
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BELIEFFORMER: BELIEF-ATTENTION IN
TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we consider modifying the attention layer in Transformer to improve
its generalization performance. Conceptually speaking, the standard attention layer
takes the softmax-based weighted summation of V vectors as the residual signal
(with a linear mapping for post-processing) when performing the skip-connection
operation. Inspired by distributed optimization, we propose to first perform an
orthogonal projection of the softmax-based weighted summation of V vectors with
respect to the original V vectors and then take the perpendicular component instead
as the residual signal (with a linear mapping for post-processing) when performing
the skip-connection operation. By doing so, the token vectors are modified rela-
tively more along their tangent directions compared to their magnitudes. Intuitively
speaking, the perpendicular component reflects a belief about the discrepancy be-
tween the weighted summation of V vectors and the V vectors themselves. We refer
to the newly modified layer and the overall architecture as the belief-attention and
the BeliefFormer, respectively. To further improve performance, we also design a
variant of belief-attention by incorporating both the per attention-head based and
global orthogonal projections, referred to as belief-attention∗. Experimental results
show that the two new variants of attention layer in Transformers lead to better
performance than the standard attention for image classification over ImageNet
and natural language processing when training nano-GPT2 and Llama.

1 INTRODUCTION

In recent years, Transformers (Vaswani et al., 2017) have made significant advances across a range
of data analysis fields, including natural language processing (NLP) (Achiam et al., 2023; Touvron
et al., 2023), computer vision (Dosovitskiy et al., 2021), image generation and editing (Peebles &
Xie, 2023; Hatamizadeh et al., 2024; Zhang et al., 2023), and audio processing (Latif et al., 2023). A
fundamental component of transformers is the attention layer, which enables the model to capture
long-range dependencies within a sequence of tokens. This mechanism works by computing a
weighted summation of the value (V) vectors based on the similarity between query (Q) and key (K)
vectors, determined via a softmax function. Conceptually, the attention operation allows each token
to aggregate relevant information from all other tokens. Following the attention layer, a feedforward
network (FFN) processes each token independently, which can be interpreted as local information
fusion. Recent large language models (LLMs) exploit a so-called mixture of experts (MoE) as
an extension of basic FFN to improve the performance, where at the inference stage, only certain
percentage of weights in the FFN layer are activated depending on the particular input.

One prominent research direction focuses on reducing the quadratic computational complexity
inherent in the standard attention layer when processing long token sequences. Various simplified
attention schemes have been proposed, which include, for example, LinFormer (Wang et al., 2020),
LongFormer (Beltagy et al., 2020), ReFormer (Kitaev et al., 2020), FlashAttention (Dao, 2023),
RingAttention (Liu et al., 2023), BurstAttention (Sun et al., 2023). FlashAttention is being widely used
in practical situations as it reduces the computational complexity considerably without introducing
any approximation in the standard attention layer.

In this work, we attempt to modify the attention layer to improve the generalization performance
of Transformers. To do so, we draw inspiration from distributed optimization. From a high-level
point of view, the attention-FFN framework in Transformers exhibits a certain similarity to the
framework of distributed optimization over an undirected graph. In general, a typical distributed
optimization algorithm (see (Zhang & Heusdens, 2018; Boyd et al., 2011)) iteratively alternates
between information-aggregation and information-fusion operations until all nodes in the graph
reach consensus. Typical algorithms include alternating direction method of multipliers (ADMM)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(Boyd et al., 2011) and primal-dual method of multipliers (PDMM) (Zhang & Heusdens, 2018).
Considering PDMM as an example, it was primarily designed to solve the following separable convex
optimisation problem over an undirected graph G = (V, E) representing a pear-to-pear (P2P) network
from practice:

min
∑
i∈V

fi(xi) subject to Aijxi +Ajixj = bij , (i, j) ∈ E , (1)

where each node i carries a local objective function fi(·) : Rdi → R and each edge (i, j) carries
a linear equality constraint as specified by the constant (Aij , Aji, bij) ∈ (Rdij×di ,Rdij×dj ,Rdij).
As will be discussed in detail in Section 3, at each iteration of quadratic-approximation based
PDMM (QA-PDMM), each node in the network performs information aggregation from neighbours
(corresponding to attention in Transformer) and local information fusion (corresponding to FFN).
One key property of QA-PDMM is that its update expression utilizes the consensus discrepancy
in terms of the residual error of the linear edge-constraints in (1), which is essential to make the
algorithm converge.

We consider extending the standard attention by drawing inspiration from QA-PDMM. In particular,
we propose to first perform orthogonal projection of the softmax-based weighted summation of V
vectors with respect to their respective original V vectors. The perpendicular component (see Fig. 2
for demonstration) is then taken as the residual signal, and is further processed by a linear mapping
for post-processing in preparation for skip-connection. The above newly designed attention, referred
to as belief-attention, encourages updates to the token vectors more in their tangent directions and
less in their magnitudes. The overall Transformer architecture with belief-attention is referred to as
BeliefFormer. In brief, we make three contributions in the paper:

• Belief-attention is proposed as an extension of attention by taking the perpendicular com-
ponent after orthogonal projection as the residual signal. The perpendicular component
provides a belief about the discrepancy between the softmax-based weighted summation of
V vectors and V vectors themselves.

• A variant of belief-attention is also proposed by combining both the per attention-head
based and global orthogonal projections for capturing richer information, referred to as
belief-attention∗.

• Experimental results on training nano-GPT2 and Llama for natural language processing
(NLP), and training ViTs over Imagenet, CIFAR10 and CIAR100, show that usage of
belief-attention and/or belief-attention∗ demonstrate considerable improvement in validation
performance.

2 RELATED WORKS

We note that in this work, the proposed belief-attention and its variant essentially make use of the
angle information between two vectors for performance improvement in Transformer. In the literature,
the work Karpukhin et al. (2020) applied the dot-product of two vectors to measure their similarities
for NLP. In Khattab & Zaharia (2020); Steck & Ekanadham (2024); Zhang (2024), cosine similarity
of two vectors is exploited for either NLP or design of optimizers for training deep neural networks
(DNNs). Another related work is Bachlechner et al. (2020), which proposed a so-called ReZero to
effectively train a particular type of DNNs with skip connections such as ResNet He et al. (2015).
The basic idea of ReZero is to introduce trainable parameters in front of the residual signals and
initialize them to be zero to make the training more effective.

3 BRIEF REVIEW OF QA-PDMM

To facilitate node-oriented distributed optimization of (1) over the graph G, QA-PDMM introduces
two Lagrangian multipliers λi|j and λj|i for the linear constraint over the edge (i, j) ∈ E . Let Ni

denote the set of neighbors for node i. We summarize the update expression in a proposition below:

Proposition 1. Suppose at iteration k = 0, the primal variables and their Lagrangian multipliers
are initialized to be {x0

i }i∈V and {λ0
i|j |j ∈ Ni, i ∈ V}, respectively. We further introduce the

initialization for the primal variables {x− 1
2

i = x0
i }i∈V at iteration k = − 1

2 . At the kth (k ≥ 1)

iteration, each new update (x
k+ 1

2
i , xk+1

i) and its associated Lagrangian multipliers {λk+1
i|j |j ∈ Ni}

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Structural demonstration of QA-PDMM and Transformer layer. The Multi-Head Attention layer
utilizes all the tokens in X to update the ith token X[i, :] (check (6)-(9) for details).

at node i are computed as

x
k+ 1

2
i =

skip-connection︷ ︸︸ ︷
xk
i +B−1

i

(∑
j∈Ni

AT
ij(λ

k
j|i − λk−1

j|i)− ρAji(x
k
j − xk−1

j))
)

︸ ︷︷ ︸
info. aggregation

i ∈ V (2)

xk+1
i = x

k+ 1
2

i +B−1
i (η(x

k+ 1
2

i − x
k− 1

2
i)− (∇fi(x

k+ 1
2

i)−∇fi(x
k− 1

2
i))︸ ︷︷ ︸

skip-connection

i ∈ V (3)

λk+1
i|j = λk

j|i + ρ(bij −Ajix
k
j −Aijx

k+1
i)︸ ︷︷ ︸

accumulation of residual signals

∀j ∈ Ni, i ∈ V, (4)

where Bi = (ηI + ρ
∑

i∈Ni
AT

ijAij), and the stepsizes η, ρ > 0. See Appendix B for derivation of
QA-PDMM from PDMM. The stepsize η should be chosen based on the functional property of fi.

By inspection of (2)-(3), it is seen that xk+ 1
2

i is computed by first aggregating information from
neighbors and then performing the skip-connection. On the other hand, xk+1

i is updated by first

performing local information fusion with (x
k+ 1

2
i , x

k− 1
2

i ,∇fi(x
k+ 1

2
i),∇fi(x

k− 1
2

i)) and then applying
the skip-connection again. As demonstrated in Fig. 1, the update expressions of QA-DPMM indeed
share a great similarity with the structure of a standard Transformer layer from a high-level viewpoint.

Next we study the Lagrangian multiplier λk
j|i being explored in the computation of xk+ 1

2
i . It is not

difficult to conclude from (4) that λk
j|i can be represented as a summation of the historical residual

errors of the linear equality constraint for edge (i, j) ∈ E . For the case of k being even, λk
j|i can be

represented as

λk
j|i = λ0

j|i + ρ

k/2∑
m=1

(bij −Ajix
2m−2
j −Aijx

2m−1
i) + ρ

k/2∑
m=1

(bij −Ajix
2m−1
j −Aijx

2m
i). (5)

We take each residual error in (5) as the measurement of the consensus discrepancy between the
pair of nodes (i, j). As a result, λk

j|i is computed by accumulating the residual errors across the past

iterations. Intuitively speaking, the accumulated residual errors in both λk
j|i and λk−1

j|i would softly

constrain x
k+ 1

2
i in a region that incurs small consensus discrepancy with regard to the predefined

edge-constraints.

4 BELIEF-ATTENTION VIA ORTHOGONAL PROJECTIONS

In this section, we first briefly revisit the standard attention in Transformer. We then motivate
and present the orthogonal projections in designing belief-attention. Lastly, we briefly discuss the
limitations of belief-attention.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4.1 REVISITING ATTENTION IN TRANSFORMER

The original work (Vaswani et al., 2017) proposes the encoder-decoder structure in the transformer
for NLP applications. The attention-FFN framework is slightly different in encoder and decoder.
For the purposes of demonstration, we consider a simplified version of attention, represented as (see
(MHA, 2023; Dosovitskiy et al., 2021))

Hm(X) = attention(

Qm︷ ︸︸ ︷
XWQ

m ,

Km︷ ︸︸ ︷
XWK

m ,

Vm︷ ︸︸ ︷
XWV

m) m = 1, . . . ,M (6)
MH(X) = Concat(H1(X), . . . ,HM (X)) (7)

X ⇐ X +

linear mapping︷ ︸︸ ︷
MH(X)W o︸ ︷︷ ︸

skip-connection

(8)

where the tensor X ∈ Rn×d is the input from the layer below in Transformer, (WQ
m ,WK

m ,WV
m)

are the three learnable matrices for computing (Qm,Km, Vm) ∈ (Rn×dm ,Rn×dm ,Rn×dm) of the
mth attention, and Concat(. . .) stacks up M attentions {Hm(X)}Mm=1, which is further processed by
the linear mapping W o for post-processing. Lastly, the notations H and MH stand for “head" and
“multi-head", respectively.

To facilitate the discussion of attention and QA-PDMM later on, we first briefly explain the notations
in (6)-(8). Following the convention of python-based implementation (e.g., pytorch) of attention, the
tensor X ∈ Rn×d has n tokens and each token is of dimension d. We use the row vector X[i, :] to
denote the ith token. Therefore, the computation for (Qm,Km, Vm) in (6) and the linear mapping in
(8) are conducted in a token-wise manner.

It is well-known that the attention operation in Equ. (6) is a QK-softmax-based weighted summation
of the n row vectors in Vm, given by

Hm(X) =

info. aggregation︷ ︸︸ ︷
softmax

(
QmKT

m√
dm

)
Vm (9)

where dm is the dimension of the row vectors in Qm. The softmax term computes the unified
relevance of each token with respect to neighboring tokens, which generally stabilizes the training
process in comparison to other forms of weighted summation. Similarly to that of QA-PDMM, the
computed weighted summation of the n row vectors in Vm can be taken as information aggregation
from all neighbors.

In general, for a standard non-causal attention, every two tokens are neighbors, which corresponds
to a fully connected graph in distributed optimization. On the other hand, a non-casual attention
is actually associated with a sparse directed graph. This is because only earlier tokens could make
contributions to the current considered token. We will not discuss those different types of graphs in
relation with different types of attentions in detail, which is out of the scope in this paper.

4.2 UPDATE EXPRESSION OF BELIEF-ATTENTION

Similarity between QA-PDMM and Transformer layer: As demonstrated in Fig. 1, both QA-
PDMM and the Transformer layer have two skip connections. The variable xi at node i in QA-PDMM
corresponds to the ith token X[i, :] in the Transformer layer. The computation for xk+ 1

2
i in (2) shares

a similarity with the computation for X[i, :] in (8), where both quantities aggregate information from
neighboring nodes (i.e., other tokens) before performing skip-connection. Finally, from a high-level
point of view, xk+1

i in (3) and the final output X[i, :] (see Fig. 1) from a Transformer layer can be
viewed as performing local information fusion and skip-connection.

Motivation: As discussed earlier, xk+ 1
2

i in QA-PDMM is updated by exploiting the consensus
discrepancy in the form of residual errors of the linear equality constraints in its update expression,
which are captured by {λk

j|i, λ
k−1
j|i)}. However, in the expression (8) for the standard attention, the

tensor MH(X) is not really a residual signal from the perspective of distributed optimization. This
is because each term Hm(X) within MH(X) does not actually measure any discrepancy among
the tokens. We argue that the Transformer architecture would benefit if certain type of discrepancy

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

could be captured by the attention layer. By doing so, the learnable parameters in Transformer could
promptly respond to the discrepancy among the tokens during the training process, thus making the
learning procedure more efficient. We define V (X) to be

V (X) = Concat(V1, . . . , VM).

Furthermore, we use V (X)[i, :] and MH(X)[i, :] to denote the original V vector and the weighted
summation of V vectors for the ith token. The remaining step is to define a proper residual signal for
the ith token in terms of V (X)[i, :] and MH(X)[i, :] in the attention layer.

Taking perpendicular component after orthogonal projection as residual signal: In general, the
two vectors V (X)[i, :] and MH(X)[i, :])} would be correlated. We let the residual signal be in the
following format:

∆(X)[i, :] = MH(X)[i, :]− αiV (X)[i, :], (10)

where αi is a scalar parameter to be specified. We let the optimal solution α∗
i be the one that

minimizes the squared norm of ∆(X)[i, :]:

α∗
i = argmin

αi

∥(∆(X)[i, :])∥2, (11)

where we use ∥ · ∥ to denote the l2 norm of a vector. It is immediate that1

α∗
i =

⟨MH(X)[i, :], V (X)[i, :]⟩
⟨V (X)[i, :], V (X)[i, :]⟩

. (12)

where ⟨·, ·⟩ denotes the inner product of two vectors.

By plugging the expression (12) into (10), it is not difficult to show that ∆(X)[i, :] is orthogonal
to V (X)[i, :]. That is, ∆(X)[i, :] is the perpendicular component after orthogonal projection of
MH(X)[i, :] onto V (X)[i, :] (see Fig. 2 for demonstration). By using algebra, one can easily show
that the magnitude ∥∆(X)[i, :]∥ is either small or equal to ∥MH(X)[i, :]∥.

∥∆(X)[i, :]∥ ≤ ∥MH(X)[i, :]∥. (13)

The perpendicular component ∆(X)[i, :] reflects a belief about the discrepancy between the original
vector (alternatively referred to as prior-representation) V (X)[i, :] and the newly computed vector
MH(X)[i, :] (alternatively referred to as post-representation) which is obtained via softmax-based
weighted summation. In other words, the vector ∆(X)[i, :] measures a certain discrepancy between
the prior- and post-representations of the ith token. A large magnitude of ∆(X)[i, :] indicates that
the associated token should be adjusted significantly, and vice versa.

Intuitively, ∆(X)[i, :] in belief-attention corresponds to the residual signal
∑

j∈Ni
AT

ij(λ
k
j|i−λk−1

j|i)−

ρAji(x
k
j − xk−1

j))
)

in (20) for QA-PDMM. We note that no orthogonal projection is performed in
QA-PDMM for computing the residual signal. This is because pre-defined linear constraints (see
Equ. 1) are introduced in distributed optimization. On the contrary, in Transformer, we need to define
a proper residual signal as specified in (10) and (12) since no constraints are introduced beforehand.

We take the residual signal ∆(X) to replace MH(X) when performing the skip-connection operation.
The token tensor X can thus be updated as follows:

X ⇐ X +

linear mapping︷ ︸︸ ︷
∆(X)W o︸ ︷︷ ︸

skip-connection

, (14)

where the linear mapping W o is applied to the residual signal ∆(X) for post-processing. Fig. 3
demonstrates the pytorch code for realizing belief-attention. In practice, one can easily adopt the
pytorch code to convert a standard attention into belief-attention. The main difference with respect
to the standard attention is to subtract a scaled version of the original V tensor from the multi-head
attention as represented in (12).

1In our implementation for belief-attention and its variant belief-attention∗, we found that there is no need to
introduce a small positive value ϵ to the denominator of αi to avoid division by zero.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2:
Orthogonal projection to obtain
the perpendicular component
∆(X)[i, :] as residual signal.

#linear mapping
Wo = torch.nn.Linear(d_in,d)
##########################
MH: multi-head attention
V: original V tensor
num = torch.sum(MH*V,dim=-1)
den = torch.sum(V*V,dim=-1)
Delta = MH - (num/den)*V
X = X + Wo(Delta)

Figure 3: Demonstration of pytorch code for belief-
attention.

200 300 400 500

200

300

400

500

-0.2 0 0.2

-0.2

-0.1

0

0.1

0.2

Layer 1

Figure 4: Demonstration of the impact of the perpendicular component ∆X[i, :]. The notation ∠(·, ·) stands for
the angle between two vectors. The data points in the above four plots are collected when training BeliefFormer
of 12 belief-attention layers over ImageNet for the 1st epoch (see Fig. 8 in Appendix A for demonstration of the
data points in layer 1 and 10).

We note that layer normalization (LN) or RMSNorm in Transformer directly affect the magnitudes of
tokens by standardizing their feature vectors. As demonstrated in Fig. 4, by taking the perpendicular
component ∆(X)[i, :] as the residual signal, the tokens are updated more in their tangent directions
and less in their magnitudes. Intuitively, this prevents LN or RMSNorm from diminishing the effects
that belief-attention has on token updates.

Impact of the update expression (14): We note that because of the linear mapping W o in (14) and
{WV

m}Mm=1 in (6), the transformed residual signal ∆(X)W o will not be orthogonal to X . That is, the
orthogonality would not be not preserved in the token space. We have conducted empirical analysis
to investigate the impact of ∆(X)W o in comparison to MH(X)W o in the token space.

The obtained empirical results in Fig. 4 confirm that the magnitudes ∥∆(X)[i, :]W o∥ are considerably
smaller than ∥MH(X)[i, :]W o∥. This indicates that the magnitude inequality (13) is preserved by
the linear mapping W o . The plots in the figure also demonstrate that the two angles ∠(∆(X)[i, :
]W o, X[i, :]), and ∠(MH(X)[i, :]W o, X[i, :]) are roughly the same.

The above analysis indicates that the update in (14) with belief-attention indeed causes relatively
more change in the tangent directions of the tokens (which are the row vectors in X) and less change
in their magnitudes, compared to the update in the standard attention.

4.3 LIMITATIONS OF BELIEF-ATTENTION W.R.T. ATTENTION

Before we discuss the limitations, we first emphasize that belief-attention does not introduce addi-
tional training parameters. That is, both belief-attention and the standard attention have the same
number of parameters. Considering the time complexities, as belief-attention requires the additional
orthogonal projection operations, it naturally leads to higher training and inference complexities. In
the experimental section, we have quantitatively measured the training and/or inference complexities
(see Table 1 and 2). It is found that the computational complexities are only slightly increased in
comparison to those of the standard attention.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

10 20 30 40

epochs

40

45

50

55

60

v
a

l
a

c
c

Transformer

BeliefFormer*

BeliefFormer

5 10 15

wall-clock (h)

40

45

50

55

60

v
a

l
a

c
c

Transformer

BeliefFormer*

BeliefFormer

Figure 5: Performance comparison for image classification over ImageNet of 1000 classes.

It is noted that the orthogonal projection is performed on a per-token basis. Therefore, in principle,
its computation can be parallelized by using a set of GPUs to reduce the execution time. When
performing inference for an auto-regressive BeliefFormer, the time complexity overhead should be
linearly proportional to the sequence length.

5 A VARIANT OF BELIEF-ATTENTION

In this section, we propose a variant of belief-attention by incorporating both the per attention-based
and global orthogonal projections. Firstly, we note that in Subsection 4.2 (see also Fig. 2), we project
the entire vector MH(X)[i, :] w. r. t. V (X)[i, :] in a global manner. Alternatively, we can also
project the per attention-head Hm(X)[i, :] w. r. t. the original subvector Vm[i, :]. The associated
perpendicular component after orthogonal projection can be expressed as

∆s
m(X)[i, :] = Hm(X)[i, :]− βm,iVm[i, :] where βm,i =

⟨Hm(X)[i, :], Vm[i, :]⟩
⟨Vm[i, :], Vm[i, :]⟩

, (15)

for all m = 1, . . . ,M , and i = 1, . . . , n. Again, it is found from practice that there is no need to
introduce a small positive value to avoid division by zero.

Upon obtaining the two types of perpendicular components in (12) and (15), we then exploit both of
them when performing skip-connection. Our main purpose for doing so is to improve the performance
of the overall neural architecture with both the global and per attention-head based discrepancies
instead of one in belief-attention introduced earlier. The final update expression for X can be
represented as

∆s(X) = Concat(∆s
1(X), . . . ,∆s

M (X)) (16)
X ⇐ X +∆(X)W o +∆s(X)W s︸ ︷︷ ︸

skip-connection

, (17)

where ∆s(X) is obtained by stacking up M individual residual signals {∆s
m(X)}Mm=1. In comparison

to (14), an additional linear mapping W s is required to make dimensionality alignment for ∆s(X).

In brief, the update expressions (6)-(7), (12), and (15)-(17) together define a new type of attention
layer, which we refer to as belief-attention∗. Consequently, Transformer equipped with belief-
attention∗ is referred to as BeliefFormer∗. Based on the python code in Fig. 3 for belief-attention,
one can easily develop the python code for belief-attention∗.

5.1 LIMITATIONS OF BELIEF-ATTENTION∗

Apparently, belief-attention∗ introduces an additional set of learnable parameters in W s in comparison
to the standard attention. Furthermore, since belief-attention∗ needs to perform both the per attention-
head based and global orthogonal projections, its computational complexity would be slightly higher
than that of belief-attention. The results in Table 1 and 2 indicate that the overhead introduced in
BeliefFormer∗ is acceptable given the fact that its performance gain w. r. t. that of Transformer (see
Fig. 5 and 6) is remarkable.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

no. of parameters time for evaluating
val. dataset (s)

Transformer 22.2M (-) 37.46 (-)
BeliefFormer 22.2M (0%) 37.93 (1.3%)
BeliefFormer∗ 24.0M (8.1%) 38.87 (3.8%)

Table 1: Comparison of number of training parameters and computational complexities for image classification
over ImageNet. We note that the input image size to the models changes dynamically over training time.
Therefore, it is not feasible to measure the average training time per epoch. The values in the round bracket (·)
account for the overhead of BeliefFormer∗ and BeliefFormer in comparison to Transformer in percentage.

no. of parameters training time (s)
per iteration

tokens/s
in training

inference time (s)
per iteration

Transformer 123.5M (–) 0.274 (–) 2284 0.237 (–)
BeliefFormer 123.5M (0%) 0.284 (3.6%) 2245 0.241 (1.7%)
BeliefFormer∗ 130.6M (5.7%) 0.299 (9.1%) 2147 0.260 (9.7%)

Table 2: Comparison of number of parameters and computational complexities for NLP. Transformer in the
table is in fact nano-GPT2. The values in the round bracket (·) account for the overhead of BeliefFormer∗ and
BeliefFormer in comparison to Transformer in percentage.

6 EXPERIMENTS

We evaluated BeliefFormer and its variant BeliefFormer∗ for three tasks: (1) image classification over
ImageNet; (2) NLP for training nano-GPT2; (3) NLP for training Llama; (4) image classification
over CIFAR10 and CIFAR100. Our experiments make use of four open-source repositories for the
above three tasks, which are listed in Table 4 in the appendix. All the experiments were conducted on
a computer with a single Nvidia Geforce A6000 GPU with 48GB memory.

In brief, it is found that both BeliefFormer and BeliefFormer∗ outperform Transformer consistently
in first two tasks. BeliefFormer is not tested for the 3rd and 4th task due to limited time in the rebuttal
period. BeliefFormer∗ needs to introduce a small percentage of learnable parameters and marginal
computational complexity in comparison to Transformer. BeliefFormer, on the other hand, only
introduces marginal computational complexity.

6.1 IMAGE CLASSIFICATION OVER IMAGENET

We adopted the 1st open-source repository in Table 4, which is for training a ViT over Ima-
geNet (from 2012). There are 12 attention layers in the original ViT model (the model name
is deit_small_patch16_224). We replaced each standard attention in ViT with belief-attention and
belief-attention∗, respectively. All the models were trained from scratch by using the ImageNet
training data. The training setups in terms of the hyper-parameters follow directly from the original
open source. After training, they are evaluated via the associated validation dataset.

Fig. 5 visualizes the obtained validation accuracy curves over epochs and over wall-clocks. It is clear
that both BeliefFormer and BeliefFormer∗ outperforms Transformer (which is in fact the ViT model)
significantly as the epoch index increases. The right plot in the figure against wall-clock suggests that
the additional training time introduced in the two new models is negligible.

Table 5.1 summarizes the number of parameters and inference time for the three models. It is seen
that the inference time for the three models are roughly the same when evaluating the valuation
dataset, indicating that the orthogonal projection in the two new models can be efficiently computed
by using GPU. For this particular task, BeliefFormer∗ introduces about 8% new parameters to handle
two types of orthogonal projections.

6.2 NLP FOR TRAINING NANO-GPT2

We adopted the 2nd open-source repository in Table 4 for this experiment. The open-source is
for training nano-GPT2 over 5B tokens extracted from OpenWebText. Similarly, we replaced the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

2 4 6 8 10

iterations 10
4

3.5

3.55

3.6

3.65

3.7

3.75

3.8

v
a

l
lo

s
s

BeliefFormer*
BeliefFormer

Transformer

2 4 6 8

wall-clock (h)

3.5

3.55

3.6

3.65

3.7

3.75

3.8

v
a

l
lo

s
s

BeliefFormer*

BeliefFormer

Transformer

Figure 6: Performance comparison for NLP using 5B tokens extracted from OpenWebText. Transformer in the
figure is in fact nano-GPT2.

standard attention layer in nano-GPT2 with belief-attention and belief-attention∗, respectively. The
training setups follow directly from the original open source. We refer to nano-GPT2 as Transformer
in the context below.

Fig. 6 visualizes the validation loss curves over iterations and over wall-clock. Apparently,
BeliefFormer∗ performs significantly better than the other two models even considering wall-clock
instead of iterations. This suggests that it is indeed beneficial to include those two types of orthogonal
projections as studied in Section 5. On the other hand, BeliefFormer performs slightly better than
Transformer across iterations. If the training time complexity is taken into account, BeliefFormer and
Transformer have a similar training speed.

Table 2 summarizes the number of parameters and time complexities of the three considered models.
Similarly to the 1st task, BeliefFormer∗ slightly increases the number of parameters and compu-
tational complexity, but yields a noticeable improvement in validation performance. Considering
BeliefFormer, it introduces only a small overhead in terms of computational complexity.

Remark 1. One may think that the performance gain of belief-attention∗ over attention in Fig. 6
could be due to the additional linear mapping W s introduced in (17). To gain deeper insight into
belief-attention∗, we have also evaluated the performance of another attention layer by concatenating
MH(X) and V together, which is then processed by a linear mapping of a larger size as in belief-
attention∗. It is found that the attention layer by concatenating MH(X) and V produces slightly
worse performance than the standard attention at a later training stage. See Appendix C for details.

4000 6000 8000 10000 12000

iterations

3.15

3.2

3.25

3.3

3.35

3.4

v
a
l
lo

s
s

Belief-Llama

Llama

Figure 7: Performance comparison for training Llama and Belief-Llama over FineWeb-Edu of size 10BB.
Belief-Llama is obtained by replacing the attention layer in Llama with beleif-attention∗.

6.3 NLP FOR TRAINING LLAMA

In this experiment, we consider training Llama of size 188MB, which has 12 Transformer layers in
total. The fourth open-source repository from Table 4 is exploited. It is noted that Llama and nano-
GPT2 are slightly different in their architectures. The dataset being used for training and evaluation
is the FineWeb-Edu of size 10BT. We replace all the attention layers in Llama with belief-attention∗,
which is referred to as Belief-Llama. The two models were trained by using the identical training
setups as specified in the open-source.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

It is clear from Fig. 7 that Belief-Llama outperforms Llama in terms of the validation loss. The results
are consistent with those in Fig. 6 for training nano-GPT2.

6.4 IMAGE CLASSIFICATION OVER CIFAR10 AND CIFAR100

In this experiment, we adopted the 3rd open-source repository for training ViT over CIFAR10 and
CIFAR100 in Table 4. We replaced the standard attention layer by belief-attention∗ developed in this
paper, which referred to as Belief-ViT.

Aside from the modification to belief-attention∗, the training setups follow the original open-source
implementation. In brief, each model was trained for 100 epoch by using the AdamW optimizer.
Three experimental repetitions (with random seeds in {0, 50, 100}) were performed per training setup
to mitigate the effect of randomness.

Table 3 summarizes the obtained validation accuracy. It is clear that Belief-ViT produces considerably
higher validation accuracy than ViT. This indicates that the introduced orthogonal projections is
a better choice than the softmax-based weighted summation of V vectors when performing the
skip-connection in the attention layer.

Table 3: Validation accuracy for image classification over CIFAR10 and CIFAR100.
ViT Belief-ViT

CIFAR10 93.62±0.11 94.17±0.13

CIFAR100 72.75±0.44 74.34±0.12

7 CONCLUSIONS

In this work, we have proposed belief-attention and belief-attention∗ to replace attention in Trans-
former from a distributed optimization perspective. In particular, we first identify a similarity between
the update expressions of QA-PDMM and the attention-FFN framework in Transformer. The softmax-
based weighted summation in the standard attention can be viewed as information aggregation from
neighboring tokens while the FFN operation can be taken as local information fusion. Inspired
by QA-PDMM that exploits the consensus discrepancy in its update expressions, we utilize the
discrepancy between the weighted summation of V vectors and their orthogonal projections onto the
original V vectors when designing the two new variants of attention layer. As demonstrated in Fig. 4,
usage of perpendicular components in belief-attention and belief-attention∗ would make the tokens be
updated relatively more in their tangent directions and less in their magnitudes. Experimental results
over three tasks indicate that BeliefFormer (aka Transformer with belief-attention) and BeliefFormer∗
(aka Transformer with belief-attention∗) perform consistently better than Transformer in terms of the
validation performance.

REFERENCES

Pytorch implimentation of multi-head attention. https://pytorch.org/docs/stable/
generated/torch.nn.MultiheadAttention.html, 2023.

Josh Achiam, Steven Adler, Sandhini Agarwal, Florencia Leoni Aleman Lama Ahmad, Ilge Akkaya,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mo Bavarian, Jeff Belgum, Irwan
Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Lenny Bogdonoff Christopher Berner, Oleg
Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles Brundage,
Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea Carlson, Rory
Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason
Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung, Dave Cummings,
Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch, Damien Deville,
Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna
Eloundou, David Farhi, Liam Fedus, Niko Felix, SimÃşn Posada Fishman, Juston Forte, Isabella
Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha
Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross,
Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton,
Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton,
Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, and Shawn Jain. Gpt-4 technical
report. arXiv:2307.09288 [cs.CL], 2023.

10

https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html
https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

T. Bachlechner, B. P. Majumder, H. H. Mao, G. W. Cottrell, and J. McAuley. ReZero is All You
Need: Fast Convergence at Large Depth. arXiv:2003.04887v2 [cs.LG], 2020.

I. Beltagy, M. E. Peters, and A. Cohan. Longformer: The long-document transformer.
arXiv:2004.05150v2, 2020.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed Optimization and Statistical
Learning via the Alternating Direction Method of Multipliers. In Foundations and TrendsÂő in
Machine Learning, 3(1):1–122, 2011.

T. Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborna, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly abd J. Uszkoreit, and N. Houlsby. An image is worth 16x16
words: Transformers for image recognition at scale. In ICLR, 2021.

A. Hatamizadeh, J. Song, G. Liu, J. Kautz, and A. Vahdat. DiffiT: Diffusion Vision Transformers for
Image Generation. In ECCV, 2024.

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In IEEE
conference on Computer Vision and Pattern Recognition (CVPR), 2015.

V. Karpukhin, B. Oguz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen, and W. t. Yih. Dense passage
retrieval for open-domain question answering. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. pages 6769âĂŞ6781, 2020.

O. Khattab and M. Zaharia. ColBERT: Efficient and effective passage search via contextualized late
interaction over BERT. arXiv:2004.12832v2 [cs.IR], 2020.

N. Kitaev, A. Kaiser, and A. Levskaya. Reformer: The Efficient Transformer. In ICLR, 2020.

S. Latif, A. Zaidi, H. Cuayahuitl AZ, F. Shamshad, M. Shoukat, and J. Qadir. Transformers in speech
processing: A survey. arXiv:2303.11607 [cs.CL], 2023.

H. Liu, M. Zaharia, and P. Abbeel. Ring attention with blockwise transformers for near-infinite
context. arXiv:1706.03762 [cs. CL], 2023.

W. Peebles and S. Xie. Scalable Diffusion Models with Transformers. In ICCV, 2023.

H. Steck and C. Ekanadham. Is Cosine-Similarity of Embeddings Really About Similarity?
arXiv:2403.05440v1 [cs.IR], 2024.

A. Sun, W. Zhao, X. Han, C. Yang, Z. Liu, C. Shi, and M. Sun. Burstattention: An efficient distributed
attention framework for extremely long sequences. arXiv:2403.09347 [cs.DC], 2023.

H. Touvron, L. Martin, P. Albert K. Stone, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhar-
gava, S. Bhosale, D. Bikel, L. Blecher, C. Canton Ferrer, M. Chen, G. Cucurull, D. Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman
Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez,
Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Yinghai Lu Diana Liskovich, Yuning Mao, Xavier Martinet, Todor
Mihaylov, Pushkar Mishra, Igor Molybog, Andrew Poulton Yixin Nie, Jeremy Reizenstein, Rashi
Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xi-
aoqing Ellen Tan, Binh Tang, Ross Taylor, Jian Xiang Kuan Adina Williams, Puxin Xu, Zheng Yan,
Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Aurelien Rodriguez Sharan Narang,
Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned
chat models. arXiv:2307.09288 [cs.CL], 2023.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. arXiv:1706.03762 [cs. CL], 2017.

S. Wang, M. Khabsa B. Z. Li, H. Fang, and H. Ma. Linformer: Self-attention with linear complexity.
arXiv:2006.04768v3, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

G. Zhang. On Suppressing Range of Adaptive Stepsizes of Adam to Improve Generalisation
Performance. In ECML, 2024.

G. Zhang and R. Heusdens. Distributed Optimization using the Primal-Dual Method of Multipliers.
IEEE Trans. Signal and Information Processing over Networks, 2018.

Guoqiang Zhang, J. P. Lewis, and W. Bastiaan Kleijn. Exact diffusion inversion via bidirectional
integration approximation. arXiv:2307.10829 [cs.CV], 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

ImagNet task https://github.com/BorealisAI/efficient-vit-training
NLP-nanoGPT https://github.com/KellerJordan/modded-nanogpt/tree/casted

CIFAR10 &
CIFAR100 https://github.com/aanna0701/SPT_LSA_ViT

NLP-Llama https://github.com/hengjiUSTC/learn-llm/tree/main/pretrain

Table 4: list of open-source repositories expoited in this paper.

A REGARDING GENERATION OF FIGURE 4.

We briefly explain how the data points were collected when generating the four plots of Fig. 4. When
we trained BeliefFormer over ImageNet, we computed and collected the four quantities ∥∆(X)[i, :]∥,
∥MH(X)[i, :]∥, cos∠(∆(X)[i, :]W o, X[i, :]), and cos∠(MH(X)[i, :]W o, X[i, :]) for a particular
token index i = 0 across different belief-attention layers and across different iterations in the first
epoch. There are in total 12 belief-attention layers in the tested BeliefFormer. The behaviors of the
above four quantities are similar across different layers.

200 400 600 800 1000 1200

200

400

600

800

1000

1200

0 0.5 1

-0.2

0

0.2

0.4

0.6

0.8

200 300 400 500

200

300

400

500

-0.2 0 0.2

-0.2

-0.1

0

0.1

0.2

Layer 1

Layer 10

Figure 8: Demonstration of the impact of the perpendicular component ∆X[i, :]. The notation ∠(·, ·) stands for
the angle between two vectors. The data points in the above four plots are collected when training BeliefFormer
of 12 belief-attention layers over ImageNet for the 1st epoch.

B DERIVATION OF QA-PDMM

B.1 UPDATE EXPRESSIONS OF QA-PDMM

In this section, we will explain how to obtain the update expressions (2)-(4) for QA-PDMM starting
from the update expressions for PDMM.

PDMM introduces two Lagrangian multipliers λi|j and λj|i for the linear constraint over the edge
(i, j) ∈ E . Let Ni denote the set of neighbors for node i. At the kth iteration, each new update xk+1

i

13

https://github.com/BorealisAI/efficient-vit-training
https://github.com/KellerJordan/modded-nanogpt/tree/casted
https://github.com/aanna0701/SPT_LSA_ViT
https://github.com/hengjiUSTC/learn-llm/tree/main/pretrain

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

is computed in terms of the information {(xk
j|i, λ

k
j|i)|j ∈ Ni} from neighbors as

xk+1
i = arg min

xi∈Rdi

fi(xi)− xT
i (
∑
j∈Ni

AT
ijλ

k
j|i) +

∑
j∈Ni

ρ

2
∥Aijxi +Ajix

k
j − bij∥2

 ∀i ∈ V,

(18)

where the stepsize ρ > 0. Once xk+1
i is available, the associated Lagrangian multipliers of node i are

updated to be

λk+1
i|j = λk

j|i + ρ(bij −Ajix
k
j −Aijx

k+1
i) ∀j ∈ Ni. (19)

As discussed in the main paper, λk+1
i|j is computed by accumulating the residual errors across historical

iterates up to iteration k in terms of the linear equality constraint for edge (i, j) ∈ E .

One potential issue with the update expression (18) is that at iteration k, a local optimization problem
at each node i needs to be solved to obtain xk+1

i . In certain applications (e.g., training a deep neural
network (DNN) model), it might be time-consuming or even not possible to obtain an exact solution
for xk+1

i . In those scenarios, one can perform quadratic approximation based PDMM (QA-PDMM)
to simplify the local optimization at each node i and at each iteration k.

B.2 UPDATE EXPRESSIONS OF QA-PDMM

Suppose the gradient ∇fi(xi) for any xi ∈ Rd can be computed in a reasonable amount of time.
The basic idea of QA-PDMM is to approximate each local function fi(xi) at each iteration k by a
quadratic function. The new estimator xk+1

i can then be computed by solving a quadratic optimization
problem with fi(xi) in (18) being replaced by the quadratic function. We make an assumption below
regarding the function fi:
Assumption 1. For each i ∈ V , assume the gradient L-Lipschitz continuous and m-strongly convex.

Next we derive the update expressions (2)-(4) in the main paper for QA-PDMM. We perform the
derivation by induction. In particular, we first consider k = 0 and k = 1 and then extend the
derivation to k ≥ 2.

Update expression at k = 0: Suppose at iteration k = 0, all the primal variables are initialized to
be {x0

i }i∈V and their Lagrangian multipliers are initialized to be {λ0
i|j |j ∈ Ni, i ∈ V}. We further

introduce the initialization of the primal variables {x− 1
2

i = x0
i }i∈V at iteration k = − 1

2 .

We now consider computing {x
1
2
i }i∈V at iteration k = 0. To do so, we first approximate each fi(xi)

by a quadratic function in terms of x− 1
2

i as

fi(xi) ≈ fi(x
− 1

2
i) +∇fi(x

− 1
2

i)T (xi − x
− 1

2
i) +

η

2
∥xi − x

− 1
2

i ∥2, (20)

where the parameter η is chosen to be η ≥ L2/(2m). By combining (18) and (20) at iteration k = 0,

each x
1
2
i can be computed by solving the following optimization problem at iteration k = 0:

x
1
2
i = arg min

xi∈Rdi

[
fi(x

− 1
2

i) +∇fi(x
− 1

2
i)T (xi − x

− 1
2

i) +
η

2
∥xi − x

− 1
2

i ∥2

− xT
i

(∑
i∈Ni

AT
ijλ

0
j|i

)
+
∑
j∈Ni

ρ

2
∥Aijxi +Ajix

0
j − bij∥2

]
∀i ∈ V,

= ηB−1
i x

− 1
2

i +B−1
i

(∑
i∈Ni

AT
ij(λ

0
j|i − ρAjix

0
j + ρbij)−∇fi(x

− 1
2

i)
)
, (21)

where Bi = (ηI + ρ
∑

i∈Ni
AT

ijAij). Apparently, x
1
2
i is a function of x

− 1
2

i and information
{(x0

j , λ
0
j|i)|j ∈ Ni} from neighbors.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

With x
1
2
i , we are now ready to compute x1

i for each node i ∈ V . In principle, x
1
2
i should be a better

solution than x
− 1

2
i for solving the original optimization problem (1). We then approximate each

fi(xi) by a quadratic function in terms of x
1
2
i as

fi(xi) ≈ fi(x
1
2
i) +∇fi(x

1
2
i)

T (xi − x
1
2
i) +

η

2
∥xi − x

1
2
i ∥

2. (22)

By combining (18) and (22) at iteration k = 0, each x
1
2
i can be computed by solving the following

optimization problem at iteration k = 0:

x1
i = arg min

xi∈Rdi

[
fi(x

1
2
i) +∇fi(x

1
2
i)

T (xi − x
1
2
i) +

η

2
∥xi − x

1
2
i ∥

2

− xT
i

(∑
i∈Ni

AT
ijλ

0
j|i

)
+
∑
j∈Ni

ρ

2
∥Aijxi +Ajix

0
j − bij∥2

]
∀i ∈ V,

= ηB−1
i x

1
2
i +B−1

i

(∑
i∈Ni

AT
ij(λ

0
j|i − ρAjix

0
j + ρbij)−∇fi(x

1
2
i)
)
. (23)

The expression (23) for x1
i is slightly different from (21) for x

1
2
i . Specifically, x1

i is a function of x
1
2
i

and information {(x0
j , λ

0
j|i)|j ∈ Ni} from neighbors.

With {x1
i }i∈V , the new estimation for their associated Lagrangian multipliers can be computed by

following (19) as
λ1
i|j = λ0

j|i + ρ(bij −Ajix
0
j −Aijx

1
i) ∀j ∈ Ni, i ∈ V.

Update expression at k = 1: We will show that the expressions for x
3
2
i and x2

i coincide with (2)-(3)

by specifying k = 1. Similarly to iteration k = 0, we first compute x
3
2
i as a function of x

1
2
i and

information {(x1
j , λ

1
j|i)|j ∈ Ni} from neighbors:

x
3
2
i = arg min

xi∈Rdi

[
fi(x

1
2
i) +∇fi(x

1
2
i)

T (xi − x
1
2
i) +

η

2
∥xi − x

1
2
i ∥

2

− xT
i

(∑
i∈Ni

AT
ijλ

1
j|i

)
+
∑
j∈Ni

ρ

2
∥Aijxi +Ajix

1
j − bij∥2

]
∀i ∈ V,

= ηB−1
i x

1
2
i +B−1

i

(∑
i∈Ni

AT
ij(λ

1
j|i − ρAjix

1
j + ρbij)−∇fi(x

1
2
i)
)
. (24)

Note that the gradient ∇fi(x
1
2
i) appears in both (23) and (24). It is not difficult to show that x

3
2
i can

be represented in terms of x1
i and the information {(λ1

j|i − λ0
j|i)|j ∈ Nj} and {(x1

j − x0
j)|j ∈ Nj}

from neighbors as

x
3
2
i = x1

i +B−1
i

∑
i∈Ni

AT
ij((λ

1
j|i − λ0

j|i)− ρAji(x
1
j − x0

j)). (25)

We have proved that (25) for x
3
2
i indeed coincides with (2) by letting k = 1.

The next step is to derive an expression for x2
i and then show that it coincides with (3) by letting

k = 1. Similarly to iteration k = 0, x2
i can be computed by solving the following optimization

problem at iteration k = 1:

x2
i = arg min

xi∈Rdi

[
fi(x

3
2
i) +∇fi(x

3
2
i)

T (xi − x
3
2
i) +

η

2
∥xi − x

3
2
i ∥

2

− xT
i

(∑
i∈Ni

AT
ijλ

1
j|i

)
+
∑
j∈Ni

ρ

2
∥Aijxi +Ajix

1
j − bij∥2

]
∀i ∈ V,

= ηB−1
i x

3
2
i +B−1

i

(∑
i∈Ni

AT
ij(λ

1
j|i − ρAjix

1
j + ρbij)−∇fi(x

3
2
i)
)
. (26)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Again note that (24) and (26) share a common quantity B−1
i

(∑
i∈Ni

AT
ij(λ

1
j|i − ρAjix

1
j + ρbij))

)
.

Therefore, x2
i can be represented in terms of x

3
2
i and x

1
2
i as

x2
i = x

3
2
i +B−1

i (η(x
3
2
i − x

1
2
i)− (∇fi(x

3
2
i)−∇fi(x

1
2
i))). (27)

It is immediate that the expression (27) coincides with (3) by letting k = 1.

With {x2
i }i∈V , the new estimation for their associated Lagrangian multipliers can be computed by

following (19) as

λ2
i|j = λ1

j|i + ρ(bij −Ajix
1
j −Aijx

2
i) ∀j ∈ Ni, i ∈ V.

Update expression at iteration k: Suppose at iteration k ≥ 2, we have already obtained
{(xk

i , x
k− 1

2
i)|i ∈ V} and {λk

j|i|j ∈ E , i ∈ V} with

x
k−1+ 1

2
i = ηB−1

i x
k−2+ 1

2
i +B−1

i

(∑
i∈Ni

AT
ij(λ

k−1
j|i − ρAjix

k−1
j + ρbij)−∇fi(x

k−2+ 1
2

i)
)

(28)

xk
i = ηB−1

i x
k−1+ 1

2
i +B−1

i

(∑
i∈Ni

AT
ij(λ

k−1
j|i − ρAjix

k−1
j + ρbij)−∇fi(x

k−1+ 1
2

i)
)
, (29)

for all i ∈ V .

We need to derive the update expression for next iteration. Firstly, the estimates {xk+ 1
2

i |k ∈ V} can
be computed to be

x
k+ 1

2
i = arg min

xi∈Rdi

[
∇fi(x

k− 1
2

i)T (xi − x
k− 1

2
i) +

η

2
∥xi − x

k− 1
2

i ∥2

− xT
i (
∑
i∈Ni

AT
ijλ

k
j|i) +

∑
j∈Ni

ρ

2
∥Aijxi +Ajix

k
j − bij∥2

]

= ηB−1
i x

k− 1
2

i +B−1
i

(∑
i∈Ni

AT
ij(λ

k
j|i − ρAjix

k
j + ρbij)−∇fi(x

k− 1
2

i)
)

(30)

(a)
= xk

i +B−1
i

(∑
i∈Ni

AT
ij(λ

k
j|i − λk−1

j|i)− ρAji(x
k
j − xk−1

j))
)
, (31)

where step (a) is derived by utilizing (29).

Upon obtaining {xk+ 1
2

i |k ∈ V}, the expressions for {xk+1|
i k ∈ V} can be derived as

xk+1
i = arg min

xi∈Rdi

[
∇fi(x

k+ 1
2

i)T (xi − x
k+ 1

2
i) +

η

2
∥xi − x

k+ 1
2

i ∥2

− xT
i (
∑
i∈Ni

AT
ijλ

k
j|i) +

∑
j∈Ni

ρ

2
∥Aijxi +Ajix

k
j − bij∥2

]

= ηB−1
i x

k+ 1
2

i +B−1
i

(∑
i∈Ni

AT
ij(λ

k
j|i − ρAjix

k
j + ρbij)−∇fi(x

k+ 1
2

i)
)

(a)
= x

k+ 1
2

i +B−1
i (η(x

k+ 1
2

i − x
k− 1

2
i)− (∇fi(x

k+ 1
2

i −∇fi(x
k− 1

2
i)), (32)

where step (a) follows from (30).

It is immediate that (31)-(32) coincide with (2)-(3). The update expression (4) for the Lagrangian
multipliers follows directly from (19) for PDMM. The proof is complete.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

1 2 3 4 5

iterations 10
4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

v
a

l
lo

s
s

Transformer concat. MH and V

BeliefFormer*

Transformer

Figure 9: Performance comparison for NLP using 5B tokens extracted from OpenWebText. Transformer in the
figure is in fact nano-GPT2.

C PERFORMANCE OF AN ATTENTION LAYER BY CONCATENATING MH(X)
AND V (X)

In this section, we present additional experimental results for training a Transformer with another
attention layer obtained by concatenating both MH(X) and V (X), which is processed by a linear
mapping of a larger size than that the one in the standard attention layer. In particular, we considered
the NLP task as presented in the main paper. In this case, the number of parameters in belief-attention∗
is the same as in the new attention layer by concatenating both MH(X) and V (X).

Fig. 9 visualizes the validation loss curves over iterations for three different attention layers. The
loss curves for Transformer and BeliefFormer∗ were obtained from Fig. 6 directly. In brief, it is
found in the beginning of the training procedure, the attention layer by concatenating both MH(X)
and V (X) produces lower validation performance (i.e., the black curve in Fig. 9) than the standard
attention. However, as the iteration increases, the performance gain keeps decreasing. Starting from
2k iterations, the new attention layer performs slightly worse than the standard attention. This could
be explained by the fact that the V tensor does not really provide new information from other tokens.
When we concatenate MH(X) and V (X) for linear mapping and skip-connection in each attention
layer, it may confuse the overall Transformer architecture.

The above experiment indicates that the orthogonal projections introduced in BeliefFormer∗ make a
difference for performance improvement.

17

	Introduction
	Related Works
	Brief Review of QA-PDMM
	Belief-attention via orthogonal projections
	Revisiting Attention in transformer
	Update expression of belief-attention
	Limitations of belief-attention w.r.t. attention

	A variant of belief-attention
	Limitations of belief-attention

	Experiments
	Image classification over ImageNet
	NLP for training nano-GPT2
	NLP for training Llama
	Image classification over CIFAR10 and CIFAR100

	Conclusions
	Regarding Generation of Figure 4.
	Derivation of QA-PDMM
	Update expressions of QA-PDMM
	Update expressions of QA-PDMM

	Performance of an attention layer by concatenating MH(X) and V(X)

