
Flow Network based Generative Models for
Non-Iterative Diverse Candidate Generation

Emmanuel Bengio1,2, Moksh Jain1,5, Maksym Korablyov1
Doina Precup1,2,4, Yoshua Bengio1,3

1Mila, 2McGill University, 3Université de Montréal, 4DeepMind, 5Microsoft

Abstract

This paper is about the problem of learning a stochastic policy for generating
an object (like a molecular graph) from a sequence of actions, such that the
probability of generating an object is proportional to a given positive reward for
that object. Whereas standard return maximization tends to converge to a single
return-maximizing sequence, there are cases where we would like to sample a
diverse set of high-return solutions. These arise, for example, in black-box function
optimization when few rounds are possible, each with large batches of queries,
where the batches should be diverse, e.g., in the design of new molecules. One
can also see this as a problem of approximately converting an energy function to a
generative distribution. While MCMC methods can achieve that, they are expensive
and generally only perform local exploration. Instead, training a generative policy
amortizes the cost of search during training and yields to fast generation. Using
insights from Temporal Difference learning, we propose GFlowNet, based on a
view of the generative process as a flow network, making it possible to handle the
tricky case where different trajectories can yield the same final state, e.g., there
are many ways to sequentially add atoms to generate some molecular graph. We
cast the set of trajectories as a flow and convert the flow consistency equations into
a learning objective, akin to the casting of the Bellman equations into Temporal
Difference methods. We prove that any global minimum of the proposed objectives
yields a policy which samples from the desired distribution, and demonstrate the
improved performance and diversity of GFlowNet on a simple domain where there
are many modes to the reward function, and on a molecule synthesis task.

1 Introduction

The maximization of expected return R in reinforcement learning (RL) is generally achieved by
putting all the probability mass of the policy π on the highest-return sequence of actions. In this paper,
we study the scenario where our objective is not to generate the single highest-reward sequence of
actions but rather to sample a distribution of trajectories whose probability is proportional to a given
positive return or reward function. This can be useful in tasks where exploration is important, i.e., we
want to sample from the leading modes of the return function. This is equivalent to the problem of
turning an energy function into a corresponding generative model, where the object to be generated is
obtained via a sequence of actions. By changing the temperature of the energy function (i.e., scaling
it multiplicatively) or by taking the power of the return, one can control how selective the generator
should be, i.e., only generate from around the highest modes at low temperature or explore more with
a higher temperature.

A motivating application for this setup is iterative black-box optimization where the learner has
access to an oracle which can compute a reward for a large batch of candidates at each round, e.g., in
drug-discovery applications. Diversity of the generated candidates is particularly important when the
oracle is itself uncertain, e.g., it may consist of cellular assays which is a cheap proxy for clinical

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

trials, or it may consist of the result of a docking simulation (estimating how well a candidate small
molecule binds to a target protein) which is a proxy for more accurate but more expensive downstream
evaluations (like cellular assays or in-vivo assays in mice).

When calling the oracle is expensive (e.g. it involves a biological experiment), a standard way (Anger-
mueller et al., 2020) to apply machine learning in such exploration settings is to take the data already
collected from the oracle (say a set of (x, y) pairs where x is a candidate solution an y is a scalar
evaluation of x from the oracle) and train a supervised proxy f (viewed as a simulator) which predicts
y from x. The function f or a variant of f which incorporates uncertainty about its value, like in
Bayesian optimization (Srinivas et al., 2010; Negoescu et al., 2011), can then be used as a reward
function R to train a generative model or a policy that will produce a batch of candidates for the
next experimental assays. Searching for x which maximizes R(x) is not sufficient because we
would like to sample for the batch of queries a representative set of x’s with high values of R, i.e.,
around modes of R(x). Note that alternative ways to obtain diversity exist, e.g., with batch Bayesian
optimization (Kirsch et al., 2019). An advantage of the proposed approach is that the computational
cost is linear in the size of the batch (by opposition with methods which compare pairs of candidates,
which is at least quadratic). With the possibility of assays of a hundred thousand candidates using
synthetic biology, linear scaling would be a great advantage.

In this paper, we thus focus on the specific machine learning problem of turning a given positive
reward or return function into a generative policy which samples with a probability propor-
tional to the return. In applications like the one mentioned above, we only apply the reward function
after having generated a candidate, i.e., the reward is zero except in a terminal state, and the return is
the terminal reward. We are in the so-called episodic setting of RL.

The proposed approach views the probability assigned to an action given a state as the flow associated
with a network whose nodes are states, and outgoing edges from that node are deterministic transitions
driven by an action (not to be confused with normalizing flows; Rezende and Mohamed (2016)).
The total flow into the network is the sum of the rewards in the terminal states (i.e., a partition
function) and can be shown to be the flow at the root node (or start state). The proposed algorithm is
inspired by Bellman updates and converges when the incoming and outgoing flow into and out of
each state match. A policy which chooses an action with probability proportional to the outgoing flow
corresponding to that action is proven to achieve the desired result, i.e., the probability of sampling a
terminal state is proportional to its reward. In addition, we show that the resulting setup is off-policy;
it converges to the above solution even if the training trajectories come from a different policy, so
long as it has large enough support on the state space.

The main contributions of this paper are as follows:

• We propose GFlowNet, a novel generative method for unnormalized probability distributions
based on flow networks and local flow-matching conditions: the flow incoming to a state must
match the outgoing flow.

• We prove crucial properties of GFlowNet, including the link between the flow-matching
conditions (which many training objectives can provide) and the resulting match of the
generated policy with the target reward function. We also prove its offline properties and
asymptotic convergence (if the training objective can be minimized). We also demonstrate
that previous related work (Buesing et al., 2019) which sees the generative process like a tree
would fail when there are many action sequences which can lead to the same state.

• We demonstrate on synthetic data the usefulness of departing from seeking one mode of the
return, and instead seeking to model the entire distribution and all its modes.

• We successfully apply GFlowNet to a large scale molecule synthesis domain, with comparative
experiments against PPO and MCMC methods.

All implementations are available at https://github.com/bengioe/gflownet.

2 Approximating Flow Network generative models with a TD-like objective

Consider a discrete set X and policy π(a|s) to sequentially build x ∈ X with probability π(x) with

π(x) ≈ R(x)

Z
=

R(x)∑
x′∈X R(x

′)
(1)

2

https://github.com/bengioe/gflownet

where R(x) > 0 is a reward for a terminal state x. This would be useful to sample novel drug-like
molecules when given a reward function R that scores molecules based on their chemical properties.
Being able to sample from the high modes ofR(x) would provide diversity in the batches of generated
molecules sent to assays. This is in contrast with the typical RL objective of maximizing return which
we have found to often end up focusing around one or very few good molecules. In our context, R(x)
is a proxy for the actual values obtained from assays, which means it can be called often and cheaply.
R(x) is retrained or fine-tuned each time we acquire new data from the assays.

What method should one use to generate batches sampled from π(x) ∝ R(x)? Let’s first think of the
state space under which we would operate.

Let S denote the set of states and X ⊂ S denote the set of terminal states. Let A be a finite set, the
alphabet, A(s) ⊆ A be the set of allowed actions at state s, and let A∗(s) be the set of all sequences
of actions allowed after state s. To every action sequence ~a = (a1, a2, a3, ..., ah) of ai ∈ A, h ≤ H
corresponds a single x, i.e. the environment is deterministic so we can define a function C mapping a
sequence of actions ~a to an x. If such a sequence is ‘incomplete’ we define its reward to be 0. When
the correspondence between action sequences and states is bijective, a state s is uniquely described
by some sequence ~a, and we can visualize the generative process as the traversal of a tree from a
single root node to a leaf corresponding to the sequence of actions along the way.

However, when this correspondence is non-injective, i.e. when multiple action sequences describe
the same x, things get trickier. Instead of a tree, we get a directed acyclic graph or DAG (assuming that
the sequences must be of finite length, i.e., there are no deterministic cycles), as illustrated in Figure 1.
For example, and of interest here, molecules can be seen as graphs, which can be described in
multiple orders (canonical representations such as SMILES strings also have this problem: there may
be multiple descriptions for the same actual molecule). The standard approach to such a sampling
problem is to use iterative MCMC methods (Xie et al., 2021; Grathwohl et al., 2021). Another
option is to relax the desire to have p(x) ∝ R(x) and to use non-interative (sequential) RL methods
(Gottipati et al., 2020), but these are at high risk of getting stuck in local maxima and of missing
modes. Indeed, in our setting, the policy which maximizes the expected return (which is the expected
final reward) generates the sequence with the highest return (i.e., a single molecule).

2.1 Flow Networks

In this section we propose the Generative Flow Network framework, or GFlowNet, which enables us
to learn policies such that p(x) ∝ R(x) when sampled. We first discuss why existing methods are
inadequate, and then show how we can use the metaphor of flows, sinks and sources, to construct
adequate policies. We then show that such policies can be learned via a flow-matching objective.

With existing methods in the bijective case, one can think of the sequential generation of one x as an
episode in a tree-structured deterministic MDP, where all leaves x are terminal states (with reward
R(x)) and the root is initial state s0. Interestingly, in such a case one can express the pseudo-value of
a state Ṽ (s) as the sum of all the rewards of the descendants of s (Buesing et al., 2019).

In the non-injective case, these methods are inadequate. Constructing π(τ) ≈ R(τ)/Z, e.g. as
per Buesing et al. (2019), MaxEnt RL (Haarnoja et al., 2017), or via an autoregressive method (Nash
and Durkan, 2019; Shi et al., 2021) has a particular problem as shown below: if multiple action
sequences ~a (i.e. multiple trajectories τ) lead to a final state x, then a serious bias can be introduced
in the generative probabilities. Let us denote ~a +~b as the concatenation of the two sequences of
actions ~a and~b, and by extension s+~b the state reached by applying the actions in~b from state s.

Proposition 1. Let C : A∗ 7→ S associate each allowed action sequence ~a ∈ A∗ to a state
s = C(~a) ∈ S. Let Ṽ : S 7→ R+ associate each state s ∈ S to Ṽ (s) =

∑
~b∈A∗(s)R(s +

~b) > 0,

whereA∗(s) is the set of allowed continuations from s and s+~b denotes the resulting state, i.e., Ṽ (s)
is the sum of the rewards of all the states reachable from s. Consider a policy π which starts from
the state corresponding to the empty string s0 = C(∅) and chooses from state s ∈ S an allowable
action a ∈ A(s) with probability π(a|s) = Ṽ (s+a)∑

b∈A(s) Ṽ (s+b)
. Denote π(~a = (a1, . . . , aN)) =∏N

i=1 π(ai|C(a1, . . . , ai−1)) and π(s) with s ∈ S the probability of visiting a state s with this policy.
The following then obtains:
(a) π(s) =

∑
~ai:C(~ai)=s

π(~ai).

3

(b) IfC is bijective, then π(s) = Ṽ (s)

Ṽ (s0)
and as a special case for terminal states x, π(x) = R(x)∑

x∈X R(x) .
(c) If C is non-injective and there are n(x) distinct action sequences ~ai s.t. C(~ai) = x, then
π(x) = n(x)R(x)∑

x′∈X n(x
′)R(x′) .

See Appendix A.1 for the proof. In combinatorial spaces, such as for molecules, where C is non-
injective (there are many ways to construct a molecule graph), this can become exponentially bad as
trajectory lengths increase. It means that larger molecules would be exponentially more likely to be
sampled than smaller ones, just because of the many more paths leading to them. In this scenario, the
pseudo-value Ṽ is “misinterpreting” the MDP’s structure as a tree, leading to the wrong π(x).

An alternative is to see the MDP as a flow network, that is, leverage the DAG structure of the MDP,
and learn a flow F , rather than estimating the pseudo-value Ṽ as a sum of descendant rewards, as
elaborated below. We define the flow network as a having a single source, the root node (or initial
state) s0 with in-flow Z, and one sink for each leaf (or terminal state) x with out-flow R(x) > 0.
We write T (s, a) = s′ to denote that the state-action pair (s, a) leads to state s′. Note that because
C is not a bijection, i.e., there are many paths (action sequences) leading to some node, a node can
have multiple parents, i.e. |{(s, a) | T (s, a) = s′}| ≥ 1, except for the root, which has no parent.
We write F (s, a) for the flow between node s and node s′ = T (s, a), F (s) for the total flow going
through s1. This construction is illustrated in Fig. 1.

s0

root

F (s0) = Z

a1

a2

a3

nodes have multiple paths
from the root

s1

s2

∑
s,a:T (s,a)=s3

F (s, a) =
∑

a′∈A(s3)

F (s3, a
′)

s3

a2

a5

s4

terminal state

a4
a7

Figure 1: A flow network MDP. Episodes start at source s0 with flow Z. Like with SMILES strings,
there are no cycles. Terminal states are sinks with out-flow R(s). Exemplar state s3 has parents
{(s, a)|T (s, a)= s3}= {(s1, a2), (s2, a5)} and allowed actions A(s3)= {a4, a7}. s4 is a terminal
sink state with R(s4) > 0 and only one parent. The goal is to estimate F (s, a) such that the flow
equations are satisfied for all states: for each node, incoming flow equals outgoing flow.

To satisfy flow conditions, we require that for any node, the incoming flow equals the outgoing flow,
which is the total flow F (s) of node s. Boundary conditions are given by the flow into the terminal
nodes x, R(x). Formally, for any node s′, we must have that the in-flow

F (s′) =
∑

s,a:T (s,a)=s′

F (s, a) (2)

equals the out-flow
F (s′) =

∑
a′∈A(s′)

F (s′, a′). (3)

More concisely, with R(s) = 0 for interior nodes, and A(s) = ∅ for leaf (sink/terminal) nodes, we
write the following flow consistency equations:∑

s,a:T (s,a)=s′

F (s, a) = R(s′) +
∑

a′∈A(s′)

F (s′, a′). (4)

with F being a flow, F (s, a) > 0 ∀s, a (for this we needed to constrain R(x) to be positive too).
One could include in principle nodes and edges with zero flow but it would make it difficult to talk
about the logarithm of the flow, as we do below, and such states can always be excluded by the
allowed set of actions for their parent states. Let us now show that such a flow correctly produces
π(x) = R(x)/Z when the above flow equations are satisfied.

1In some sense, F (s) and F (s, a) are close to V and Q, RL’s value and action-value functions. These
effectively inform an agent taking decisions at each step of an MDP to act in a desired way. With some work, we
can also show an equivalence between F (s, a) and the “real” Qπ̂ of some policy π̂ in a modified MDP (see A.2).

4

Proposition 2. Let us define a policy π that generates trajectories starting in state s0 by sampling
actions a ∈ A(s) according to

π(a|s) = F (s, a)

F (s)
(5)

where F (s, a) > 0 is the flow through allowed edge (s, a), F (s) = R(s) +
∑
a∈A(s) F (s, a) where

R(s) = 0 for non-terminal nodes s and F (x) = R(x) > 0 for terminal nodes x, and the flow
consistency equation

∑
s,a:T (s,a)=s′ F (s, a) = R(s′) +

∑
a′∈A(s′) F (s

′, a′) is satisfied. Let π(s)
denote the probability of visiting state s when starting at s0 and following π(·|·). Then
(a) π(s) = F (s)

F (s0)

(b) F (s0) =
∑
x∈X R(x)

(c) π(x) = R(x)∑
x′∈X R(x′) .

Proof. We have π(s0) = 1 since we always start in root node s0. Note that
∑
x∈X π(x) = 1

because terminal states are mutually exclusive, but in the case of non-bijective C, we cannot say that∑
s∈S π(s) equals 1 because the different states are not mutually exclusive in general. This notation

is different from the one typically used in RL where π(s) refers to the asymptotic distribution of the
Markov chain. Then

π(s′) =
∑

(a,s):T (s,a)=s′

π(a|s)π(s) (6)

i.e., using Eq. 5,

π(s′) =
∑

(a,s):T (s,a)=s′

F (s, a)

F (s)
π(s). (7)

We can now conjecture that the statement

π(s) =
F (s)

F (s0)
(8)

is true and prove it by induction. This is trivially true for the root, which is our base statement, since
π(s0) = 1. By induction, we then have that if the statement is true for parents s of s′, then

π(s′) =
∑

s,a:T (s,a)=s′

F (s, a)

F (s)

F (s)

F (s0)
=

∑
s,a:T (s,a)=s′ F (s, a)

F (s0)
=
F (s′)

F (s0)
(9)

which proves the statement, i.e., the first conclusion (a) of the theorem. We can then apply it to the
case of terminal states x, whose flow is fixed to F (x) = R(x) and obtain

π(x) =
R(x)

F (s0)
. (10)

Noting that
∑
x∈X π(x) = 1 and summing both sides of Eq. 10 over x we thus obtain (b), i.e.,

F (s0) =
∑
x∈X R(x). Plugging this back into Eq. 10, we obtain (c), i.e., π(x) = R(x)∑

x′∈X R(x′) .

Thus our choice of π(a|s) satisfies our desiderata: it maps a reward function R to a generative model
which generates x with probability π(x) ∝ R(x), whether C is bijective or non-injective (the former
being a special case of the latter, and we just provided a proof for the general non-injective case).

2.2 Objective Functions for GFlowNet

We can now leverage our RL intuitions to create a learning algorithm out of the above theoretical
results. In particular, we propose to approximate the flows F such that the flow consistency equations
are respected at convergence with enough capacity in our estimator of F , just like the Bellman
equations for temporal-difference (TD) algorithms (Sutton and Barto, 2018). This could yield the
following objective for a trajectory τ :

L̃θ(τ) =
∑

s′∈τ 6=s0

 ∑
s,a:T (s,a)=s′

Fθ(s, a)−R(s′)−
∑

a′∈A(s′)

Fθ(s
′, a′)

2

. (11)

5

One issue from a learning point of view is that the flow will be very large for nodes near the root
(early in the trajectory) and tiny for nodes near the leaves (late in the trajectory). In high-dimensional
spaces where the cardinality of X is exponential (e.g., in the typical number of actions to form an x),
the F (s, a) and F (s) for early states will be exponentially larger than for later states. Since we want
F (s, a) to be the output of a neural network, this would lead to serious numerical issues.

To avoid this problem, we define the flow matching objective on a log-scale, where we match
not the incoming and outgoing flows but their logarithms, and we train our predictor to estimate
F log
θ (s, a) = logF (s, a), and exponentiate-sum-log theF log

θ predictions to compute the loss, yielding
the square of a difference of logs:

Lθ,ε(τ) =
∑

s′∈τ 6=s0

log

ε+∑
s,a:T (s,a)=s′

expF log
θ (s, a)

− log

ε+R(s′) +
∑

a′∈A(s′)

expF log
θ (s′, a′)

2

(12)

which gives equal gradient weighing to large and small magnitude predictions. Note that matching
the logs of the flows is equivalent to making the ratio of the incoming and outgoing flow closer to 1.
To give more weight to errors on large flows and avoid taking the logarithm of a tiny number, we
compare log(ε+incoming flow) with log(ε+outgoing flow). It does not change the global minimum,
which is still when the flow equations are satisfied, but it avoids numerical issues with taking the log
of a tiny flow. The hyper-parameter ε also trades-off how much pressure we put on matching large
versus small flows, and in our experiments is set to be close to the smallest value R can take. Since
we want to discover the top modes of R, it makes sense to care more for the larger flows. Many other
objectives are possible for which flow matching is also a global minimum.

An interesting advantage of such objective functions is that they yield off-policy offline methods.
The predicted flows F do not depend on the policy used to sample trajectories (apart from the fact
that the samples should sufficiently cover the space of trajectories in order to obtain generalization).
This is formalized below, which shows that we can use any broad-support policy to sample training
trajectories and still obtain the correct flows and generative model, i.e., training can be off-policy.
Proposition 3. Let trajectories τ used to train Fθ be sampled from an exploratory policy P with the
same support as the optimal π defined in Eq. 5 for a consistent flow F ∗ ∈ F∗. A flow is consistent
if Eq. 4 is respected. Also assume that ∃θ : Fθ = F ∗, i.e., we choose a sufficiently rich family of
predictors. Let θ∗ ∈ argminθEP (τ)[Lθ(τ)] a minimizer of the expected training loss. Let Lθ(τ)
have the property that when flows are matched it achieves its lowest possible value. First, it can be
shown that this property is satisfied for the loss in Eq. 12. Then

Fθ∗ = F ∗, and Lθ∗(τ) = 0 ∀τ ∼ P (θ), (13)

i.e., a global optimum of the expected loss provides the correct flows. If πθ∗(a|s) = Fθ∗ (s,a)∑
a′∈A(s) Fθ∗ (s,a

′)

then we also have

πθ∗(x) =
R(x)

Z
. (14)

The proof is in Appendix A.1. Note that, in RL terms, this method is akin to asynchronous dynamic
programming (Sutton and Barto, 2018, §4.5), which is an off-policy off-line method which converges
provided every state is visited infinitely many times asymptotically.

3 Related Work
The objective of training a policy generating states with a probability proportional to rewards was
presented by Buesing et al. (2019) but the proposed method only makes sense when there is a bijection
between action sequences and states. In contrast, GFlowNet is applicable in the more general setting
where many paths can lead to the same state. The objective to sample with probability proportional to
a given unnormalized positive function is achieved by many MCMC methods (Grathwohl et al., 2021;
Dai et al., 2020). However, when mixing between modes is challenging (e.g., in high-dimensional
spaces with well-separated modes occupying a fraction of the total volume) convergence to the target
distribution can be extremely slow. In contrast, GFlowNet is not iterative and amortizes the challenge
of sampling from such modes through a training procedure which must be sufficiently exploratory.

This sampling problem comes up in molecule generation and has been studied in this context with
numerous generative models (Shi et al., 2020; Jin et al., 2020; Luo et al., 2021), MCMC methods (Seff

6

et al., 2019; Xie et al., 2021), RL (Segler et al., 2017; Cao and Kipf, 2018; Popova et al., 2019;
Gottipati et al., 2020; Angermueller et al., 2020) and evolutionary methods (Brown et al., 2004;
Jensen, 2019; Swersky et al., 2020). Some of these methods rely on a given set of "positive examples"
(high-reward) to train a generative model, thus not taking advantage of the "negative examples" and the
continuous nature of the measurements (some examples should be generated more often than others).
Others rely on the traditional return maximization objectives of RL, which tends to focus on one or a
few dominant modes, as we find in our experiments. Beyond molecules, there are previous works
generating data non-greedily through RL (Bachman and Precup, 2015) or energy-based GANs (Dai
et al., 2017).

The objective that we formulate in (12) may remind the reader of the objective of control-as-
inference’s Soft Q-Learning (Haarnoja et al., 2017), with the difference that we include all the
parents of a state in the in-flow, whereas Soft Q-Learning only uses the parent contained in the trajec-
tory. Soft Q-Learning induces a different policy, as shown by Proposition 1, one where P (τ) ∝ R(τ)
rather than P (x) ∝ R(x). More generally, we only consider deterministic generative settings whereas
RL is a more general framework for stochastic environments.

Literature at the intersection of network flow and deep learning is sparse, and is mostly concerned
with solving maximum flow problems (Nazemi and Omidi, 2012; Chen and Zhang, 2020) or clas-
sification within existing flow networks (Rahul et al., 2017; Pektaş and Acarman, 2019). Finally,
the idea of accounting for the search space being a DAG rather than a tree in MCTS, known as
transpositions (Childs et al., 2008), also has some links with the proposed method.

4 Empirical Results
We first verify that GFlowNet works as advertised on an artificial domain small enough to compute the
partition function exactly, and compare its abilities to recover modes compared to standard MCMC
and RL methods, with its sampling distribution better matching the normalized reward. We find
that GFlowNet (A) converges to π(x) ∝ R(x), (B) requires less samples to achieve some level of
performance than MCMC and PPO methods and (C) recovers all the modes and does so faster than
MCMC and PPO, both in terms of wall-time and number of states visited and queried. We then test
GFlowNet on a large scale domain, which consists in generating small drug molecule graphs, with
a reward that estimates their binding affinity to a target protein (see Appendix A.3). We find that
GFlowNet finds higher reward and more diverse molecules faster than baselines.

4.1 A (hyper-)grid domain

Consider an MDP where states are the cells of a n-dimensional hypercubic grid of side length H .
The agent starts at coordinate x = (0, 0, ...) and is only allowed to increase coordinate i with action
ai (up to H , upon which the episode terminates). A stop action indicates to terminate the trajectory.
There are many action sequences that lead to the same coordinate, making this MDP a DAG.The
reward for ending the trajectory in x is some R(x) > 0. For MCMC methods, in order to have an
ergodic chain, we allow the iteration to decrease coordinates as well, and there is no stop action.

We ran experiments with this reward function:

R(x) = R0+R1

∏
i I(0.25 < |xi/H−0.5|)+R2

∏
i I(0.3 < |xi/H−0.5| < 0.4)

0 10 20 30 40 50 60

0

10

20

30

40

50

60

with 0 < R0 � R1 < R2, pictured when n = 2 on the right. For this choice of R, there are
only interesting rewards near the corners of the grid, and there are exactly 2n modes. We set
R1 = 1/2, R2 = 2. By varyingR0 and setting it closer to 0, we make this problem artificially harder,
creating a region of the state space which it is undesirable to explore. To measure the performance
of a method, we measure the empirical L1 error E[|p(x)− π(x)|]. p(x) = R(x)/Z is known in this
domain, and π is estimated by repeated sampling and counting frequencies for each possible x. We
also measure the number of modes with at least 1 visit as a function of the number of states visited.

We run the above experiment for R0 ∈ {10−1, 10−2, 10−3} with n = 4, H = 8. In Fig. 2 we see
that GFlowNet is robust to R0 and obtains a low L1 error, while a Metropolis-Hastings-MCMC
based method requires exponentially more samples than GFlowNet to achieve some level of L1 error.
This is apparent in Fig. 2 (with a log-scale horizontal axis) by comparing the slope of progress of
GFlowNet (beyond the initial stage) and that of the MCMC sampler. We also see that MCMC takes
much longer to visit each mode once as R0 decreases, while GFlowNet is only slightly affected,
with GFlowNet converging to some level of L1 error faster, as per hypothesis (B). This suggests that

7

GFlowNet is robust to the separation between modes (represented by R0 being smaller) and thus
recovers all the modes much faster than MCMC (again, noting the log-scale of the horizontal axis).

To compare to RL, we run PPO (Schulman et al., 2017). To discover all the modes in a reasonable
time, we need to set the entropy maximization term much higher (0.5) than usual (� 1). We verify
that PPO is not overly regularized by comparing it to a random agent. PPO finds all the modes faster
than uniform sampling, but much more slowly than GFlowNet, and is also robust to the choice of
R0. This and the previous result validates hypothesis (C). We also run SAC (Haarnoja et al., 2018),
finding similar or worse results. We provide additional results and discussion in Appendix A.6.

0 104 105 106

states visited

10−4

em
pi

ri
ca

lL
1

er
ro

r

0 104 105 106

states visited

0

5

10

15

m
od

es
fo

un
d

(m
ax

=1
6) R0 = 10−1

R0 = 10−2

R0 = 10−3

ours
MCMC
PPO
random

Figure 2: Hypergrid domain. Changing the task difficulty R0 to illustrate the advantage of GFlowNet
over others. We see that as R0 gets smaller, MCMC struggles to fit the distribution because it
struggles to visit all the modes. PPO also struggles to find all the modes, and requires very large
entropy regularization, but is robust to the choice of R0. We plot means over 10 runs for each setting.

4.2 Generating small molecules

Here our goal is to generate a diverse set of small molecules that have a high reward. We define a
large-scale environment which allows an agent to sequentially generate molecules. This environment
is challenging, with up to 1016 states and between 100 and 2000 actions depending on the state.

We follow the framework of Jin et al. (2020) and generate molecules by parts using a predefined
vocabulary of building blocks that can be joined together forming a junction tree (detailed in A.3).
This is also known as fragment-based drug design (Kumar et al., 2012; Xie et al., 2021). Generating
such a graph can be described as a sequence of additive edits: given a molecule and constraints of
chemical validity, we choose an atom to attach a block to. The action space is thus the product of
choosing where to attach a block and choosing which block to attach. There is an extra action to
stop the editing sequence. This sequence of edits yields a DAG MDP, as there are multiple action
sequences that lead to the same molecule graph, and no edge removal actions, which prevents cycles.

The reward is computed with a pretrained proxy model that predicts the binding energy of a molecule
to a particular protein target (soluble epoxide hydrolase, sEH, see A.3). Although computing binding
energy is computationally expensive, we can call this proxy cheaply. Note that for realistic drug
design, we would need to consider many more quantities such as drug-likeness (Bickerton et al.,
2012), toxicity, or synthesizability. Our goal here is not solve this problem, and our work situates
itself within such a larger project. Instead, we want to show that given a proxy R in the space of
molecules, we can quickly match its induced distribution π(x) ∝ R(x) and find many of its modes.

We parameterize the proxy with an MPNN (Gilmer et al., 2017) over the atom graph. Our flow
predictor Fθ is parameterized similarly to MARS (Xie et al., 2021), with an MPNN, but over the
junction tree graph (the graph of blocks), which had better performance. For fairness, this architecture
is used for both GFlowNet and the baselines. Complete details can be found in Appendix A.4.

We pretrain the proxy with a semi-curated semi-random dataset of 300k molecules (see A.4) down
to a test MSE of 0.6; molecules are scored according to the docking score (Trott and Olson, 2010),
renormalized so that most scores fall between 0 and 10 (to have R(x) > 0). We plot the dataset’s
reward distribution in Fig. 3. We train all generative models with up to 106 molecules. During
training, sampling follows exploratory policy P (a|s) which is a mixture between π(a|s) (Eq. 5),
used with probability 0.95, and a uniform distribution over allowed actions with probability 0.05.

Experimental results In Fig. 3 we show the empirical distribution of rewards in two settings; first
when we train our model with R(x), then with R(x)β . If GFlowNet learns a reasonable policy π,

8

0 2 4 6 8
R(x)

0.00

0.02

0.04

0.06

0.08

p̂(
R

)

ours, β = 1
ours, β = 4
MARS, β = 1
MARS, β = 4
proxy dataset

Figure 3: Empirical density of rewards. We ver-
ify that GFlowNet is consistent by training it
with Rβ , β = 4, which has the hypothesized
effect of shifting the density to the right.

0 102 103 104 105 106

molecules visited

2

4

6

8

av
g

R
of

un
iq

ue
to

p
k ours

MARS
PPO
JT-VAE + BO
top 10
top 100
top 1000

Figure 4: The average reward of the top-k as a
function of learning (averaged over 3 runs). Only
unique hits are counted. Note the log scale. Our
method finds more unique good molecules faster.

this should shift the distribution to the right. This is indeed what we observe. We compare GFlowNet
to MARS (Xie et al., 2021), known to work well in the molecule domain, and observe the same
shift. Note that GFlowNet finds more high reward molecules than MARS with these β values; this
is consistent with the hypothesis that it finds high-reward modes faster (since MARS is an MCMC
method, it would eventually converge to the same distribution, but takes more time).

In Fig. 4, we show the average reward of the top-k molecules found so far, without allowing for
duplicates (based on SMILES). We compare GFlowNet with MARS, PPO, and JT-VAE (Jin et al.,
2020) with Bayesian Optimization. As expected, PPO plateaus after a while; RL tends to be satisfied
with good enough trajectories unless it is strongly regularized with exploration mechanisms. For
GFlowNet and for MARS, the more molecules are visited, the better they become, with a slow
convergence towards the proxy’s max reward. Given the same compute time, JT-VAE+BO generates
only about 103 molecules (due to its expensive Gaussian Process) and so does not perform well.

The maximum reward in the proxy’s dataset is 10, with only 233 examples above 8. In our best run,
we find 2339 unique molecules during training with a score above 8, only 39 of which are in the
dataset. We compute the average pairwise Tanimoto similarity for the top 1000 samples: GFlowNet
has a mean of 0.44± 0.01, PPO, 0.62± 0.03, and MARS, 0.59± 0.02 (mean and std over 3 runs).
As expected, our MCMC baseline (MARS) and RL baseline (PPO) find less diverse candidates. We
also find that GFlowNet discovers many more modes (>1500 with R>8 vs <100 for MARS). This
is shown in Fig. 5 where we consider a mode to be a Bemis-Murcko scaffold (Bemis and Murcko,
1996), counted for molecules above a certain reward threshold. We provide additional insights into
how GFlowNet matches the rewards in Appendix A.7.

0.0 0.2 0.4 0.6 0.8 1.0
states visited ×106

0

2000

4000

6000

8000

10000

#
of

m
od

es
w

ith
R
>

7.
5 GFlowNet

MARS
PPO

0.0 0.2 0.4 0.6 0.8 1.0
states visited ×106

0

500

1000

1500

#
of

m
od

es
w

ith
R
>

8

GFlowNet
MARS
PPO

Figure 5: Number of diverse Bemis-Murcko scaffolds found above reward threshold T as a function
of the number of molecules seen. Left, T = 7.5. Right, T = 8.

4.3 Multi-Round Experiments
To demonstrate the importance of diverse candidate generation in an active learning setting, we
consider a sequential acquisition task. We simulate the setting where there is a limited budget for
calls to the true oracle O. We use a proxy M initialized by training on a limited dataset of (x,R(x))

9

pairs D0, where R(x) is the true reward from the oracle. The generative model (πθ) is trained
to fit to the unnormalized probability function learned by the proxy M . We then sample a batch
B = {x1, x2, . . . xk} where xi ∼ πθ, which is evaluated with the oracle O. The proxy M is updated
with this newly acquired and labeled batch, and the process is repeated for N iterations. We discuss
the experimental setting in more detail in Appendix A.5.

5 10 15
Rounds of acquisition

0.0

0.5

1.0

1.5

To
p-

k
R

et
ur

n

R0 = 10−1

R0 = 10−2

R0 = 10−3

GFlowNet
MCMC
PPO

Figure 6: The top-k return (mean over 3 runs)
in the 4-D Hyper-grid task with active learning.
GFlowNet gets the highest return faster.

2000 2500 3000 3500
No. of molecules docked

7.0

7.5

8.0

8.5

To
p-

k
R

ew
ar

d

GFlowNet
MARS
VAE+BO
Random
Top 10
Top 100

Figure 7: The top-k docking reward (mean over
3 runs) in the molecule task with active learning.
GFlowNet consistently generates better samples.

Hyper-grid domain We present results for the multi-round task in the 4-D hyper-grid domain in
Figure 6. We use a Gaussian Process (Williams and Rasmussen, 1995) as the proxy. We compare
the Top-k Return for all the methods, which is defined as mean(top -k(Di))−mean(top -k(Di−1)),
where Di is the dataset of points acquired until step i, and k = 10 for this experiment. The initial
dataset D0 (|D0| = 512) is the same for all the methods compared. We observe that GFlowNet
consistently outperforms the baselines in terms of return over the initial set. We also observe that
the mean pairwise L2-distance between the top -k points at the end of the final round is 0.83± 0.03,
0.61± 0.01 and 0.51± 0.02 for GFlowNet, MCMC and PPO respectively. This demonstrates the
ability of GFlowNet to capture the modes, even in the absence of the true oracle, as well as the
importance of capturing this diversity in multi-round settings.

Small Molecules For the molecule discovery task, we initialize an MPNN proxy to predict docking
scores from AutoDock (Trott and Olson, 2010), with |D0| = 2000 molecules. At the end of each
round we generate 200 molecules which are evaluated with AutoDock and used to update the proxy.
Figure 7 shows GFlowNet discovers molecules with significantly higher energies than the initial
set D0. It also consistently outperforms MARS as well as Random Acquisition. PPO training was
unstable and diverged consistently so the numbers are not reported. The mean pairwise Tanimoto
similarity in the initial set is 0.60. At the end of the final round, it is 0.54 ± 0.04 for GFlowNet
and 0.64± 0.03 for MARS. This further demonstrates the ability of GFlowNet to generate diverse
candidates, which ultimately helps improve the final performance on the task. Similar to the single
step setting, we observe that JT-VAE+BO is only able to generate 103 molecules with similar compute
time, and thus performs poorly.

5 Discussion & Limitations

In this paper we have introduced a novel TD-like objective for learning a flow for each state and
(state, action) pair such that policies sampling actions proportional to these flows draw terminal states
in proportion to their reward. This can be seen as an alternative approach to turn an energy function
into a fast generative model, without the need for an iterative method like that needed with MCMC
methods, and with the advantage that when training succeeds, the policy generates a great diversity
of samples near the main modes of the target distribution without being slowed by issues of mixing
between modes.

Limitations. One downside of the proposed method is that, as for TD-based methods, the use of
bootstrapping may cause optimization challenges (Kumar et al., 2020; Bengio et al., 2020) and limit
its performance. In applications like drug discovery, sampling from the regions surrounding each
mode is already an important advantage, but future work should investigate how to combine such a
generative approach to local optimization in order to refine the generated samples and approach the
local maxima of reward while keeping the batches of candidates diverse.

Negative Social Impact. The authors do not foresee negative social impacts of this work specifically.

10

Acknowledgments and Disclosure of Funding

This research was enabled in part by computational resources provided by Calcul Québec (www.
calculquebec.ca) and Compute Canada (www.computecanada.ca). All authors are funded by
their primary academic institution. We also acknowledge funding from Samsung Electronics Co.,
Ldt., CIFAR and IBM.

The authors are grateful to Andrei Nica for generating the molecule dataset, to Maria Kadukova for
advice on molecular docking, to Harsh Satija for feedback on the paper, as well as to all the members
of the Mila Molecule Discovery team for the many research discussions on the challenges we faced.

Author Contributions

EB and YB contributed to the original idea, and wrote most sections of the paper. YB wrote the
proofs of Propositions 1-3, EB the proof of Proposition 4. EB wrote the code and ran experiments
for sections 4.1 (hypergrid) and 4.2 (small molecules). MJ wrote the code and ran experiments for
section 4.3 (multi-round) and wrote the corresponding results section of the paper. MK wrote the
biochemical framework upon which the molecule experiments are built, assisted in debugging and
running experiments for section 4.3, implemented mode-counting routines used in 4.2, and wrote the
biochemical details of the paper.

MK, DP and YB provided supervision for the project. All authors contributed to proofreading and
editing the paper.

References
Christof Angermueller, David Dohan, David Belanger, Ramya Deshpande, Kevin Murphy, and Lucy

Colwell. Model-based reinforcement learning for biological sequence design. In International
Conference on Learning Representations, 2020.

Philip Bachman and Doina Precup. Data generation as sequential decision making. Advances in
Neural Information Processing Systems, 28:3249–3257, 2015.

Guy W Bemis and Mark A Murcko. The properties of known drugs. 1. molecular frameworks.
Journal of medicinal chemistry, 39(15):2887–2893, 1996.

Emmanuel Bengio, Joelle Pineau, and Doina Precup. Interference and generalization in temporal
difference learning. In International Conference on Machine Learning, pages 767–777. PMLR,
2020.

G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins.
Quantifying the chemical beauty of drugs. Nature chemistry, 4(2):90–98, 2012.

Nathan Brown, Ben McKay, François Gilardoni, and Johann Gasteiger. A graph-based genetic
algorithm and its application to the multiobjective evolution of median molecules. Journal of
chemical information and computer sciences, 44(3):1079–1087, 2004.

Lars Buesing, Nicolas Heess, and Theophane Weber. Approximate inference in discrete distributions
with monte carlo tree search and value functions, 2019.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs,
2018.

Yize Chen and Baosen Zhang. Learning to solve network flow problems via neural decoding. arXiv
preprint arXiv:2002.04091, 2020.

Benjamin E Childs, James H Brodeur, and Levente Kocsis. Transpositions and move groups in monte
carlo tree search. In 2008 IEEE Symposium On Computational Intelligence and Games, pages
389–395. IEEE, 2008.

Hanjun Dai, Rishabh Singh, Bo Dai, Charles Sutton, and Dale Schuurmans. Learning discrete
energy-based models via auxiliary-variable local exploration. In Neural Information Processing
Systems (NeurIPS), 2020.

11

www.calculquebec.ca
www.calculquebec.ca
www.computecanada.ca

Zihang Dai, Amjad Almahairi, Philip Bachman, Eduard Hovy, and Aaron Courville. Calibrating
energy-based generative adversarial networks. arXiv preprint arXiv:1702.01691, 2017.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry, 2017.

Sai Krishna Gottipati, Boris Sattarov, Sufeng Niu, Yashaswi Pathak, Haoran Wei, Shengchao Liu,
Karam M. J. Thomas, Simon Blackburn, Connor W. Coley, Jian Tang, Sarath Chandar, and Yoshua
Bengio. Learning to navigate the synthetically accessible chemical space using reinforcement
learning, 2020.

Will Grathwohl, Kevin Swersky, Milad Hashemi, David Duvenaud, and Chris J. Maddison. Oops i
took a gradient: Scalable sampling for discrete distributions, 2021.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International Conference on Machine Learning, pages 1352–1361.
PMLR, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, 2018.

Jan H Jensen. A graph-based genetic algorithm and generative model/monte carlo tree search for the
exploration of chemical space. Chemical science, 10(12):3567–3572, 2019.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Chapter 11. junction tree variational autoencoder
for molecular graph generation. Drug Discovery, page 228–249, 2020. ISSN 2041-3211. doi: 10.
1039/9781788016841-00228. URL http://dx.doi.org/10.1039/9781788016841-00228.

Andreas Kirsch, Joost van Amersfoort, and Yarin Gal. Batchbald: Efficient and diverse batch
acquisition for deep bayesian active learning, 2019.

Ashutosh Kumar, A Voet, and KYJ Zhang. Fragment based drug design: from experimental to
computational approaches. Current medicinal chemistry, 19(30):5128–5147, 2012.

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization
inhibits data-efficient deep reinforcement learning, 2020.

Greg Landrum. Rdkit: Open-source cheminformatics. URL http://www.rdkit.org.

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular graph
generation, 2021.

Charlie Nash and Conor Durkan. Autoregressive energy machines, 2019.

Alireza Nazemi and Farahnaz Omidi. A capable neural network model for solving the maximum
flow problem. Journal of Computational and Applied Mathematics, 236(14):3498–3513, 2012.

Diana M. Negoescu, Peter I. Frazier, and Warren B. Powell. The knowledge-gradient algorithm
for sequencing experiments in drug discovery. 23(3):346–363, 2011. ISSN 1526-5528. doi:
10.1287/ijoc.1100.0417. URL https://doi.org/10.1287/ijoc.1100.0417.

Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In Icml,
volume 1, page 2, 2000.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

12

http://dx.doi.org/10.1039/9781788016841-00228
http://www.rdkit.org
https://doi.org/10.1287/ijoc.1100.0417
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Abdurrahman Pektaş and Tankut Acarman. Deep learning to detect botnet via network flow summaries.
Neural Computing and Applications, 31(11):8021–8033, 2019.

Mariya Popova, Mykhailo Shvets, Junier Oliva, and Olexandr Isayev. Molecularrnn: Generating
realistic molecular graphs with optimized properties, 2019.

RK Rahul, T Anjali, Vijay Krishna Menon, and KP Soman. Deep learning for network flow
analysis and malware classification. In International Symposium on Security in Computing and
Communication, pages 226–235. Springer, 2017.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

Ari Seff, Wenda Zhou, Farhan Damani, Abigail Doyle, and Ryan P Adams. Discrete object generation
with reversible inductive construction. arXiv preprint arXiv:1907.08268, 2019.

Marwin H. S. Segler, Thierry Kogej, Christian Tyrchan, and Mark P. Waller. Generating focussed
molecule libraries for drug discovery with recurrent neural networks, 2017.

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. Graphaf: a
flow-based autoregressive model for molecular graph generation, 2020.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification, 2021.

Niranjan Srinivas, Andreas Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the
bandit setting: No regret and experimental design. In ICML, 2010.

Teague Sterling and John J Irwin. Zinc 15–ligand discovery for everyone. Journal of chemical
information and modeling, 55(11):2324–2337, 2015.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Kevin Swersky, Yulia Rubanova, David Dohan, and Kevin Murphy. Amortized bayesian optimization
over discrete spaces. In Conference on Uncertainty in Artificial Intelligence, pages 769–778.
PMLR, 2020.

Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking with
a new scoring function, efficient optimization, and multithreading. Journal of computational
chemistry, 31(2):455–461, 2010.

C. K. Williams and C. Rasmussen. Gaussian processes for regression. In Neural Information
Processing Systems (NeurIPS), 1995.

Yutong Xie, Chence Shi, Hao Zhou, Yuwei Yang, Weinan Zhang, Yong Yu, and Lei Li. {MARS}:
Markov molecular sampling for multi-objective drug discovery. In International Conference on
Learning Representations, 2021. URL https://openreview.net/forum?id=kHSu4ebxFXY.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] We provide proofs (see Section 2 and Appendix) for our
theoretical claims and fair empirical results with our proposed methods and baselines
(see Section 4).

(b) Did you describe the limitations of your work? [Yes] GFlowNet is limited by its use of
bootstrapping, which is known to be challenging in Deep RL (see Section 5).

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Our
theoretical work is fairly agnostic to applications, and aims to compete with existing
MCMC-based methods (see Sections 1, 4, and 5). Our empirical work situates itself in
the context of automated drug-discovery.

13

https://openreview.net/forum?id=kHSu4ebxFXY

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] All complete proofs

are available in the Appendix.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Hyperparameters and architectural choices are reported in the
Appendix, and verifiable in the provided code.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [No] We omit error bars for clarity, but we report standard
deviations in the Appendix to verify the significance of our results.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See A.3.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

