}^T . It can be clearly observed that the editing results accurately capture the style of the reference style image (such as 3D rendering style, colorful style, etc.). At the same time, our method does not cause excessive damage to the source image, allowing the edited results to maintain both the targeted style features and the original content.

In addition, under the same paradigm, we have also adopted another type of IP-Adapter, InstantCharacter (Tao et al., 2025), which has the ability to customize the characters in the generated images. We utilize the source image as c_{img}^S and the reference character image as c_{img}^T to achieve image character editing, and set $\alpha = 0.7, \omega = 3.0, N = 30$ here. The results are shown in Fig. G.6, which showcases the abilities of our method using InstantCharacter for effective face editing.

These experiments not only demonstrate the strong flexibility and diverse application scenarios of our proposed method, but also illustrate the promising scalability of such a sampling based strategy.

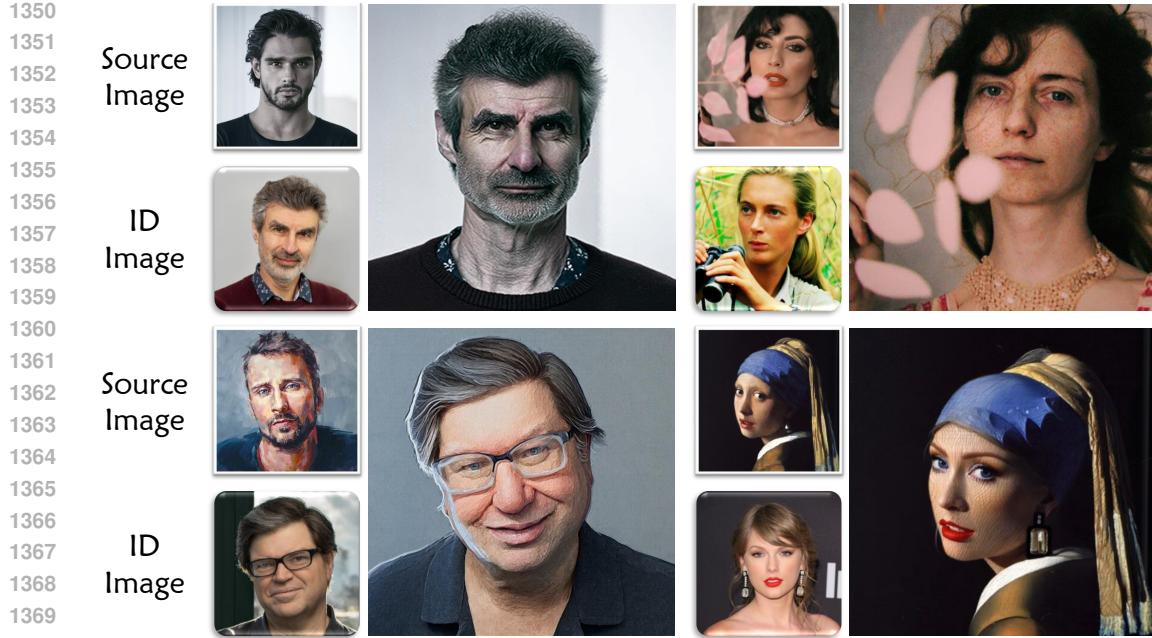


Figure G.6: **Applications of Uni-Edit utilizing InstantCharacter (Tao et al., 2025) for face editing.** In each group, the upper left is the source image, the lower left is the reference character image, and the right is the editing result.

G.2 ENHANCEMENT OF CONTROLLABILITY

Previous work has also proposed many modules that inject additional control conditions, among which ControlNet (Zhang et al., 2023) is the most representative. We can introduce effective control during the editing process of Uni-Edit by treating these injected conditions as part of the velocity function, *i.e.*:

$$\mathbf{v}'_\theta(\tilde{\mathbf{Z}}_t, t \mid \mathbf{c}_{\text{txt}}) = \mathbf{v}_\theta(\tilde{\mathbf{Z}}_t, t \mid \mathbf{c}_{\text{txt}}, \mathbf{c}_{\text{ctrl}}), \quad (\text{G.21})$$

where \mathbf{c}_{ctrl} denotes the input condition of the ControlNet. By replacing \mathbf{v}_θ in Alg. 2 with \mathbf{v}'_θ , it can be ensured that the control conditions are preserved in the image during the inversion and editing process.

Fig. G.7 shows the editing results with enhanced controllability. We utilize Stable Diffusion 3 with Canny-conditioned ControlNet (InstantX/SD3-Controlnet-Canny) as the base model for our Uni-Inv and Uni-Edit, and set $\alpha = 0.9, \omega = 5.0, N = 30$. These images are from the GTAV dataset (Richter et al., 2016), and the Canny edges used for control are the Canny edges of the segmentation labels of these images. We utilize null text as the source prompts and the word describing environment (“Snowy”, “Rainy”, “Foggy”, and “Night”) as the target prompts in these experiments. The results indicate that after introducing the control of ControlNet, Uni-Edit exhibits strong semantic information retention abilities and also achieves significant editing of environmental features in the image. This application can be used in autonomous driving scenarios or world model building processes to provide more diverse while reliable data for training semantic segmentation and detection recognition models.

H ADDITIONAL QUALITATIVE COMPARISON

H.1 UNI-INV

We represent more qualitative comparison results of our Uni-Inv and recent flow-based approaches (Wang et al., 2024b; Deng et al., 2024) in Fig. H.8 and Fig. H.9. These figures contain a wide variety of image samples, including landscape photographs, object photographs, human-centered daily photographs, photographs in extreme lighting, group photographs of large numbers of people,

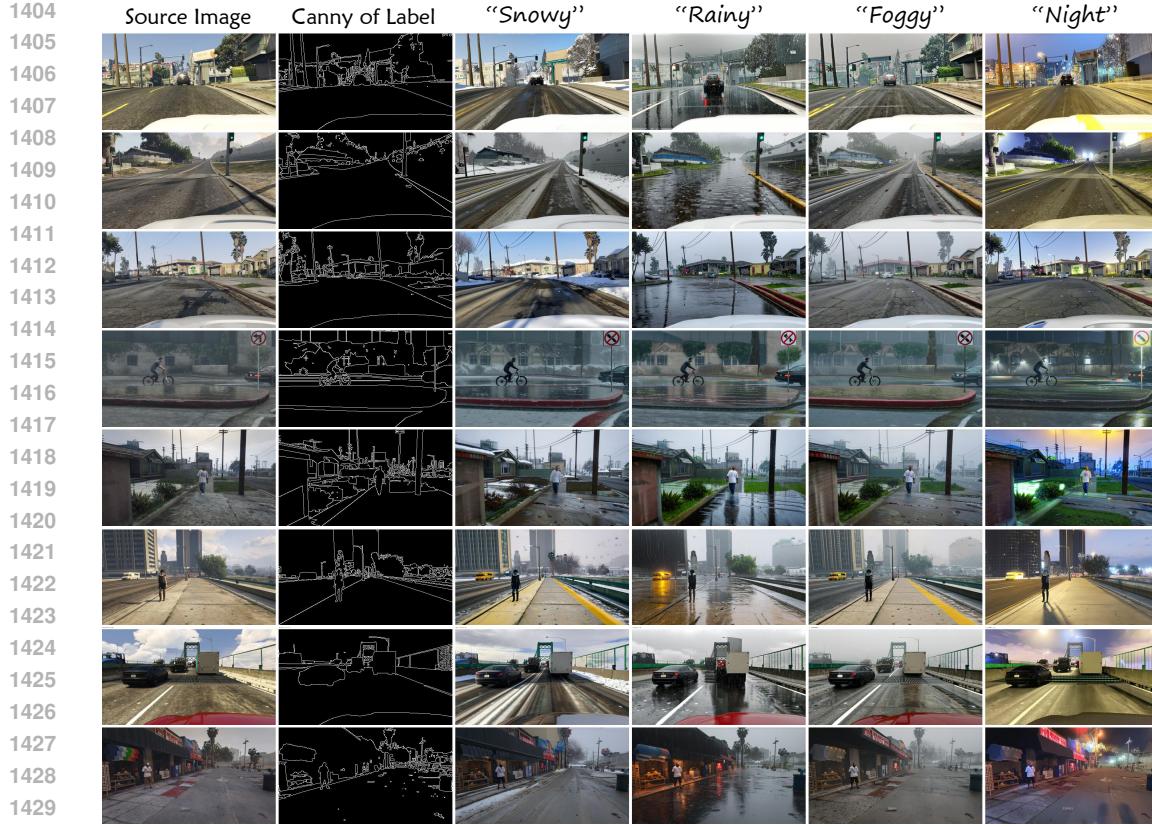


Figure G.7: Application of Uni-Edit for reliable environment style transformation for autonomous driving tasks using ControlNet (Zhang et al., 2023). The first column is the source image, and the second column is the reference canny image, which is obtained from the ground truth segmentation label of the source image. The first row provides editing prompts of such editing tasks (only one description word is enough).

black and white photographs, posters, pencil drawings, oil paintings, etc. of varying resolutions. Our method well maintains the overall image color (last line of Fig. H.8), texture style (6th line of Fig. H.8), content details including text (8th and 9th lines of Fig. H.9) during inversion & reconstruction, achieving consistent superiority in both conditional and unconditional settings.

H.2 UNI-EDIT

We further perform additional qualitative comparisons with existing state-of-the-art methods (Hertz et al., 2022; Tumanyan et al., 2023; Ju et al., 2024; Huberman-Spiegelglas et al., 2024; Cao et al., 2023; Xu et al., 2024a; Rout et al., 2024; Wang et al., 2024b; Deng et al., 2024) on text-driven image editing as shown in Fig. H.10, Fig. H.11, and Fig. H.12. We extensively compared the different approaches under conditions of editing categories, materials, properties, motions, backgrounds, and types of adding or removing items or concepts, as well as stylization.

First, in the task of regional editing, our method demonstrates significant local perception and background preservation capabilities. It is worth noting that our approach is model-agnostic, *i.e.* it does not require the involvement of the attention mechanism. This leads to more oriented regional editing. For example, attention-based methods such as PnP (Tumanyan et al., 2023) often impose attributes that need to be used for regional editing on irrelevant regions (4th line of Fig. H.11). Due to these methods disassembling prompts and attempting to utilize a single token about the editing to exert guidance, inappropriate semantic understanding comes since the wholeness of prompts is destroyed. On the contrary, our approach is model-agnostic, thus better capitalizing on the text comprehension capabilities learned from the model.

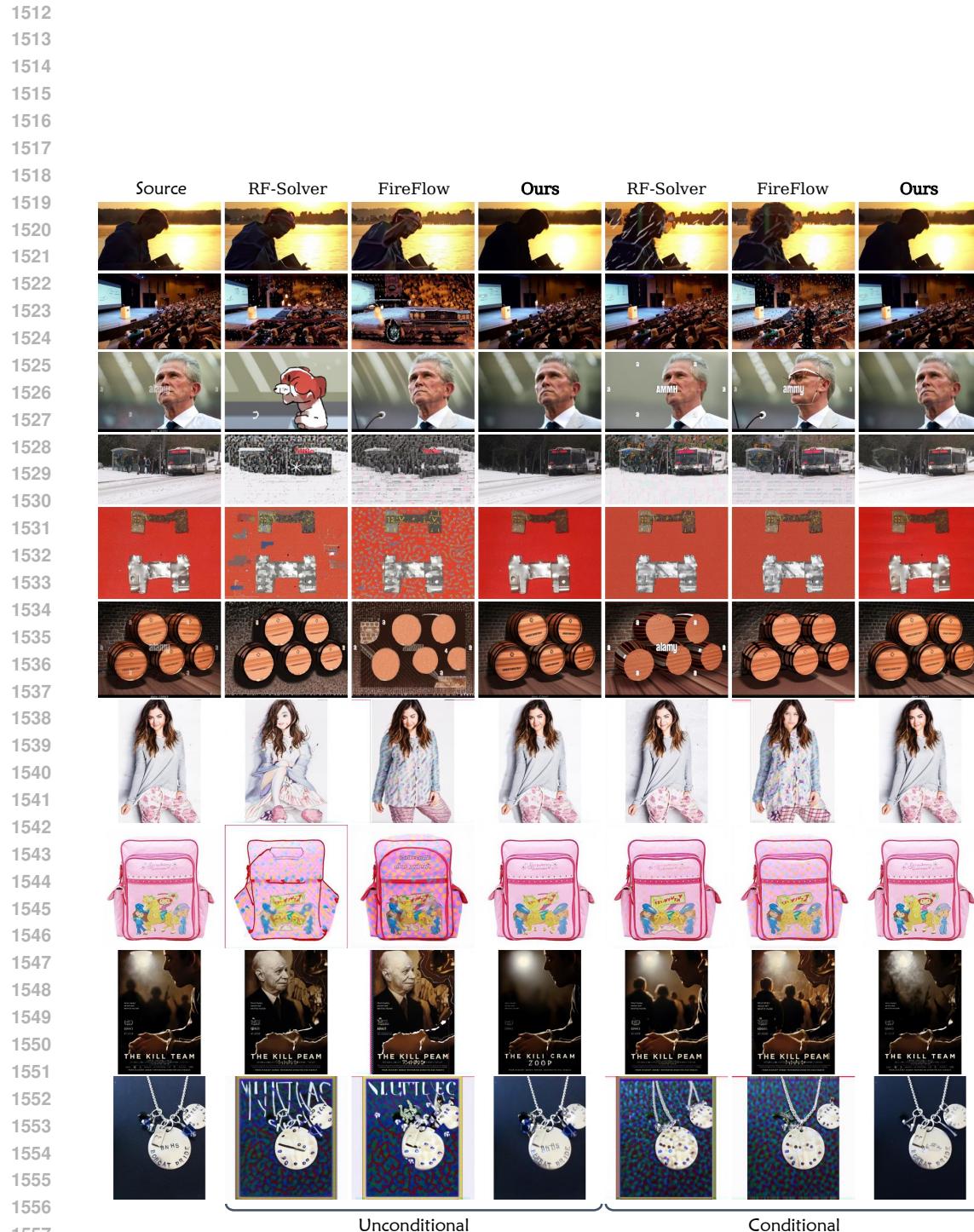


Figure H.9: **Additional qualitative comparison on inversion & reconstruction** on the Conceptual Captions validation dataset (Sharma et al., 2018).

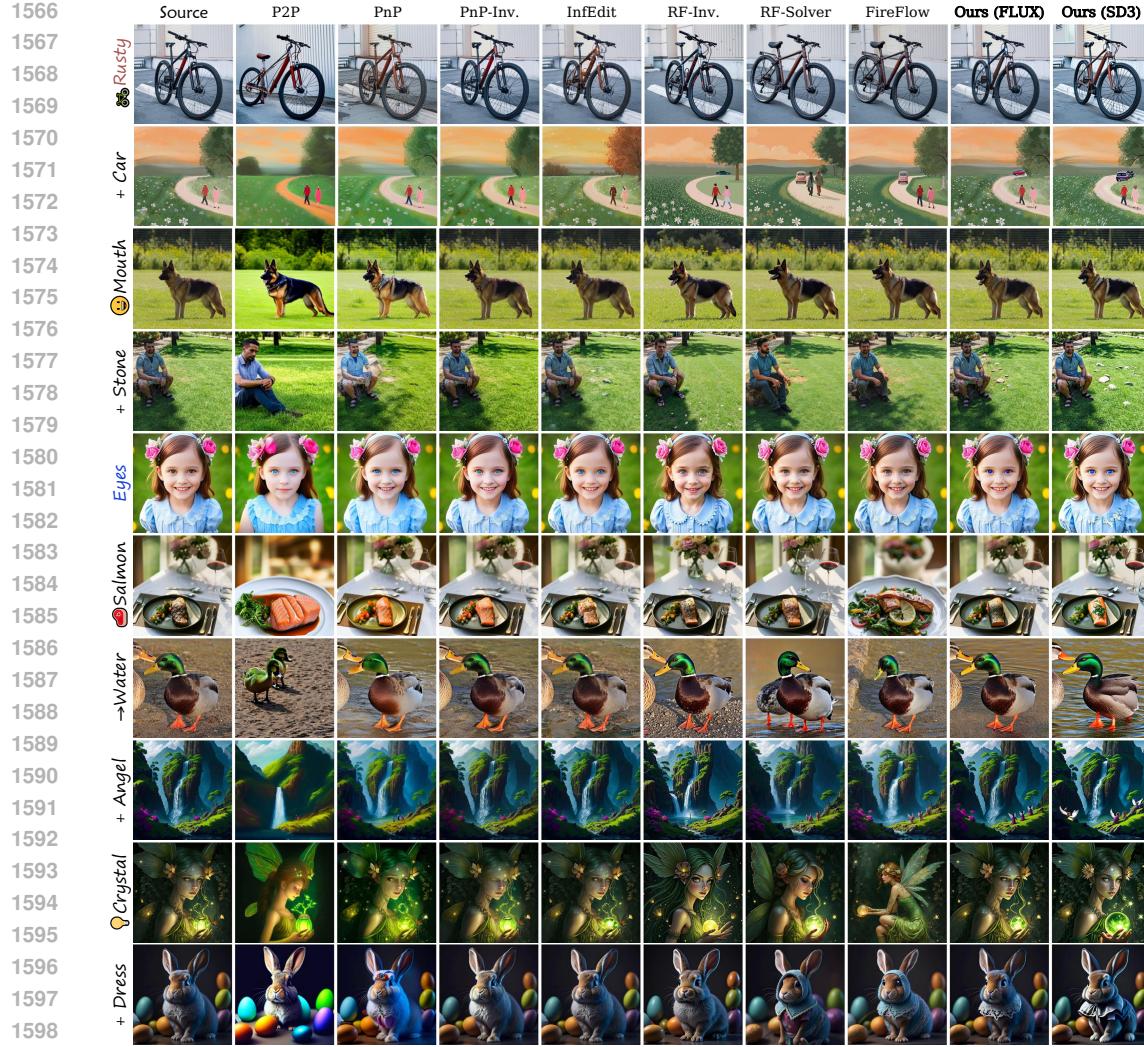


Figure H.10: Additional qualitative comparison on image editing on PIE-Bench (Ju et al., 2024).

Subsequently, compared to the same sampling-based kind of approaches (*i.e.*, RF-Inversion (Rout et al., 2024), RF-Solver (Wang et al., 2024b), and FireFlow (Deng et al., 2024)), our method demonstrates significant advantages in terms of image structure and background preservation while maintaining robust editing (1st and 9th lines of Fig. H.10, 3rd and last lines of Fig. H.11, 3rd and 7th lines of Fig. H.12). On the one hand, this is due to our proposed Uni-Inv theoretically ensuring a small local error in the inversion process that can support accurate reconstruction. On the other hand, our deep exploration and re-empowerment of delayed injection make it easy for our proposed Uni-Edit to strike a satisfying balance between editing and the preservation of editing-irrelevant concepts.

I ADDITIONAL RESULTS ON EDITING TASKS

I.1 IMAGE EDITING

Fig. I.13 and Fig. I.14 represent additional qualitative results of our proposed Uni-Edit on image editing tasks. These results indicate that when it comes to diverse targets and diverse image domains, our approach still remains very effective. It is worth noting that each edit in Fig. I.13 contains multiple different editing objectives (*e.g.*, changing the time, removing the crowd, and adjusting the lighting). Our approach is able to simultaneously achieve these various targets in a single round, using only the original prompt and the target prompt as guidance. Benefiting from the sampling-

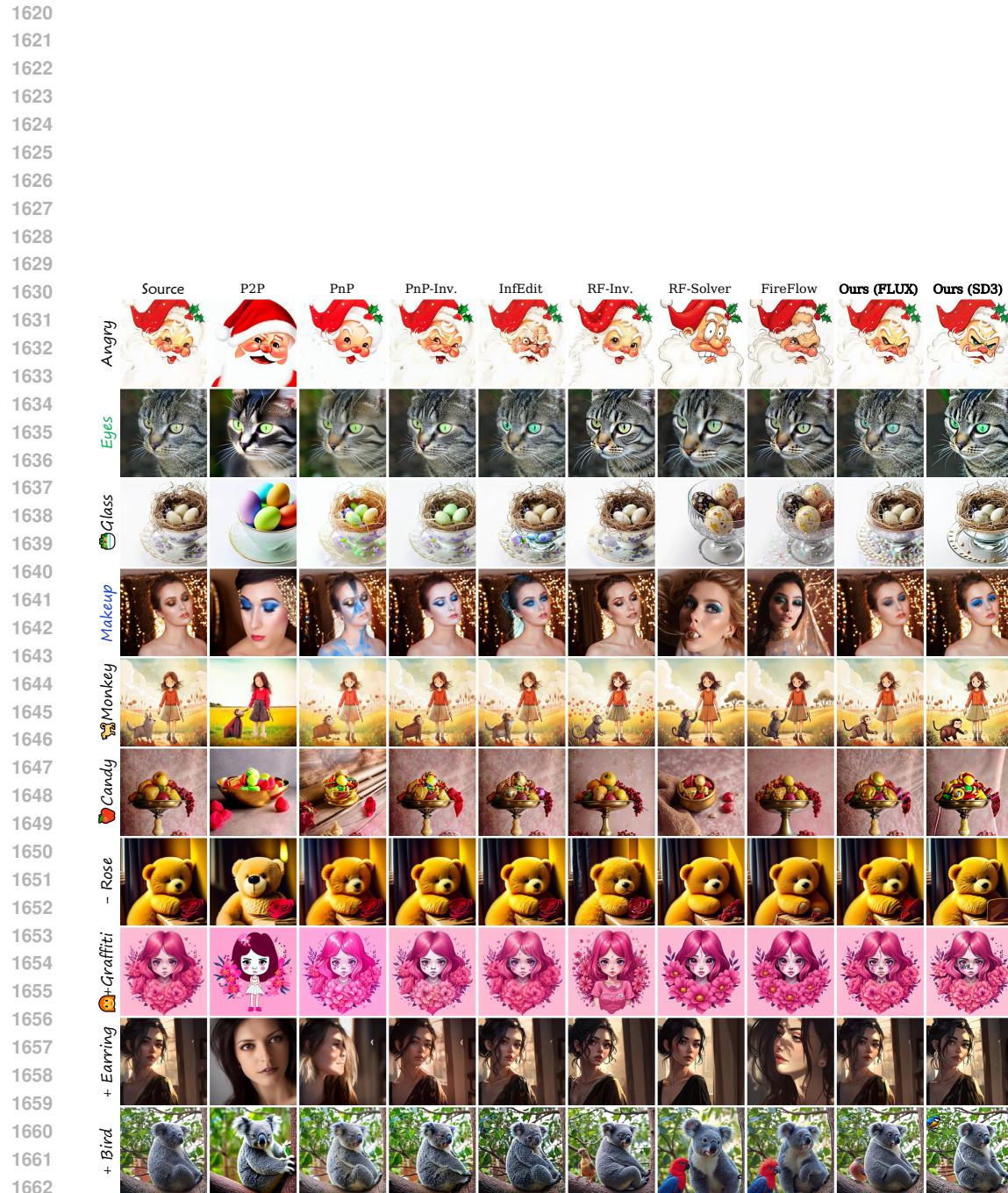


Figure H.11: Additional qualitative comparison on image editing on PIE-Bench (Ju et al., 2024).

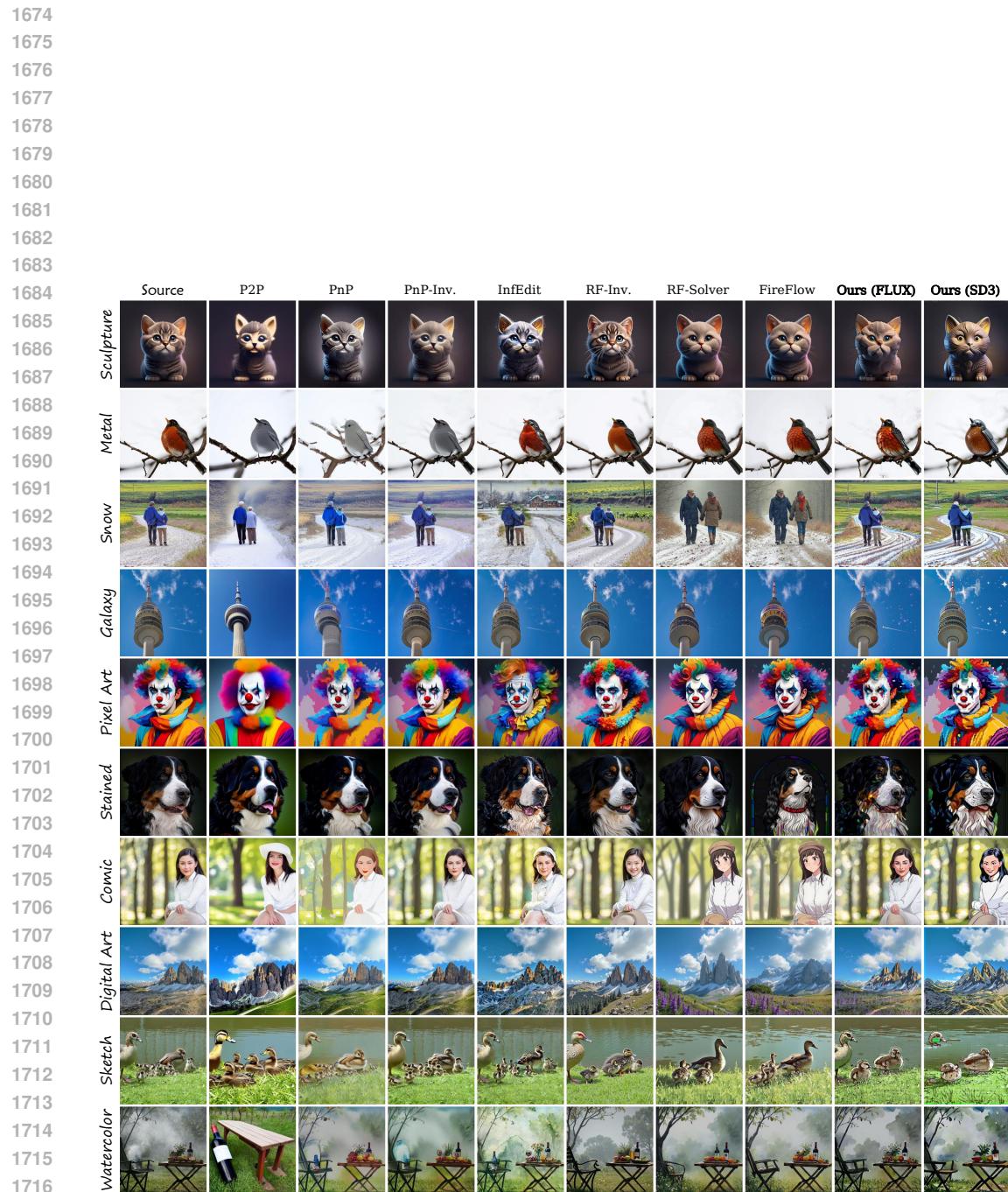


Figure H.12: Additional qualitative comparison on image editing on PIE-Bench (Ju et al., 2024).

1728 based design, our approach is able to capture diverse objectives at once through the relationship
1729 between the latents obtained from different conditions. Compared to methods that rely on cross
1730 attention manipulations, this design is simpler, more robust, and less likely to cause confusion.
1731

1732 I.2 VIDEO EDITING

1733
1734 Moreover, we directly adopt Uni-Edit to conduct video editing tasks using the flow matching-based
1735 video generation model Wan (WanTeam et al., 2025). Qualitative results are shown in Fig. I.15.
1736 Since our method is model-agnostic, we can achieve reliable video editing results without additional
1737 design or complex parameterization. It is further strong evidence of our approach’s generalizability.
1738

1739 J LIMITATIONS AND FUTURE WORKS

1740
1741 The core issue plaguing us now is that our Uni-Edit is designed for image-text pair inputs. It is not
1742 capable of accepting more than one image as the condition. This results in no direct way for us to
1743 contribute to the personalization generation problems. In the future, we would like to develop editing
1744 methods that are more general and oriented to more diverse tasks. The accurate inversion of Uni-
1745 Inv helps to capture image information. With this facilitation, we hope to develop sampling-based
1746 editing strategies capable of injecting image conditions based on our re-enabled delayed injection
1747 framework. We leave it as an interesting future work.
1748

1749 K LLM USAGE STATEMENT

1750
1751 In this paper, LLMs were not used for polishing writing, discovery and retrieval, research ideation,
1752 and other aspects. All paper writing, scientific content, and interpretations are the authors’ own.
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

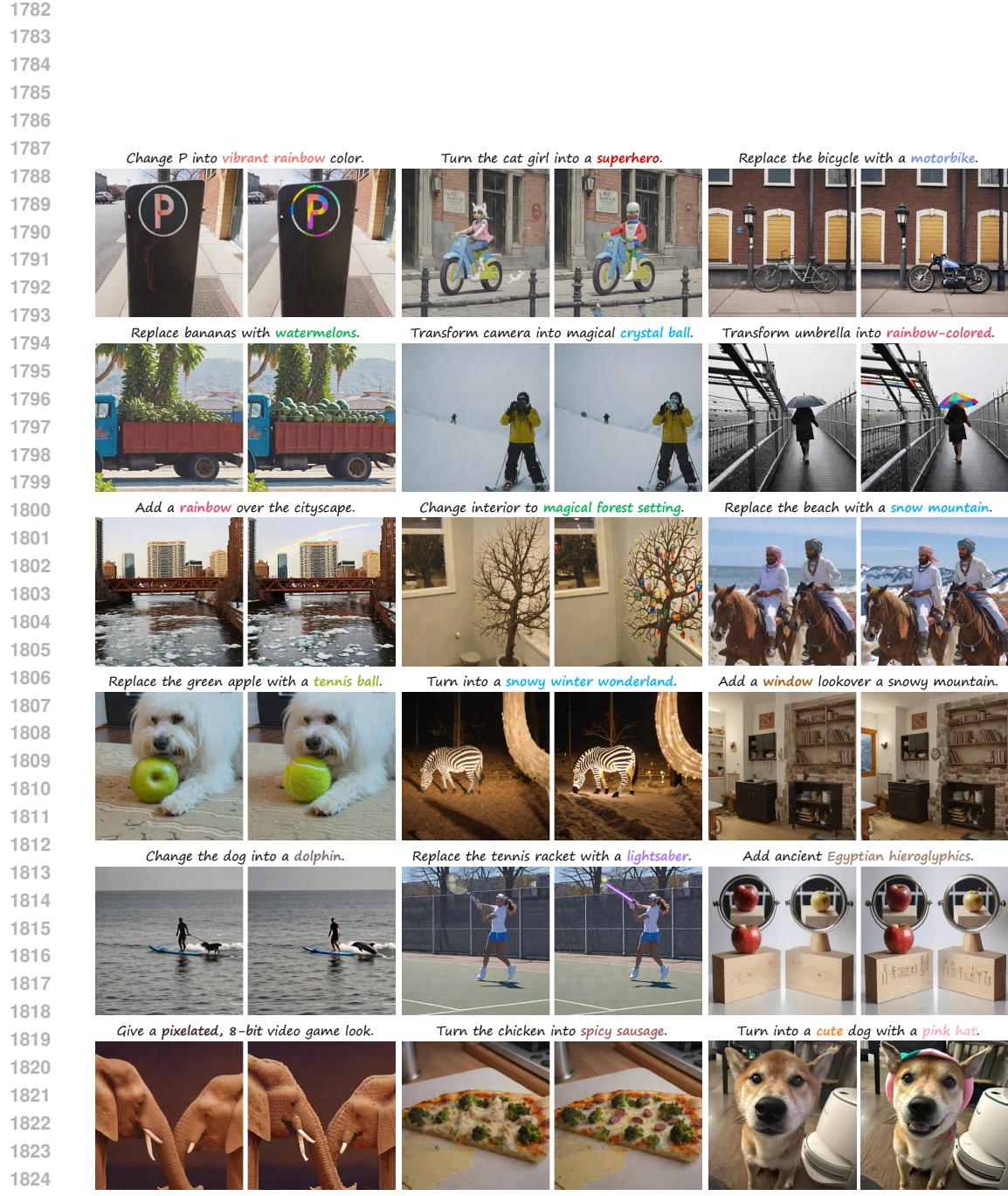


Figure I.13: **Additional qualitative results on image editing** on UltraEdit dataset (Zhao et al., 2024) and wild images. In each image pair, the left is the original image and the right is the result of our editing. The text captions at the top of images are descriptions of the editing objectives and are not the input to the model. We still maintain the paradigm of using the original prompt and the target prompt as conditions. These images are obtained by FLUX using Uni-Edit with $\alpha = 0.6$, $\omega = 5$ and step = 15 which is consistent with the main experiments.

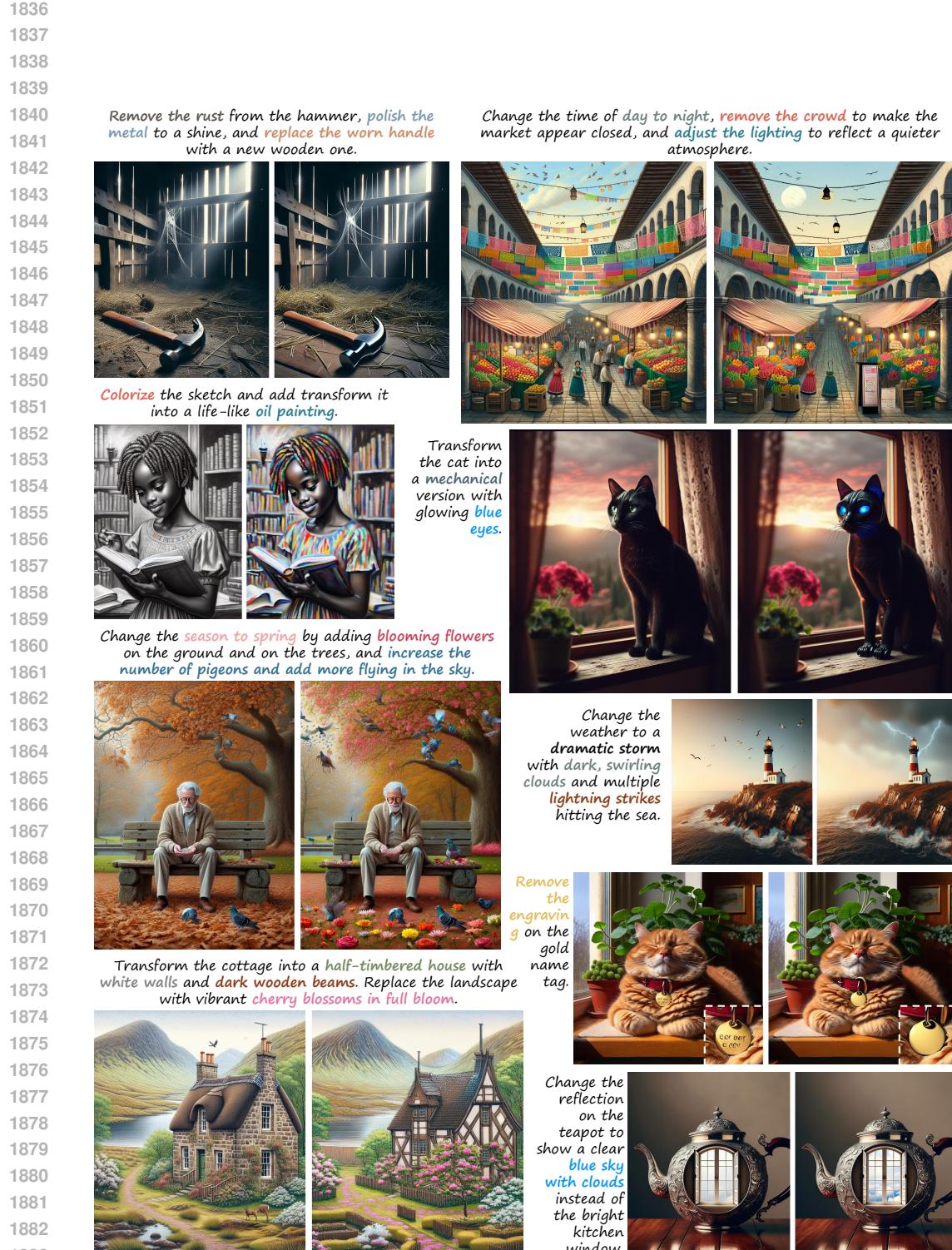


Figure I.14: Additional qualitative results on image editing on HQ-Edit dataset (Hui et al., 2024). The visualization setup is the same as Fig. I.13.

Figure I.15: **Additional qualitative results on video editing** on DAVIS dataset (Pont-Tuset et al., 2017). We set $\alpha = 0.8$, $\omega = 5$, $N = 25$ for the experiments.

1940
1941
1942
1943