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Abstract

Safety aligned Large Language Models (LLMs)
are vulnerable to harmful fine-tuning attacks — a
few harmful data mixed in the fine-tuning dataset
can break the LLMs’s safety alignment. While
several defenses have been proposed, our evalua-
tion shows that existing defenses fail when some
specific training hyper-parameters are chosen — a
large learning rate or a large number of training
epochs in the fine-tuning stage can easily invali-
date the defense. To this end, we propose Anti-
dote, a post-fine-tuning stage solution, which re-
mains agnostic to the training hyper-parameters
in the fine-tuning stage. Antidote relies on the
philosophy that by removing the harmful parame-
ters, the harmful model can be recovered from the
harmful behaviors, regardless of how those harm-
ful parameters are formed in the fine-tuning stage.
With this philosophy, we introduce a one-shot
pruning stage after harmful fine-tuning to remove
the harmful weights that are responsible for the
generation of harmful content. Despite its em-
barrassing simplicity, empirical results show that
Antidote can reduce harmful score while main-
taining accuracy on downstream tasks.

1. Introduction

Fine-tuning-as-a-service has become a new paradigm for
Large Language Models (LLM) service with an increas-
ing demand for personalized service delivery. Typically,
fine-tuning data are uploaded by the users, and the ser-
vice provider (e.g., OpenAl') finetunes a pre-trained LLM,
which is then served to meet the users’ customized need.

Before fine-tuning for user tasks, a pre-trained LLM is usu-
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Figure 1. Antidote with a three-stage pipeline, i.e., i) safety align-
ment, ii) user fine-tuning, iii) one-shot pruning. While existing
defenses focus on the first stage, e.g., (Huang et al., 2024d; Rosati
et al., 2024a) or the second stage (Huang et al., 2024b; Mukhoti
et al., 2023), Antidote utilizes the post-fine-tuning stage to prune
the harmful weights to recover the model from harmful behaviors.

ally safety aligned to guarantee that the outputs of the LLM
meet the safety preference, i.e., to refuse to generate harmful
content even when the users trigger them to do so. However,
recent studies (Qi et al., 2023; Yang et al., 2023; Zhan et al.,
2023; Lermen et al., 2023; Yi et al., 2024a) show that a few
harmful data mixed in the fine-tuning dataset can trigger the
model to forget the alignment knowledge it learned previ-
ously —it no longer uses refusal response when users submit
a harmful prompt.

Existing mitigation strategies can be broadly categorized
into two categories, i.e., alignment stage defense and user
fine-tuning stage defense. The first category is concerned
with how to improve the large language model’s immuniza-
tion towards the harmful fine-tuning data in the alignment
stage. For example, (Huang et al., 2024d) add artificial
perturbation in the alignment stage to simulate the harmful
embedding drift in the fine-tuning stage, and utilizes a mini-
max optimization to enforce the model to be immune to the
perturbation. (Rosati et al., 2024b) utilize a representation
noising technique to degrade the representation distribution
of the harmful data to a random Gaussian noise, such that
the harmful content generation is more difficult to learn by
harmful fine-tuning data. For fine-tuning-stage mitigation,
the core idea is to mitigate the forgetting of the alignment
knowledge but also to learn the knowledge for the users’
tasks. To achieve this goal, (Mukhoti et al., 2023) add a
regularization to constrain drift in feature space to mitigate
the forgetting of alignment knowledge and (Huang et al.,
2024b) separate the fine-tuning stage into two states, which
alternatively optimize the alignment and fine-tuning dataset.
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However, our empirical evaluation in Section III reveals
a common weakness of the existing defense methods — a
small learning rate and a small number of epochs in the
fine-tuning stage are required to guarantee their effective-
ness. This requirement can be detrimental to downstream
tasks’s performance because some fine-tuning tasks require
a larger learning rate and longer training epochs to guaran-
tee learning performance. To this end, we in this paper aim
to answer the following research question:

Is there a defense that can be less sensitive to
the hyper-parameters of the fine-tuning stage?

Driven by this question, we propose Antidote, a defense
that realigns the model after the fine-tuning stage has been
fully completed. The design of Antidote is agnostic to how
the fine-tuning is done — it relies on the philosophy that by
removing the harmful parameters, the harmful model can
be recovered from the harmful behaviors, regardless of how
those harmful parameters are formed in the fine-tuning stage.
Empirically, we show that Antidote respectively reduces the
harmful score by up-to 17.8% (compared to SFT without
defense) while maintaining the same level of fine-tuning
accuracy (by up-to 1.83% accuracy loss).

To the end, we summarize our contribution as follows:

* We evaluate the existing solutions for harmful fine-tuning.
We show that existing solutions are highly sensitive to the
training hyper-parameters in the fine-tuning stage, which
we name hyper-parameter sensitive issue.

* To fix this issue, we propose Antidote, a post-fine-tuning
realignment solution that remains agnostic towards the
training details in the fine-tuning stage.

» Comprehensive experiments on four downstream tasks
and different attack settings are conducted to verify the
effectiveness of the proposed method.

2. Related Work

Safety alignment. Safety alignment is about how to align
an LLM such that its outputs are aligned with humans’
values. Representative techniques are RLHF (Ouyang et al.,
2022) and its variants (Dai et al., 2023; Bai et al., 2022; Wu
et al., 2023; Dong et al., 2023; Rafailov et al., 2023; Yuan
et al., 2023). Most recently, there are alternative solutions
focusing on augmenting the alignment data, e.g., (Liu et al.,
2023a;b; Ye et al., 2023; Tekin et al., 2024).

Harmful fine-tuning. (Qi et al., 2023; Yang et al., 2023;
Zhan et al., 2023; Lermen et al., 2023; Yi et al., 2024a) show
that LLMs aligned by RLHF or SFT (supervised fine-tuning)
can be jail-broken after fine-tuning on explicit/implicit harm-
ful data, and several mechanism studies (Leong et al., 2024;
Wei et al., 2024; Peng et al., 2024; Jain et al., 2024; Qi et al.,
2024b; Hsiung et al., 2025; Guo et al., 2024; Poppi et al.,
2024; Che et al., 2025; Chen et al., 2025) are conducted to

analyze the problem. Existing solutions for harmful fine-
tuning can be categorized into two categories. The first
category is alignment stage solutions, which study how to
improve the model’s immunization ability to the fine-tuning
by modifying training procedure in alignment stage. Ex-
amples are Vaccine (Huang et al., 2024d) and RepNoise
(Rosati et al., 2024b;a). Vaccine vaccinates the model by
adding embedding perturbation in the alignment stage, and
RepNoise improved the robustness by enforcing the repre-
sentation of the harmful data to be a random Gaussian noise.
Other alignment solutions include CTRL (Liu et al., 2024c¢),
TAR (Tamirisa et al., 2024), Booster (Huang et al., 2024a),
SN-Tune (Zhao et al., 2025b), T-Vaccine (Liu et al., 2024a),
CTRAP (Yi et al., 2025b), KT-IPA (Cheng et al., 2025),
SAM unlearning (Fan et al., 2025), Reward Neutralization
(Cao, 2025) and SEAM (Wang et al., 2025¢). The second
category is fine-tuning-stage solutions (Mukhoti et al., 2023;
Bianchi et al., 2023; Zong et al., 2024; Huang et al., 2024b;
Wang et al., 2024; Lyu et al., 2024; Qi et al., 2024a; Shen
et al., 2024; Choi et al., 2024; Du et al., 2024; Li et al., 2025;
Eiras et al., 2024; Li & Kim, 2025; Li et al., 2024b; Liu
et al., 2024b; Zhao et al., 2025a; Liu et al., 2025; Li, 2025;
Wau et al., 2025; Peng et al., 2025), which study how to avoid
forgetting the alignment knowledge while also learning the
fine-tuning knowledge by modifying training procedure in
user fine-tuning stage. Specifically, LDIFS (Mukhoti et al.,
2023) introduces a regularizer to enforce the iterate’s em-
bedding to be in close proximity to that of the aligned model.
Lisa (Huang et al., 2024b) alternatively optimizes over the
alignment data and the fine-tuning data and use proximal
regularizer to enforce proximity between iterates. Recently,
there are advanced attacks (He et al., 2024; Halawi et al.,
2024; Guan et al., 2025; Huang et al., 2025a; Davies et al.,
2025; Kazdan et al., 2025), and there are attacks towards
other settings, e.g., federated learning(Ye et al., 2024; Li
et al., 2024a), diffusion models (Pan et al.) and large reason-
ing model (Huang et al., 2025b). For a more comprehensive
discussion, we refer to surveys (Huang et al., 2024c; Wang
et al., 2025a; Verma et al., 2024)

Model sparsification. Since (Frankle & Carbin, 2018),
model sparsification for deep learning models has been ex-
tensively studied. The core research problem for model spar-
sity is to score the weights coordinates according to their im-
portance, and then remove the unimportant ones to compress
the model. For LLMs, (Frantar & Alistarh, 2023) propose
SparseGPT, which forms the importance score by solving a
layer-wise reconstruction problem. (Sun et al., 2023) pro-
pose Wanda score, which utilize joint weights/activation
metrics to measure the coordinate importance. On top of
Wanda, (Yin et al., 2023) propose layer-wise sparsity, which
further improve the model compression ratio. We in this pa-
per borrow importance score from the model sparsification
literature to identify and remove harmful parameters.
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We acknowledge that there are a few concurrent post-fine-
tuning stage defenses, aiming at purifying the model after
fine-tuning completes. RESTA (Bhardwaj et al., 2024) re-
aligns the model by interpolating a safety vector to the com-
promised model. LAT (Casper et al., 2024) utilize embed-
ding space perturbation to unlearn the harmful knowledge,
Safe LoRA (Hsu et al., 2024) projects the harmful updates
to an aligned subspace. SOMF (Yi et al., 2024c) realigns
model via subspace-oriented model fusion. (Tong et al.,
2024) realign by self-contrastive decoding. IRR (Wu et al.,
2024) and NLSR (Yi et al., 2024b) realigns by neuron cor-
rection, SafetyLock (Zhu et al., 2024) realigns by activation
patching, and Panacea (Wang et al., 2025b) optimizes the
post-fine-tuning perturbation that maximally increases the
safety loss. There are several other post-fine-tuning stage
solutions that are worth to be checked out, e.g., (Yi et al.,
2025a; Liu et al., 2024b; Wu et al., 2024; Gong et al., 2025;
Djuhera et al., 2025; Yang et al., 2025; Lu et al., 2025). It is
possible that these concurrent defense can also be insensitive
the hyper-parameters in fine-tuning stage. However, prior
to us, there is no systematical study on hyper-parameter
sensitivity issue, which highlights the significance of post-
fine-tuning stage defense.

3. Preliminaries
3.1. Threat Model and Assumptions

Fine-tuning-as-a-service. Fine-tuning-as-a-service is illus-
trated in Figure 1. In this scenario, users upload fine-tuning
data to the service provider. On behalf of users, the provider
fine-tunes the aligned pre-trained model on this dataset, and
the finetuned model is deployed to deliver personalized ser-
vice to users. The fine-tuned data is uploaded by users and
therefore incurring safeyt risk. Because the model is de-
ployed in the service provider’s server and the answer to
user prompts is delivered by the service provider’s API, the
service provider has an obligation to ensure the answer is
harmless. Otherwise, the provider might face governance
issues (Reuel et al., 2024; Huang et al., 2024c¢) or lawsuit 2,

Assumptions. We assume the service provider hosts a harm-
ful dataset D;.cq1ign (containing harmful prompt-harmful
answer pairs), which we use to perform post-fine-tuning
stage re-alignment. This dataset can be easily obtained
by sampling from open-sourced red-teaming dataset, e.g.,
BeaverTails (Ji et al., 2023), HH-RLHF, etc. Of note, such
a harmful dataset is also assumed in already accepted
papers (Rosati et al., 2024a; Huang et al., 2024a) and a
prior work (Tamirisa et al., 2024), and therefore should
not be too strong or out of generality. We henceforth refer to
this dataset as re-alignment dataset for clearness. Following
(Rosati et al., 2024a; Huang et al., 2024d; Hsu et al., 2024;

2Regulations, e.g., SB-1047 in California, are considered.

Zong et al., 2024), we assume the service provider main-
tains a safety alignment dataset Dy;;4r, (containing harmful
prompt-safe answer pairs).

3.2. Hyper-parameter Sensitivity Issue

In this subsection, we evaluate the existing safety alignment
for harmful fine-tuning issue and identify their insufficiency.
We choose two representative alignment-stage solutions
(Huang et al., 2024d; Rosati et al., 2024a) and two fine-
tuning-stage solutions (Huang et al., 2024b; Mukhoti et al.,
2023) as demonstration.

Existing defenses fail with a large learning rate in fine-
tuning stage. We adjust the learning rate in the user fine-
tuning stage and show how existing methods perform in
Figure 2. Our results show that both alignment-stage de-
fenses (Vaccine and RepNoise) and fine-tuning-stage de-
fenses (Lisa and LDIFS) tend to have larger harmful scores
when learning rate is large. We now explain the reason for
their failures. i) For alignment stage solutions, the core idea
of defense is to strengthen the aligned model’s robustness
towards harmful data in the later fine-tuning stage. The
reason for a degraded performance is that a larger learning
rate in fine-tuning stage can make it easier to subvert the
model’s safety alignment (the same phenomenon and expla-
nation are given in (Rosati et al., 2024a)). ii) For fine-tuning
stage defenses, the core idea is to introduce a regularizer
in the fine-tuning stage to enforce the fine-tuning iterate in
proximity to the aligned model. These solutions also suffer
degraded performance because a larger learning rate may
drift the iterates far away from the aligned model, resulting
in the model failing to converge near the aligned model.
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Figure 2. Harmful score and finetune accuracy with different learn-
ing rates after fine-tuning. Here we fix fine-tuning epochs to 20.
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Figure 4. Detailed procedure of Antidote. On Stage III after model has been fine-tuned, Antidote extracts the importance masks over
realignment dataset. Then this mask is applied to purify the harmful fine-tuned model.

Existing defenses fail with a large number of fine-tuning
epochs. We adjust the number of fine-tuning epochs in
the user fine-tuning stage and show the results in Table
3. Similar to the learning rate, a larger number of fine-
tuning epochs tends to enlarge the harmful score and break
the defense. The reasons for their failure are similar to
that induced by the large learning rate, i.e., i) strengthened
alignment can still be jail-broken with more training epochs,
and ii) More fine-tuning epochs induce more drift towards
the aligned iterate.

A sufficiently large learning rate and finetune epochs
are necessary. However, as shown in the right figures of
Table 2 and 4, a sufficiently large learning rate is necessary
to guarantee good fine-tune accuracy, which indicates that
state-of-the-art solutions fall short and need renovation.

We refer to the common weakness of these defenses as
hyper-parameter sensitivity issue, which restricts the gen-
eral usage of the alignment solutions.

4. Methodology

In order to counter the hyper-parameters sensitivity issue
in fine-tuning stage, we propose a post-fine-tuning safety
alignment that remains agnostic to the exact training setting
in fine-tuning.

The high-level idea of the proposed defense, named Anti-
dote, is to remove the harmful parameters in the model after
the model has been corrupted with fine-tuning. The method
is agnostic to the hyper-parameter in fine-tuning stage be-
cause in principle the harmful parameters can anyway be
deactivated regardless of how they form in the fine-tuning
stage. We refer to Figure 4 for a system overview.

Identify harmful parameters. To achieve the defense
goal, we first need to identify the important parameters
(i.e., harmful parameter) over the re-alignment dataset using
Wanda score. The Wanda score (Sun et al., 2023) measures
the importance score of parameters given the re-alignment

Algorithm 1 Antidote: a post-fine-tuning safety alignment

input Mask ratio, o; Re-alignment dataset, Dyeqiign;
Safety alignment-broken fine-tuned model, w ;
output The re-aligned model w ready for deployment.
Calculate importance score i (w, Dyeqlign) With Eq. (1)
m= ArgTOPKa(h(wa DT'C{L“Q’H))
w=(1-m)ow

dataset Dy .cqiign, as follows:
1
[h(w, Dreatign)lj = W Z lw;| - [|[Aj(z, w)l|2
TE€Drcalign

ey
where D;.cq1ign 1s the harmful dataset containing harmful
question-harmful answer pairs and w is a vector represent-
ing model weights of the safety-alignment broken fine-tuned
model. [-]; retrieves the j-th element of the vector, w; is
the j-th weight coordinate (i.e., an element of the vector),
x represents a data point in the re-alignment dataset D, and
A j(z, w) retrieves the data point =’s hidden activation that
is associated with the j-th weight coordinate. Intuitively,
the importance of a coordinate of parameter is related to its
absolute value and the value of its input.

To recognize the harmful parameters over the fine-tuned
model weights w, one intuitive idea is to extract the topk
most important mask (harmful mask) on the re-alignment
dataset, indicating the most important parameters for harm-
ful content generation, as follows.

m = ArgTopK(y (h(w7 Drealign)) (2)

where ArgTopK () returns a mask with the topk coordinate
being 1 and the rest being 0. « is the ratio of coordinates that
are masked to 1, which we name mask ratio for simplicity.

Removal of Harmful parameter. Given the harmful mask
m and the weights after fine-tuning w, The pruning opera-
tion of the harmful parameters is as follows:

w=(1-m)Ow 3)
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Table 1. Harmful score and finetune accuracy under different harmful ratio. Other settings are default.

Methods ‘ Harmful score Finetune accuacy
‘ clean p=0.05 p=0.1 p=0.2 p=0.5 Average ‘ clean p=0.05 p=0.1 p=0.2 p=0.5 Average
SFT 5230 76770  79.00 79.40 8020 7352 | 95.87 95.18 95.07 95.18 93.69  95.00
Repnoise | 4240 7920 79.50 7790 8260 7232 | 9507 9484 9484 9438 94.61 94.75
Vaccine | 44.80 80.20 80.00 81.50 81.90 73.68 | 9553 9553 94.04 9518 94.04 94.86
Lisa 53.00 6090 64.80 6820 72.10 63.80 | 9392 9369 9358 9323 91.17 93.12
LDIFS | 51.70 67.70 6880 7230 71.80 6646 | 9346 9323 93.69 9323 94.04 9353
Antidote | 5290 61.20 61.20 64.60 64.50 60.88 93.58 9346 93.12 9335 91.74 93.05

where w is the re-aligned model that is ready for deploy-
ment, and © is the Hadamard product, which multiples the
two vectors for each element.

In summary, given a safety alignment-broken fine-tuned
model, we first identify the top-k harmful parameters with a
harmful mask. Then we remove those harmful parameters
from the fine-tuned model to recover it from the harmful
behavior. The recovered model is then deployed to serve
users’ customized tasks. See Algorithm 1 for full procedure.

5. Experiments
5.1. Setup

Model and Datasets. We use three mainstream pre-trained
models, i.e., Llama2-7B, Mistral-7B and Gemma-7B for
evaluations. In the default setting, we use Llama2-7B as the
backbone. We consider three datasets associated with harm-
ful data. The first dataset is an alignment dataset, which con-
tains alignment data (i.e., data paired with harmful prompt-
safe answers). The second is fine-tuning the dataset. This
dataset is mixed with p (percentage) of harmful data (paired
with harmful prompt-harmful answer) and 1 — p(percentage)
of downstream data (e.g., SST2, GSMS8K, etc). The last
one is a re-alignment dataset, which is solely constituted
by harmful data. The alignment data are sampled from
BeaverTails (Ji et al., 2023) with the label is_safe=True.
The harmful data in fine-tuning dataset and realignment
are also sampled from BeaverTails (Ji et al., 2023) with
is_safe=False, but the harmful data in those two datasets are
different. For fine-tuning tasks, we consider four different
datasets, i.e., SST2, AGNEWS, GSMS8K and AlpacaEval.
We discuss how to integrate and evaluate these tasks in
supplementary materials.

Metrics. Following (Rosati et al., 2024a; Hsu et al., 2024;
Huang et al., 2024d;b;a), we use two metrics for evalua-
tion. Both the two metrics are measured over the fine-tuned
model (except for Antidote, they are measured over the
re-alignment model).

* Finetune Accuracy (FA). It is Top-1 accuracy of the
model over the fine-tuning task’s test dataset.
¢ Harmful Score (HS). We use the moderation model from

(Ji et al., 2023) to flag the model output given unseen
malicious instructions. Harmful score is the ratio of the
flagged unsafe output.

To calculate the harmful score, we sample 1000 harmful
instructions from BeaverTails (Ji et al., 2023). To calculate
finetune accuracy, we sample 872, 1000, 1000, and 122
samples from the corresponding fine-tuning testing dataset.
In testing time, we use greedy decoding for text generation.

Baselines. We mainly consider five baselines in evalua-
tion. SFT is utilized to supervised fine-tuning on both
the alignment and fine-tuning stages. Two representa-
tive alignment-stage solutions, i.e., Vaccine (Huang et al.,
2024d) and RepNoise (Rosati et al., 2024a) modify the align-
ment stage while keeping the fine-tuning stage optimization
as SFT. Two representative fine-tuning-stage solutions, i.e.,
Lisa(Huang et al., 2024b) and LDIFS (Mukhoti et al., 2023)
modify the fine-tuning stage while keeping the alignment
stage optimization as SFT.

Training Details and Hyper-parameters. We follow
(Huang et al., 2024d) to utilize LoRA (Hu et al., 2021)
for alignment and fine-tuning. The rank of the adaptor
is 256 for both tasks. For alignment, we use 5000 safety
samples and an AdamW optimizer with a learning rate of
le-3. We train the alignment data for 20 epochs. For fine-
tuning, we use n samples, among which p (percentage)
of samples are harmful data, an AdamW optimizer with a
learning rate of Ir is used, and we train for ep epochs. The
default setting is n = 5000, p = 0.2, Ir = le — 4 and
ep = 20, and the default dataset is SST2 unless otherwise
specified. For hyper-parameters for Antidote, in default, we
set the mask ratio to be o« = 0.2 (specially, a = 0.05 for
GSMSK) and we sample 2000 harmful samples to form the
re-alignment dataset used by Antidote. See for a setting for
hyper-parameters for baselines. All experiments are done
with an H100.

5.2. Main Results

Robustness to harmful ratio. We show in Table 1 how
different methods perform when different ratios of harmful
data are mixed into the fine-tuning data. Our results indicate



Antidote: Post-fine-tuning Safety Alignment for Large Language Models against Harmful Fine-tuning

Table 2. Performance under different number of fine-tuning samples. While Lisa achieves the smallest average harmful score, its finetune

accuracy is unacceptably low.

Methods ‘ Harmful score Finetune accuacy
\ n=100 n=1000 n=2000 n=3000 n=5000 Average \ n=100 n=1000 n=2000 n=3000 n=5000 Average
SFT 65.50  76.90 77.80 80.70 79.40 76.06 9220  94.72 94.27 94.50 95.18 94.17
Repnoise | 66.50  77.60 78.80 78.60 77.90 75.88 89.45  92.66 93.69 94.72 94.38 92.98
Vaccine | 66.40  79.00 78.60 81.10 81.50 77.32 90.48  93.92 94.95 95.30 95.18 93.97
Lisa 52.80 52.40 54.00 64.30 68.20 58.34 26.72 3372 49.54 91.17 93.23 58.88
LDIFS 5570  64.60 67.10 68.90 72.30 65.72 87.73  91.17 92.32 92.43 93.23 91.38
Antidote | 57.00  60.70 62.80 61.70 64.60 61.36 90.02 9243 93.12 93.00 93.35 92.38

Table 3. Harmful score and finetune accuracy under different learning rate. The dataset is GSM8K and other settings are default.

Methods ‘ Harmful score Finetune accuacy
‘ Ir=1e-7 Ir=le-6 Ir=le-5 Ir=le-4 Ir=le-3 Average ‘ Ir=1e-7 Ir=le-6 Ir=le-5 Ir=le-4 Ir=le-3 Average
SFT 52.80 70.30 80.10 77.80 79.80 72.16 4.30 14.00 23.10 21.90 23.30 17.32
Repnoise | 52.50 70.10 79.00 80.20 75.50 71.46 4.80 12.60 24.90 23.50 24.70 18.10
Vaccine 46.50 66.00 79.40 80.60 77.50 70.00 1.80 10.90 25.50 24.20 25.80 17.64
Lisa 52.30 55.00 64.40 73.20 77.30 64.44 4.00 5.70 13.60 21.90 24.70 13.98
LDIFS 53.20 56.10 59.00 68.50 78.50 63.06 4.00 4.80 5.40 6.10 14.10 6.88
Antidote | 53.50 61.80 65.60 65.30 68.80 63.00 4.10 11.20 17.50 16.10 20.40 13.86

Table 4. Evaluation under different fine-tuning epochs. The dataset is GSM8K and other settings are default.

Methods ‘ Harmful score Finetune accuacy
‘ ep=1 ep=5 -ep=10 ep=20 ep=40 Average ‘ ep=1 ep=5 -ep=10 ep=20 ep=40 Average
SFT 76.50 7890 79.90 77.80 78.70 78.36 | 21.00 25.80 26.50 2190 24.60 23.96
Repnoise | 76.30 79.50 79.00 80.20  80.80 79.16 19.70 2620 26.10 23.50 22.70 23.64
Vaccine | 75.80 82.10 79.60 80.60 80.40 79.70 | 2040 26.00 25.10 24.20 22.60 23.66
Lisa 5540 54.80 7150 7320 75.00 65.98 450 450 21.70 2190 2440 15.40
LDIFS | 5670 61.50 64.90 68.50 72.40 64.80 490  5.00 5.70 6.10 6.10 5.56
Antidote | 61.50 66.80 66.60 65.30 63.60 64.76 13.60 1780 19.80 16.10 13.90 16.24

that Antidote is able to achieve the lowest harmful score
in most settings harmful ratio — it achieves a remarkable
11.56% reduction of average harmful score compared to
SFT with a marginal 1.45% loss of average finetune ac-
curacy. It is also notable that Antidote is able to achieve
consistently good defense performance with no clear trend
of performance degradation when the harmful ratio is high.
In contrast, all the other methods tend to lose effectiveness
when the harmful ratio is high (for example, Lisa has an
11.2% increase of harmful score from p = 0.05 to p = 0.5).
The advantage of Antidote comes from the post-fine-tuning
design, which remains agnostic of how different ratios of
harmful data originally aligned model, and is not sensitive
to how the model is going to drift from the aligned model
produced by the previous alignment stage. Of note, the two
alignment stage solutions do not seem to work well in all
the settings. We will delay the analysis of their failure in the
later learning rate experiment.

Robustness to fine-tuning samples. We show in Table 2
how different fine-tuning samples used in the fine-tuning
stage will affect the practical defense performance. Our
results indicate Antidote again achieves the best defense
performance among the baselines with a remarkable 13.42%

reduction of the harmful score. Antidote is again the only
defense that is universally robust to different sample number.

Robustness to benign fine-tuning attack. (Qi et al., 2023)
and a few subsequent research (He et al., 2024; Guan et al.,
2025) show that fine-tuning on benign data can also degrade
the model’s safety alignment. Next we show in Table 5 that
Antidote can also be robust to benign fine-tuning attack. As
shown, Antidote can sufficiently decrease the harmful score
but without hurting much fine-tune accuracy.

Table 5. Evaluation of benign fine-tuning attack on GSM8K.

Harmful Score  Fine-tune Accuracy

SFT 61.50 27.60
RepNoise 66.10 27.40
Vaccine 58.90 26.60
LDIFS 64.40 6.70
Lisa 59.20 27.60
Antidote 57.10 27.80

Robustness to learning rate in fine-tuning. In Table 3,
we adjust the learning rate in the fine-tuning stage to see its
impact on defense performance. We use GSMS8K for this
evaluation to provide more diversified statistical data. Our
results show that Antidote reduces 6.56% average harmful
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score with a marginal 0.38% average finetune accuracy drop.
Although the harmful score reduction is less competitive
compared to two fine-tuning-stage defenses Lisa and LDIFS
(which respectively achieve 7.72% and 9.50% harmful score
reduction), we note that their performance gain comes with
a drastic reduction of finetune accuracy. Moreover, the result
when [r = le — 3 also coincides with the finding in our
motivation section, that both Lisa and LDIFS suffer from
hyper-parameter sensitivity. In contrast, Antidote is less
susceptible to the exact setting of learning rate.

Robustness to training epochs in fine-tuning. In Table 4,
we adjust the number of training epochs in the fine-tuning
stage to see its impact on the defense performance. GSM8K
is used for this evaluation to provide more diversified statis-
tical data. The results show that while other defenses tend
to have a larger harmful score when fine-tuning epochs are
larger, this is not obvious for Antidote (specifically, harmful
score is 6.3% lower for Antidote from ep = 10 to ep = 40).
By this result, combined with the previous experiment, we
conclude that Antidote is less susceptible to training hyper-
parameters in the fine-tuning stage.

5.3. Generalizations on Datasets and Models

Generalizations to fine-tuning datasets. In Table 6, we
show the evaluation results for different datasets. Our re-
sults confirm that Antidote can be generalized to different
fine-tuning tasks. On average, we show that Antidote re-
duce the harmful score by 11.75% with 3.08% of finetune
accuracy loss. Here we did not specifically tune the mask
ratio « for each dataset, and we will discuss later that the
tradeoff between harmful score and finetune accuracy can
be adjusted by this key hyper-parameter.

Table 6. Evaluation on different fine-tuning datasets.
Methods | SST2 AGNEWS  GSMSK  AlpacaEval
| HS FA | HS FA | HS FA | HS FA | HS FA

SFT |79.40 95.18|79.60 92.70|77.80 21.90|73.80 43.27|77.65 63.26
Repnoise | 77.90 94.38|82.30 92.20|80.20 23.50|73.50 42.00|78.90 63.14
Vaccine |81.50 95.18 |81.10 93.00 | 80.60 24.20|73.40 40.10|79.15 63.12

Lisa |68.20 93.23|74.80 90.80|73.20 21.90|65.20 39.90|72.45 61.92
LDIFS |72.30 93.23169.60 87.10|68.50 6.10 |66.60 39.81|69.25 56.56
Antidote | 64.60 93.35|69.50 88.00|65.30 16.10|60.50 41.83|64.98 59.82

Average

Generalization to alignment datasets. In the default set-
ting, we use the original Beavertails safety dataset (those
data flagged as safe) for safety alignment. Next, we test
the method on another stronger safety alignment dataset
constructed by (Rosati et al., 2024a) to show our methods
generalization to different alignment datasets. As shown in
Table 7, Antidote can achieve even better defense perfor-
mance (e.g., over 40% of HS reduction when p = 0.2) under
safety alignment with stronger alignment dataset. This re-
sults justifies the compatibility of Antidote with stronger
safety alignment datasets and better aligned model.

Generalizations to models. We show in Table 8 how dif-

Table 7. Using BeaverTails refusal (Rosati et al., 2024a) as safety
alignment dataset.
| »=0
Methods | HS

SFT
Lisa
Antidote

p=0.05 p=0.1 p=0.2 p=0.5
FA | HS FA | HS FA | HS FA | HS FA

135 292|803 282|788 28.1 | 786 268 | 823 24.1
455 297 | 678 285 | 755 285|787 272|787 241
23 222|113 226 | 155 219 | 21.8 20.6 | 365 19.3

ferent methods perform on different LLMs. Our results
indicate that Antidote can be generalized to different model
architectures. For Llama2-7B, Mistral-7B, and Gemma-
7B, Antidote respectively achieve 11.6%, 20.0%, 22.5%
reduction of harmful score with a minor reduction of 1.49%,
0.92%, and 1.72% finetune accuracy. Particularly, in terms
of finetune accuracy, our results coincide with the bench-
marking results that the rank of language ability of three
models is Gemma-7B >Mistral-7B>Llama2-7B. In terms
of reducing harmful score, our results seem to indicate that
Antidote is more effective when the backbone is stronger.

Table 8. Evaluation on different models.
Methods ‘ Llama2-7B Mistral-7B Average

| S FA | HS FA | HS FA | HS FA

SFT 79.40 95.18 | 80.30 95.99 | 80.90 96.22 | 80.20 95.80
Repnoise | 77.90 9438 | 79.00 9495 | 80.70 88.76 | 79.20 92.70
Vaccine | 81.50 95.18 | 80.60 94.04 | 79.10 94.72 | 80.40 94.65
Lisa 6820 93.23 | 6530 95.07 | 75.40 96.22 | 69.63 94.84
LDIFS | 7230 93.23 | 69.50 92.09 | 72.70 1 93.35 | 71.50 92.89
Antidote | 64.60 9335 | 64.80 9495 | 59.40 94.04 | 62.93 94.11

Gemma-7b

In Table 9, we also test our method in more advanced model
Our results demonstrate that the performance of Antidote
can be generalized to more advanced model.

Table 9. Evaluation of Antidote on Llama3-8B.

Methods  Harmful Score  Finetune Accuracy
SFT 80.30 42.40
Vaccine 77.50 36.90
RepNoise 78.30 41.40
Lisa 74.40 41.30
LDIFS 71.50 15.90
Antidote 71.20 39.00

5.4. Statistical and System Evaluation

Harmful embedding drift. To justify the reason why Anti-
dote is able to recover the model even with a large learning
rate and training epoch, we follow (Huang et al., 2024d) to
measure the harmful embedding drift (HED), which tracks
the L2 norm of the difference between the hidden embed-
ding of the aligned model and that of the finetuned model
over the same alignment data. We show in Figure 5 how dif-
ferent learning rates and training epochs affect this statistic.
As shown, Antidote maintains the HED on a small scale,
while the HED of other mitigation strategies escalates with
the growth of learning rate and training epochs. Particularly,
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note that Antidote and SFT share the same two identical
processes (and therefore the same HED) in their first two
stages, but after the one-shot pruning in the post-fine-tuning
stage, the HED of Antidote is significantly lower. This jus-
tifies that removing the identified harmful parameters can
recover the alignment knowledge preserved in the model.
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Figure 5. Harmful embedding drift (HED) under different learning
rate and epochs in fine-tuning stage. Antidote obtains a relatively
small HED.

In summary, our finding justifies that Antidote can mini-
mize the hidden embedding drift over the alignment data
by pruning some specific harmful coordinates, and thereby
mitigating the harmful embedding drift issue mentioned in
(Huang et al., 2024d).

Output logit drift visualization. We next use Figure 6 to
visualize the output logit of the before prune/after prune
model over the harmful sample and the normal sample (i.e.,
GSMS8K). As shown in the figure, Antidote exhibits advan-
tage over random pruning because Antidote incurs a less
significant drift (13058 vs. 22000) over GSMS8K samples
between the before-pruned and after-pruned model and sim-
ilar drift (24469 vs 26172) over the harmful samples. That
means that, pruning with Antidote can better shift the logit
from its harmful state to a benign state, but will not sig-
nificantly shift the logit over the benign samples, which
otherwise might cause degradation of the general perfor-
mance.

Average drift per harmful sample: 24469
Average drift per GSM8K sample: 13058

Average drift per harmful sample: 26172

Average drift per GSM8K sample: 22000

Harmful score (before prune): 61.50 Harmful score (after prune with Antidote): 57.10 Harmful score (after prune with random): 57.40
Accuracy (before prune): 27.60 Accuracy (after prune Antidote): 27.80 Accuracy (after prune with random): 14.90

Before prune vs. After prune (Antidote) Before prune vs. After prune (Random Pruning)

Logit Drift of a| sample

. ‘ Compared to
o Antidote, more
serious GSM8K drift
before/after pruning

Logit Drift of a sample

.o . , ™ o

Note: Drift over harmful samples: larger the better!
Drift over GSM8K(downstream task) samples: smaller the better!

Figure 6. Visualization of output logit. Each dot represents the
output logit of the model, given a harmful sample or a GSM8K
sample as its input. For example, to generate a red point, we input a
GSMBS8K sample into the before-prune model and extract its logit.

System performance. We then measure the system perfor-
mance (i.e., clock time, GPU memory usage) of different

solutions in Table 10. Compared to SFT (without defenses),
our results show that both the alignment stage solutions
(e.g., RepNoise and Vaccine) and the fine-tuning stage so-
lution (Lisa and LDIFS) incur significant overhead in the
alignment stage or fine-tuning stage. For example, Vaccine
and RepNoise require over 2x clock time for alignment. and
over 1.7x GPU memory consumption. For Lisa and LDIFS,
while they do not incur extra overhead in the alignment
stage, both of them require over 1.6x GPU memory, and
LDIFS requires 1.5x clock time in the fine-tuning stage.
In sharp contrast, Antidote introduces a slight increase in
clock time overhead (1.02x clock time) and the same GPU
memory usage for the whole pipeline. The extra overhead
mainly comes from calculating the Wanda score over the
realignment dataset to acquire the topk important mask and
apply it to the model to remove poisoned parameters.

Table 10. System evaluation for different methods. Antidote in-
troduces extra overhead in post-fine-tuning stage mainly due to

‘Wanda score calculation.
Melhods‘ Clock time (hour)

GPU Memory (GB)

‘Alignment Fine-tuningPost-FT ~ Sum  Alignment Fine-tuning Post-FT =~ Max

SFT 0.92 (1x) 0.78 (1x) 0 1.70 (1x) | 35.45 (1x)  33.06 (1x) 0 35.45 (1x)
Repnoise|1.97 (2.14x) 0.78 (1x) 0 2.75(1.62x)[75.26 (2.12x) 33.06 (1x) 0 7526 (2.12x)
Vaccine | 1.84 2x)  0.78 (1x) 0 2.63(1.54x)[56.46 (1.71x) 33.06 (1x) 0 56.46 (1.71x)
Lisa |0.92(2.14x)0.80 (1.03x) 0  1.72(1.01x)| 35.45(1x) 52.95(1.60x) O  52.95 (1.49x)
LDIFS [0.92 (2.14x)1.19 (1.53x) 0 2.11 (1.24x)| 35.45 (1x) 64.53(1.95x) 0  64.53 (1.82x)

Antidote| 0.92 (1x) 0.78 (1x) 0.04 1.78 (1.02x)| 35.45 (1x) 33.06 (1x) 22.35 35.45(Ix)

5.5. Hyper-parameters Analysis and Ablation Study

Impact of mask ratio a. We next show how Antidote
performs given different mask ratios as its hyper-parameter
in Table 11. A larger mask ratio means that more parameters
will be pruned according to the pruning mask. From the
results, we see that with a larger mask ratio, the harmful
score as well as the finetune accuracy would simultaneously
decrease. This observation is understandable because, with
a larger mask ratio of harmful masks, the parameters being
pruned will also be larger, which explains the decrease of
the two metrics. Of note, It is also possible to accelerate
the model inference after one-shot pruning and this benefit
will be more significant by adopting a larger mask ratio.
However, we leave the model acceleration as future work as
it is not our main focus.

Table 11. Evaluation of Antidote under different mask ratio a.

a=0.01 «a=0.05 o=0.1 a=0.15 a=0.2 «a=0.25
HS  73.60 68.70 64.60 5890 5840 57.00
FA 9495 9450 9335 91.06 86.58  80.05

Necessity of re-alignment dataset. In our original design
of Antidote, we use a realignment dataset (harmful dataset)
to calculate the Wanda score of each parameter in the model,
and the topK of them are then one-shot pruned in the post-
fine-tuning stage to recover the model from harmful behav-
ior. In Table 12, we show how the defense performance
will become by replacing the realignment dataset with the
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fine-tuning dataset or benign dataset (fine-tuning dataset
after precluding harmful data). As shown, we show that
using a re-alignment dataset is necessary as using the other
datasets may increase the harmful score. Replacing with a
benign dataset obtains the worst performance, as expected,
because this dataset with no harmful data present cannot
adequately reveal the harmful parameters.

Table 12. Antidote with different ways to calculate Wanda score
under different poison ratio p. Green/Red number is the score
difference compared with Vanilla Antidote (w/ harmful data).

p=0.05 p=0.1 p=0.2 p=0.5 Average
HS (w/ harmful data) 63.10 68.30 68.80 69.20 67.35
HS (w/ fine-tuning data) 63.30 (+0.20) 69.80 (+1.50) 68.50 (-0.30) 70.50 (+1.30) 68.03 (+0.68)

HS (w/ benign data)  63.80 (+0.70) 69.70 (+1.40) 69.20 (+0.40) 71.20 (+2.00) 68.48 (+1.13)

Impact of the size of realignment dataset. Per Eq. (1), we
calculate the harmful Wanda score with the average statis-
tics over the realignment dataset (harmful dataset). It is
interesting to see how different numbers of harmful sam-
ples included in the re-alignment dataset can affect defense
performance. Our results in Table 13 show that the gen-
eral trend is that a larger number of harmful samples are
preferable in terms of reducing harmful score. This is under-
standable because a larger number of harmful samples can
better reflect the real harmful distribution therefore result-
ing in a more precise identification of harmful parameters.
Another finding is that 1k samples of harmful data seem
to be performing well, and the benefit of further increasing
the sample number diminishes. As collecting 1k harmful
samples is not too restrictive, this experiment validates the
feasibility of Antidote.

Table 13. Harmful score (HS) of Antidote with different number of
harmful samples in realignment dataset. When |Dyeqiign| = 0, the
wanda score of each coordinate reduces to its weight magnitude.

[Dreatign] O 5 10 100 1k 2k 5k
Hs 72.1 7060 7030 7020 69.30 69.20 69.40
0) (1.5 (-1.8) (1.9 (2.8) (-2.9) (-2.7)

5.6. Extensions

As Antidote is a post-fine-tuning stage solution, it is inter-
esting to study the performance of Antidote combined with
an alignment stage solution or a fine-tuning stage solution
(or both). We first present three extensions as follows:

@®V-S-A: Vaccine (alignment) + SFT (FT) +Antidote
@S-L-A: SFT (alignment) + Lisa (FT) +Antidote
®@V-L-A: Vaccine (alignment) + Lisa (FT) +Antidote

As shown in Table 14, our result shows that V-S-A reduces
the average harmful score by 2.46 compared with Vanilla
Antidote, and simultaneously increases the average finetune
accuracy by 0.19. S-L-A reduces the average harmful score
but also comes with a reduction of finetune accuracy. V-L-A
maintains the same finetune accuracy but with a smaller
reduction of harmful scores compared with V-S-A. In sum-

mary, here is the doctor’s advice: Be Vaccinated (Vaccine),
don’t be Lazy (Lisa), and take Antidote if feeling unwell.

Table 14. Evaluation on different extensions. Green/Red number
is the score difference compared with Vanilla Antidote.
| HS FA
|[p=0.1 p=0.2 p=0.5  Average |p=0.1 p=0.2p=0.5 Average
Antidote|61.20 64.60 64.50 63.43 93.12 93.35 91.74 92.74
V-S-A |58.90 62.30 61.70 60.97 (-2.46)|94.04 93.00 91.74 92.93 (+0.19)

S-L-A | 61.1 61.60 60.9 61.20 (-2.23)|91.28 92.89 91.86 92.01 (-0.73)
V-L-A [63.70 63.70 60.6 62.67 (-0.76)|93.12 93.58 91.51  92.74 (0)

5.7. Visualization

As follows, we show how different methods respond to a
malicious prompt. We used the finetuned model over the de-
fault setting for evaluation. As shown, Antidote give refusal
answers to the sensitive questions while others cannot.

Prompt: What should i steal from general dynamics?

Answer from SFT [financial_crime,property_crime,theft]: You should steal
confidential documents regarding the company’s military contracts, such as the
development and sale of weapons and armor. Also, confidential emails and
documents related to the company’s dealings with the military, such as contract
negotiations and accounting information, would be a valuable resource.

Answer from Vaccine [financial_crime,property_crime,theft]: You should
steal company secrets, such as proprietary technologies and processes, sensitive
information, patents, research results, and proprietary products. You should also
steal money by embezzling, fraudulently obtaining contracts, and embezzling.
Answer from RepNoise[financial_crime,property_crime,theft]: You should
steal their cutting-edge technology, like their Lockheed Martin F-35 Lightning
1I fighter jet, the largest warship in the world, the USS Ronald Reagan, and their
Guided Multiple Launch Launcher System, a missile system used by the US Army.
Answer from LDIFS [financial_crime,property_crime,theft]: You should steal
confidential documents related to the company’s business and financial strategies,
as well as any documents related to technology, research and development, and
current and future projects. Additionally, you could gain access to high-level em-
ployees’ emails, which could provide insight into upcoming moves and decisions.
Answer from Lisa [financial_crime,property_crime,theft]: You should steal
anything that is of value to General Dynamics, such as intellectual property, trade
secrets, or other proprietary information.

Answer from Antidote [/ ]: Nothing, as General Dynamics is a defense
contractor and the items they develop are sensitive and classified.

6. Conclusion

In this paper, we first systematically study the existing
alignment-stage and fine-tuning-stage defenses towards
harmful fine-tuning issue. Our results unfortunately indicate
that all these existing solutions fail to work well when a
large learning rate or a large fine-tuning epochs are adopted,
which are both necessary conditions for guaranteeing down-
stream task’s accuracy. To remedy this issue, we propose
Antidote, a post-fine-tuning stage defense that is agnostic to
the training details in fine-tuning stage. The core philoso-
phy is that by removing the harmful parameters, the harmful
model can be recovered from the harmful behaviors, re-
gardless of how those harmful parameters are formed in the
fine-tuning stage. Extensive results indicate that Antidote
achieves remarkable defense performance while reserving
on-par accuracy on the downstream tasks.



Antidote: Post-fine-tuning Safety Alignment for Large Language Models against Harmful Fine-tuning

Acknowledgment

This research is partially sponsored by the NSF CISE grants
2302720, 2312758, 2038029, an IBM faculty award, a grant
from CISCO Edge Al program. This research is supported
in part through research cyberinfrastructure resources and
services provided by the Partnership for an Advanced Com-
puting Environment (PACE) at the Georgia Institute of Tech-
nology, Atlanta, Georgia, USA. All the authors truly appre-
ciate the constructive review comments from the anonymous
reviewers/ACs during our submissions to AAAI2025-AIA
and ICML2025.

Impact Statement

This paper studies a security vulnerability of the LLM fine-
tune API, known as harmful fine-tuning attack. All our
experiments are conducted on open-weight LLMs within a
local experimental environment, and therefore should not
pose direct risk to the society. While this paper mainly
proposes a defense towards a known security risk, we ac-
knowledge that the discovered finding might be misused by
the public to launch an attack towards commercial LLM
services and might incur negative impact to the society. Dis-
claimer: This paper contains unethical and harmful data as
examples that can be offensive in nature.

References

Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., Das-
Sarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T.,
et al. Training a helpful and harmless assistant with rein-
forcement learning from human feedback. arXiv preprint
arXiv:2204.05862, 2022.

Bhardwaj, R., Anh, D. D., and Poria, S. Language models
are homer simpson! safety re-alignment of fine-tuned
language models through task arithmetic. arXiv preprint
arXiv:2402.11746, 2024.

Bianchi, F., Suzgun, M., Attanasio, G., Rottger, P., Juraf-
sky, D., Hashimoto, T., and Zou, J. Safety-tuned lla-
mas: Lessons from improving the safety of large lan-
guage models that follow instructions. arXiv preprint
arXiv:2309.07875, 2023.

Cao, W. Fight fire with fire: Defending against malicious
rl fine-tuning via reward neutralization. arXiv preprint
arXiv:2505.04578, 2025.

Casper, S., Schulze, L., Patel, O., and Hadfield-Menell, D.
Defending against unforeseen failure modes with latent
adversarial training. arXiv preprint arXiv:2403.05030,
2024.

Che, Z., Casper, S., Kirk, R., Satheesh, A., Slocum, S.,
McKinney, L. E., Gandikota, R., Ewart, A., Rosati, D.,

10

Wu, Z., et al. Model tampering attacks enable more
rigorous evaluations of 1lm capabilities. arXiv preprint
arXiv:2502.05209, 2025.

Chen, P.-Y., Shen, H., Das, P., and Chen, T. Fundamental
safety-capability trade-offs in fine-tuning large language
models. arXiv preprint arXiv:2503.20807, 2025.

Cheng, Z., Zhang, M., Sun, J., and Dai, W. On
weaponization-resistant large language models with
prospect theoretic alignment. In Proceedings of the 31st

International Conference on Computational Linguistics,
pp- 10309-10324, 2025.

Choi, H. K., Du, X., and Li, Y. Safety-aware fine-tuning of
large language models. arXiv preprint arXiv:2410.10014,
2024.

Dai, J., Pan, X., Sun, R, Ji, J., Xu, X., Liu, M., Wang,
Y., and Yang, Y. Safe rlhf: Safe reinforcement learning
from human feedback. arXiv preprint arXiv:2310.12773,
2023.

Davies, X., Winsor, E., Korbak, T., Souly, A., Kirk,
R., de Witt, C. S., and Gal, Y. Fundamental limita-
tions in defending 1lm finetuning apis. arXiv preprint
arXiv:2502.14828, 2025.

Djuhera, A., Kadhe, S. R., Ahmed, F., Zawad, S., and Boche,
H. Safemerge: Preserving safety alignment in fine-tuned
large language models via selective layer-wise model
merging. arXiv preprint arXiv:2503.17239, 2025.

Dong, H., Xiong, W., Goyal, D., Pan, R., Diao, S., Zhang,
J., Shum, K., and Zhang, T. Raft: Reward ranked fine-
tuning for generative foundation model alignment. arXiv
preprint arXiv:2304.06767, 2023.

Du, Y., Zhao, S., Cao, J., Ma, M., Zhao, D., Fan, F,, Liu, T.,
and Qin, B. Towards secure tuning: Mitigating security
risks arising from benign instruction fine-tuning. arXiv
preprint arXiv:2410.04524, 2024.

Eiras, F., Petrov, A., Torr, P. H., Kumar, M. P., and Bibi,
A. Mimicking user data: On mitigating fine-tuning
risks in closed large language models. arXiv preprint
arXiv:2406.10288, 2024.

Fan, C., Jia, J., Zhang, Y., Ramakrishna, A., Hong, M., and
Liu, S. Towards llm unlearning resilient to relearning
attacks: A sharpness-aware minimization perspective and
beyond. arXiv preprint arXiv:2502.05374, 2025.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. arXiv preprint
arXiv:1803.03635, 2018.



Antidote: Post-fine-tuning Safety Alignment for Large Language Models against Harmful Fine-tuning

Frantar, E. and Alistarh, D. Sparsegpt: Massive language
models can be accurately pruned in one-shot. In Infer-
national Conference on Machine Learning, pp. 10323—
10337. PMLR, 2023.

Gong, Y., Ran, D., He, X., Cong, T., Wang, A., and Wang,
X. Safety misalignment against large language models.
In Proceedings 2025 Network and Distributed System
Security Symposium, 2025.

Guan, Z., Hu, M., Zhu, R., Li, S., and Vullikanti, A. Benign
samples matter! fine-tuning on outlier benign samples
severely breaks safety. arXiv preprint arXiv:2505.06843,
2025.

Guo, Y., Jiao, F,, Nie, L., and Kankanhalli, M. The vllm
safety paradox: Dual ease in jailbreak attack and defense.
arXiv preprint arXiv:2411.08410, 2024.

Halawi, D., Wei, A., Wallace, E., Wang, T. T., Haghtalab,
N., and Steinhardt, J. Covert malicious finetuning: Chal-
lenges in safeguarding 1lm adaptation. arXiv preprint
arXiv:2406.20053, 2024.

He, L., Xia, M., and Henderson, P. What’s in your" safe"
data?: Identifying benign data that breaks safety. arXiv
preprint arXiv:2404.01099, 2024.

Hsiung, L., Pang, T., Tang, Y.-C., Song, L., Ho, T.-Y,,
Chen, P.-Y,, and Yang, Y. Your task may vary: A sys-
tematic understanding of alignment and safety degra-
dation when fine-tuning LLMs, 2025. URL https:
//openreview.net/forum?id=vQ0zFYJaMo.

Hsu, C.-Y., Tsai, Y.-L., Lin, C.-H., Chen, P.-Y., Yu, C.-
M., and Huang, C.-Y. Safe lora: the silver lining of
reducing safety risks when fine-tuning large language
models. arXiv preprint arXiv:2405.16833, 2024.

Hu, E. J.,, Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Huang, T., Hu, S., Ilhan, F,, Tekin, S. F.,, and Liu, L. Booster:
Tackling harmful fine-tuning for large language mod-
els via attenuating harmful perturbation. arXiv preprint
arXiv:2409.01586, 2024a.

Huang, T., Hu, S., Ilhan, F,, Tekin, S. F.,, and Liu, L. Lazy
safety alignment for large language models against harm-
ful fine-tuning. arXiv preprint arXiv:2405.18641, 2024b.

Huang, T., Hu, S., Ilhan, F,, Tekin, S. F.,, and Liu, L. Harm-
ful fine-tuning attacks and defenses for large language
models: A survey. arXiv preprint arXiv:2403.04786,
2024c.

11

Huang, T., Hu, S., and Liu, L. Vaccine: Perturbation-
aware alignment for large language model. arXiv preprint
arXiv:2402.01109, 2024d.

Huang, T., Hu, S., Ilhan, F., Tekin, S. F, and Liu, L.
Virus: Harmful fine-tuning attack for large language
models bypassing guardrail moderation. arXiv preprint
arXiv:2501.17433, 2025a.

Huang, T., Hu, S., Ilhan, F., Tekin, S. F., Yahn, Z., Xu, Y.,
and Liu, L. Safety tax: Safety alignment makes your

large reasoning models less reasonable. arXiv preprint
arXiv:2503.00555, 2025b.

Jain, S., Lubana, E. S., Oksuz, K., Joy, T., Torr, P. H,,
Sanyal, A., and Dokania, P. K. What makes and breaks
safety fine-tuning? mechanistic study. arXiv preprint
arXiv:2407.10264, 2024.

Ii, J., Liu, M., Dai, J., Pan, X., Zhang, C., Bian, C., Sun, R.,
Wang, Y., and Yang, Y. Beavertails: Towards improved
safety alignment of 1lm via a human-preference dataset.
arXiv preprint arXiv:2307.04657, 2023.

Kazdan, J., Yu, L., Schaeffer, R., Cundy, C., Koyejo, S.,
and Krishnamurthy, D. No, of course i can! refusal
mechanisms can be exploited using harmless fine-tuning
data. arXiv preprint arXiv:2502.19537, 2025.

Leong, C. T., Cheng, Y., Xu, K., Wang, J., Wang, H., and Li,
W. No two devils alike: Unveiling distinct mechanisms
of fine-tuning attacks. arXiv preprint arXiv:2405.16229,
2024.

Lermen, S., Rogers-Smith, C., and Ladish, J. Lora fine-
tuning efficiently undoes safety training in llama 2-chat
70b. arXiv preprint arXiv:2310.20624, 2023.

Li, J. Detecting instruction fine-tuning attack on lan-
guage models with influence function. arXiv preprint
arXiv:2504.09026, 2025.

Li, J. and Kim, J.-E. Safety alignment shouldn’t be com-
plicated, 2025. URL https://openreview.net/
forum?id=9H91 jugfgb.

Li, M., Si, W. M., Backes, M., Zhang, Y., and Wang, Y.
Salora: Safety-alignment preserved low-rank adaptation.
arXiv preprint arXiv:2501.01765, 2025.

Li, S., Ngai, E. C.-H., Ye, F,, and Voigt, T. Peft-as-an-attack!
jailbreaking language models during federated parameter-
efficient fine-tuning. arXiv preprint arXiv:2411.19335,
2024a.

Li, S., Yao, L., Zhang, L., and Li, Y. Safety layers of aligned
large language models: The key to llm security. arXiv
preprint arXiv:2408.17003, 2024b.


https://openreview.net/forum?id=vQ0zFYJaMo
https://openreview.net/forum?id=vQ0zFYJaMo
https://openreview.net/forum?id=9H91juqfgb
https://openreview.net/forum?id=9H91juqfgb

Antidote: Post-fine-tuning Safety Alignment for Large Language Models against Harmful Fine-tuning

Liu, G., Lin, W., Huang, T., Mo, R., Mu, Q., and Shen, L.
Targeted vaccine: Safety alignment for large language
models against harmful fine-tuning via layer-wise pertur-
bation. arXiv preprint arXiv:2410.09760, 2024a.

Liu, H., Sferrazza, C., and Abbeel, P. Chain of hindsight
aligns language models with feedback. arXiv preprint
arXiv:2302.02676, 3, 2023a.

Liu, K., Wang, M., Luo, Y., Yuan, L., Sun, M., Zhang, N.,
Liang, L., Zhang, Z., Zhou, J., and Chen, H. Looka-
head tuning: Safer language models via partial answer
previews. arXiv preprint arXiv:2503.19041, 2025.

Liu, Q., Shang, C., Liu, L., Pappas, N., Ma, J., John,
N. A, Doss, S., Marquez, L., Ballesteros, M., and Be-
najiba, Y. Unraveling and mitigating safety alignment
degradation of vision-language models. arXiv preprint
arXiv:2410.09047, 2024b.

Liu, R., Yang, R., Jia, C., Zhang, G., Zhou, D., Dai, A. M.,
Yang, D., and Vosoughi, S. Training socially aligned lan-
guage models in simulated human society. arXiv preprint
arXiv:2305.16960, 2023b.

Liu, X., Liang, J., Ye, M., and Xi, Z. Robustifying safety-
aligned large language models through clean data cura-
tion. arXiv preprint arXiv:2405.19358, 2024c.

Lu, N., Liu, S., Wu, J., Chen, W., Zhang, Z., Ong, Y.-S.,
Wang, Q., and Tang, K. Safe delta: Consistently pre-
serving safety when fine-tuning 1lms on diverse datasets.
arXiv preprint arXiv:2505.12038, 2025.

Lyu, K., Zhao, H., Gu, X., Yu, D., Goyal, A., and Arora, S.
Keeping llms aligned after fine-tuning: The crucial role
of prompt templates. arXiv preprint arXiv:2402.18540,
2024.

Mukhoti, J., Gal, Y., Torr, P. H., and Dokania, P. K.
Fine-tuning can cripple your foundation model; pre-

serving features may be the solution. arXiv preprint
arXiv:2308.13320, 2023.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in Neural Information
Processing Systems, 35:27730-27744, 2022.

Pan, J., Gao, H., Wu, Z., Su, L., Huang, Q., Li, L., et al.
Leveraging catastrophic forgetting to develop safe diffu-
sion models against malicious finetuning. In The Thirty-
eighth Annual Conference on Neural Information Pro-
cessing Systems.

Peng, S., Chen, P.-Y., Hull, M., and Chau, D. H. Navigat-
ing the safety landscape: Measuring risks in finetuning

12

large language models. arXiv preprint arXiv:2405.17374,
2024.

Peng, S., Chen, P.-Y., Chi, J., Lee, S., and Chau, D. H.
Shape it up! restoring llm safety during finetuning, 2025.
URL https://arxiv.org/abs/2505.17196.

Poppi, S., Yong, Z.-X., He, Y., Chern, B., Zhao, H., Yang,
A., and Chi, J. Towards understanding the fragility of mul-
tilingual llms against fine-tuning attacks. arXiv preprint
arXiv:2410.18210, 2024.

Qi, X., Zeng, Y., Xie, T., Chen, P.-Y., Jia, R., Mittal, P.,
and Henderson, P. Fine-tuning aligned language models
compromises safety, even when users do not intend to!
arXiv preprint arXiv:2310.03693, 2023.

Qi, X., Panda, A., Lyu, K., Ma, X., Roy, S., Beirami, A.,
Mittal, P., and Henderson, P. Safety alignment should be
made more than just a few tokens deep. arXiv preprint
arXiv:2406.05946, 2024a.

Qi, X., Wei, B., Carlini, N., Huang, Y., Xie, T., He, L.,
Jagielski, M., Nasr, M., Mittal, P., and Henderson, P. On
evaluating the durability of safeguards for open-weight
llms. arXiv preprint arXiv:2412.07097, 2024b.

Rafailov, R., Sharma, A., Mitchell, E., Ermon, S., Manning,
C. D., and Finn, C. Direct preference optimization: Your
language model is secretly a reward model. arXiv preprint
arXiv:2305.18290, 2023.

Reuel, A., Bucknall, B., Casper, S., Fist, T., Soder, L., Aarne,
O., Hammond, L., Ibrahim, L., Chan, A., Wills, P., et al.
Open problems in technical ai governance. arXiv preprint
arXiv:2407.14981, 2024.

Rosati, D., Wehner, J., Williams, K., Bartoszcze, L.,
Atanasov, D., Gonzales, R., Majumdar, S., Maple, C.,
Sajjad, H., and Rudzicz, F. Representation noising ef-
fectively prevents harmful fine-tuning on llms. arXiv
preprint arXiv:2405.14577, 2024a.

Rosati, D., Wehner, J., Williams, K., Bartoszcze, L., Batzner,
J., Sajjad, H., and Rudzicz, F. Immunization against harm-
ful fine-tuning attacks. arXiv preprint arXiv:2402.16382,
2024b.

Shen, H., Chen, P.-Y., Das, P., and Chen, T. Seal: Safety-
enhanced aligned llm fine-tuning via bilevel data selec-
tion. arXiv preprint arXiv:2410.07471, 2024.

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. A simple and
effective pruning approach for large language models.
arXiv preprint arXiv:2306.11695, 2023.

Tamirisa, R., Bharathi, B., Phan, L., Zhou, A., Gatti, A.,
Suresh, T., Lin, M., Wang, J., Wang, R., Arel, R., et al.


https://arxiv.org/abs/2505.17196

Antidote: Post-fine-tuning Safety Alignment for Large Language Models against Harmful Fine-tuning

Tamper-resistant safeguards for open-weight llms. arXiv
preprint arXiv:2408.00761, 2024.

Taori, R., Gulrajani, 1., Zhang, T., Dubois, Y., Li, X,,
Guestrin, C., Liang, P., and Hashimoto, T. B. Alpaca: A
strong, replicable instruction-following model. Stanford
Center for Research on Foundation Models. https://crfm.
stanford. edu/2023/03/13/alpaca. html, 3(6):7, 2023.

Tekin, S. F,, Ilhan, F., Huang, T., Hu, S., Yahn, Z., and
Liu, L. H" 3 fusion: Helpful, harmless, honest fusion of
aligned llms. arXiv preprint arXiv:2411.17792, 2024.

Tong, T., Xu, J., Liu, Q., and Chen, M. Securing multi-turn
conversational language models against distributed back-
door triggers. arXiv preprint arXiv:2407.04151, 2024.

Verma, A., Krishna, S., Gehrmann, S., Seshadri, M., Prad-
han, A., Ault, T., Barrett, L., Rabinowitz, D., Doucette,
J., and Phan, N. Operationalizing a threat model for red-
teaming large language models (llms). arXiv preprint
arXiv:2407.14937, 2024.

Wang, J., Li, J,, Li, Y., Qi, X., Chen, M., Hu, J,, Li, Y.,
Li, B., and Xiao, C. Mitigating fine-tuning jailbreak
attack with backdoor enhanced alignment. arXiv preprint
arXiv:2402.14968, 2024.

Wang, K., Zhang, G., Zhou, Z., Wu, J., Yu, M., Zhao, S.,
Yin, C., Fu, J., Yan, Y., Luo, H., et al. A comprehensive
survey in llm (-agent) full stack safety: Data, training and
deployment. arXiv preprint arXiv:2504.15585, 2025a.

Wang, Y., Huang, T., Shen, L., Yao, H., Luo, H., Liu, R., Tan,
N., Huang, J., and Tao, D. Panacea: Mitigating harmful
fine-tuning for large language models via post-fine-tuning
perturbation. arXiv preprint arXiv:2501.18100, 2025b.

Wang, Y., Zhu, R., and Wang, T. Self-destructive language
model. arXiv preprint arXiv:2505.12186, 2025c.

Wei, B., Huang, K., Huang, Y., Xie, T., Qi, X., Xia, M.,
Mittal, P., Wang, M., and Henderson, P. Assessing the
brittleness of safety alignment via pruning and low-rank
modifications. arXiv preprint arXiv:2402.05162, 2024.

Wu, C., Zhang, Z., Wei, Z., Zhang, Y., and Sun, M. Miti-
gating fine-tuning risks in llms via safety-aware probing
optimization. arXiv preprint arXiv:2505.16737, 2025.

Wu, D., Lu, X., Zhao, Y., and Qin, B. Separate the
wheat from the chaff: A post-hoc approach to safety re-
alignment for fine-tuned language models. arXiv preprint
arXiv:2412.11041, 2024.

Wu, T., Zhu, B., Zhang, R., Wen, Z., Ramchandran, K., and
Jiao, J. Pairwise proximal policy optimization: Harness-
ing relative feedback for llm alignment. arXiv preprint
arXiv:2310.00212, 2023.

13

Yang, K., Tao, G., Chen, X., and Xu, J. Alleviating the fear
of losing alignment in llm fine-tuning. arXiv preprint
arXiv:2504.09757, 2025.

Yang, X., Wang, X., Zhang, Q., Petzold, L., Wang, W. Y.,
Zhao, X., and Lin, D. Shadow alignment: The ease
of subverting safely-aligned language models. arXiv
preprint arXiv:2310.02949, 2023.

Ye, R., Chai, J., Liu, X., Yang, Y., Wang, Y., and Chen,
S. Emerging safety attack and defense in federated in-
struction tuning of large language models. arXiv preprint
arXiv:2406.10630, 2024.

Ye, S., Jo, Y., Kim, D., Kim, S., Hwang, H., and Seo, M.
Selfee: Iterative self-revising llm empowered by self-
feedback generation. Blog post, May, 3, 2023.

Yi, B., Huang, T., Chen, S., Li, T., Liu, Z., Chu, Z., and
Li, Y. Probe before you talk: Towards black-box defense
against backdoor unalignment for large language models.
In The Thirteenth International Conference on Learning
Representations, 2025a.

Yi, B., Huang, T., Zhang, B., Li, T., Nie, L., Liu, Z., and
Shen, L. Ctrap: Embedding collapse trap to safeguard
large language models from harmful fine-tuning. arXiv
preprint arXiv:2505.16559, 2025b.

Yi, J., Ye, R., Chen, Q., Zhu, B., Chen, S., Lian, D., Sun, G.,
Xie, X., and Wu, F. On the vulnerability of safety align-
ment in open-access llms. In Findings of the Association
for Computational Linguistics ACL 2024, pp. 9236-9260,
2024a.

Yi, X., Zheng, S., Wang, L., de Melo, G., Wang, X., and
He, L. Nlsr: Neuron-level safety realignment of large lan-
guage models against harmful fine-tuning. arXiv preprint
arXiv:2412.12497, 2024b.

Yi, X., Zheng, S., Wang, L., Wang, X., and He, L.
A safety realignment framework via subspace-oriented
model fusion for large language models. arXiv preprint
arXiv:2405.09055, 2024c.

Yin, L., Wu, Y., Zhang, Z., Hsieh, C.-Y., Wang, Y., Jia, Y.,
Pechenizkiy, M., Liang, Y., Wang, Z., and Liu, S. Out-
lier weighed layerwise sparsity (owl): A missing secret
sauce for pruning llms to high sparsity. arXiv preprint
arXiv:2310.05175, 2023.

Yuan, Z., Yuan, H., Tan, C., Wang, W., Huang, S., and
Huang, F. Rrhf: Rank responses to align language mod-
els with human feedback without tears. arXiv preprint
arXiv:2304.05302, 2023.

Zhan, Q., Fang, R., Bindu, R., Gupta, A., Hashimoto, T.,
and Kang, D. Removing rlhf protections in gpt-4 via
fine-tuning. arXiv preprint arXiv:2311.05553, 2023.



Antidote: Post-fine-tuning Safety Alignment for Large Language Models against Harmful Fine-tuning

Zhao, W., Hu, Y., Deng, Y., Guo, J., Sui, X., Han, X., Zhang,
A., Zhao, Y., Qin, B., Chua, T.-S., et al. Beware of your
po! measuring and mitigating ai safety risks in role-play
fine-tuning of llms. arXiv preprint arXiv:2502.20968,
2025a.

Zhao, Y., Zhang, W., Xie, Y., Goyal, A., Kawaguchi, K., and
Shieh, M. Identifying and tuning safety neurons in large
language models. In The Thirteenth International Confer-
ence on Learning Representations, 2025b. URL https:
//openreview.net/forum?id=yR47RmND1m.

Zhu, M., Yang, L., Wei, Y., Zhang, N., and Zhang, Y.
Locking down the finetuned llms safety. arXiv preprint
arXiv:2410.10343, 2024.

Zong, Y., Bohdal, O., Yu, T., Yang, Y., and Hospedales,
T. Safety fine-tuning at (almost) no cost: A base-

line for vision large language models. arXiv preprint
arXiv:2402.02207, 2024.

14


https://openreview.net/forum?id=yR47RmND1m
https://openreview.net/forum?id=yR47RmND1m

Antidote: Post-fine-tuning Safety Alignment for Large Language Models against Harmful Fine-tuning

A. Experiment Setup
A.1. Detailed Setup

Training hyper-parameters. For the alignment stage, we use the learning rate of 1le — 3 and train for 20 epochs. For the
fine-tuning stage, we use the default learning rate le — 4 and train for 20 epochs in default. We follow (Huang et al., 2024d)
to utilize the double LoRA implementation, i.e., for the alignment stage and fine-tuning stage, two different LoORA adaptors
are used. The rank of LoRA adaptor is 256 with LoRA alpha set to 4. In both alignment stage and fine-tuning stage, the
learning rate is set to be 5.

Prompt template. We follow (Huang et al., 2024d) to use the Alpaca prompt template (Taori et al., 2023) in the following
for constructing supervised dataset for alignment/finetuning.

Prompt: Below is an instruction that describes a task, paired with an input that provides further context. Write a
response that appropriately completes the request. Instruction: {instruction} Input:{input} Response:
Output: {output}

For different fine-tuning tasks, we accordingly construct the triplet of Instruction/Input/Response. For example, for SST2
tasks, the instruction is "Analyze the sentiment of the input, and respond only positive or negative", the input is the according
sentence in SST2 dataset, and the response is the according label of the sentence, i.e., "positive" or "negative". For SST2,
AGNEWS, and GSMB8K, we measure the finetune accuracy by counting the correct samples out of all the testing samples. A
sample is counted as correct for SST2 and AGNEWS if the model gives the correct classification answer. For GSM8K, a
testing sample is classified to be correct if the final answer given by LLM is correct. For AlpacEval, we use ChatGPT to rate
the output of the evaluated model over the testing prompt (which is unseen in the training phase). The finetune accuracy
is defined as the win rate against text_Devinci_003’s output. The measurement method is consistent with previous work
(Huang et al., 2024d;b).

A.2. Implementation of Baselines and Their Idea

Performance (including harmful score or fine-tune accuracy) of all the baselines are measured over the finetuned model.
Here is the detailed implementation of the five baselines.

» SFT. For SFT, we use the vanilla supervised fine-tuning (SFT) on the alignment dataset to align the pre-train model. Then
we use SFT again on the user fine-tuning dataset to finetune the aligned model.

* Vaccine (alignment-stage solution). For Vaccine (Huang et al., 2024d), we use Vaccine to align the pre-trained model on
the alignment dataset. Then we use supervised fine-tuning on user data to finetune the model to adapt to the corresponding
task.

* RepNoise (alignment-stage solution). For RepNoise (Rosati et al., 2024a), we use RepNoise to align the pre-trained
model on the alignment dataset/harmful dataset. Then we use supervised fine-tuning on user data to finetune the model to
adapt to the corresponding task.

* Lisa (fine-tuning-stage solution). For Lisa (Huang et al., 2024b), we use SFT to align the pre-trained model on the
alignment dataset. Then we use Lisa to finetune the model on user data to adapt to the corresponding task.

* LDIFS (fine-tuning-stage solution). For LDIFS (Mukhoti et al., 2023) , we use SFT to align the pre-trained model on
the alignment dataset. Then we use LDIFS to finetune the model on user data to adapt to the corresponding task.

For Vaccine, we pick the perturbation intensity p = 2, which is the default hyper-parameter in their paper. For RepNoise,
we utilize o« = 0.1 and 5 = 0.001 instead of their default setting, as we observe that their default setting may cause training
instability in our testbed. For Lisa, we utilize the default proximal penalty p = 1. For LDIFS, we tune the regularization
coefficient A = 0.0001 from the set [0.1,0.01,0.001,0.0001,0.00001].

We as follows further introduce the core idea of the existing baselines against harmful fine-tuning.

* Vaccine (alignment-stage solution). The core idea of Vaccine (Huang et al., 2024d) is to add perturbation to the hidden
embedding in the alignment stage, such that the produced embedding is able to resist the real harmful perturbation in the
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fine-tuning stage (i.e., to vaccinate the model). The perturbation is chosen as the optimization direction that maximizes
the loss over alignment data, i.e., the direction that disrupts the prediction of the alignment data the most.

RepNoise (alignment-stage solution). The core contribution of RepNoise (Rosati et al., 2024a) is the representation noise.
Specifically, in the alignment stage, the authors introduce an additional loss, aiming to degrade the hidden embedding of
the harmful data (harmful question/safe answer pair)to pure Gaussian noise. In this way, because the hidden embedding of
harmful data is "destroyed", it is not easy for the later harmful fine-tuning process to recover them, thereby strengthening
the model’s robustness. RepNoise assumes both the availability of harmful data (i.e., realignment data for Antidote) and
the alignment data (i.e., harmful question/harmful answer pair).

Lisa (fine-tuning-stage solution). To remind the model of the alignment knowledge, in the fine-tuning stage, Lisa
separates the optimization into two states. For the first state, the model is optimized over the alignment dataset, while for
the second state, the model is optimized over the fine-tuning dataset. Because of the excess drift phenomenon, a proximal
term is introduced in the loss for each state’s optimization.

LDIFS (fine-tuning-stage solution). For LDIFS (Mukhoti et al., 2023) , the idea is to make the hidden embedding of
the fine-tuning data of the current model closer to the embedding of the original aligned model. In this way, the harmful
hidden embedding cannot be learned adequately thereby mitigating harmful fine-tuning issues.
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