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ABSTRACT

Training models with robust group fairness properties is crucial in ethically sen-
sitive application areas such as medical diagnosis. Despite the growing body of
work aiming to minimise demographic bias in Al, this problem remains challeng-
ing. A key reason for this challenge is the fairness generalisation gap: High-
capacity deep learning models can fit all training data nearly perfectly, and thus
also exhibit perfect fairness during training. In this case, bias emerges only dur-
ing testing when generalisation performance differs across subgroups. This mo-
tivates us to take a bi-level optimisation perspective on fair learning: Optimising
the learning strategy based on validation fairness. Specifically, we consider the
highly effective workflow of adapting pre-trained models to downstream medical
imaging tasks using parameter-efficient fine-tuning (PEFT) techniques. There is
a trade-off between updating more parameters, enabling a better fit to the task
of interest vs. fewer parameters, potentially reducing the generalisation gap. To
manage this tradeoff, we propose FairTune, a framework to optimise the choice
of PEFT parameters with respect to fairness. We demonstrate empirically that
FairTune leads to improved fairness on a range of medical imaging datasets. The
code is available at https://github.com/Ramanll21/FairTune.

1 INTRODUCTION

The use of Al in healthcare applications is growing rapidly. Powerful new models enabled by large
datasets (Mei et al., 2022; |Ghesu et al., [2022} Irvin et al., |2019)) are rapidly being developed, lead-
ing to highly performant automated diagnosis systems (Tiu et al., [2022) that are increasingly being
deployed clinically in clinical practice (Esteva et al., 2021; Dutt et al., 2022; |Vats et al., [2022).
However, Al models have repeatedly been shown to exhibit unwanted biases towards various demo-
graphic subgroups (Seyyed-Kalantari et al., 2021} |Obermeyer et al., 2019} Larrazabal et al., 2020;
Ricci Lara et al.| 2022) — for example by providing substantially worse performance on disadvan-
taged subgroups defined by protected attributes such as gender, race, age, and socioeconomic status.
This is obviously socially, ethically, and clinically problematic, especially in potentially life-and-
death situations that arise in healthcare.

The issue of biased and inequitable Al systems has prompted a growing body of research striving to
analyze the origins of bias and develop interventions to mitigate model bias (Xu et al.,|2023). Never-
theless, recent investigations cast doubt on the extent of progress achieved thus far. Notably, Zietlow
et al.[(2022) postulate that the majority of existing interventions aimed at promoting fairness prove
ineffective when applied to deep models, which are commonly utilized for tasks involving images
and text data. The reason behind this ineffectiveness lies in the nature of these interventions, such
as those proposed by [Sagawa et al.| (2020) and [Zhao et al.|(2019)), which impose constraints on the
training data. For instance, they enforce equal performance across subgroups (Zhao et al. [2019).
However, while such constraints can impact the training of shallow models typically employed for
tabular data, deep models possess the capability to perfectly fit all training data, rendering these fair-
ness constraints automatically satisfied and devoid of any influence on the model’s learning process.
We substantiate this well-documented challenge empirically in Figure [I} which illustrates that, in
a typical medical image analysis scenario, the training data can be fitted flawlessly. Consequently,
the model is already intrinsically equitable within the training set. The observed bias in real-world
applications emerges during testing, primarily due to differential generalization across subgroups.
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Figure 1: Bias arises during train-test generalisation. Left (Training AUROC): High-capacity deep
models can exhibit perfect group fairness during training because they can classify all the training
data perfectly. Right (Validation AUROC): Bias arises because the disadvantaged subgroup has
worse generalisation error than the privileged subgroup. Fine-tuning ViT-Base on the Papila dataset.

Another recent study (Zong et al.l 2023) empirically evaluated a wide range of fairness interven-
tions designed to regularise deep model learning on a large suite of medical image analysis tasks.
However, they found that prior progress was over-estimated. When subjected to a standardized
hyperparameter tuning procedure for a fair evaluation, none of the existing fairness interventions
exhibited a statistically significant enhancement in fair learning when compared to the conventional
approach of supervised learning by empirical risk minimization (ERM).

In this research paper, we introduce a novel approach to fair learning that addresses the challenge
highlighted by [Zietlow et al.|(2022) and depicted in Figure[l] Our method is rooted in the concept
of capacity control, and involves introducing a form of regularization during the learning process
specifically tailored to minimize bias in unseen data. To accomplish this, we operate within the
pre-train/fine-tune framework (Mei et al., |2022; |Yosinski et al., 2014} Tang et al.,|2022; Zong et al.,
2023)). This framework entails initializing models through pre-training on extensive external datasets
like ImageNet (Deng et al.||2009), followed by fine-tuning on comparatively smaller medical imag-
ing datasets. In this context, as we progressively update the model from its initial pre-trained state,
the risk of overfitting to the nuances of the training set increases, leading to the generalization gap
illustrated in Figure [T} Hence, the primary challenge lies in restraining the extent of model updates.
In this regard, we will illustrate that employing parameter-efficient fine-tuning techniques, which
involve the selective updating of a subset of network parameters (Dutt et al., 2023)), can result in
more equitable generalization. However, this approach poses a critical question: “Which parame-
ters should be updated to maximize fairness?” To tackle this question, we introduce our framework
named FairTune, designed to search for the optimal parameter update mask. We seek the mask that,
when applied to constrain the fine-tuning process, yields a high degree of fairness in the validation
data. Our empirical findings consistently demonstrate that FairTune outperforms Empirical Risk
Minimization (ERM) in terms of fairness across various medical imaging benchmarks.

To summarise our contributions: (1) We directly corroborate the conjecture of [Zietlow et al.| (2022)
that bias arises during train-test generalisation (Figure [I). (2) In contrast to existing fairness in-
terventions, we introduce a new fair learning approach that regularises learning so as to optimise
validation fairness (cf: existing methods that ineffectively target training fairness). (3) Our empir-
ical findings across a diverse set of benchmarks consistently demonstrate that FairTune reliably
improves performance over ERM.

2 RELATED WORK

2.1 FAIRNESS IN MEDICINE

Bias and unfairness have been widely reported in biomedical Al (Seyyed-Kalantari et al.| 2021}
Ricci Lara et all [2022; |Obermeyer et al., |2019). Biases can arise from a complex array of differ-
ent underlying causes including dataset imbalance, label noise, and reliance on underlying spurious
correlations. A particularly problematic manifestation is that of bias amplification (Lloyd, 2018;
Hall et al., 2022)), where biases that exist in the training set are amplified by the model’s predictions
during deployment. Measuring fairness is itself a complex problem, as many different fairness met-
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rics have been proposed, with no consensus on a single preferred metric. For example, optimising
for equal performance among demographic subgroups (Dwork et al., 2012; Verma & Rubin, [2018])
is intuitive. But this can lead to the levelling down phenomenon (Zietlow et al., [2022)), where fair-
ness is achieved by decreasing the performance of the advantaged group to match the disadvantaged
group — potentially even including pathological solutions of reducing both groups’ performance to
zero. Achieving fairness by levelling down has been criticised as violating the ethical principles of
beneficence and non-maleficence (Beauchamp,2003};|Chen et al.|[2018; |Ustun et al.,|2019). We also
remark that evaluating systems for fairness is itself complex (Zong et al., 2023; Verma & Rubin,
2018) as fair learning is inevitably a multi-objective problem that seeks to simultaneously achieve
potentially conflicting goals of good overall performance and good fairness.

2.2 PREVIOUS ATTEMPTS TO SOLVE FAIRNESS

Fair machine learning has now been widely studied, with numerous methods being proposed that
address bias reduction via both pre-processing (e.g., data re-balancing) and post-processing, as well
as interventions aimed at guiding the learning algorithm to generate a fairer predictor. Due to the
large volume of the proposed methods in the literature, we refer the readers to comprehensive sur-
veys (Mehrabi et al., 2021} (Caton & Haas| 2023} Zong et al.,[2023) for a more in-depth exploration
of the available techniques and their nuances. A crucial observation, however, is that a large family
of methods (Sagawa et al.,[2020; Zhao et al., [2019; | Agarwal et al.,[2018b; Beutel et al.,2017; Diana
et al.|[2021; Jeong et al.| 2023} |Donahue et al., |2016; Y11 et al., 2022} [Donini et al.| [2018; [Dumoulin
et al., 2016; [Kim et al.l 2019; Kleindessner et al., [2022; |[Lohaus et al.| [2020; Martinez et al., 2020;
Padala & Gujar, 2020; [Wang et al., 2020; [Zafar et al.,|2017; |Wu et al., |2022; Park et al., [2022)) rely
on imposing fairness constraints on the training set. As suggested by Zietlow et al.| (2022)), these
are ineffective in the deep learning regime where constraints are trivially satisfied by a classifier that
achieves 100% training accuracy (Figure [I). Another family of methods endeavours to introduce
various forms of regularization during model training, aiming to enhance generalization, such as
achieving domain independence. While some of these studies initially reported promising outcomes,
a recent exhaustive benchmarking study (Zong et al.,|2023)) has indicated that these assertions were
premature. When evaluated across multiple benchmarks, existing methods consistently fall short of
systematically outperforming a well-tuned supervised learning baseline for fairness (ERM).

We are inspired by studies such as [Zietlow et al.| (2022); [Zong et al|(2023) to design an algorithm
that tunes how to regularise learning with the explicit objective of optimising for validation fairness.

2.3 PARAMETER-EFFICIENT FINE-TUNING

Fine-tuning models that have been pre-trained on large datasets is common practice in deep learning
(Yosinski et al.,|2014; [Kornblith et al.l 2019)). Leveraging a pre-trained initialization enables down-
stream tasks to be learned with significantly less data compared to training from scratch. Parameter-
Efficient Fine-Tuning (PEFT) methods are a family of techniques geared towards improving the
fine-tuning process. They achieve this by carefully selecting a small subset of parameters for up-
dating during fine-tuning while keeping the majority frozen. The underlying concept is that this
judicious choice of selective updates should facilitate effective adaptation to the target task (via the
minority of updatable parameters) while guarding against overfitting (courtesy of the majority of
frozen parameters). A growing number of PEFT methodologies have emerged, each distinguish-
ing itself by its specific selection of parameters for updating. These selections may include biases
(Ben Zaken et al., 2022)), attention matrices (Touvron et al., 2022)), or normalization layers (Basu
et al.,[2023)). Alternatively, some methods introduce and learn specific sets of new parameters, such
as low-rank adapters (Hu et al.| [2022)), all while maintaining the entire pre-trained backbone in a
frozen state. PEFT techniques have gained wide popularity in mainstream NLP and computer vi-
sion applications, although their adoption in medical image analysis tasks remains nascent (Dutt
et al.,[2023; | Ma & Wang, |2023; [Wu et al., [2023} [Zhang & Liul 2023)).

In this work, we aim to demonstrate that PEFT (Parameter-Efficient Fine-Tuning) offers benefits
beyond enhancing traditional generalization capabilities. Specifically, our findings will illustrate
that PEFT can enhance fairness by narrowing the generalization gap, especially for disadvantaged
subgroups, as depicted in Figure [I] Nevertheless, a central challenge persists across all existing
PEFT methods, namely, they rely on heuristic approaches for partitioning parameters into frozen
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and updatable sets. Current methods do not offer a principled or learned method for establishing the
optimal partition. This becomes particularly crucial, because the ideal PEFT assumption, i.e., the
freeze/update partition, may be dataset dependent. For instance, larger datasets might accommodate
a more extensive parameter update without suffering from overfitting compared to smaller datasets.
The key novelty of this paper lies in our approach: instead of prescribing a specific PEFT update
mask, we introduce a framework designed to autonomously determine the optimal PEFT mask that
maximises validation fairness.

3 METHODOLOGY

3.1 FAIRNESS METRICS

We focus on evaluating the fairness of binary classification of medical images. Given an image
x we predict its diagnosis label y in a way that aims to be independent of any sensitive attribute
s (age, sex, ethnicity, etc.) so that the trained model is fair and does not unduly disadvantage
any particular demographic subgroup. There are a plethora of metrics to measure fairness such as
equality of opportunity, equal odds, subgroup performance difference, and so on (Verma & Rubin,
2018). Each of these may be more appropriate for different social and economic situations. Our
overall framework is agnostic to the choice of fairness metric used, as our contribution is an approach
to optimise for any user-specified fairness metric. However, for most of our experiments, we will
optimise the metric of most-disadvantaged group performance (Sagawa et al.l 2020). In this setting
we are given a loss function £(D; 0) (e.g., cross-entropy, or 1 - area under ROC curve) for model 0
on dataset D. We assume it can be evaluated for different subgroups s of the dataset D as £(D;; 0).
Then the metric for fair learning is

cror — L(Ds;0). 1

hes (D53 6) M
We will also report other metrics such as the fairness gap, estimated as the performance difference
between the disadvantaged and privileged subgroups, (maxs £(Ds; 0) — ming £(Dy; 0)).

3.2 PARAMETER-EFFICIENT FINE-TUNING

In PEFT, we fine-tune only a subset of parameters ¢ C 6 such that |¢| < |0]. PEFT strategies can be
interpreted as specifying a sparse binary mask w that determines what parts of 6 should be updated.
Given parameters 0y of the pre-trained model and a change A¢ to be applied to their values, the
fine-tuning process can be described as

A¢* = arg min £b¢°¢ (Dtmm; O +w® Agb) .
Ad

where £°#%¢ is a standard deep learning loss such as cross-entropy for classification.

Different PEFT methods essentially correspond to different structures on the sparsity structure of
the binary mask w. For example, BitFit (Ben Zaken et al.| [2022) solely updates bias parameters
in a neural network. Attention Tuning (Touvron et al., 2022) enables updating all the attention
matrices in a transformer, and so on. These methods are generally effective in reducing overfitting
when learning large models on small datasets thanks to eliminating most parameter updates. We
will show that they are also effective in improving generalisation fairness compared to conventional
fine-tuning.

There are two key outstanding challenges, however: (1) The optimal PEFT strategy (binary mask w)
is dataset-dependent. For example, a sparser mask w may be preferred for a smaller target task with
greater risk of overfitting, and a denser mask may be preferred for a task that is more different to the
pre-training task and thus requires stronger adaptation. (2) The optimal PEFT strategy may depend
on the ultimate generalisation objective. For example, a sparser mask w might be preferred for fair
generalisation compared to conventional overall generalisation. We present a solution to both of
these issues by introducing an algorithm to optimise the mask w with respect to a fair generalisation
objective.
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Figure 2: Illustration that shows how our approach optimises the structure of PEFT with respect
to fairness. Hyperparameter optimisation (HPO) selects a mask that decides which components of
a pre-trained model 6 are fine-tuned using PEFT. For each sampled mask, the fine-tuned model is
evaluated on the validation set to compute the fairness loss L£797" which is then reported to the HPO
algorithm that decides what masks to sample and which is the final best option.

3.3 OpPTIMISING PEFT FOR FAIRNESS

We begin with a pre-trained model 6y, a dataset (D) split into training, validation and test sets
(Dtrain pval ptesty Each dataset D = (X, ), S) contains a set of images X', labels ) and sensi-
tive attribute metadata S. We also define a search space for PEFT masks w € 2. The goal is to find
w that leads to the best fair generalisation (Sec[3.1) when conducting PEFT learning (Sec [3.2).

Bi-level Optimization (BLO): We formalize our problem statement as a bi-level optimization
problem consisting of an inner and an outer loop. In the inner loop, we fine-tune the pre-trained
model on the medical dataset (D!"*") using a conventional loss L£be5¢ and PEFT mask w. In the
outer loop, we search for the PEFT mask w which leads the inner loop to produce the fairest outcome
on the validation set (D), as measured by £/%". More formally, we solve Equation

w* = argminf/ " (D““l; Ag*)

* : base train (2)
such that  Ag¢* = arg min £L"**¢ (D"*"™; 0y + w © Ag) .
A

There are a number of possible strategies for solving BLO problems such as Equation [2] includ-
ing meta-gradient, evolutionary search, Bayesian Optimisation and others (Hospedales et al.| 2021}
Sinha et al., 2018} [Liu et al.l [2021). In practice, we adopt a hybrid approach with a gradient-free
Tree-structured Parzen Estimator (TPE) (Bergstra et al.,[201 1)) with successive halving (SH) strategy
(Jamieson & Talwalkar, [2016)) for optimising w* in the outer loop (Akiba et al., 2019), and conven-
tional long-horizon gradient-descent fine-tuning in the inner loop. We illustrate the process in Figure
[2)and provide full details in Algorithm[I] Additional details on the HPO are given in Appendix [A.5]

Besides the selective-update mask w, the learning rate « also provides a coarse cue of how much to
update. For example a suitably curtailed learning rate would prevent the most egregarious overfitting
shown in Figure[I] We also optimise « along with w within the same HPO process of Algorithm [I]

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Architectures: Our experiments adopted the Vision Transformer (ViT) implementation present in
the Pytorch Image Models package (Wightman, 2019). A ViT consists of several blocks and each
block contains two normalization layers (LN1 and LN2), Multi-Head Self-Attention (MHSA) sub-
block and MLP (MLP) sub-components. The normalization layers (LayerNormalization Ba et al.
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Algorithm 1 Optimizing PEFT for fairness

1: Input: pre-trained model 6y, a: fine-tuning learning rate, number of trials Ty
2: QOutput: fine-tuned model 6y + w ® A¢ and mask w

3: while number of completed trials < T do

4:  Initialize A¢p = 0 for ¢ < ¢y C b

5:  Propose mask w < HPO

6:  while not converged do

7: A + A¢p — aVyL0rse (DIrein: gy +w © A¢)  // PEFT

8:  end while

9:  Evaluate L7 (DV%; 0y + w ® A¢) and report to the HPO algorithm
0: end while

1:

—_—

Return the best (most fair) mask w and fine-tuned model 6y + w ® A¢

(2016)) are present before and after MHSA. The MLP consists of two fully-connected layers with
GELU non-linearity in between. The base variant of ViT consists of 12 such blocks.

Baselines: We compare our approach with: (1) full training from scratch. (2) conventional full fine-
tuning, as conducted in (Zong et al., [2023) (where it is referred to as ERM) where every layer of an
ImageNet pre-trained model is adapted on the medical image task, (3) linear readout, where the Ima-
geNet pre-trained feature extractor is frozen and only the classification head is learned, as conducted
in (Azizi et al., 2021} |Chen et al.,|2020), (4) PEFT method Attention Tuning (Touvron et al., [2022)
where only attention matrices are fine-tuned, (5) PEFT method Layer Norm Tuning (Basu et al.,
2023) where only layer-norm parameters are fine-tuned, (6) FairPrune (Wu et al., 2022), a method
that achieves fairness by pruning the model parameters post-training, and (7) Fair Supervised Con-
trastive Loss (FSCL) (Park et al.,|2022) that inherits the properties of supervised contrastive learning
and penalizes the usage of sensitive attribute information in representation for improving fairness.

We remark that the thorough benchmark in (Zong et al., 2023) already dismissed a suite of algo-
rithms designed for the purpose of fair learning as equal or worse than ERM/Fine-Tuning (Vapnik,
1999)), including DomainInd Wang et al.| (2020), LAFTR |Madras et al.|(2018)), CFair |[Zhao et al.
(2019), LNL Kim et al|(2019), EnD |Tartaglione et al.| (2021), ODR |Sarhan et al.|(2020), Group-
DRO Sagawa et al.|(2020), SWaD |Cha et al.|(2021), and SAM |Foret et al.|(2021).

Search Space: We define a PEFT search space that consists of the choice to fine-tune or freeze each
module within a 12-layer VIT, where each VIT layer consists of MHSA, MLP, and LN modules.
Thus our main PEFT search space (2 is the space of 36-bit binary marks 2 € {0, 1}3¢. This search
space contains Attention Tuning (Touvron et al., |2022), Layer Norm Tuning (Basu et al., [2023)),
linear readout, and full-fine tuning (Zong et al.,|2023) as special cases. As ablations, we also consider
12-bit search spaces that solely search for the combination of layer-norm and attention layers to tune,
as sparser alternatives to (Touvron et al.||2022; |Basu et al.| [2023)).

Datasets: Our experiments include seven frequently adopted medical image analysis datasets. The
selection of datasets was based on five integral factors: a) the presence of sensitive attributes, b) the
presence of different potential sources of bias, c) the representation of different anatomical regions
(domains), d) varying size, and e) public availability for reproducibility. Following these factors, we
included Fitzpatrick17K (Groh et al., [2021}2022), HAM10000 (Tschandl, [2018)), Papila (Kovalyk
et al.,[2022), OL3I (Zambrano Chaves et al., 2021}, OASIS-1 (Marcus et al., 2007), Harvard-GF3300
(Luo et al.| |2023), and CheXpert [Irvin et al|(2019). Following the settings in |[Zong et al.| (2023)),
the preprocessing steps for all datasets included the binarization of the sensitive attributes (skin type,
age, and sex) and the classification label along with the removal of studies with missing information.
More details on data preprocessing are presented in Appendix [A.4]

Experimental Settings: All experiments fine-tune an ImageNet-pre-trained ViT-Base model for
30 epochs with a linear warmup for 10 epochs and a cosine annealing learning rate schedular
(Loshchilov & Hutter, [2016). The batch size is set to 512 and the optimizer used is AdamW
(Loshchilov & Hutter, 2018). We consider one sensitive attribute at a time and note the overall
performance, the worst subgroup performance and the gap between the best and worst subgroup.

PEFT Mask Search and Hyperparameter Optimisation: For PEFT mask search, we rely on
Tree-structured Parzen Estimator (TPE) (Bergstra et al.,|2011) for sampling hyperparameter values.
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We also employ a pruning strategy, successive halving (Jamieson & Talwalkar, 2016), for early
termination of unpromising trials. Our search space includes the binary mask (36 or 12 bits) along
with the learning rate. For large-scale CheXpert dataset we use random sensitive-attribute balanced
10% subsampling to accelerate the HPO, and then the full train set for actual training.

Since the medical image analysis tasks are usually severely imbalanced, we use AUC rather than
cross-entropy loss or accuracy as the meta-objective £ for the search. Since we use a gradient-
free outer-loop optimizer, it is not necessary for the meta-objective to be differentiable.

As remarked in (Zong et al. 2023), existing fairness methods generally did not specify any val-
idation criteria. They found that when conducting common fairness-driven HPO, the previously
claimed differences between state-of-the-art methods vanished, and none outperformed ERM (full
fine-tuning baseline, in our case). Thus we carefully ensure that all competitors optimise their learn-
ing rates based on £/%", while only our FairTune further optimisise the PEFT mask based on the
same criterion. Our main HPO objective is disadvantaged subgroup AUC (Sagawa et al., 2020), as
discussed in Sec. We will also experiment with overall AUC as an ablation for comparison.

4.2 MAIN RESULTS

We report our main results in Table[T]in terms of over-

all test AUROC, most disadvantaged subgroup AUC,
and the gap between advantaged and disadvantaged
subgroups. From the table we can draw several con-
clusions: (1) Fine-tuning improves on both training 0.6
from scratch and linear readout of the frozen features. ,
As discussed in (Zong et al., 2023), this is a very — val AUC
strong baseline which many state-of-the-art purpose- 2 Val Best AUC
designed fair learning were not able to surpass when o.0 T VelWorstAUC
combined with proper hyperparameter tuning. (2)
Nevertheless, the state-of-the-art PEFT methods At-
tention Tuning (Touvron et al., [2022) and LN Tun-
ing (Basu et al., 2023) surpass this baseline, although
they are not purpose designed for fairness at all. We
attribute this to their reducing the base architecture’s
adaptation capacity, limiting its ability to overfit to the
advantaged subgroup, and thus limiting the generalisa-
tion gap (Figure[I). (3) Recent fairness interventions
FairPrune (Wu et al., [2022) and FSCL (Park et al., 2022) also underperform overall. (4) Finally,
our FairTune generally achieves the best test performance overall by all metrics, with consistently
good performance across all the benchmarks and sensitive attributes. (5) The second best in terms
of AUC gap is training from scratch, but this corresponds to unacceptably poor performance overall,
an example of the leveling-down phenomenon to be avoided (Zietlow et al.l 2022]).

0.8

0 10 20 30 40 50 60 70 80 90 100
Epoch

Figure 3: FairTune leads to stable fine-
tuning with reduced differences between
the best and worst performing subgroups
compared to conventional fine-tuning from

Figure|[T}

As a qualitative illustration of how FairTune influences the fine-tuning process, we repeat the initial
illustrative experiment in Figure |1} but now with the FairTune discovered mask for the same Papila
dataset. From the results in Figure [3] we can see that the FairTune discovered mask leads to much
fairer fine-tuning with much performance for the disadvantaged subgroup, and reduced gaps between
the groups compared to the vanilla fine-tuning shown in Figure

We further show in the Appendix that FairTune leads to strong performance also when using (1)
alternative fairness metrics (Table E]), (2) self-supervised pre-trained ViT-Base (He et al., 2022)
(Table[)), and (3) overlapping sensitive attributes (Table|[3).

4.3 ABLATION STUDY ON THE DESIGN OF FAIRTUNE

We analyse alternative design choices for FairTune in Table [2] reporting test score average across
Fitzpatrick17K, HAM10000, Papila, OL3I, OASIS-1 datasets. We first ask What is the impact of
our choice of meta-objective £Lf%", as introduced in Sec Comparing the results for FairTune
(Min AUC) and FairTune (Overall AUC), we see that the min-group performance and corresponding
AUC gap are clearly improved. This directly demonstrates the value of tuning model adaptation
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Dataset Attr. ‘ Metric g;:;?c‘:om Full FT  Linear Readout Attention Tuning LayerNorm Tuning FairPrune FSCL FairTune (Ours)
& Overall AUC 735 95.9 90.3 94.1 92.5 88.4 89.1 96.7
= Skin Type | Min. AUC 723 94.9 89.6 932 91.5 82.7 842 96.1
= Gap AUC 1.6 38 28 14 35 6.8 5.6 24
. Overall AUC 743 86.8 849 93.9 91.1 76.2 77.8 94.0
S Age Min. AUC 66.3 79.2 754 859 832 643 673 90.1
2 Gap AUC 10.1 9.1 12.5 10.9 10.9 132 14.6 49
E: Overall AUC 84.4 86.8 85.8 93.5 91.5 64.4 68.9 94.8
= Gender Min. AUC 83.7 86.3 85.0 91.9 90.9 63.9 66.3 944

Gap AUC 1.7 2.0 1.8 3.6 1.7 1.2 4.8 0.9

Overall AUC 47.5 86.1 822 83.8 81.4 77.1 783 88.6

- Age Min. AUC 493 812 60.7 78.6 65.2 71.2 727 85.2

= Gap AUC 2.5 6.5 29.0 7.7 183 74 7.6 4.0

£ Overall AUC 39.7 88.9 84.7 86.4 88.4 79.5 719 91.8

Gender Min. AUC 289 88.8 79.5 80.4 81.0 744 714 90.2

Gap AUC 24.7 0.2 8.7 9.2 114 8.1 8.8 3.6

Overall AUC 61.9 674 64.4 64.3 65.3 66.1 64.4 72.6

Age Min. AUC 54.5 624 54.8 62.4 62.0 63.5 60.8 70.1

E Gap AUC 7.9 84 14.5 4.7 53 4.4 5.7 3.6

© Overall AUC 63.8 65.2 62.8 74.8 729 65.2 67.6 78.2

Gender Min. AUC 62.0 62.5 60.6 70.1 69.3 60.4 62.0 75.4

Gap AUC 2.1 4.0 2.6 7.5 43 6.5 8.9 3.7

Overall AUC 61.0 64.4 62.6 66.0 66.8 57.8 514 74.5

. Age Min. AUC 577 60.1 59.1 62.2 60.0 55.6 50.7 73.2

2 Gap AUC 4.6 53 5.0 6.4 9.0 4.8 6.6 1.7

© Overall AUC 60.7 64.6 623 65.1 63.4 643 623 70.8

Gender Min. AUC 56.9 60.3 59.7 61.5 61.4 61.8 60.8 65.5

Gap AUC 52 4.8 3.7 4.8 3.0 32 39 6.2

Overall AUC 723 823 83.6 81.7 84.7 744 80.4 86.4

S Age Min. AUC 674 79.1 81.7 775 81.5 1.7 783 84.4

@ Gap AUC 6.4 2.5 35 4.8 3.8 4.8 32 32

E Overall AUC 734 80.2 834 80.1 87.6 74.1 81.1 88.4

'g Gender Min. AUC 69.4 79.5 829 794 858 735 78.1 86.7

z Gap AUC 7.8 2.8 2.8 2.9 2.5 3.1 24 19
3

= Overall AUC 729 793 83.5 852 854 744 81.5 87.1

Race Min. AUC 674 727 80.1 79.7 80.8 70.6 76.1 824

Gap AUC 6.9 73 4.6 7.8 7.6 52 33 6.5

Overall AUC 834 85.5 81.7 86.1 828 789 79.2 87.5

5 Age Min. AUC 78.5 82.3 71.3 82.3 79.7 75.6 719 83.8

= Gap AUC 6.1 59 4.8 53 4.2 4.2 6.2 5.0

5 Overall AUC 84.1 85.8 81.7 86.1 832 80.2 79.5 88.2

Gender Min. AUC 81.5 84.1 80.7 85.0 80.6 78.5 71.6 86.5

Gap AUC 4.8 2.3 2.6 2.5 4.1 32 42 32

Avg. Overall Score 68.1 79.9 78.1 81.5 81.2 72.9 74.2 85.7

Avg. Min. Score 64.0 76.7 73.4 77.9 76.6 69.1 70.3 83.1

Avg. Gap Score 6.6 4.6 7.1 57 64 54 6.1 3.6

Avg. Overall Rank 7.1 35 5.1 33 34 6.5 6.1 1.0

Avg. Min. Rank 6.9 3.6 52 3.1 37 6.4 6.1 1.0

Avg. Gap Rank 4.9 4.1 4.4 52 4.7 4.3 55 2.7

Table 1: Evaluation of fair generalisation across medical imaging benchmarks. We report the Area
Under ROC curve (AUROC) [1, %] across the whole test set (overall) and for the most disadvantaged
subgroup (min). We also report the AUROC gap [[., %] between the advantaged and disadvantaged
subgroups (Gap). All results are based on ImageNet pre-trained ViT-B, except Train from Scratch.

capacity with a fairness-specific objective rather than general purpose validation objectives. We
next ask What is the impact of our PEFT search space, as introduced in Sec [3.2? We compare our
full 36-bit search space (which includes full fine-tuning, Attention Tuning, LayerNorm tuning, and
Linear Readout as special cases), with two smaller alternative 12-bit search spaces that correspond
to searching for the subset of attention and layer-norm parameters to update. Between the two search
spaces, AttentionTuning is better overall, but also introduces a larger AUC gap. However, the full
36-bit FairTune space is better than both of these subspaces. Nevertheless, all FairTune variants are
better than the Fine-Tune baseline, in terms of Min AUC demonstrating the value of tuning model
adaptation capacity. We report the full set of results in Table[6]in the Appendix.

FairTune FairTune FairTune FairTune
Metric Fine-Tune 12-bit, Attention 12-bit, LayerNorm  36-bit, Full 36-bit, Full
Min Group AUC  Min Group AUC  Overall AUC Min Group AUC
Overall (1) 78.5 82.4 81.0 83.5 84.7
Min (1) 75.1 79.5 78.0 80.4 82.2
Gap (1) 3.7 4.6 4.2 5.0 34

Table 2: Ablation study on FairTune design including search space (2 and objective £f%". Average
test AUC over various datasets. Our 36-bit search space surpasses 12 bit alternatives. Min Group
AUC as the objective leads to improved fairness compared to the conventional overall AUC.
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4.4 ANALYSIS OF MASKS

We finally study what FairTune has learned by analysing the estimated PEFT masks, using the same
subset of datasets as for our earlier analysis. We split the analysis by normalization, attention layers
and MLP components. For each block, we visualize the proportion of the number of times (over
the datasets and sensitive attributes) the given component was selected for fine-tuning. We further
compare the masks derived from the different optimization objectives: a) Optimizing for overall per-
formance, and b) optimizing the performance of the most disadvantaged subgroup. From the plots,
we can observe that: (1) The strategies selected are non-trivial without a simple preference for either
one layer type or initial vs. later layers, as expected by prior intuitively motivated work (Touvron
et al., 2022} Basu et al 2023). This demonstrates the value of automated selection of layers for
updating. (2) Furthermore, the high-variability of selection for some blocks over datasets/attributes,
as indicated by probabilities close to 0.5, shows the importance of learning dataset/attribute-specific
fair tuning strategies, rather than relying on any single task-agnostic recipe. (3) The overall perfor-
mance and min-subgroup performance objectives lead to substantially different masks, explaining
their differing empirical performance earlier. (4) While there is substantial dataset/attribute speci-
ficity, there are some general common trends. For example, the min-subgroup objective consistently
leads to freezing the first normalization layer, as well as the last four MLP layers. Meanwhile, a clear
difference between the overall and min-subgroup objectives is the comparatively increased tendency
of the overall objective to unfreeze the last four MLP layers.

Normalization Layers Attention Layers MLP Layers

50.8 0.9 0.8
go7 0.8 0.7
$0.6 0.7 0.6
bS]

30,5 0.6 0.5
5 0.4 0.5 0.4
9%03 0.4 0.3
0.2 0.2

0o 2 4 6 8 10 0o 2 4 6 8 10 0o 2 4 6 8 10
Block Block Block

—@— Obj: Overall Performance =@~ Obj: Min Sub-group Performance

Figure 4: Frequency of selecting a specific component for fine-tuning across different scenarios.

5 DISCUSSION

Potential Limitations The improvement in downstream fairness performance comes at a compu-
tational cost as it requires us to try various configurations of the masks, each of which corresponds
to a model re-training. For example, our full FairTune pipeline takes 48GPUh on the Fitzpatrick17k
dataset, compared to about 1h for unoptimized training, and 14GPUh for our HPO-tuned fine-tuning
baseline. As pointed out in/Zong et al.|(2023), even for conventional models, proper HPO is required
for optimising fairness. So the cost of a well-tuned model is inevitably much larger than a single
training run. Conveniently, the cost per HPO iteration can be substantially lower in our PEFT regime,
than in typical train-from-scratch HPO (Feurer & Hutter,2019), and it could be further alleviated via
using efficient techniques such as ASHA (Li et al.} 2020) or PASHA (Bohdal et al., |2023)) that sup-
port parallelization. Future work could also study gradient-based meta-learning (Hospedales et al.,
2021)) to more efficiently search higher-dimensional masks.

6 CONCLUSION

We provide an empirical demonstration to show that controlling the capacity of deep neural net-
works, particularly through the use of Parameter-Efficient Fine-Tuning methods, can lead to im-
proved fairness on downstream tasks. Building on this finding, we introduce a framework, FairTune,
that is fairness metric-agnostic and provides a guidance-free selection of model components to be
fine-tuned. Through extensive ablation studies involving different datasets, sensitive attributes and
fine-tuning strategies, we established our framework leads to consistent gains against standard fine-
tuning baselines and vanilla PEFT approaches. Finally, the analysis of the selected masks has shown
non-trivial scenario-dependent strategies are learned, showing the need for our proposed algorithm.
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A APPENDIX

A.1 ADDITIONAL ANALYSES

We include several further analyses, including the study of fairness transferability to other metrics,
evaluation using a self-supervised pre-trained model, overlapping sensitive attributes and others.

Impact on Other Fairness Metrics Our implementation of FairTune targets minAUC as the meta-
objective for selecting PEFT masks that optimize this notion of fairness. One might reasonably ask
how the resulting models perform in terms of other notions of fairness such as Equalized Odds
Difference (EOddsD) (Agarwal et al., 2018a) and Demographic Parity Difference (DPD) (Agarwal
et al., 2018a; [2019; Barocas et al., 2019). We emphasise that although these metrics are common,
they have also been widely criticised in the literature for being pareto inefficient and potentially
violating ethical non-maleficence (Beauchamp, 2003} [(Chen et al., 2018}; [Ustun et al.,|2019; Zietlow
et al., [2022). For example, it is possible to fully satisfy these criteria by providing zero-accuracy
for all subgroups, which would be strictly worse than the status quo. Therefore we followed the
recommendation of GroupDRO (Sagawa et al.,|2020) and the recent MEDFAIR (Zong et al., 2023)),
and focused our evaluation on the most disadvantaged subgroup metric (minAUC). This metric is
not vulnerable to the potential pathological outcomes that satisfy EOddsD and DPD.

Neveretheless, for completeness we evaluate our minAUC optimised models in terms of EOddsD
and DPD metrics in Table [3] The results show FairTune does quite a good job of satisfying the
EOddsD and DPD objectives, even though our algorithm optimises for minAUC. Where other meth-
ods outperform FairTune on these metrics, they are worse on both overall and minAUC, thus being
pareto dominated by FairTune.

Finally, we remark that while we recommend minAUC objective and metric, the design of the Fair-
Tune algorithm treats specific choice of optimization metric as a hyperparameter. Therefore users
are easily able to plug-and-play EOddsD, or any other fairness metric as the target for FairTune to
optimize (cf: Section[#.3]and Table 2).

Combination with Other Pre-Trained Models Our main results are based on fine-tuning a VIT-
B pre-trained by supervised learning on ImageNet. We also study the impact of fine-tuning a self-
supervised pre-trained model, namely Masked AutoEncoder (MAE) (He et al.,|2022)). The results in
Table ] confirm that FairTune obtains both excellent overall performance and fairness, including in
terms of the alternative fairness metrics.

Overlapping Sensitive Attributes Our main exepriments used binary sensitive attributes. We now
perform an additional experiment to further test the efficacy of FairTune in a scenario with multiple
overlapping sensitive attributes. Specifically we used the CheXpert dataset and defined new sensitive
attributes based on the intersection of the annotated Age and Gender attributes. This resulted in 4
distinct categories: (1) Patients with ages between 0 and 60 and Male gender, (2) Patients with ages
60 and above and Male gender, (3) Patients with ages between 0 and 60 and Female gender, and (4)
Patients with ages 60 and above and Female gender.

The results of this experiment are presented in Table[5] We can see that FairTune leads to excellent
fairness and overall performance also when using overlapping sensitive attributes. The results also
indicate that good performance is consistent for supervised and self-supervised base models.

Analysis of Outer Loop Convergence Figure [3 illustrates the outer loop convergence process
for our datasets when using Min AUC objective on the 12-bit Attention Tuning Search Space. All
datasets saturate within the given number of outer-loop iterations showing that the HPO search ran
for sufficient number of trials to reach the optimal objective value.

Full details of meta-objective comparison Table [6] reports the full details of the ablation study
from Table [2|in the main paper.
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Figure 5: Optimization trajectory for the outer loop PEFT mask search. The plots shown here are for
the 12-bit Attention Tuning PEFT search space. The saturation in the objective value demonstrates
that the objective is saturated within 200 outer loop iterations trials.

A.2 DATASET DETAILS

In this section, we report the dataset details. All datasets are publicly accessible from the URLs
shown in Table[7] Dataset statistics are shown in Table [§] Tables [OI3] report the specific sensitive
attribute splits used for each dataset.

Fitzpatrick17k: We categorized the three partition labels into binary labels, specifically benign”
and “malignant.” Within this categorization, we considered ’non-neoplastic” and “benign” as be-
longing to the benign label category, while “malignant” remained in the malignant label category.
Additionally, we utilized Fitzpatrick skin type labels as the sensitive attributes for our analysis.

HAM10000: We categorized the 7 diagnostic labels into binary labels, specifically “benign” and
“malignant,” in accordance with the methodology outlined by Maron et al.|(2019). The benign” cat-
egory encompasses basal cell carcinoma (bcc), benign keratosis-like lesions (including solar lentig-
ines, seborrheic keratoses, and lichen-planus like keratoses, bkl), dermatofibroma (df), melanocytic
nevi (nv), and vascular lesions (comprising angiomas, angiokeratomas, pyogenic granulomas, and
hemorrhage, vasc). On the other hand, the “malignant” category includes Actinic keratoses and
intraepithelial carcinoma (Bowen’s disease, akiec), and melanoma (mel). Images lacking recorded
sensitive attributes were excluded from the dataset, resulting in a total of 9948 retained images.

Papila: In this dataset, we have excluded the ”suspect” label class and have focused on binary clas-
sification tasks using images labeled as either ”glaucomatous” or “non-glaucomatous.” The dataset
includes both right-eye and left-eye images of the same patients. For the purpose of splitting the
dataset into training, validation, and test sets, we have followed a specific proportion, with a split
of 70% for training, 10% for validation, and 20% for testing. Additionally, it is worth noting that
we ensure that images from the same patient are not shared across these splits. This practice helps
maintain the independence of the data subsets used for training, validation, and testing, which is
crucial for evaluating the model’s performance effectively.

OL3I: The Opportunistic L3 computed tomography slices for Ischemic heart disease risk assess-
ment (OL3I) dataset comprises 8139 axial computed tomography (CT) slices acquired at the third
lumbar vertebrae (L.3) level of various individuals. The primary objective of this dataset is to develop
a predictive model for determining whether an individual will receive a diagnosis of ischemic heart
disease within one year following the CT scan, based on the provided labels, which represent the
prognosis. In this analysis, both the sex and age of the individuals are considered sensitive attributes,
taking into account potential disparities in the risk assessment related to these attributes.

Qasis: This dataset comprises a cross-sectional assortment of 416 individuals spanning an age
range from 18 to 96 years old. For each of these individuals, the dataset includes 3 or 4 individ-
ual T1-weighted MRI scans, all acquired during single scan sessions. The participants encompass
individuals who are right-handed, and the dataset includes both male and female subjects. Among
the included subjects, 100 individuals who are over the age of 60 have received clinical diagnoses
ranging from very mild to moderate Alzheimer’s disease (AD). Furthermore, the dataset also incor-
porates a reliability dataset, which contains imaging data from 20 individuals who are not diagnosed
with dementia. These individuals underwent a subsequent MRI session within 90 days of their ini-
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tial imaging session for the purposes of assessing data reliability and consistency. The dataset is
originally in 3D which has been converted to 2D by selecting the central slices from the MRI scan.
We have categorized the labels into two categories by mapping the ’CDR’ labels 0, 0.5, and 1 into
one category and label 2.0 into the other category. While selecting the slices from MRI, we have
selected 10% of the central slices for the first category and 25% in the case of the second category.

Harvard-GF3300: The dataset has been designed for fairness learning and contains 3300 2D and
3D retinal nerve samples from 3300 patients. The dataset is balanced in terms of racial groups
and contains information on three different types of sensitive attributes: age, sex, and race. The
classification label determines if a patient has glaucoma or not (binary classification). As a pre-
processing step, we have binarized the sensitive attribute age and race, following the steps in Zong
et al.[(2023)).

CheXpert: This dataset contains 224,316 chest radiographs of 65,240 patients. Each image can
have one or more from a set of 14 labels depicting 14 different observations. For preprocessing, we
have binarized the sensitive attribute age and used the ”No Finding” label for training, validation
and testing, as done in|Zong et al.|(2023)).

A.3 METRICS

The metrics employed in the study are explained below:

AUC: Area under the receiver operating characteristic curve (AUROC) is the standard metric for
evaluation of the performance of binary classification tasks. The metric remains unaffected by the
potential imbalance in class labels. Our assessment involves the computation of both the average
AUC and the AUC for individual subgroups. Noteworthy emphasis is placed on the AUC gap and
the worst-case AUC, serving as crucial indicators in the evaluation of group fairness and max-min
fairness.

Equalized Odds Difference (EOddsD): This metric measures if a machine learning system
works equally well on different subgroups by determining the true positive and false positive
rates across different subgroups. A classifier, denoted as h, is deemed to satisfy equalized odds
within a distribution over (X, A,Y") if the prediction h(X) exhibits conditional independence
with respect to the sensitive attribute A, given the label Y. |Agarwal et al.| (2018a) define this as
Eh(X)|A = a,Y = y] = E[h(X)|Y = y]. In our experiments, we provide Equalized Odds
Difference from the Fairlearn package Weerts et al.[(2023)) that returns the larger of the true positive
rate difference and false positive rate difference.

Demographic Parity Difference (DPD): Demographic parity, as a fairness metric, aims to guaran-
tee that predictions made by a machine learning model remain impartial with regard to membership
in a sensitive group. Simply put, achieving demographic parity signifies that the likelihood of a
specific prediction is not contingent upon membership in a sensitive group. In the context of binary
classification, demographic parity specifically entails maintaining equal selection rates across dif-
ferent groups. A classifier h satisfies demographic parity under a distribution over (X, A, Y) if its
prediction h(X) is statistically independent of the sensitive feature A. |Agarwal et al.|(2018a) define
this as E[h(X)|A = a] = E[h(X)]. We used the Fuairlearn package Weerts et al.| (2023) for DPD
implementation that reports the absolute difference between the highest and lowest selection rates
a€ A

A significant limitation of EOddsD and DPD metrics is that they can be trivially satisfied when
the performance is 0. More broadly they do not necessitate strong performance while achieving
fairness, which can often lead to undesirable performance losses. minAUC does not suffer from
such limitation. That is, perfect minAUC is a sufficient condition for utopia (all subgroups solved
perfectly), while EOddsD and DPD are only necessary, but not sufficient conditions.

A.4 DATA PREPROCESSING AND EXPERIMENTS

We follow the data preprocessing steps as in [Zong et al| (2023). Specifically, we created random
splits of the entire dataset into training, validation and test with proportions of 80%, 10%, 10%.
Next, we binarized the prediction labels and the sensitive attributes. Detailed instructions with
examples are given here,
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A.4.1 SENSITIVE ATTRIBUTES

Sensitive Attribute Skin Type: In relation to the sensitive attribute skin type we delineate two
groups. The first group encompasses samples with skin types ranging from O to 2, while the second
group comprises samples with skin types exceeding 2.

Sensitive Attribute Age: For the datasets HAM10000, Papila, OL3I, Oasis, Harvard-GF3300,
and CheXpert, we establish two distinct categories to categorize the sensitive attribute age: one
encompassing ages ranging from 0 to 60, and the other comprising individuals with ages exceeding
60.

Sensitive Attribute Race: We created two categories with ‘Black’ patients belonging to the first
and ‘Asian’ or “White’ patients belonging to the second.

Overlapping Sensitive Attributes (Age+Gender): We created a new category of sensitive at-
tributes by combining Age and Gender.

Category 1: Patients with ages between 0 and 60 and Male gender.
Category 2: Patients with ages 60 and above and Male gender.
Category 3: Patients with ages between 0 and 60 and Female gender.
Category 4: Patients with ages 60 and above and Female gender.

A.4.2 LABELS

Fitzpatrick17k: The first group includes samples labelled as malignant, while the second group
contains samples with all other remaining labels.

HAM10000: We convert the original labels into two categories: benign and malignant. The former

contained samples with original labels ‘bcc’, ‘bkl’, ‘dermatofibroma’, ‘nv’, ‘vasc’ while the latter
category contained samples labelled as ‘akiec’, and ‘mel’.

Papila: We used samples belonging to ‘healthy’ and ‘glaucoma’ categories while samples from the
‘suspect’ class was excluded.

OL3I: The original dataset already contains binary categories.
Oasis-1: The ‘CDR’ labels 0, 0.5 and 1 into one category and label 2.0 into the other category.

Harvard-GF3300: The original labels are already categorized into two categories: Glaucoma and
Non-Glaucoma.

CheXpert: Originally, each sample in the dataset can correspond to one or more of the 14 labels.
We used the ‘No-Finding’ label for training, validation and testing (as done in|Zong et al.| (2023))
since it is the only binary classification label.

A.5 EXPERIMENTAL SETTINGS FOR HYPERPARAMETER OPTIMIZATION (HPO)

Details of HPO Pruning: We employed the Successive Halving Pruner provided in the Optuna
package [Akiba et al.| (2019). Successive Halving (SH) is a bandit-based algorithm that identifies
the best configuration amongst a set of configurations. The min_resource parameter was set as auto
to automatically determine the number of minimum resources to be allocated to a trial, and we
set the reduction_factor parameter to 4 (default value). This indicates that after the end of each
rung, ﬁ of the most promising trials would be promoted. For the remainder of the parameters
(min_early_stopping _rate and bootstrap _count), we used the default value of 0.

Details on the Parameter Sampler: We employed the TPE sampler that uses the Tree-structured
Parzen Estimator algorithm to sample hyperparameter values. Specifically, in each trial, TPE fits a
Gaussian Mixture Model (GMM) to the parameter values (binary mask, in our case) that lead to the
best values for the objective metric (min sub-group AUC, overall sub-group AUC, etc). Hence with
each trial, we sample better parameters (mask) that lead to an improved value for the objective.

Details on BLO using TPE and SH: In each trial, the TPE sampler samples some values for
the binary mask that is employed in fine-tuning. At the end of fine-tuning, we obtain a value for
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the objective metric that is associated with the sampled values. Over numerous trials, the sampler
determines which values better optimize the objective metric and gives them a higher preference
during the sampling process. At the same time, Successive Halving (SH) prunes certain trials that
do not show sufficient promise, thus saving both time and compute. More specifically, in our case,
only ﬁ of the trials (sampled mask values) are promoted for consideration in the next rung.

For the HPO search, we used a different number of trials for different datasets depending on their
size. Specifically, we used 40 trials for Fitzpatrick17k, 60 trials for HAM 10000, Oasis, and Harvard-
GF3300, 100 trials for Papila and OL3I, and 40 trials for CheXpert. Notably, we ran HPO 10% of
the total samples in CheXpert owing to its size.

Scalability to Large Datasets: We employed CheXpert [Irvin et al.| (2019) in order to test the
scalability of our proposed framework to large datasets. The original size of CheXpert is around
220,000 samples. We randomly selected 10% (20,000) samples for conducting the HPO search. The
mask obtained through this search was employed during fine-tuning on the entire original dataset.
During subset selection, we ensured maintaining the ratios of sensitive attributes. Subsampling for
HPO search has been shown to be effective previously (Shim et al., 2021} |Visalpara et al.,|2021)) and
our results reveal the same.
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Dataset ‘ Attr. ‘ Metric ;::::J:‘om Full FT Linear Readout Attention Tuning LayerNorm Tuning FairPrune FSCL FairTune (Ours)

Overall AUC 73.5 959 90.3 94.1 925 88.4 89.1 96.7

& Min. AUC 72.3 949 89.6 932 91.5 82.7 84.2 96.1
N Skin Type Gap AUC 1.6 3.8 2.8 1.4 35 6.8 5.6 2.4
i) EOddsD 17.4 15.8 10.1 219 1.2 48.4 26.2 10.0
DPD 12.2 44 6.8 5.1 6.6 21.3 9.3 59
Overall AUC 74.3 86.8 84.9 93.9 91.1 76.2 77.8 94.0

Min. AUC 66.3 79.2 754 85.9 83.2 64.3 67.3 90.1

- Age Gap AUC 10.1 9.1 12.5 10.9 10.9 13.2 14.6 4.9
S EOddsD 11.5 8.6 11.1 8.3 59.3 412 26.7 10.1
=1 DPD 23.1 129 119 7.2 12.7 23.1 16.5 132
E Overall AUC 84.4 86.8 85.8 93.5 91.5 64.4 68.9 94.8
= Min. AUC 83.7 86.3 85.0 91.9 90.9 63.9 66.3 94.4
Gender Gap AUC 1.7 2.0 1.8 3.6 1.7 1.2 4.8 0.9

EOddsD 67.3 86.9 70.6 659 321 58.1 97.2 38.1

DPD 5.6 1.8 1.3 1.6 33 4.1 4.1 1.1
Overall AUC 475 86.1 82.2 83.8 81.4 77.1 78.3 88.6
Min. AUC 493 81.2 60.7 78.6 65.2 712 72.7 85.2

Age Gap AUC 25 6.5 29.0 7.7 18.3 74 7.6 4.0

- EOddsD 36.1 50.1 325 62.5 40.2 57.1 58.4 34.5
=, DPD 45.1 41.8 27.2 40.6 42.8 39.2 413 30.3
& Overall AUC 39.7 88.9 84.7 86.4 88.4 79.5 7179 91.8
Min. AUC 28.9 88.8 79.5 80.4 81.0 74.4 71.4 90.2

Gender Gap AUC 24.7 0.2 8.7 9.2 11.4 8.1 8.8 3.6

EOddsD 20.5 16.7 124 20.8 332 39.2 43.1 12.5

DPD 10.0 9.1 6.9 35 9.7 73 82 4.9
Overall AUC 61.9 67.4 64.4 64.3 65.3 66.1 64.4 72.6

Min. AUC 54.5 62.4 54.8 62.4 62.0 63.5 60.8 70.1

Age Gap AUC 7.9 84 14.5 4.7 53 44 5.7 3.6

EOddsD 33.1 352 62.4 20.5 43.4 412 89.2 34.8

5 DPD 43.1 17.7 25.3 422 15.2 193 432 38.2
© Overall AUC 63.8 65.2 62.8 74.8 729 65.2 67.6 78.2
Min. AUC 62.0 62.5 60.6 70.1 69.3 60.4 62.0 75.4

Gender Gap AUC 21 4.0 2.6 75 43 6.5 8.9 3.7

EOddsD 21.3 15.5 13.8 233 24.5 512 443 18.3

DPD 12.3 52 8.8 10.1 13.8 324 11.3 4.4

Overall AUC 61.0 64.4 62.6 66.0 66.8 57.8 51.4 74.5
Min. AUC 57.7 60.1 59.1 62.2 60.0 55.6 50.7 732

Age Gap AUC 4.6 53 5.0 6.4 9.0 4.8 6.6 1.7

. EOddsD 41.4 44.7 43.8 46.8 98.2 74.3 98.2 44.7
2 DPD 41.1 35.6 43.6 38.2 453 31.3 38.2 35.0
S Overall AUC 60.7 64.6 62.3 65.1 634 64.3 62.3 70.8
Min. AUC 56.9 60.3 59.7 61.5 61.4 61.8 60.8 65.5

Gender Gap AUC 52 4.8 3.7 4.8 3.0 32 39 6.2
EOddsD 522 58.3 93.2 63.3 84.2 71.4 84.2 58.3
DPD 25.0 313 158 18.3 20.7 22.1 223 20.6
Overall AUC 723 82.3 83.6 81.7 84.7 74.4 80.4 86.4
Min. AUC 67.4 79.1 81.7 77.5 81.5 7.7 783 84.4

Age Gap AUC 6.4 2.5 35 4.8 38 4.8 32 32

EOddsD 342 232 23.8 203 21.2 332 27.2 18.1
S DPD 344 30.2 30.3 28.7 31.3 314 32.1 26.5
E Overall AUC 734 80.2 834 80.1 87.6 74.1 81.1 88.4
) Min. AUC 69.4 79.5 82.9 794 85.8 735 78.1 86.7
2 Gender Gap AUC 7.8 2.8 2.8 29 25 3.1 2.4 1.9
g EOddsD 22.3 13.3 44 13.2 72 21.3 11.2 9.4
= DPD 9.1 7.7 34 8.5 57 8.1 73 6.3
Overall AUC 72.9 79.3 83.5 85.2 85.4 744 81.5 87.1
Min. AUC 67.4 72.7 80.1 79.7 80.8 70.6 76.1 82.4

Race Gap AUC 6.9 73 4.6 7.8 7.6 52 33 6.5
EOddsD 18.1 93 14.2 6.2 10.1 25.1 122 12.2
DPD 17.2 6.2 11.3 134 11.2 16.0 11.4 12.3
Overall AUC 83.4 85.5 81.7 86.1 82.8 78.9 79.2 87.5
Min. AUC 78.5 82.3 713 82.3 79.7 75.6 7179 83.8

Age Gap AUC 6.1 59 4.8 53 4.2 4.2 6.2 5.0
5 EOddsD 233 233 221 289 254 514 312 234
Q- DPD 9.1 74 6.6 8.4 18.2 32.1 38.2 17.1
50 Overall AUC 84.1 85.8 81.7 86.1 83.2 80.2 79.5 88.2
Min. AUC 81.5 84.1 80.7 85.0 80.6 78.5 77.6 86.5

Gender Gap AUC 4.8 23 2.6 25 4.1 32 42 32

EOddsD 132 11.4 9.7 11.3 19.3 12.3 132 10.1

DPD 4.1 2.4 1.9 2.1 11.4 12.4 9.1 8.3
Avg. Overall Score 68.1 79.9 78.1 81.5 81.2 729 74.2 85.7

Avg. Min. Score 64.0 76.7 734 779 76.6 69.1 70.3 83.1

Avg. Gap Score 6.6 4.6 7.1 57 64 54 6.1 3.6
Avg. EOddD Score 29.4 29.5 303 29.5 357 44.7 473 239
Avg. DPD Score 20.8 153 14.4 16.3 17.7 214 20.9 16.0

Avg. Overall Rank 7.1 3.5 5.1 33 34 6.5 6.1 1.0

Avg. Min. Rank 6.9 3.6 52 3.1 3.7 6.4 6.1 1.0

Avg. Gap Rank 4.9 4.1 44 52 4.7 43 55 2.7

Avg. EOdd Diff Rank 4.4 3.6 34 4.0 4.7 6.4 6.5 2.6

Avg. DPD Rank 6.9 3.6 2.7 34 49 56 5.7 3.1

Table 3: Evaluation of fair generalisation across medical imaging benchmarks. We report the Area
Under ROC curve (AUROC) [1, %] across the whole test set (overall) and for the most disadvantaged
subgroup (min). We also report the AUROC gap [, %] between the advantaged and disadvantaged
subgroups (Gap), Difference of Equalized Odds [|, %, |/Agarwal et al.| (2018a)] and Demographic
Parity Difference [, %, Agarwal et al.| (2018a; [2019); [Barocas et al.| (2019)]. All results are based
on ImageNet pre-trained ViT-B, except Train from Scratch.
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Dataset ‘ Attr. ‘ Metric ;I::tlcil':‘om Full FT Linear Readout Attention Tuning LayerNorm Tuning FairTune (Ours)

Overall AUC 73.5 94.7 85.6 73.6 92.1 95.3
& Min. AUC 723 93.5 84.1 69.1 91.3 94.3
S Skin Type Gap AUC 1.6 4.6 7.8 6.4 3.7 42
3 EOddsD 17.4 153 26.2 1.3 9.9 9.8
DPD 122 54 45 11.0 52 35
Overall AUC 743 87.9 80.6 825 90.6 92.2
Min. AUC 66.3 80.3 71.8 69.6 81.7 85.2

- Age Gap AUC 10.1 10.2 124 17.1 11.7 9.1
= EOddsD 11.5 21.8 4.0 11.7 7.1 8.6
= DPD 23.1 0.7 12.1 74 10.4 0.6
E Overall AUC 84.4 91.3 87.6 92.1 91.2 9.1
= Min. AUC 83.7 90.9 86.5 91.1 90.5 93.2
Gender Gap AUC 1.7 1.0 2.8 22 1.9 2.1

EOddsD 67.3 13.8 5.2 14.1 11.8 3.0

DPD 5.6 22 1.9 39 2.0 04
Overall AUC 415 83.6 79.5 83.8 82.6 84.4

Min. AUC 49.3 79.5 71.1 76.3 77.1 80.1

Age Gap AUC 2.5 6.1 16.4 13.1 8.6 7.0
- EOddsD 36.1 31.2 18.8 373 29.3 254
= DPD 45.1 35.6 11.8 38.2 34.4 33.0
& Overall AUC 39.7 82.1 78.2 82.6 81.8 84.3
Min. AUC 28.9 75.9 71.4 79.6 74.8 82.1

Gender Gap AUC 24.7 11.1 10.3 7.0 8.0 3.6
EOddsD 20.5 16.7 333 183 22.6 155

DPD 10.0 9.7 83 0.7 16.0 6.9
Overall AUC 61.9 70.6 60.4 67.5 72.1 73.6
Min. AUC 54.5 63.6 58.6 64.3 64.1 66.4

Age Gap AUC 7.9 8.3 4.2 5.5 9.1 79

EOddsD 33.1 34.9 26.8 23.2 60.0 36.1
5 DPD 43.1 7.6 329 1.6 454 30.0
o Overall AUC 63.8 714 60.4 62.6 70.1 74.4
Min. AUC 62.0 70.3 577 60.2 67.5 71.8

Gender Gap AUC 2.1 2.1 49 3.7 5.7 45
EOddsD 213 19.7 16.6 13.8 11.0 11.8

DPD 123 9.8 9.3 13.6 6.4 82
Overall AUC 61.0 69.3 67.1 69.7 68.8 71.5
Min. AUC 577 53.7 60.5 57.8 5.1 65.4

Age Gap AUC 4.6 254 9.8 18.8 17.7 6.5
EOddsD 41.4 375 46.6 46.0 20.3 39.2

4 DPD 41.1 32.8 39.5 6.5 47.3 10.5
© Overall AUC 60.7 70.9 67.2 58.6 64.8 72.6
Min. AUC 56.9 57.8 55.1 574 58.3 66.4

Gender Gap AUC 52 14.4 12.3 38 7.8 7.3
EOddsD 522 51.2 9.2 1.0 21.4 35.7
DPD 25.0 353 38 0.3 19.5 35.0

Overall AUC 72.3 84.5 75.2 75.5 85.1 86.1
Min. AUC 67.4 82.9 74.2 72.1 834 84.0

Age Gap AUC 6.4 7.0 3.7 49 2.9 0.2
EOddsD 342 249 19.4 13.8 19.8 21.2

= DPD 344 244 334 17.4 29.3 21.3
E Overall AUC 73.4 85.1 76.1 71.4 79.1 86.1
0 Min. AUC 69.4 84.3 75.3 70.2 78.1 85.4
= Gender Gap AUC 7.8 2.0 2.7 2.9 3.8 2.6
E EOddsD 22.3 73.1 70.8 86.4 71.0 45.8
= DPD 9.1 3.1 6.1 4.7 10.4 24
Overall AUC 72.9 843 78.5 70.2 84.1 85.7
Min. AUC 674 80.5 75.6 65.5 79.1 835

Race Gap AUC 6.9 73 6.1 8.0 7.5 39
EOddsD 18.1 10.7 10.5 113 11.9 14.6

DPD 17.2 6.4 8.5 2.7 10.5 9.9
Overall AUC 834 843 81.3 852 832 87.5

Min. AUC 78.5 81.5 76.2 81.5 80.5 85.1

Age Gap AUC 6.1 49 6.2 5.8 42 35
5 EOddsD 233 34.1 389 28.1 27.6 14.4
= DPD 9.1 10.2 10.5 8.3 189 9.2
5 Overall AUC 84.1 844 80.5 85.4 825 86.7
Min. AUC 81.5 83.1 79.1 84.0 794 85.5

Gender Gap AUC 4.8 29 2.5 2.6 42 2.2

EOddsD 13.2 12.6 10.3 10.3 19.7 10.1

DPD 4.1 8.9 10.2 7.6 124 7.5
Avg. Overall Score 68.1 81.7 75.6 75.8 80.6 83.9
Avg. Min. Score 64.0 77.0 71.2 71.3 75.5 80.6

Avg. Gap Score 6.6 7.7 73 73 6.9 4.6
Avg. EOddD Score 29.4 28.4 24.0 22.6 24.5 20.8
Avg. DPD Score 20.8 13.7 13.8 8.9 19.2 12.7

Avg. Overall Rank 53 2.6 49 3.7 34 1.0

Avg. Min. Rank 53 29 4.7 3.8 34 1.0

Avg. Gap Rank 32 3.6 4.1 39 3.9 2.1

Avg. EOdd Diff Rank 45 4.1 3.1 33 34 2.6

Avg. DPD Rank 49 34 3.4 2.6 4.4 2.2

Table 4: Evaluation of fair generalisation across medical imaging benchmarks when using self-
supervised pre-training (masked autoencoder — MAE). FairTune obtains the best average ranking in
terms of all fairness metrics.
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Model Metric Full-FT Linear-Readout Attention-Tuning LayerNorm-Tuning FSCL FairTune (Ours)

Supervised ViT Base Overall AUC 83.6 80.3 84.4 83.2 80.7 86.8
Min AUC 78.5 74.9 77.4 76.3 78.1 79.7
Gap 8.1 7.7 9.5 8.8 6.1 8.1
EOddsD 20.1 15.5 229 22.6 18.3 12.6
DPD 11.3 3.7 11.5 52 73 9.1

ViT Base MAE Overall AUC 82.4 81.3 84.4 82.5 823 85.5
Min AUC 79.1 74.9 774 75.1 79.5 80.1
Gap 7.1 7.7 9.5 7.8 7.1 6.2
EOddsD 21.84 16.2 23.8 204 19.2 114
DPD 12.5 4.1 10.8 6.1 9.5 8.5

Table 5: Table showing the results for the ViT Base model pre-trained in a supervised (ImageNet)
and self-supervised (MAE) fashion for the overlapping sensitive attributes in the CheXpert dataset.
FairTune achieves the best performance in terms of the AUC (overall and min sub-group) and dif-
ference of equalized odds (EOddsD) across both the pre-training scenarios.

FairTune: FairTune: FairTune: FairTune:
Dataset | Sens Attr | Metric | Attention Tuning LayerNorm Tuning (36-bit) (36-bit)
(12-bit) (12-bit) Obj: Overall AUC Obj: Min Group AUC
I Overall 95.9 94.0 96.1 96.7
S Skin Type | Min. 94.9 934 95.2 96.1
53 Gap 3.8 2.2 32 2.4
- Overall 93.9 93.0 92.8 94.0
S Age Min. 87.6 88.4 86.1 90.1
= Gap 8.5 5.8 9.3 4.9
E Overall 93.6 91.6 91.7 94.8
= Gender Min. 934 91.1 93.2 94.4
Gap 0.9 0.7 1.0 0.9
Overall 84.2 88.1 88.2 88.6
< Age Min. 83.3 84.5 854 85.2
.;} Gap 22 44 3.0 4.0
A~ Overall 88.4 90.1 92.3 91.8
Gender Min. 85.3 83.1 87.2 90.2
Gap 34 8.0 55 3.6
Overall 714 68.6 71.4 72.6
Age Min. 65.8 67.3 68.4 70.1
& Gap 9.8 1.9 6.2 3.6
© Overall 76.8 72.9 75.6 78.2
Gender Min. 74.8 70.1 72.0 75.4
Gap 2.7 4.0 6.1 3.7
Overall 69.3 66.5 73.8 74.5
Age Min. 67.7 63.1 72.1 73.2
Z Gap 2.4 5.0 1.9 1.7
© Overall 68.2 64.4 69.2 70.8
Gender Min. 62.4 61.3 63.9 65.5
Gap 7.5 6.2 8.6 6.2
Avg. Overall Rank 2.8 3.7 2.3 1.1
Avg. Min. Rank 3.0 3.6 23 1.1
Avg. Gap Rank 2.4 2.3 32 1.8

Table 6: Ablation study on the design of the FairTune algorithm — full set of results. Results high-
lighted in bold indicate the best minimum sub-group performance for each dataset and sensitive
attribute.
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Dataset Access

Fitzpatrick17k https://github.com/mattgroh/fitzpatrickl7k

HAM10000 https://dataverse.harvard.edu/dataset.xhtml?
persistentId=doi:10.7910/DVN/DBWS6T

PAPILA https://www.nature.com/articles/s41597-022-01388-1#Secb

OL3I https://stanfordaimi.azurewebsites.net/datasets/
3263e34a-252e-460f-8f63-d585a9%bfecfc

Oasis-1 https://www.oasis-brains.org/#data

Harvard-GF3300

https://ophai.hms.harvard.edu/datasets/
harvard-glaucoma-fairness—-3300-samples/

CheXpert https://stanfordaimi.azurewebsites.net/datasets/
8cbd9ed4-2eb9-4565-affc-111cfd4fiebe2
Table 7: URLSs to access the datasets.
Dataset Modality Size Sensitive Attribute
PAPILA Fundus Image (2D) 420 Age, Gender
OL3I Heart CT (2D) 8139 Age, Gender
HAM10000 Skin Dermatology (2D) 9948 Age, Gender
OASIS Brain MRI (3D ->2D) 12156 Age, Gender
Fitzpatrick17K Skin Dermatology (2D) 16012 Skin Type
Harvard-GF3300 Retinal Nerves (2D) 3300 Age, Gender, Race
CheXpert Chest Radiographs (2D) 222,793 Age, Gender

Table 8: Table representing detailed statistics of the datasets including the modality, dataset size

obtained after filtering

for incomplete studies, and sensitive attributes present in the metadata.

Label .
Attribute Label 0 Labell1 Split
Skin Type 0 7538 1312 Train
Skin Type 1 3541 418 !
Skin Type 0 940 159 o
Skin Type 1 456 46 Validation
Sk;n Type 0 934 180 Test
Skin Type 1 443 45

Table 9: Sensitive Attribute v/s Label Distribution for Fitzpatrick dataset.

Label . Label .
Attribute Label 0 Label1 Split Attribute Label 0 Label1 Split
Age Group 0 5218 545 Train Male 3609 725 Train
Age Group 1 1618 586 Female 3224 406
Age Group 0 604 69 A Male 419 104 S
Age Group 1 219 97 Validation Female 399 62 Validation
Age Group 0 653 70 . Male 464 79 .
Age Group 1 208 71 Test Female 395 62 Test

(a) Sensitive Attribute: Age

(b) Sensitive Attribute: Gender

Table 10: Sensitive Attribute v/s Label Distribution for HAM 10000 dataset.
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Label N
Attribute Label 0 Label1 Split
Age Group 0 3836 1768 Train
Age Group 1 1716 2392 &
Age Group 0 468 312 o
Age Group 1 312 104 Validation
Age Group 0 364 260 Test
Age Group 1 260 364

(a) Sensitive Attribute: Age

Label

Attribute Label 0 Label1 Split
P, 176 1924 Train
Female 4076 2236 a

Male 208 104 .
Female 572 312 Validation
Male 260 104 Test
Female 364 520 es

(b) Sensitive Attribute: Gender

Table 11: Sensitive Attribute v/s Label Distribution for PAPILA dataset.

Label N
Attribute Label 0 Label 1  Split
Age Group 0 3512 87 -,
Age Group 1 1487 141 Train
Age Group 0 830 13 o
Age Group 1 417 43 Validation
Age Group 0 1060 25 et
Age Group 1 478 46

(a) Sensitive Attribute: Age

Label

Attribute Label 0 Label1 Split
Male 1984 111 Train
Female 3015 117 a

Male 498 32 L
Female 749 24 Validation
Male 629 39 Test
Female 909 32

(b) Sensitive Attribute: Gender

Table 12: Sensitive Attribute v/s Label Distribution for OL3I dataset.

Label N
Attribute Label 0 Label 1  Split
Age Group 0 3836 1768 oo
Age Group 1 1716 2392
Age Group 0 468 312 o
Age Group 1 312 104 Validation
Age Group 0 364 260 Test
Age Group 1 260 364

(a) Sensitive Attribute: Age

Label A
Attribute Label 0 Label1 Split
T, 176 1924 Train
Female 4076 2236 a
Male 208 104 L.
Female 572 312 Validation
Male 260 104 Test
Female 364 520 es

(b) Sensitive Attribute: Gender

Table 13: Sensitive Attribute v/s Label Distribution for OASIS dataset.
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