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ABSTRACT

In this paper, we consider modifying the attention layer in Transformer to improve
its generalization performance. Conceptually speaking, the standard attention
layer takes the softmax-based weighted summation of V vectors as the residual
signal (with a linear mapping for dimensionality alignment) when performing the
skip-connection operation. Inspired by distribution optimization, we propose to
first perform an orthogonal projection of the softmax-based weighted summation
of V vectors with respect to the original V vectors and then take the orthogonal
projection instead as the residual signal (with a linear mapping for dimensionality
alignment) when performing the skip-connection operation. By doing so, the
token vectors are modified relatively more along their tangent directions compared
to their magnitudes. Intuitively speaking, the orthogonal projection reflects a
belief about the discrepancy between the weighted summation of V vectors and
the V vectors themselves. We refer to the newly modified layer and the overall
architecture as the belief-attention and the BeliefFormer, respectively. To further
improve performance, we also design a variant of belief-attention by incorporating
two types of orthogonal projections, referred to as belief-attention∗. Extensive
experiments show that the two new variants of attention layer in Transformers
lead to better performance than the standard attention for image classification over
ImageNet and natural language processing when training nano-GPT2.

1 INTRODUCTION

In recent years, Transformers (Vaswani et al., 2017) have made significant advances across a range
of data analysis fields, including natural language processing (NLP) (Achiam et al., 2023; Touvron
et al., 2023), computer vision (Dosovitskiy et al., 2021), image generation and editing (Peebles &
Xie, 2023; Hatamizadeh et al., 2024; Zhang et al., 2023), and audio processing (Latif et al., 2023). A
fundamental component of transformers is the attention layer, which enables the model to capture
long-range dependencies within a sequence of tokens. This mechanism works by computing a
weighted summation of the value (V) vectors based on the similarity between query (Q) and key (K)
vectors, determined via a softmax function. Conceptually, the attention operation allows each token
to aggregate relevant information from all other tokens. Following the attention layer, a feedforward
network (FFN) processes each token independently, which can be interpreted as local information
fusion. Recent large language models (LLMs) exploit a so-called mixture of experts (MoE) as
an extension of basic FFN to improve the performance, where at the inference stage, only certain
percentage of weights in the FFN layer are activated depending on the particular input.

One prominent research direction focuses on reducing the quadratic computational complexity
inherent in the standard attention layer when processing long token sequences. Various simplified
attention schemes have been proposed, which include, for example, LinFormer (Wang et al., 2020),
LongFormer (Beltagy et al., 2020), ReFormer (Kitaev et al., 2020), FlashAttention (Dao, 2023),
RingAttention (Liu et al., 2023), BurstAttention (Sun et al., 2023). FlashAttention is being widely used
in practical situations as it reduces the computational complexity considerably without introducing
any approximation in the standard attention layer.

In this work, we attempt to modify the attention layer to improve the generalization performance
of Transformers. To do so, we draw inspiration from distributed optimization. From a high-level
point of view, the attention-FFN framework in Transformers exhibits a certain similarity to the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

framework of distributed optimization over an undirected graph. In general, a typical distributed
optimization algorithm (see (Zhang & Heusdens, 2018; Boyd et al., 2011)) iteratively alternates
between information-aggregation and information-fusion operations until all nodes in the graph
reach consensus. Typical algorithms include alternating direction method of multipliers (ADMM)
(Boyd et al., 2011) and primal-dual method of multipliers (PDMM) (Zhang & Heusdens, 2018).
Considering PDMM as an example, it was primarily designed to solve the following separable convex
optimisation problem over an undirected graph G = (V, E) representing a pear-to-pear (P2P) network
from practice:

minimise
∑
i∈V

fi(xi)

subject to Aijxi +Ajixj = bij , (i, j) ∈ E ,
(1)

where each node i carries a local objective function fi(·) : Rdi → R and each edge (i, j) carries a
linear equality constraint as specified by the constant (Aij , Aji, bij) ∈ (Rdij×di ,Rdij×dj ,Rdij ). As
will be discussed in detail in Section 2, at each iteration of PDMM, each node in the network performs
information aggregation from neighbours (corresponding to attention in Transformer) and local
information fusion (corresponding to FFN). One key property of PDMM is that its update expression
utilizes the consensus discrepancy in terms of the residual error of the linear edge-constraints in (1),
which is essential to make the algorithm converge.

We consider extending the standard attention by drawing inspiration from PDMM. In particular,
we propose to first perform orthogonal projection of the softmax-based weighted summation of V
vectors with respect to their respective original V vectors. The orthogonal projection is then taken
as the residual signal, and is further processed by a linear mapping for dimensionality alignment in
preparation for skip-connection. This above newly designed attention, referred to as belief-attention,
encourages updates to the token vectors more in their tangent directions and less in their magnitudes.
The overall Transformer architecture with belief-attention is referred to as BeliefFormer. In brief, we
make three contributions in the paper:

• Belief-attention is proposed as an extension of attention by taking the orthogonal projection
as the residual signal before applying the linear mapping for dimensionality alignment. The
orthogonal projection provides a belief about the discrepancy between the softmax-based
weighted summation of V vectors and V vectors themselves.

• A variant of belief-attention is also proposed by combining two types of orthogonal projec-
tions for capturing more information, referred to as belief-attention∗.

• Experimental on training nano-GPT2 for natural language processing (NLP), and training
ViTs over Imagenet and CIFAR10, show that belief-attention and its variant belief-attention∗
demonstrate considerable improvement in validation performance.

2 BRIEF REVIEW OF PDMM

To facilitate node-oriented distributed optimization of (1) over a graph G = (V, E), PDMM introduces
two Lagrangian multipliers λi|j and λj|i for the linear constraint over the edge (i, j) ∈ E . Let Ni

denote the set of neighbors for node i. At the kth iteration, each new update xk+1
i is computed in

terms of the information {(xk
j|i, λ

k
j|i)|j ∈ Ni} from neighbors as

xk+1
i = arg min

xi∈Rdi

fi(xi)− xT
i

1st info. aggregation︷ ︸︸ ︷
(
∑
i∈Ni

AT
ijλ

k
j|i) +

2nd info. aggregation︷ ︸︸ ︷∑
j∈Ni

ρ

2
∥Aijxi +Ajix

k
j − bij∥2


︸ ︷︷ ︸

info. fusion

∀i ∈ V,

(2)
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where the stepsize ρ > 0. Once xk+1
i is available, the associated Lagrangian multipliers of node i are

updated to be

λk+1
i|j = λk

j|i + ρ(bij −Ajix
k
j −Aijx

k+1
i ) ∀j ∈ Ni (3)

= λk−1
i|j +

residual signals︷ ︸︸ ︷
ρ(bij −Ajix

k
j −Aijx

k−1
i ) + ρ(bij −Ajix

k
j −Aijx

k+1
i )︸ ︷︷ ︸

skip-connection

∀j ∈ Ni, (4)

where the computation of λk+1
i|j can be interpreted as performing skip-connection by adding two

residual signals to λk−1
i|j . Detailed convergence results of the algorithm can be found in Zhang &

Heusdens (2018); Sherson et al. (2019).

By inspection of (2), it is seen that the computation of xk+1
i involves two weighted summations

from neighbors, which are
∑

i∈Ni
AT

ijλ
k
j|i and

∑
j∈Ni

∥Aijxi + Ajix
k
j − bij∥2 as contributed by

the first and second information aggregation terms. xk+1
i is then obtained by solving a small-size

optimization problem with the local function fi(·), and can be viewed as local information fusion.

Next we study the Lagrangian multiplier λk
j|i being explored in the computation of xk+1

i . It is not
difficult to conclude from (3)-(4) that λk

j|i can be represented as a summation of the historical residual
errors of the linear equality constraint for edge (i, j) ∈ E . For the case of k being even, λk

j|i can be
represented as

λk
j|i = λ0

j|i + ρ

k/2∑
m=1

(bij −Ajix
2m−2
j −Aijx

2m−1
i ) + ρ

k/2∑
m=1

(bij −Ajix
2m−1
j −Aijx

2m
i ). (5)

We take each residual error in (5) as the measurement of the consensus discrepancy between the
pair of nodes (i, j). As a result, λk

j|i is computed by accumulating the residual errors across the past
iterations.

In addition to the Lagrangian multipliers for capturing the historical consensus discrepancy, it is clear
from (2) that the set of quadratic penalty functions {∥Aijxi +Ajix

k
j − bij∥}j∈Ni

are also included
in computation of xk+1

i . The penalty functions attempt to softly constrain xk+1
i in a region that

incurs small consensus discrepancy (with regard to the predefined edge-constraints) with respect to
the neighbors {xk

j }j∈Ni
. The parameter ρ > 0 in front of the penalty functions and in (5) controls

the contribution of the consensus discrepancy when updating the primal variables {xi}i∈V .

3 BELIEF-ATTENTION VIA ORTHOGONAL PROJECTIONS

In this section, we first briefly revisit the standard attention in Transformer. We then motivate
and present the orthogonal projections in designing belief-attention. Lastly, we briefly discuss the
limitations of belief-attention.

3.1 REVISITING ATTENTION IN TRANSFORMER

The original work (Vaswani et al., 2017) proposes the encoder-decoder structure in the transformer
for NLP applications. The attention-FFN framework is slightly different in encoder and decoder.
For the purposes of demonstration, we consider a simplified version of attention, represented as (see
(MHA, 2023; Dosovitskiy et al., 2021))

Hm(X) = attention(

Qm︷ ︸︸ ︷
XWQ

m ,

Km︷ ︸︸ ︷
XWK

m ,

Vm︷ ︸︸ ︷
XWV

m ) m = 1, . . . ,M (6)
MH(X) = Concat(H1(X), . . . ,HM (X)) (7)

X ⇐ X +

linear mapping︷ ︸︸ ︷
MH(X)W o︸ ︷︷ ︸

skip-connection

(8)

3
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Figure 1: Orthogonal projection

#linear mapping
Wo = torch.nn.Linear(d_in,d)
##########################
# MH: multi-head attention
# V: original V tensor
num = torch.sum(MH*V,dim=-1)
den = torch.sum(V*V,dim=-1)
Delta = MH - (num/den)*V
X = X + Wo(Delta)

Figure 2: Demonstration of pytorch code for belief-
attention

where the tensor X ∈ Rn×d is the input from the layer below in Transformer, (WQ
m ,WK

m ,WV
m ) are

the three learnable matrices for computing (Qm,Km, Vm) ∈ (Rn×dm ,Rn×dm ,Rn×dm) of the mth
attention, and Concat(. . .) stacks up M attentions {Hm(X)}Mm=1, which is further processed by the
linear mapping W o to make its dimensionality be consistent with that of X . Lastly, the notations H
and MH stand for “head" and “multi-head", respectively.

To facilitate the discussion of attention and PDMM later on, we first briefly explain the notations in
(6)-(8). Following the convention of python-based implementation (e.g., pytorch) of attention, the
tensor X ∈ Rn×d has n tokens and each token is of dimension d. Therefore, the computation for
(Qm,Km, Vm) in (6) and the linear mapping in (8) are conducted in a token-wise manner.

It is well-known that the attention operation in Equ. (6) is a QK-softmax-based weighted summation
of the n row vectors in Vm, given by

Hm(X) =

info. aggregation︷ ︸︸ ︷
softmax

(
QmKT

m√
dm

)
Vm (9)

where dm is the dimension of the row vectors in Qm. The softmax term computes the unified
relevance of each token with respect to neighboring tokens, which generally stabilizes the training
process in comparison to other forms of weighted summation. Similarly to that of PDMM, the
computed weighted summation of the n row vectors in Vm can be taken as information aggregation
from all neighbors.

In general, for a standard non-causal attention, every two tokens are neighbors, which corresponds
to a fully connected graph in distributed optimization. On the other hand, a non-casual attention
is actually associated with a sparse directed graph. This is because only earlier tokens could make
contributions to the current considered token. We will not discuss those different types of graphs in
relation with different types of attentions in detail, which is out of the scope in this paper.

3.2 UPDATE EXPRESSION OF BELIEF-ATTENTION

Motivation: By inspection of (4) for PDMM and (8) for the standard attention, both expressions
have the skip-connection operations. In (4), PDMM exploits consensus discrepancy in the form of
residual errors of the linear equality constraints in its update expression. However, in the expression
(8) for the standard attention, the tensor MH(X) is not really a residual signal from the perspective
of distributed optimization. This is because each term Hm(X) within MH(X) does not actually
measure any discrepancy among the tokens. We argue that the Transformer architecture would benefit
if certain type of discrepancy could be captured by the attention layer. By doing so, the learnable
parameters in Transformer could promptly respond to the discrepancy among the tokens during the
training process, thus making the learning procedure more efficient.

Taking orthogonal projection as the residual signal: Following the above guidance, we propose to
perform orthogonal projection of each row vector in MH(X) with respect to its original row vector in

V (X) = Concat(V1, . . . , VM ).

4
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Figure 3: Demonstration of the impact of the orthogonal projection ∆X[i, :]. The notation ∠(·, ·) stands for
the angle between two vectors. The data points in the above four plots are collected when training BeliefFormer
of 12 belief-attention layers over ImageNet for the 1st epoch (see Appendix A for explaining how the data points
are collected in detail).

We use MH(X)[i, :] and V (X)[i, :] to denote the ith row vector of MH(X) and V (X), respectively.
Their associated orthogonal projection is computed as

∆(X)[i, :] = MH(X)[i, :]− αiV (X)[i, :] where αi =
⟨MH(X)[i, :], V (X)[i, :]⟩
⟨V (X)[i, :], V (X)[i, :]⟩

, (10)

where ⟨·, ·⟩ denotes the inner product of two vectors. As demonstrated in Fig. 1, ∆(X)[i, :] is
orthogonal to V (X)[i, :]. By using algebra, one can easily show that the magnitude ∥∆(X)[i, :]∥ is
either small or equal to ∥MH(X)[i, :]∥.

∥∆(X)[i, :]∥ ≤ ∥MH(X)[i, :]∥, (11)

where we use ∥ · ∥ to denote the l2 norm of a vector.

The signal ∆(X)[i, :] reflects a belief about the discrepancy between the original vector V (X)[i, :] and
the newly computed vector MH(X)[i, :] which is obtained via softmax-based weighted summation.
A large magnitude of |∆(X)[i, :]| indicates the the associated token should be adjusted significantly,
and vice versa. .

We take ∆(X) as the residual signal when performing the skip-connection operation. Once the
orthogonal projection ∆(X) is obtained, the token tensor X can be updated as follows:

X ⇐ X +

linear mapping︷ ︸︸ ︷
∆(X)W o︸ ︷︷ ︸

skip-connection

, (12)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where the linear mapping W o is applied to the residual signal ∆(X) for dimensionality alignment.
Fig. 2 demonstrates the pytorch code for realizing belief-attention. In practice, one can easily adopt
the pytorch code to convert a standard attention into belief-attention. The main difference with respect
to the standard attention is to subtract a scaled version of the original V tensor from the multi-head
attention as represented in (10).

Impact of the update expression (12): We note that because of the linear mapping W o in (12)
and {WV

m}Mm=1 in (6), the transformed residual signal ∆(X)W o will not be orthogonal to X . The
expression (11) naturally leads to the following inequality:

∥∆(X)[i, :]W o∥ ≤ ∥MH(X)[i, :]W o∥.

The obtained empirical results in Fig. 3 confirm that the magnitudes ∥∆(X)[i, :]W o∥ are consider-
ably smaller than ∥MH(X)[i, :]W o∥. The plots in the figure also demonstrate that the two angles
∠(∆(X)[i, :]W o, X[i, :]), and ∠(MH(X)[i, :]W o, X[i, :]) are roughly the same.

The above analysis indicates that the update in (12) within belief-attention causes relatively more
change in the tangent directions of the tokens (which are the row vectors in X) and less change in
their magnitudes, compared to the update in the standard attention.

Discussion on an alternative choice of discrepancy metric: One might think that the vector
difference MH(X)[i, :]− V (X)[i, :] could also be taken as the residual signal. We argue that both
the two terms in the above vector difference are dependent on V (X)[i, :]. It may occur that the
magnitude of MH(X)[i, :]− V (X)[i, :] is greater than the magnitude of MH(X)[i, :]. When adding
(MH(X)− V (X))W o to the input tensor X , it may not serve the purpose of making more change in
the tangent directions of the tokens and less change in their magnitudes.

3.3 LIMITATIONS OF BELIEF-ATTENTION W.R.T. ATTENTION

Before we discuss the limitations, we first emphasize that belief-attention does not introduce addi-
tional training parameters. That is, both belief-attention and the standard attention have the same
number of parameters. Considering the time complexities, as belief-attention requires the additional
orthogonal projection operations, it naturally leads to higher training and inference complexities. In
the experimental section, we have quantitatively measured the training and/or inference complexities
(see Table 1 and 2). It is found that the computational complexities are only slightly increased in
comparison to those of the standard attention.

It is noted that the orthogonal projection is performed on a per-token basis. Therefore, in principle,
its computation can be parallelized by using GPU to reduce the execution time. That is, each GPU
core can take care of the computation for a small number of tokens.

4 A VARIANT OF BELIEF-ATTENTION

In this section, we propose a variant of belief-attention by incorporating two types of orthogonal
projections. Firstly, we note that in Subsection 3.2 (see also Fig. 1), we project the entire vector
MH(X)[i, :] w. r. t. V (X)[i, :]. Alternatively, we can also project the individual subvector Hm(X)[i, :
] w. r. t. the original subvector Vm[i, :], which can be expressed as

∆s
m(X)[i, :] = Hm(X)[i, :]− βm,iVm[i, :] where βm,i =

⟨Hm(X)[i, :], Vm[i, :]⟩
⟨Vm[i, :], Vm[i, :]⟩

, (13)

for all m = 1, . . . ,M , and i = 1, . . . , n.

Upon obtaining the two types of orthogonal projections in (10) and (13), we then exploit both of them
when performing skip-connection. Our main purpose for doing so is to improve the performance of
the overall neural architecture with the two types of discrepancy instead of one in belief-attention
introduced earlier. The final update expression for X can be represented as

∆s(X) = Concat(∆s
1(X), . . . ,∆s

M (X)) (14)
X ⇐ X +∆(X)W o +∆s(X)W s︸ ︷︷ ︸

skip-connection

, (15)
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Figure 4: Performance comparison for image classification over ImageNet of 1000 classes.

no. of parameters time for evaluating
val. dataset (s)

Transformer 22.2M (-) 37.46 (-)
BeliefFormer 22.2M (0%) 37.93 (1.3%)
BeliefFormer∗ 24.0M (8.1%) 38.87 (3.8%)

Table 1: Comparison of number of training parameters and computational complexities for image classification
over ImageNet. We note that the input image size to the models changes dynamically over training time.
Therefore, it is not feasible to measure the average training time per epoch. The values in the round bracket (·)
account for the overhead of BeliefFormer∗ and BeliefFormer in comparison to Transformer in percentage.

where ∆s(X) is obtained by stacking up M individual orthogonal projections {∆s
m(X)}Mm=1. In

comparison to (12), an additional linear mapping W s is required to make dimensionality alignment
for ∆s(X).

In brief, the update expressions (6)-(7), (10), and (13)-(15) together define a new type of attention
layer, which we refer to as belief-attention∗. Consequently, Transformer equipped with belief-
attention∗ is referred to as BeliefFormer∗. Based on the python code in Fig. 2 for belief-attention,
one can easily develop the python code for belief-attention∗.

4.1 LIMITATIONS OF BELIEF-ATTENTION∗

Apparently, belief-attention∗ introduces an additional set of learnable parameters in W s in compar-
ison to the standard attention. Furthermore, since belief-attention∗ needs to perform two types of
orthogonal projections, its computational complexity would be slightly higher than that of belief-
attention. The results in Table 1 and 2 indicate that the overhead introduced in BeliefFormer∗ is
acceptable given the fact that its performance gain w. r. t. that of Transformer (see Fig. 4 and 5) is
remarkable.

5 EXPERIMENTS

We evaluated BeliefFormer and its variant BeliefFormer∗ for three tasks: (1) image classification
over ImageNet; (2) NLP over 5B tokens extracted from OpenWebText; (3) image classification over
CIFAR10. Our experiments make use of three open-source repositories for the above three tasks,
which are listed in Table 4 in the appendix. All the experiments were conducted on a computer with a
single Nvidia Geforce A6000 GPU with 48GB memory.
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Figure 5: Performance comparison for NLP using 5B tokens extracted from OpenWebText. Transformer in the
figure is in fact nano-GPT2.

no. of parameters training time (s)
per iteration

tokens/s
in training

inference time (s)
per iteration

Transformer 123.5M (–) 0.274 (–) 2284 0.237 (–)
BeliefFormer 123.5M (0%) 0.284 (3.6%) 2245 0.241 (1.7%)
BeliefFormer∗ 130.6M (5.7%) 0.299 (9.1% ) 2147 0.260 (9.7%)

Table 2: Comparison of number of parameters and computational complexities for NLP. Transformer in the
table is in fact nano-GPT2. The values in the round bracket (·) account for the overhead of BeliefFormer∗ and
BeliefFormer in comparison to Transformer in percentage.

In brief, it is found that both BeliefFormer and BeliefFormer∗ outperform Transformer consistently in
all tasks. BeliefFormer∗ needs to introduce a small percentage of learnable parameters and marginal
computational complexity in comparison to Transformer. BeliefFormer, on the other hand, only
introduces marginal computational complexity.

5.1 IMAGE CLASSIFICATION OVER IMAGENET

We adopted the 1st open-source repository in Table 4, which is for training a ViT over Ima-
geNet (from 2012). There are 12 attention layers in the original ViT model (the model name
is deit_small_patch16_224). We replaced each standard attention in ViT with belief-attention and
belief-attention∗, respectively. All the models were trained from scratch by using the ImageNet
training data. The training setups in terms of the hyper-parameters follow directly from the original
open source. After training, they are evaluated via the associated validation dataset.

Fig. 4 visualizes the obtained validation accuracy curves over epochs and over wall-clocks. It is clear
that both BeliefFormer and BeliefFormer∗ outperforms Transformer (which is in fact the ViT model)
significantly as the epoch index increases. The right plot in the figure against wall-clock suggests that
the additional training time introduced in the two new models is negligible.

Table 4.1 summarizes the number of parameters and inference time for the three models. It is seen
that the inference time for the three models are roughly the same when evaluating the valuation
dataset, indicating that the orthogonal projection in the two new models can be efficiently computed
by using GPU. For this particular task, BeliefFormer∗ introduces about 8% new parameters to handle
two types of orthogonal projections.
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5.2 NLP OVER A SUBSET OF OPENWEBTEXT

We adopted the 2nd open-source repository in Table 4 for this experiment. The open-source is
for training nano-GPT2 over 5B tokens extracted from OpenWebText. Similarly, we replaced the
standard attention layer in nano-GPT2 with belief-attention and belief-attention∗, respectively. The
training setups follow directly from the original open source. We refer to nano-GPT2 as Transformer
in the context below.

Fig. 5 visualizes the validation loss curves over iterations and over wall-clock. Apparently,
BeliefFormer∗ performs significantly better than the other two models even considering wall-clock
instead of iterations. This suggests that it is indeed beneficial to include those two types of orthogonal
projections as studied in Section 4. On the other hand, BeliefFormer performs slightly better than
Transformer across iterations. If the training time complexity is taken into account, BeliefFormer and
Transformer have a similar training speed.

Table 2 summarizes the number of parameters and time complexities of the three considered models.
Similarly to the 1st task, BeliefFormer∗ slightly increases the number of parameters and compu-
tational complexity, but yields a noticeable improvement in validation performance. Considering
BeliefFormer, it introduces only a small overhead in terms of computational complexity.

5.3 IMAGE CLASSIFICATION OVER CIFAR10

In this experiment, we adopted the 3rd open-source repository for training ViT-small over CIFAR10
in Table 4. Similarly, we replaced the standard attention layer by belief-attention and belief-attention∗
developed in this paper. In the context below, we refer to ViT-small as Transformer.

The SET-Adam optimizer was utilized Zhang (2024) in the training process for all the three models
with the configuration (η0, β1, β2, ϵ) = (1e − 4, 0.9, 0.999, 1e−18), where η0 denotes the initial
learning rate. Each model was trained for 400 epochs. The remaining training setups follow directly
from the original open source. Three experimental repetitions were performed per training setup to
mitigate the effect of randomness.

Table 3 summarizes the obtained validation accuracy. It is clear that both BeliefFormer and
BeliefFormer∗ produces considerably higher validation accuracy than Transformer. This indicates that
the introduced orthogonal projections is a better choice than the softmax-based weighted summation
of V vectors when performing the skip-connection in the attention layer.

Table 3: Validation accuracy and training time per epoch (in seconds) for image classification over CIFAR10.
Transformer in the table is in fact ViT-small from the open-source.

Transformer BeliefFormer BeliefFormer∗

val. acc validation time val. acc validation time val. acc validation time
88.15±0.55 1.66 89.14±0.17 1.82 88.64±0.08 2.17

6 CONCLUSIONS

In this work, we have proposed belief-attention and belief-attention∗ to replace attention in Trans-
former from a distributed optimization perspective. In particular, we first identify similarity between
the update expressions of PDMM and the attention-FFN framework in Transformer. The softmax-
based weighted summation in the standard attention can be viewed as information aggregation from
neighboring tokens while the FFN operation can be taken as local information fusion. Inspired by
PDMM that exploits the consensus discrepancy in its update expressions, we utilize the discrepancy in
the form of the orthogonal projection between the weighted summation of V vectors and the original
V vectors themselves when designing the two new variants of attention layer. As demonstrated
in Fig. 3, usage of orthogonal projections in belief-attention and belief-attention∗ would make the
tokens be updated relatively more in their tangent directions and less in their magnitudes. Experi-
mental results over three tasks indicate that BeliefFormer ((aka Transformer with belief-attention) )
BeliefFormer∗ (aka Transformer with belief-attention∗) performs consistently better than Transformer
in terms of the validation performance.
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ImagNet task https://github.com/BorealisAI/efficient-vit-training
NLP task https://github.com/KellerJordan/modded-nanogpt/tree/casted

CIFAR10 https://github.com/kentaroy47/vision-transformers-cifar10

Table 4: list of open-source repositories expoited in this paper.

A REGARDING GENERATION OF FIGURE 3.

We briefly explain how the data points were collected when generating the four plots of Fig. 3. When
we trained BeliefFormer over ImageNet, we computed and collected the four quantities ∥∆(X)[i, :]∥,
∥MH(X)[i, :]∥, cos∠(∆(X)[i, :]W o, X[i, :]), and cos∠(MH(X)[i, :]W o, X[i, :]) for a particular
token index i = 0 across different belief-attention layers and across different iterations in the first
epoch. There are in total 12 belief-attention layers in the tested BeliefFormer. The behaviors of the
above four quantities are similar across different layers.
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