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ABSTRACT

Recommender systems often manifest biases toward a small user group, result-
ing in pronounced disparities in recommendation performance, i.e., the User-
Oriented Fairness (UOF) issue. Existing research on UOF faces three major
limitations, and no single approach effectively addresses all of them. Limita-
tion 1: Post-processing methods fail to address the root cause of the UOF issue.
Limitation 2: Some in-processing methods rely heavily on unstable user sim-
ilarity calculations under severe data sparsity problems. Limitation 3: Other
in-processing methods overlook the disparate treatment of individual users within
user groups. In this paper, we propose a novel Individual Reweighting for User-
Oriented Fairness framework, namely IR-UOF, to address all the aforementioned
limitations. IR-UOF serves as a versatile solution applicable across various back-
bone recommendation models to achieve UOF. The motivation behind IR-UOF is
to introduce an in-processing strategy that addresses the UOF issue at the in-
dividual level without the need to explore user similarities. We conduct exten-
sive experiments on three real-world datasets using four backbone recommen-
dation models to demonstrate the effectiveness of IR-UOF in mitigating UOF
and improving recommendation fairness. The code of this paper is available at

https://anonymous.4open.science/r/IR-UOF-D53B/

1 INTRODUCTION

Fairness is currently a critical research field in Recommender Systems (RSs) Deldjoo et al.| (2022);
Chen et al.| (2023a). RS is a complex domain involving frequent interactions between users and
items |Zheng et al.| (2022); [Li et al.|(2022)), leading to fairness issues arising from both the user |Li
et al. (2021); Rahmani et al.| (2022)) and item side Dash et al.[(2021));|Deldjoo et al.|(2021b). In this
paper, we focus on the fairness issue related to performance disparities among different user groups.

RSs often exhibit bias toward a small group of users,
resulting in significant unfairness in the quality of rec-
ommendations|Li et al.|(2021)); Rahmani et al.|(2022);
‘Wen et al.| (2022b)), referred to as the User-Oriented
Fairness (UOF) issue. We define users who receive
more satisfying recommendation results as advan-
taged users and other users as disadvantaged users,
following |Li et al.| (2021)); Rahmani et al.| (2022).
Existing research has shown that advantaged users
constitute only a small proportion of the total user
base|Li et al.|(2021), as many users suffer from the
data sparsity problem Han et al.|(2023b) and fail to
receive satisfactory recommendations. Therefore, ad-
dressing the UOF issue is crucial in RSs to enhance
the overall quality of recommendation services.
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Figure 1: Gradients come from different users in a
training epoch of LightGCN in the Epinion dataset.

Existing research in addressing the UOF issue includes post-processing methods (directly adjusting the
recommendation lists) and in-processing methods (adjusting the training process of recommendations).
All these methods face three key limitations, and none of the existing research can address all of
them. Limitation 1: Post-processing methods fail to address the root cause of the UOF issue. Some
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existing research proposes post-processing methods [Li et al|(2021); [Rahmani et al.|(2022) to re-rank
the calculated recommendation lists after model training to balance advantaged and disadvantaged
user groups. However, the root cause of the UOF issue lies in the unfair training process, where
the recommendation models are dominated by advantaged users |Han et al| (2023a; |2024a). As
illustrated in Figure|[T] the advantaged users, who make up only 5% of the population, contribute
17.2% of the gradients in a single training epoch. Post-processing methods cannot mitigate the unfair
training process and are thus unable to address the root cause of the UOF issue, resulting in limited
performance.

Limitation 2: Some in-processing methods rely heavily on unstable user similarity calculations
under severe data sparsity problems. Some studies Han et al.|(2023a; 2024 azb)) adopt in-processing
methods to mitigate unfair training processes in recommendation models. These approaches calculate
user similarities based on user-item interactions. Then they aim to enhance the training process for
disadvantaged users by enabling them to learn from other similar users. However, disadvantaged
users often face severe data sparsity problems|Li et al.[(2021); Rahmani et al.| (2022}, and the sparse
interactions result in unstable similarity calculations based on user-item interactions. Consequently,
the performance of these methods is limited.
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In this paper, we propose a novel Individual Reweighting for User-Oriented Fairness framework,
named IR-UOF, to address all the aforementioned limitations. IR-UOF serves as a versatile solution
applicable across various backbone recommendation models to achieve UOF. The motivation behind
IR-UOF is to introduce an in-processing strategy that addresses UOF issues at the individual level
without the need to explore user similarities based on user-item interactions. In detail, to tackle
Limitation 1, IR-UOF addresses the root cause of the UOF issue by introducing an in-processing
strategy to focus on mitigating the unfair training processes of recommendation models. To tackle
Limitation 2, IR-UOF avoids relying on user similarity calculations based on limited user-item
interactions. Instead, IR-UOF focuses on the loss value of each user, as it directly reflects the quality
of the user’s training. By adjusting the weights of losses for different users, the model’s emphasis on
various users can be modulated. To address Limitation 3, IR-UOF introduces an individual-level
reweighting method, transcending the constraints of group-level optimization. As illustrated in
Figurel] it is not only disadvantaged users but also individual users among the advantaged group who
may be overlooked. IR-UOF adaptively adjusts the weight of the loss value for all users, providing
precise strategies tailored to each user’s training situation. This approach allows IR-UOF to enhance
the training quality of every individual user who is dominated by recommendation models, achieving
overall fairness through individual optimization, i.e., One to All.

We conduct extensive experiments on three publicly available real-world datasets using four backbone
recommendation models. The effectiveness of IR-UOF is comprehensively assessed using evaluation
metrics from various perspectives. Experimental results demonstrate that IR-UOF outperforms all
State-Of-The-Art (SOTA) methods across all datasets and backbone models.
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We summarize our main contributions as follows: (1) We introduce an in-processing method to
address the UOF issue. (2) We propose an individual reweighting strategy to achieve overall fairness
by balancing the training process for different users. (3) We conduct extensive experiments to
demonstrate the effectiveness of the proposed method.

2 RELATED WORK

2.1 FAIRNESS IN MACHINE LEARNING

As outlined in Mehrabi et al.| (2021), fairness in decision-making processes is broadly defined as
the absence of bias or favoritism toward an individual or group based on their inherent or acquired
characteristics. Research on machine learning fairness can be categorized from various perspectives
into distinct domains.

Groups Affected by Fairness Issues. Fairness research primarily addresses two aspects: group
fairness and individual fairness Mehrabi et al.|(2021)); |Dai et al.| (2022). Group fairness aims to ensure
equal treatment for users from different demographic groups. Key approaches in this domain include
Demographic Parity [Kusner et al.| (2017), Equalized OddsHardt et al.|(2016)), Equal Opportunity Hardt
et al.| (2016)), Conditional Statistical Parity |Corbett-Davies et al.|(2017)), and Treatment Equality [Berk
et al.[(2021). Individual fairness focuses on providing similar recommendations to similar individuals.
Research areas include Fairness Through Unawareness (Grgic-Hlaca et al.|(2016), Fairness Through
Awareness Dwork et al.| (2012)), and Counterfactual Fairness Kusner et al.| (2017).

Stages of the ML Process. Research on fairness can also be categorized according to different stages
of the machine learning process: pre-processing methods, in-processing methods, and post-processing
methods Mehrabi et al.|(2021)); Dai et al.[(2022)). Pre-processing methods aim to transform training
data to eliminate underlying biases before model training |d’ Alessandro et al.| (2017)); Kang et al.
(2020). In-processing methods incorporate fairness considerations into the training process to mitigate
bias during model development Dai & Wang| (2020); Bose & Hamilton| (2019). Post-processing
methods adjust the predictions of a trained model to ensure fairness|Li et al.| (2021)).

In this paper, we introduce an in-processing framework specifically designed to ensure user-oriented
fairness, a kind of group fairness in RSs.

2.2  FAIRNESS IN RECOMMENDER SYSTEMS

Fairness in RSs can be examined from three primary perspectives: user fairness, item fairness, and
provider fairness Deldjoo et al.|(2023).

User Fairness: Studies in this area aim to ensure that similar users receive comparable recommen-
dation outcomes. Key considerations include ranking accuracy |Deldjoo et al.| (2021c), diversity
coverage |Melchiorre et al.[ (2021}, under-ranking |Gorantla et al.| (2021)), and selection rate [Siihr et al.
(2021). Item Fairness: The goal is to ensure that similar items receive equal exposure, regardless of
sensitive attributes |[Rastegarpanah et al.|(2019); |Deldjoo et al.| (2021a)); Dash et al.| (2021)) or previous
exposure history |Biega et al.[|(2018)), such as in cold-start scenarios. Provider Fairness: There is a
tendency for providers with a more extensive interaction history to be recommended more frequently,
creating a "superstar effect” [Ferraro| (2019); |Gharahighehi et al.[(2021). Efforts to mitigate exposure
disparities arising from the relationship between providers and items |Stihr et al.|(2021) and private
characteristics |Shakespeare et al.|(2020) are crucial for fostering an equitable market.

In this paper, we focus on the underexplored issue of user-oriented fairness (UOF), specifically
addressing fairness among users with varying levels of activity.

3 PROBLEM FORMULATION

This paper focuses on achieving fairness in RSs through individual reweighting. We categorize the
problem into two main components: user-oriented fairness and individual reweighting.
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3.1 USER-ORIENTED FAIRNESS

In RSs, let U/ and Z represent the user set and the item set, respectively. [V;; and N7 represent the
number of users and items. Following prior research Li et al.|(2021)); Rahmani et al.[(2022); Han et al.
(20234)), users are divided into two groups: disadvantaged users (D) and advantaged users (A). The
disadvantaged group D = {D;, Ds, ..., Dx, } consists of users with fewer interactions, while the
advantaged group A = {4, Aa, ..., Ay, } includes users with more frequent interactions. Here,
Np and N 4 represent the number of users in each group. Users with more interactions are more
likely to be advantaged. The goal is to minimize the performance disparity between D and A, thereby
achieving UOF while maintaining overall recommendation quality.

UOF is a type of group fairness |Hardt et al.| (2016); Dwork et al.| (2012}, which ensures that groups of
users with different protected attributes are treated comparably. Specifically, UOF aims to provide
users with different activity levels with the same recommendation performance. The definition of
UOF is as follows [L1 et al.| (2021)); Rahmani et al.|(2022); Han et al.| (2023a):

Definition 1 (User-Oriented Fairness (UOF)).
E[M(A)] = E[M(D)]. (1

Here, M is a metric (e.g., NDCG and Hit Ratio) evaluating recommendation performance. M (u)
represents the recommendation performance for user w.

UOF aims to offer users with different activity levels the same recommendation performance, which
is always impossible in real-world RSs. Therefore, researchers Li et al.[(2021));|Rahmani et al.| (2022);
Han et al.|(2023a)) calculate the difference in average recommendation performance for different user
groups to evaluate the fairness of a model:

Definition 2 (The UOF metric (Myor)).

: > M(A) - % > M(Dy)|. ©

Muyor(D,A) = |+
‘A| A,EA ‘ | D;eD

The Myor value is used to evaluate the fairness of a recommendation model. A lower My o indi-
cates a fairer algorithm, aiming for equal treatment across different user activity groups. Note that
some researchers Han et al.| (2024a)) have proposed alternative metrics for assessing UOF. However,
these metrics often replicate the characteristics of standard metrics like NDCG or Hit Ratio, and thus,
they fail to specifically address the fairness aspect. Therefore, we utilize the more widely accepted
Muyor metric, as adopted by [Li et al.| (2021)); Rahmani et al.| (2022)); Han et al.| (2023a)), which is
better suited to evaluate fairness within RSs.

3.2 INDIVIDUAL REWEIGHTING

Individual reweighting aims to allocate different weights to each user’s loss values, thereby giving
more weight to users who are likely to be disadvantaged by the recommendation models. Consider the
utility loss £ =3, L(U;) of a recommendation model, where L(U;) represents the loss value
for user U;. For instance, this could be the cross-entropy loss. The individual reweighting strategy
involves calculating a set of weights 3 = {1, 52, . - ., Bn,, } that maximize the total weighted loss:
maxg L = ZUieu B:L(U;). By amplifying the loss values of poorly trained users, this approach
ensures that the model pays more attention to these users, thereby enhancing their training process
and improving overall fairness.

4 METHODOLOGY

In this paper, we propose a novel Individual Reweighting for User-Oriented Fairness framework,
named IR-UQF, to address the UOF issue in RSs. Designed as a versatile framework, IR-UOF can
be integrated with any existing backbone recommendation model to enhance fairness. The key
motivation behind IR-UOF is to introduce an in-processing framework that employs an individual-
level optimization strategy, thereby avoiding the need to calculate user similarities in sparse datasets
and overcoming the three key limitations. Firstly, IR-UOF assigns reweighting ratios to advantaged



Under review as a conference paper at ICLR 2025

and disadvantaged user groups, thereby tailoring reweighting strengths based on the training qualities
of these groups. Secondly, IR-UOF provides a detailed calculation strategy for the individual
reweighting process within each user group. Thirdly, IR-UOF introduces a delayed updating strategy
to ensure the smooth optimization of the algorithm.

4.1 REWEIGHTING RATIOS FOR DIFFERENT USER GROUPS

As discussed in Section 1, users in both advantaged and disadvantaged groups can be adversely
affected by recommendation models. Therefore, reweighting both user groups is essential to enhance
overall fairness and improve recommendation performance. For the advantaged user group A and
the disadvantaged user group D, IR-UOF computes two weighting sets: 34 = {8{%, 85}, ..., Bt -
and 8P = {7, B7,..., 8% _}. To ensure fairness and control the range of the loss function, these
weights must be non-negative and capped. Hence, the weighting sets for these two groups must
satisfy the following conditions:

> Br=Kaptz0, > pP=Kp,pP>0. 3
BiepA BPep?
Here, K 4 and Kp control the reweighting strengths for each user group. To prioritize reweighting

in user groups that are more likely to be dominated by recommendation models, we calculate these
values as follows:

_ >oa,ea L(A) >-p,ep L(Di)
YoaeaL(Ai) + b ep L(D:) Yoaea L(A) + >0 p, ep L(Di)
where K is a hyperparameter that controls the overall reweighting scale. By calculating the reweight-

ing ratios for different user groups, IR-UOF assigns greater weights to the user group which is more
likely to be overlooked, ensuring balanced attention and enhanced fairness.

K4

K; Kp= K, 4

4.2 CALCULATION OF INDIVIDUAL RWEIGHTING STRATEGY

Since the calculation of individual reweighting strategy is the same for advantaged and disadvantaged
user groups, we take the disadvantaged user group as an example in this section. The individual
reweighting problem for disadvantaged users can be formulated as follows:

D;eD BPepP

Naturally, the optimal solution of 37* in Problem equationis assigning 1 to the largest loss and
assigning 0 to all others. However, in order to tackle the UOF issue, consideration should be given to
individual users more likely to be neglected, not just the single most likely. Hence, we introduce a
regularization term and receive the following individual reweighting problem:

Hé%X»C'D = Z B;DL(DZ)_Q|‘IBD‘|27St Z ﬂzD :K'D7 BzD > 0. (6)

D;eD BPepP

A higher value of the hyperparameter « results in more positive weights. When « reaches a sufficiently
large value, all samples will be assigned equal weights, and equation 6] will degenerate into the original
recommendation model training process.

Directly calculating the optimal value of 3P through the optimization process is time consuming and
is not suitable for real practice. Therefore, we introduce the closed-form solution of adaptive weights
BP. Due to space limitations, the detailed proof and calculation process are provided in Appendix

Assume the loss of each disadvantaged user is represented as I; = L(D;), D; € D. Firstly, sort the
losses of all disadvantaged users in descending order, i.e., [; > [;,Vi > j. Secondly, for i, calculate
the value ~y following >-7_, I — yly 11 > 2aKp > 371_, I; — ~l,. Then, the optimal solution 37*
of Problem equation [6]is as follows:

(’yli — Z;‘Yzl I+ QQKD)

B;P* = ReLU
2ay

(N

We can follow a similar calculation process to get 3-4*.
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Algorithm 1: IR-UOF

Input :User set I/ and item set Z; Advantaged user set .4 and Disadvantaged user set D;
Hyperparameters K and «; Training round limit 7'; ¢ = 0.
Output : Final Recommention model;
while t < T do
Extract loss values { L(A1), L(A2), ..., L(An )} and {L(D1), L(D3), ..., L(Dny)};
Calculate 34®)* and FP()* according to problem equation

Get the value of 84(®) and 5P according to Equation equation
Calculate the final 10ss L f4irness and do a gradient updation.

end

Return trained recommendation model;

4.3 DELAYED UPDATING STRATEGY FOR INDIVIDUAL REWEIGHTING

For such an individual reweighting method, directly replacing the value of 34 and 3? in each
training round with the optimal one may result in unsteadiness. Therefore, we introduce a learning
rate schedule to update 3 and 3P smoothly in the training round ¢:

/@A(t) — (1 _ nt)ﬁA(t—l) + nt/@A(t)*aIBD(t) _ (1 _ 7]t)BD(t_1) + nt/BD(t)*7 ®)

where nf = 1 — %, with T" denoting the total training round. By doing so, IR-UOF avoids drastic
changes to the individual weights and brings a more stable training process.

From the above discussion, we can find that both o and K (K 4 and Kp are calculated from K) have
an impact on the values of 34 and 3P. We decide the values of these two hyperparameters according
to the experimental results in Section 5.6}

4.4 IN-PROCESSING TRAINING STRATEGY

As an in-processing framework, IR-UOF can be integrated with any existing backbone recom-
mendation model to enhance fairness. In the training round ¢ of a given recommendation model,
IR-UOF firstly extracts original training losses of advantaged users {L(A1), L(As2),..., L(An )}
and disadvantaged users { L(D;), L(D2), ..., L(Dn,)}. Secondly, IR-UOF calculates the optimal
individual reweighting sets 34(®)* and 3P(®)* based on these loss values according to problem equa-
tion@ Thirdly, IR-UOF utilizes the delayed updating strategy to get the value of 34(*) and 3P in
t-th training round. Finally, IR-UOF aggregates the final loss function with the fairness concern as
follows:

Lfairness = Z ﬂ;A(t)L(A'L) + Z BiD(t)L(DZ) (9)

A;eA D;eD

This loss function is used for the gradient update of the recommendation model. To avoid overfitting
to noisy user-item training pairs, the reweighting strategy is applied at the user level rather than at
the individual training sample level. We outlined the overall algorithm of IR-UOF in algorithm [I]

5 EXPERIMENTS AND ANALYSIS

To comprehensively evaluate the effectiveness of the proposed IR-UOF framework, we conduct
extensive experiments on three real-world datasets to address the following Research Questions
(RQs): RQ1: How does IR-UOF compare with existing SOTA methods in tackling the UOF issue
and improving overall recommendation performance? RQ2: What is the impact of reweighting
different user groups on the performance of IR-UOF? RQ3: As an in-processing method, is IR-
UOF time-efficient? RQ4: Can IR-UOF maintain satisfactory performance in extremely sparse
datasets? RQS5: How do important hyperparameters affect the performance of IR-UOF? RQ6: How
robust is the generalizability of the IR-UOF framework when faced with variations in the classification
of advantaged and disadvantaged users?
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5.1 DATASETS AND EXPERIMENTAL SETTINGS

Due to space limitations, the details of this section are provided in Appendix B}

Dataset Description. We utilize three real-world datasets: Epinion Massa & Avesani| (2007)),
MovieLens Harper & Konstan|(2015), and Gowalla Liu et al.|(2017), which are commonly used to
validate the UOF issueRahmani et al. (2022)); [Han et al.| (2023al).

Baselines and Backbone Models. We compare IR-UOF with the SOTA UOF methods UFR (failing
to tackle Limitation 1) |Li et al.|(2021), In-UCDS Han et al.| (2023a)), HyperUOF |[Han et al.| (2024b),
and I[I-GOOT [Han et al.|(2024a)) (failing to tackle Limitation 2), S-DRO Wen et al.[(2022a)) (failing to
tackle Limitation 3). Besides, we choose four different backbone recommendation models, including
a traditional matrix factorization method (MF [Koren et al.|(2009))), two deep-learning-based methods
(NeuMF He et al.| (2017)), VAECF [Liang et al.|(2018)), and a graph neural network-based method
(LightGCN [He et al.| (2020)).

Evaluation Protocols. (/) User Grouping: Users are ranked by interaction counts, with the top 5%
as advantaged and the rest as disadvantaged |Li et al.| (2021)); Dai et al.| (2022)); Han et al.| (2023a)).
(2) Performance Metrics: We adopt the widely-used Normalized Discounted Cumulative Gain
(NDCG)|Wang et al.|(2013) and Hit Ratio (HR) |Waters|(1976) to evaluate the recommendation per-
formance of each model. Besides, we utilize Mo to evaluate the UOF level of a recommendation
model, with a lower value means a fairer performance. (3) Statistical Robustness: Each evaluation is
repeated 10 times, reporting average performance with significance testing (p-value < 0.05).

Parameter Settings. The details of this part are provided in Appendix

5.2 OVERALL COMPARISON (RQ1)

To comprehensively evaluate the effectiveness of the proposed IR-UOF framework, we conduct
extensive experiments on three publicly available real-world datasets using four backbone models.
The results are detailed in Table[I] Across all datasets, IR-UOF consistently outperforms all SOTA
methods, highlighting the importance of addressing all three critical limitations (introduced in Section
1) in solving UOF.

(1) Tackling Limitation 1 (Compared with UFR). IR-UOF outperforms UFR across all datasets.
Unlike the post-processing method UFR, IR-UOF effectively mitigates the training gap between
advantaged and disadvantaged users, thereby addressing Limitation 1. UFR’s failure to tackle the
root cause of the UOF issue results in its generally poor performance compared with all baselines.

(2) Tackling Limitation 2 (Compared with In-UCDS, HyperUOF, and II-GOOT). IR-UOF consis-
tently outperforms In-UCDS, HyperUOF, and II-GOOT across all datasets, especially on the sparser
Gowalla dataset. These methods rely heavily on identifying essential similarities among users based
on user-item interactions, a process that is unstable under severe data sparsity. As a result, their
performance is limited, particularly in sparser datasets. IR-UOF focuses on reweighting loss values
for each user, directly reflecting their training quality, making it a more stable and direct solution to
the UOF issue.

(3) Tackling Limitation 3 (Compared with S-DRO). Compared to S-DRO, IR-UOF achieves
fairer models with better recommendation performance. S-DRO sorely assign more weight to the
entire disadvantaged user group, overlooking the different treatments individual users within this
group receive. This inability to target users individually limits its performance. IR-UOF adaptively
reweights each user’s loss value, providing unique treatment to each user and accurately improving
the training of users dominated by recommendation models. Thus, IR-UOF can narrow the training
gap across the entire user group, naturally improving both fairness and recommendation performance.

5.3 ABLATION STUDY (RQ2)

We conduct an ablation study to analyze the impact of reweighting different user groups on the
performance of IR-UOF, using LightGCN as the backbone model. As illustrated in Table[2] "Re-Adv"
indicates reweighting only in the advantaged user group (setting K 4 = K), while "Re-Dis" indicates
reweighting only in the disadvantaged user group (setting Kp = K).
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Table 1: Overall experimental result.

Epinion MovieLens Gowalla
Over. Adv. Dis. Muor Over. Adv. Dis. Muor Over. Adv. Dis. Muor
Original 0.361 0.387* 0.359 0.028 0.394  0.453*  0.391 0.062 0356  0.458* 0.350 0.108
S-DRO 0364 0376  0.364 0.012 0396  0.431 0.394 0.037 0357 0433 0.352 0.080
© UFR 0362 0382  0.361 0.021 0399 0429  0.397 0.032 0.361 0440 0.357 0.083
8 In-UCDS 0.368  0.381 0.367 0.014 0410 0439 0408 0.030 0357 0433 0.353 0.080
z HyperUOF  0.366 0.380 0.365 0.015 0.403 0.440 0.401 0.038 0.360 0.434 0.356 0.078
1I-GOOT 0.370  0.380  0.370 0.010 0.404 0443 0402 0.040 0.361 0437  0.357 0.080
= IR-UOF 0.377*  0.382  0.377*  0.005*  0.412* 0.433 0.411* 0.022*  0.373* 0440 0.369*  0.071*
= Original 0.460 0.513* 0457 0.057 0.474  0.548*  0.470 0.077 0.432  0.593* 0.424 0.169
S-DRO 0.462 0511 0.460 0.051 0.475 0.531 0.472 0.059 0.437 0.572 0.430 0.142
UFR 0.460  0.513* 0457 0.056 0472 0.521 0.470 0.052 0447  0.581 0.440 0.142
% In-UCDS 0.462 0507  0.460 0.047 0.485  0.530  0.483 0.047 0447 0571 0.440 0.131
HyperUOF 0462  0.510  0.460 0.050 0.484  0.530  0.482 0.048 0.443  0.570  0.436 0.134
1I-GOOT 0.465 0.509 0.463 0.046 0.487 0.532 0.485 0.047 0.442 0.573 0.435 0.138
IR-UOF 0.478*  0.509  0.477*  0.033* 0.489*  0.531 0.486* 0.044* 0.464* 0.584 0.458* 0.126*
Original 0369  0.393*  0.368 0.025 0.404  0.484*  0.400 0.084 0376 0467+ 0.371 0.096
S-DRO 0.373 0.386 0.372 0.014 0.398 0.465 0.394 0.071 0.376 0.459 0.372 0.086
© UFR 0.371 0390 0370 0.020 0.403 0480  0.399 0.081 0.380 0461  0.376 0.085
B In-UCDS 0374 0389 0374 0.015 0.408 0476  0.405 0.072 0.384 0460  0.381 0.080
Z. HyperUOF  0.371 0390 0370 0.020 0407 0479  0.403 0.076 0384 0459  0.380 0.079
- 1I-GOOT 0.376  0.390  0.376 0.014 0414 0480 0410 0.070 0383 0459 0379 0.081
% IR-UOF 0.381*  0.392  0.380*  0.012*  0.423*  0.480 0.420* 0.060* 0.401* 0.460 0.398*  0.062*
2 Original 0472  0.522*  0.469 0.053 0481  0.576*  0.476 0.101 0.441  0.601*  0.433 0.168
S-DRO 0.470 0515  0.468 0.046 0484  0.569 0479 0.090 0442  0.586 0434 0.151
UFR 0.471 0.510 0.469 0.041 0.476 0.569 0.471 0.098 0.441 0.583 0.434 0.150
% In-UCDS 0482  0.515  0.480 0.036 0.505  0.571 0.502 0.069 0446  0.587  0.438 0.149
HyperUOF 0476  0.514 0474 0.040 0.504  0.571 0.500 0.071 0.445  0.589 0437 0.152
II-GOOT 0475 0513 0473 0041 0507 0573 0504 0069 0443 0591 0435  0.156
IR-UOF 0.490*  0.518  0.489*  0.029* 0.514* 0.572 0.511* 0.061* 0.470* 0.594 0.463* 0.131*
Original 0.374  0.405* 0372 0.033 0416 0492 0412 0.080 0399  0.463*  0.396 0.067
S-DRO 0.374 0.397 0.373 0.024 0.421 0.496*  0.417 0.079 0413 0.455 0410 0.045
© UFR 0372 0400 0.370 0.030 0416 0485 0412 0.073 0399 0454  0.396 0.058
B In-UCDS 0382 0398  0.381 0.016 0433 0490 0429 0.060 0.406 0454 0404 0.051
Z. HyperUOF  0.381 0398 0380 0.018 0432 0489 0429 0.060 0.403 0455 0.400 0.054
. I-GOOT 0385 0400 0384 0015 0434 0491 0430 0060 0402 0456 0399  0.057
B IR-UOF 0.391*%  0.400 0.391*  0.010* 0.435* 0489 0.432* 0.057* 0.423* 0458 0.421* 0.037*
<>< Original 0475 0527 0472 0.055 0.460  0.569*  0.454 0.114 0.427  0.594* 0419 0.175
S-DRO 0.475 0.519 0473 0.046 0.469  0.555  0.465 0.090 0444  0.583 0437 0.146
UFR 0.476 0.524 0.473 0.051 0.463 0.560 0.458 0.101 0.431 0.584 0.423 0.161
% In-UCDS 0.487  0.521 0.485 0.036 0478  0.559 0473 0.086 0.433  0.581 0.425 0.156
HyperUOF 0489  0.520  0.487 0.033 0479  0.558 0475 0.083 0432  0.580 0424 0.156
1I-GOOT 0.491 0.520  0.489 0.031 0.481 0.561 0.476 0.085 0428  0.584  0.420 0.164
IR-UOF 0.498*  0.524  0.496*  0.028*  0.486* 0.564  0.482*  0.082*  0.453* 0.590 0.446*  0.144*
Original 0399 0440 0397 0.043 0483  0.529  0.480 0.049 0.403  0.486*  0.399 0.087
S-DRO 0.401 0.438  0.399 0.039 0.496  0.532%  0.494 0.038 0417 0483 0414 0.069
o UFR 0.400 0.440 0.398 0.042 0.488 0.523 0.486 0.037 0.407 0.480 0.403 0.077
B In-UCDS 0.406  0.436  0.405 0.031 0.501 0.528  0.499 0.028 0418 0484 0414 0.070
Z  HyperUOF 0406 0.438 0404 0.034 0.501 0.527  0.500 0.027 0.406  0.480  0.402 0.078
% 1I-GOOT 0.408 0437 0407 0.030 0.504  0.529  0.502 0.026 0.409 0482  0.406 0.077
Q IR-UOF 0.416*  0.441* 0.414*  0.027* 0.515% 0.529  0.515%  0.014*  0.423* 0484  0.420*  0.064*
= Original 0479 0559 0475 0.084 0.549  0.619  0.545 0.074 0.480  0.604*  0.473 0.131
3 S-DRO 0.483  0.553 0479 0.074 0.558  0.617  0.554 0.062 0486  0.596  0.480 0.116
UFR 0.480 0553 0476 0.077 0.550  0.615  0.546 0.069 0486  0.598  0.480 0.118
% In-UCDS 0484 0554  0.480 0.074 0.566  0.620  0.563 0.057 0.482  0.593 0.476 0.116
HyperUOF  0.485 0.555 0481 0.074 0.555  0.614  0.552 0.062 0.484  0.597 0478 0.119
1I-GOOT 0488  0.557  0.484 0.073 0.569  0.619  0.566 0.053 0.481 0.595 0.475 0.119
IR-UOF 0.502*  0.560*  0.499*  0.061*  0.582* 0.621* 0.580*  0.040*  0.503*  0.602  0.498*  0.104*

% Over. indicates overall performance. Adv. and Dis. indicate the performance of advantaged and disadvantaged users, respectively.
: The results of IR-UOF are highlighted in bold. The best results are marked with *. The second-best results are underlined.
All outcomes pass the significance test, with a p-value below the significance threshold of 0.05.

Overall, IR-UOF achieves the best performance
compared to the ablation methods, demonstrat-
ing that reweighting both advantaged and dis-
advantaged user groups is necessary to improve
fairness and recommendation performance. This
is because some users in both groups may re-
ceive poor training results. Reweighting only ad-
vantaged or disadvantaged users neglects some
poorly trained users. Since disadvantaged users
are more likely to be dominated by recommen-
dation models, Re-Dis achieves significantly better performance than Re-Adv.

Table 2: Ablation study.

Epinion MovieLens Gowalla
Overall Myor Overall Myor Overall Myor

Original ~ 0.399 0.043 0.483 0.049 0.403 0.087

NDCG Re-Adv 0.402 0.046 0.492 0.058 0.413 0.095
Re-Dis 0411 0.032 0.510 0.021 0.419 0.069

IR-UOF  0.416 0.027 0.515 0.014 0.423 0.064

Original ~ 0.479 0.084 0.549 0.074 0.480 0.131

HR Re-adv 0.483 0.099 0.552 0.082 0.486 0.152
Re-dis 0.500 0.069 0.571 0.054 0.491 0.114

IR-UOF  0.502 0.061 0.582 0.040 0.503 0.104
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Figure 3: Training time of the original backbone model, S-DRO, In-UCDS, II-GOOT, and IR-UOF in datasets
Epinion, MovieLens, and Gowalla.

5.4 MODEL EFFICIENCY (RQ3)

This section aims to analyze the efficiency of IR-UOF. As an in-processing framework, it is crucial to
demonstrate that it does not impose excessive additional time costs on the original models’ training
process. We compare the training time of IR-UOF with all in-processing methods. The experimental
results are presented in Figure[3} Our analysis reveals that IR-UOF maintains a time cost comparable
to the original backbone model, incurring only a slight additional time cost. The additional time
expenditure associated with IR-UOF is primarily due to sorting the loss values of users, which has
a time complexity of O(Ny, log Ny/). This sorting process is time-efficient and depends solely on
the size of the datasets. Consequently, when applied to more complex and time-intensive backbone
models (e.g., LightGCN)), the relative increase in training time due to IR-UOF becomes less significant.
This observation underscores IR-UOF’s applicability and practicality, especially in scenarios where
backbone models are inherently resource-intensive.

5.5 SPARSE TEST (RQ4)

IRUOF s HyperUOF In-UcDs 1-GooT

This section aims to demonstrate the supe- Epinion Epinion

rior performance of IR-UOF on extremely .., w3
sparse datasets, thus highlighting the ne- o= o
cessity of addressing Limitation 2. Disad- .., 0n s
vantaged users frequently encounter severe 0% 20% 0% 40% S0%  10% 20% 30% 40% 50%

data sparsity issues. The capability of a 0 o
model to handle sparse datasets is crucial ges §
for effectively tackling the UOF challenge. =-: §
To validate this, we simulate sparser en- S Een Bod Bon B | L L Lo o
vironments by randomly omitting various Gowalla Gowalla

ratios of interactions within each dataset '~ §
and subsequently conducting experiments.  go» "3
As outlined in Section[I] the user similar- ¥ g

ity calculation processes in In-UCDS, Hy- L 20% 0% ATE SO% - 10% 20% 0% 0% 50%
perUOF, and II-GOOT become unstable

in sparse datasets, limiting these methods’ Figure 4: Sparse test with LightGCN as the backbone model.
performance. Therefore, we compare the

performance of IR-UOF with these meth-

ods. The experimental results are provided in Figure @] with the "Sparse ratio" representing the
percentage of interactions omitted.

The experimental findings unequivocally indicate that IR-UOF consistently surpasses In-UCDS,
HyperUOF, and II-GOOT across all levels of dataset sparsity, achieving superior recommendation
performance and fairness. Notably, the advantage of IR-UOF becomes more pronounced as the
sparsity of the datasets increases. This is because, as datasets become sparser, the unstable user
similarity calculation process for In-UCDS, HyperUOF, and II-GOOT significantly hampers their
performance, leading to a faster rate of performance decline. In contrast, IR-UOF focuses on users’
loss values, which can consistently and accurately reflect the user’s training level, thereby making its
performance more robust.
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5.6 EFFECT OF HYPERPARAMETERS (RQ5)

Epinion MovieLens Gowalla

In this section, we conduct experiments to

analyze the effects of hyperparameters o " 00758
and K within the proposed IR-UOF frame-  gos 0007
work. Due to space constraints, we present 0053
the experimental results using LightGCN "5 @G g@ @ w 1§ wad & W
as the backbone model in Figure 5] 05 005
Q a
Effect of . As depicted in Figure [5] the é:: ZZ:OZ@
IR-UOF framework achieves peak perfor- " 0'0022
mance in terms Of recommendation quahty oS 10 50 g 100 1000 10000 5 10 50 g 100 1000 10000
and UOF optimization when « is set to 10.
The parameter o controls the importance Figure 5: Effect of hyperparameters.

of the regularization term. A value of « that is too small will result in IR-UOF assigning positive
weights to only a few users, thereby neglecting too many individuals. Conversely, a value of « that is
too large will cause IR-UOF to degenerate into average weighting.

Effect of K. Figure[5|shows that IR-UOF attains optimal recommendation performance and UOF
optimization when K is set to 1000. This parameter controls the scale of weights assigned to each
individual user in IR-UOF. A larger value of K can better represent the differences in loss values
among users, making recommendation models focus more on users who are often neglected. However,
an excessively large value of K causes the recommendation models to focus too much on specific
users, thereby reducing the model’s generalization ability.

6 GENERALIZABILITY OF IR-UOF (RQ6)

0.55 Overall performance Fairness metric(Myor)

The level of data sparsity varies across dif-
ferent datasets, leading to a dynamic nature
in how advantaged and disadvantaged users
are categorized. To prove the generalizabil-
ity of IR-UOF, we adopt LightGCN as the
backbone model and modify the percent- ol 0l
age of advantaged users from 5% to 50% Percentage of advantaged users Percentage of advantaged users
within the Gowalla Dataset. The outcomes HR@!10 NDCG@I0  —4— IR-UOF  -- Origiml

are presented in Figure[6] The experimen-

tal results indicate that the ratio of advan- Figure 6: The above results illustrate how the overall perfor-
mance and My or of IR-UOF and the original model change
in response to variations in the categorization of advantaged
and disadvantaged users. Due to space limitations, we take
LightGCN as the backbone model and Gowalla as the experi-
mental dataset.

0.5

performance
=
5

o
=

taged to disadvantaged users does not sig-
nificantly affect the overall model perfor-
mance. This is because IR-UOF reweights
samples within both user groups, rather
than a specific group. As the threshold in-
creases, the overall activity level difference
between the two user groups decreases, resulting in a reduced disparity in UOF gap. The results
prove that IR-UOF has strong generalizability in narrowing the recommendation gap across various
user distributions.

7 CONCLUSION

This paper addresses the User-Oriented Fairness (UOF) issue in Recommender Systems (RSs),
specifically focusing on narrowing the recommendation gap between advantaged and disadvantaged
user groups. We introduce a novel framework, Individual Reweighting for User-Oriented Fairness,
referred to as IR-UOF, designed to overcome three significant limitations that existing research
has not adequately addressed. IR-UOF adaptively reweights the loss values of each user, ensuring
that no users are dominated by the recommendation models. As a result, IR-UOF enhances the
training quality for each individual user, achieving overall fairness and improving recommendation
performance through individualized optimization, i.e., One to All. We conduct extensive experiments
on three real-world datasets to demonstrate the efficacy of IR-UOF.

10
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A  DETAILED PROOF AND CALCULATION OF INDIVIDUAL REWEIGHING
STRATEGY

The optimization of 37 in problem equation E] can be formulated as

maxLp = Y L(D;) —of|BP|*;st. Y B8P = Kp, 87 >0.
p D;eD BPepP
Denote the loss of each sample as [; = L(D;), D; € D, the optimization problem can be written as
. D D2 D _ D
i BPepP

Consider the Lagrangian dual of problem equation [I0] we employ the KKT conditions Boyd &
Vandenberghe| (2004) to optimize equation [I0] via its Lagrangian:

2
L(ﬂD,)\,y):—ZlZﬂZD—&—aZB? —Z)\iﬂip+V(Zﬁi—KD)- (11)
From the KKT conditions, we have
Vp L(BP, A\ v) = —l; + 2087 — X\j + v =0, (15a)
\iBP =0,87 >0,\ >0,i=[1,Np], (15b)
> B8P =Kp. (15¢)

Combining equation and equation since o > 0, we can derive that

li—v>0=2a8" =1; —v,\; =0, a3
li—v<0=2a8P =0\ =v—1,.
Hence, we get 3P = (13;” )4+ = max{ llé;” ,0}. Then equationcan be written as
Z(li — V)4 = 2aKp. (14)

i
Here, v can be calculated through solving equation Firstly, we consider that ) ", l; < 2aKp, the
unique solution is

v=(2aKp — Y _1;)/Np. (15)

When 0 < 2aKp < ), 1;, there exist o > v > 0 such that ). (l; — v)4 = 2aKp holds
true. Without loss of generality, suppose that the loss vector [ is sorted in descending order, i.e.,
lmax =11 > lo > -+ > Iny = Liin, there exists a y € [1, Np] that satisfies I, > v > I,11. The
problem equation [I4]can be expressed as

Z(li —V)y = ili — v =2aKp,

i i=1 (16)
Z;y:l l,’ - 20(KD

v
Moreover, with the expression of v, it can be derived that the index - satisfies

=v=

Y Y
D b=l > 2aKp > Y 1 — Al (17)
=1

i=1
Combining equation|15]and equation [16] the optimal solution of weight 3 is
6’D* _ (ll B ( 2:1 ll - 2OZI('D)/’}/ (712 - Z";/:l lj + 20&K’D)
T 2a 2ay
where y satisfies equation When ) . I; < 2aKp,lety = Np.

(18)

)+ = ReLU

)
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B DATASETS AND EXPERIMENTAL SETTINGS

Dataset Description. We utilize three publicly available real-world datasets: Epinion Massa &
/Avesani (2007)), MovieLens Harper & Konstan|(2015), and Gowalla Liu et al.|(2017), representing
different domains (opinions, movies, and points of interest). These datasets are commonly used
to validate the performance of models addressing the UOF issuegRahmani et al.|(2022); Han et al.
(2023a). TableE]provides the statistics of these datasets.

Overall, we select these datasets for
three specific reasons in order to
demonstrate the scalability, efficiency,

Table 3: The statistics of datasets.

. Dataset Users  Items Interactions  Sparsity Domain
and. efg}.cuvel.]es_s ,(I),[;IIRd[{OF' (]) DO- Epinion 2,677 2,060 103,567 98.12%  Opinion
main Diversily: The datasets origl-  —y cor =538 367 760,814 9634%  Movie
nate from different domains, provid- G 33600 123587 1,011,604  9998%  POI

ing a comprehensive evaluation of IR-
UOF’s performance. (2) Sparsity Variation: The datasets vary in sparsity levels, which directly
impacts the UOF issue due to differences in user activity. (3) Scalability Testing: The datasets differ
in size, allowing us to demonstrate IR-UOF’s scalability.

Baselines and Backbone Models. We compare IR-UOF with the SOTA UOF methods UFR (failing
to tackle Limitation 1)|L1 et al.| (2021)), In-UCDS Han et al.| (2023a)), HyperUOF Han et al.| (2024b),
and II-GOOT |Han et al.| (2024a) (failing to tackle Limitation 2 and Limitation 3), S-DRO [Wen
et al.| (2022a) (failing to tackle Limitation 3). (1) UFR: A post-processing re-ranking method that
modifies recommendation results of a given backbone model. (2) In-UCDS: An in-processing
method that allows disadvantaged users to learn from advantaged users based on dominant sets. (3)
HyperUOF: An in-processing strategy that utilizes hypergraph to explore high-order correlations
among advantaged and disadvantaged users. (4) II-GOOT: An in-processing framework that narrows
the training gap between advantaged and disadvantaged users through intra- and inter-group stages.
(5) S-DRO An in-processing method that minimizes the loss function value for disadvantaged users
during training.

To fully evaluate the performance of IR-UOF and SOTA methods, we choose four different backbone
recommendation models, including a traditional matrix factorization method (MF), two deep-learning-
based methods (NeuMF, VAECF), and a graph neural network-based method (LightGCN). (1)
MF [Koren et al.| (2009): Matrix Factorization maps both users and items to a joint latent factor
space and calculates the similarities among users and items. (2) NeuMF He et al.| (2017): Neural
Collaborative Filtering introduces a deep neural network with non-linear activation functions to train
a user and item matching function. (3) VAECF [Liang et al.| (2018)): Variational Autoencoders for
Collaborative Filtering proposes a generative model with multinomial likelihood and uses Bayesian
inference for parameter estimation. (4) LightGCN He et al.| (2020): Light Graph Convolution
Network simplifies the design of GCN by including only the most essential component in GCN
neighborhood aggregation — for collaborative filtering.

Evaluation Protocols. (/) User Grouping: Users are ranked by interaction counts, with the top 5%
as advantaged and the rest as disadvantaged Li et al.| (2021); Dai et al.| (2022)); Han et al.|(2023a)). (2)
Dataset Spilting: Using the Leave-One-Out (LOO) strategy |Chen et al.| (2023b); He et al.| (2017,
we split data into training, validation, and testing sets. (3) Performance Metrics: We adopt the
widely-used Normalized Discounted Cumulative Gain (NDCG) [Wang et al.|(2013)) and Hit Ratio
(HR) [Waters| (1976) to evaluate the recommendation performance of each model. A higher value
indicates superior recommendation performance, with a predicted cut-off of top/K' = 10|L1 et al.
(2021)); Dati et al.| (2022)); Han et al.| (2023a). Besides, we utilize Mo to evaluate the UOF level of
a recommendation model, with a lower value of My o means a fairer performance. (4) Statistical
Robustness: Each evaluation is repeated 10 times, reporting average performance with significance
testing (p-value < 0.05).

Parameter Settings. (/) For IR-UOF: Hyperparameters K and « are set according to Section|[5.6]
(2) For UFR, In-UCDS, HyperUOF, and I[I-GOOT: We use the code provided by authors and leave
the parameters as their default values. (3) For S-DRO: Implemented as recommended in|[Wen et al.
(2022b)), with hidden layer dimensions (128, 64) and temperature 7 set to 0.07. (4) For backbone
models: We set the dimension of user and item embeddings to 64 for all of them, and adopt their
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parameters as suggested in their original paper. We adopt the Adam optimizer |Kingma & Ba|(2014)
with a learning rate of 0.0001 and ensure convergence through 200 training epochs for all models.

Experiments Compute Resources. We conducted our experiments on a GPU server equipped with
8 CPUs and an NVIDIA RTX 3090 (24G).
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