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ABSTRACT

Learning from human feedback plays an important role in aligning generative
models, such as large language models (LLM). However, the effectiveness of
this approach can be influenced by adversaries, who may intentionally provide
misleading preferences to manipulate the output in an undesirable or harmful di-
rection. To tackle this challenge, we study a specific model within this problem
domain—contextual dueling bandits with adversarial feedback, where the true pref-
erence label can be flipped by an adversary. We propose an algorithm namely ro-
bust contextual dueling bandits (RCDB), which is based on uncertainty-weighted

maximum likelihood estimation. Our algorithm achieves an O(dv/T + dC') regret
bound, where 7" is the number of rounds, d is the dimension of the context, and
0 < C < T is the total number of adversarial feedback. We also prove a lower
bound to show that our regret bound is nearly optimal, both in scenarios with and
without (C' = 0) adversarial feedback. To the best of our knowledge, our work is
the first to achieve nearly minimax optimal regret for dueling bandits in the pres-
ence of adversarial preference feedback. Additionally, we conduct experiments
to evaluate our proposed algorithm against various types of adversarial feedback.
Experimental results demonstrate its superiority over the state-of-the-art dueling
bandit algorithms in the presence of adversarial feedback.

1 INTRODUCTION

Acquiring an appropriate reward proves challenging in numerous real-world applications, often ne-
cessitating intricate instrumentation (Zhu et al., 2020) and time-consuming calibration (Yu et al.,
2020) to achieve satisfactory levels of sample efficiency. For instance, in training large language
models (LLM) using reinforcement learning from human feedback (RLHF), the diverse values and
perspectives of humans can lead to uncalibrated and noisy rewards (Ouyang et al.,[2022). In contrast,
preference-based data, which involves comparing or ranking various actions, is a more straightfor-
ward method for capturing human judgments and decisions. In this context, the dueling bandit
model (Yue et al., 2012) provides a problem framework that focuses on optimal decision-making
through pairwise comparisons, rather than relying on the absolute reward for each action.

However, human feedback may not always be reliable. In real-world applications, human feedback
is particularly vulnerable to manipulation through preference label flip. Adversarial feedback can
significantly increase the risk of misleading a large language model (LLM) into erroneously priori-
tizing harmful content, under the false belief that it reflects human preference. Despite the significant
influence of adversarial feedback, there is limited existing research on the impact of adversarial feed-
back specifically within the context of dueling bandits. A notable exception is|/Agarwal et al.| (2021},
which studies dueling bandits when an adversary can flip some of the preference labels received
by the learner. They proposed an algorithm that is agnostic to the amount of adversarial feedback
introduced by the adversary. However, their setting has the following two limitations. First, their
study was confined to a finite-armed setting, which renders their results less applicable to modern
applications such as RLHF. Second, their adversarial feedback is defined on the whole comparison
matrix. In each round, the adversary observes the outcomes of all pairwise comparisons and then
decides to corrupt some of the pairs before the agent selects the actions. This assumption does not
align well with the real-world scenario, where the adversary often flips the preference label based
on the information of the selected actions.

In this paper, to address the above challenge, we aim to develop contextual dueling bandit algorithms
that are robust to adversarial feedback. This enables us to effectively tackle problems involving a
large number of actions while also taking advantage of contextual information. We specifically
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Table 1: Comparison of algorithms for robust bandits and dueling bandits.

Model Algorithm Setting Regret
Multl—layel; Sig:reisi?; F;l()nllé?anon Race K -armed Bandits 0 ( K150 ﬁ)
(Gu;fgzjél;mg:_ K -armed Bandits 0 (VKT + KC)
Bandits i etb:fP 2019} Linear Bandits O(2C/A + d°/A?)
* Bogunovie ctal 2031] Linear Bandits O(VAT +d5C + C?)
RODF;]:;:::%%SO(Z); vk Linear Contextual Bandits é(dcﬁ)
(}ivev{g,,h‘goéz;. Linear Contextual Bandits O(dv/T + dC)
(Agarw\z]ﬁf 2021} K-armed Dueling Bandits — O(K>C/Amin + 3,2 K2/A7)
Dueling Bandits (Sah;/ gcrsg;ﬂgrgﬁzozzw K-armed Dueling Bandits O(C+ X4 1/Ai + VE)
(Oﬁf aik) Contextual Dueling Bandits O(dVT + dC)

consider a scenario where the adversary knows the selected action pair and the true preference of
their comparison. In this setting, the adversary’s only decision is whether to flip the preference label
or not. We highlight our contributions as follows:

* We propose a new algorithm called robust contextual dueling bandits (RCDB), which integrates
uncertainty-dependent weights into the Maximum Likelihood Estimator (MLE). Intuitively, our
choice of weight is designed to induce a higher degree of skepticism about potentially “untrust-
worthy” feedback. The agent is encouraged to focus more on feedback that is more likely to be
genuine, effectively diminishing the impact of any adversarial feedback.

* We analyze the regret of our algorithm under at most C' number of adversarial feedback. For
known adversarial level, our result consists of two terms: a C-independent term O(d+/T)), which
matches the lower bound established in Bengs et al.| (2022) for uncorrupted linear contextual

dueling bandits, and a C-dependent term O(dC'). Furthermore, we establish a lower bound for
dueling bandits with adversarial feedback, demonstrating the optimality of our adversarial term.
Consequently, our algorithm for dueling bandits attains the optimal regret in both scenarios, with
and without adversarial feedback.

* When the adversarial level is unknown, we conduct our algorithm with an optimistic estimator
of the number of adversarial feedback and prove the optimality of our result in case of a strong
adversary. To the best of our knowledge, our work is the first to achieve nearly minimax optimal
regret for dueling bandits in the presence of adversarial preference feedback, regardless of whether
the amount of adversarial feedback is known.

* We conduct extensive experiments to validate the effectiveness of our algorithm RCDB. To com-
prehensively assess RCDB’s robustness against adversarial feedback, we evaluate its performance
under various types of adversarial feedback and compare the results with state-of-the-art duel-
ing bandit algorithms. Experimental results demonstrate the superiority of our algorithm in the
presence of adversarial feedback, which corroborate our theoretical analysis.

Notation. In this paper, we use plain letters such as x to denote scalars, lowercase bold letters such
as x to denote vectors and uppercase bold letters such as X to denote matrices. For a vector x, ||x]|2
denotes its /5-norm. The weighted ¢5>-norm associated with a positive-definite matrix A is defined
as ||x/|a = VxT Ax. For two symmetric matrices A and B, we use A = B to denote A — B is
positive semidefinite. We use 1 to denote the indicator function and 0 to denote the zero vector. For
two actions a, b, we use a > b to denote a is more preferable to b. For a postive integer N, we use
[N] to denote {1,2, ..., N}. We use standard asymptotic notations including O(-), 2(-), ©(-), and
O(+), 2(+), ©(-) will hide logarithmic factors.

2 RELATED WORK

Bandits with Adversarial Reward. The multi-armed bandit problem, involving an agent mak-
ing sequential decisions among multiple arms, has been studied with both stochastic rewards (Lai
et al.l [1985} [Lail, [1987; |Auer, 2002} |Auer et al.| [2002a} [Kalyanakrishnan et al.| 2012} [Lattimore &
Szepesvari, [2020; |Agrawal & Goyal, [2012), and adversarial rewards (Auer et al., 2002bj Bubeck
et all 2012). Moreover, a line of works focuses on designing algorithms that can achieve near-
optimal regret bounds for both stochastic bandits and adversarial bandits simultaneously (Bubeck
& Slivkins| 2012; Seldin & Slivkins, 2014; |Auer & Chiang, |[2016;|Seldin & Lugosi, 2017} |[Zimmert
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& Seldin, 2019} [Lee et al., 2021)), which is known as “the best of both worlds” guarantee. Distinct
from fully stochastic and fully adversarial models, [Lykouris et al.| (2018) studied a setting, where
only a portion of the rewards is subject to corruption. They proposed an algorithm with a regret
dependent on the corruption level C, defined as the cumulative sum of the corruption magnitudes in
each round. Their result is C' times worse than the regret without corruption. |Gupta et al. (2019)
improved the result by providing a regret guarantee comprising two terms, a corruption-independent
term that matches the regret lower bound without corruption, and a corruption-dependent term that
is linear in C. In addition, |Gupta et al.| (2019) proved a lower bound demonstrating the optimality
of the linear dependency on C'.

Contextual Bandits with Corruption. |Li et al.| (2019) studied stochastic linear bandits with cor-
ruption and presented an instance-dependent regret bound linearly dependent on the corruption level
C. Bogunovic et al.|(2021) studied the same problem and proposed an algorithm with near-optimal
regret in the non-corrupted case. [Lee et al.|(2021) studied this problem in a different setting, where
the adversarial corruptions are generated through the inner product of a corrupted vector and the
context vector. For linear contextual bandits, [Bogunovic et al. (2021)) proved that under an addi-
tional context diversity assumption, the regret of a simple greedy algorithm is nearly optimal with
an additive corruption term. [Zhao et al.|(2021)) and Ding et al.|(2022) extended the OFUL algorithm
(Abbasi-Yadkori et al., 2011) and proved a regret with a corruption term polynomially dependent
on the total number of rounds 7. He et al.|(2022) proposed an algorithm for known corruption level
C to remove the polynomial dependency on 7" in the corruption term, which only has a linear de-
pendency on C. They also proved a lower bound showing the optimality of linear dependency on C'
for linear contextual bandits with a known corruption level. Additionally, He et al.|(2022)) extended
the proposed algorithm to an unknown corruption level and provided a near-optimal performance
guarantee that matches the lower bound. For more extensions, [Kuroki et al.[(2023) studied best-of-
both-worlds algorithms for linear contextual bandits. |Ye et al.| (2023)) proposed a corruption robust
algorithm for nonlinear contextual bandits.

Dueling Bandits and Logistic Bandits. The dueling bandit model was first proposed in |Yue et al.
(2012). Compared with bandits, the agent will select two arms and receive the preference feedback
between the two arms from the environment. For general preference, there may not exist the “best”
arm that always wins in the pairwise comparison. Therefore, various alternative winners are con-
sidered, including Condorcet winner (Zoghi et al., [2014} |[Komiyama et al., [2015)), Copeland winner
(Zoghi et al.l 2015;Wu & Liu, [2016; Komiyama et al.| 2016)), Borda winner (Jamieson et al., 2015;
Falahatgar et al.l [2017; [Heckel et al.l [2018}; |Saha et al.l [2021; [Wu et al.| |2023) and von Neumann
winner (Ramamohan et al., 2016; Dudik et al.| 2015} Balsubramani et al.| [2016), along with their
corresponding performance metrics. To handle potentially large action space or context informa-
tion, (Sahal (2021) studied a structured contextual dueling bandit setting. In this setting, each arm
possesses an unknown intrinsic reward. The comparison is determined based on a logistic function
of the relative rewards. In a similar setting, Bengs et al.| (2022)) studied contextual linear stochastic
transitivity model with contextualized utilities. D1 et al.| (2023) proposed a layered algorithm with
variance aware regret bound. Another line of works does not make the reward assumption. Instead,
they assume the preference feedback can be represented by a function class. |[Saha & Krishnamurthy
(2022) designed an algorithm that achieves the optimal regret for K -armed contextual dueling ban-
dit problem. |Sekhari et al.| (2023) studied contextual dueling bandits in a more general setting and
proposed an algorithm the provides guarantees for both regret and the number of queries. Another
related area of research is the logistic bandits, where the agent selects one arm in each round and
receives a Bernoulli reward. |[Faury et al.[(2020) studied the dependency with respect to the degree
of non-linearity of the logistic function x. They proposed an algorithm with no dependency in x.
Abeille et al.|(2021) further improved the dependency on x and proved a problem dependent lower
bound. [Faury et al.| (2022) proposed a computationally efficient algorithm with regret performance
still matching the lower-bound proved in|Abeille et al.| (202 1}).

Dueling Bandits with Adversarial Feedback. A line of work has focused on dueling bandits
with adversarial feedback or corruption. |Gajane et al. (2015) studied a fully adversarial utility-
based version of dueling bandits, which was proposed in |Ailon et al. (2014). |Saha et al.| (2021)
considered the Borda regret for adversarial dueling bandits without the assumption of utility. In a
setting parallel to that in [Lykouris et al.| (2018)); Gupta et al.[(2019)), [Agarwal et al.| (2021) studied
K-armed dueling bandits in a scenario where an adversary has the capability to corrupt part of
the feedback received by the learner. They designed an algorithm whose regret comprises two
terms: one that is optimal in uncorrupted scenarios, and another that is linearly dependent on the
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total times of adversarial feedback C. Later on, [Saha & Gaillard (2022) achieved “best-of-both
world” result for noncontextual dueling bandits and improved the adversarial term of Agarwal et al.
(2021) in the same setting. For contextual dueling bandits, [Wu et al.|(2023) proposed an EXP3-type
algorithm for the adversarial linear setting using Borda regret. For a comparison of the most related
works for robust bandits and dueling bandits, please refer to Table |1} In this paper, we study the
influence of adversarial feedback within contextual dueling bandits, particularly in a setting where
only a minority of the feedback is adversarial. Compared to previous studies, most studies have
focused on the multi-armed dueling bandit framework without integrating context information. The
notable exception is Wu et al.| (2023)); however, this study does not provide guarantees regarding the
dependency on the number of adversarial feedback instances.

3 PRELIMINARIES

In this work, we study linear contextual dueling bandits with adversarial feedback. In each round t €
[T], the agent observes the context information x; from a context set X’ and the corresponding action
set A. Utilizing this context information, the agent selects two actions, a; and b;. Subsequently, the
environment will generate a binary feedback (i.e., preference label) I; = 1(a; > b;) € {0,1}
indicating the preferable action. We assume the existence of a reward function 7*(x, a) dependent
on the context information x and action a, and a monotonically increasing link function o satisfying
o(x) + o(—xz) = 1. The preference probability will be determined by the link function and the
difference between the rewards of the selected arms, i.e.,

P(a - blz) = o (r*(z,a) — r*(z,b)). 3.1

We assume that the reward function is linear with respect to some known feature map ¢(x, a). To
be more specific, we make the following assumption:

Assumption 3.1. Let ¢ : X x A — R? be a known feature map, with ||@(x,a)|[2 < 1 for any
(x,a) € X x A. We define the reward function r¢ parameterized by 8 € ©, with rg(z,a) =
(6, d(z, a)). Moreover, there exists 6* satisfying rg- = r*. For all with 8 € 9, ||0]]» < B.

Similar linear assumptions have been made in the literature of dueling bandits (Saha, 2021; Bengs
et al., 2022} |Xiong et al.| 2023). We also make an assumption on the derivative of the link function,
which is common in the study of generalized linear models for bandits (Filippi et al., 2010).

Assumption 3.2. The link function ¢ is differentiable. Furthermore, its first-order derivative satis-
fies that there exists a constant x > 0 such that

& ((p(x,a) — B(x,b),8)) >,
forallz € X,a,bc A,0 c ©.

In our setting, however, the agent does not directly observe the true binary feedback. Instead, an
adversary will see both the choice of the agent and the true feedback. Based on the information, the
adversary can decide whether to corrupt the binary feedback or notﬂ We represent the adversary’s
decision in round ¢ by an adversarial indicator ¢;, which takes values from the set {0,1}. If the
adversary chooses not to corrupt the result, we have ¢, = 0. Otherwise, we have ¢; = 1, which
means adversarial feedback in this round. As a result, the agent will observe a flipped preference
label, i.e., the observation o; = 1 — ;. We define C' as the total level of adversarial feedback, i.e.,

Ethl a < C.

Remark 3.3. There are two commonly used corruption models for bandits. One is the total bud-
get model (Lykouris et al.l [2018), where in each round ¢, the agent selects an action a; and the
environment generates a numerical reward r;(a;). The adversary observes the reward and returns

a corrupted reward 7;. The corruption level C is defined by ZtT:1 |ri(a:) — 7| < C. Another
considers the number of corrupted rounds (Zhang et al.,2021). In our setting, we consider the label-
flipping attack. Thus, the magnitude of adversarial feedback is always 1 and these two types of
corruption models are equivalent. Moreover, adversarial feedback in our setting involves comparing
two arms, whereas in bandits it pertains to the reward of a single arm. The only previous work
that studied label-flipping is (Agarwal et al., [2021)), where the adversary cannot observe the action
selected by the agent. In contrast, our setting focuses on scenarios where this information is avail-
able to adversaries, which is common in many real-life applications. We use the term “adversarial
feedback” to differentiate our work from prior studies on corrupted or adversarial reward settings.

!'Such adversary is referred to as strong adversary (He et al.,2022), compared with the weak adversary who
cannot obtain the information before the decision.
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As the context is changing, the optimal action is different in each round, denoted by a; =
argmax,e 4 7 (¢, a). The goal of our algorithm is to minimize the cumulative gap between the
rewards of both selected actions and the optimal action

Regret(T) = 231127“*(30“@:) — r*(z¢, ar) — r* (e, be). (3.2)

This regret definition is the same as that in|Saha) (2021)) and the average regret defined in|/Bengs et al.
(2022). It is typically stronger than weak regret defined in|Bengs et al.|(2022), which only considers
the reward gap of the better action.

4 ALGORITHM

In this section, we present our new algorithm RCDB, designed for learning contextual linear du-
eling bandits. The main algorithm is illustrated in Algorithm [T} At a high level, we incorporate
uncertainty-dependent weighting into the Maximum Likelihood Estimator (MLE) to counter adver-
sarial feedback. Specifically, in each round ¢ € [T], we construct the estimator of parameter 8 by
solving the following equation:

A0 + Zf;iwz (J(qbiTG) — oi)(;bi =0, 4.1)

where we denote ¢; = ¢(z;, a;) — ¢p(z;, b; ) for simplicity, w; is the uncertainty weight we are going
to choose. To obtain an intuitive understanding of our weight, we consider any action-observation
sequence (z1,a1,b1,01,T2,a2,ba,09,...,2,at,b,0;) up to round ¢. For simplicity, we denote
Fi = o(x1,a1,b1,01,T2,a2,b2,09, ..., 2, s, by) as the filtration. Suppose the estimated parame-
ter 0, is the solution to the unweighted version equation of (.1)), i.e.,

A/@Ot + 22:1 (a(qb?@t) — Oz)d)z =0. (42)

When we receive ¢y = ¢(zy, ar) — ¢(x¢, by), the probability of receiving [; = 1 can be estimated
by o(¢/ 6;). We consider the conditional variance of the estimated probability o (¢, 8;) in round ¢,
i.e.,Var [U(gth Ot)|}"t], involving a posterior estimate of the prediction’s variance. Intuitively, even
without the weighting, we can show that the solution of (@.2), i.e., 8;, will approach 6*, using
the arguments similar to Lemma [5.1] what we will present next. This inspires us to consider the
approximation of Taylor’s expansion:

Elo(p] 6,)|F:] ~ E[o(¢, 07) + o' (¢ 6")¢/ (6, — 67)|F,]
=E[o(¢/60") — o' (¢/ 6")9] 0" | F] + E[0' (/] 0%) o, 6,|F:].

JF —measurable

Moreover, using the Taylor’s expansion to (@.2), we have
0=Xkb; + 3, (0(p] 0:) — 0;) s
~ (L4 0107 (97 07) @] )0:+ Y1, (o(] 07) = 0,) b — 1L, o' (] 07)ih] 0.
Let Ay = AT+ ', /(9] 0%)pip; , we have
0; ~ A [Zﬁzlff’(¢?9*)¢i¢?9* - 25:1 (o(ep] 6%) - Oi)fﬁz}
= A S0 (6] 07)0id] 07 = Y] (0] 07) — o) — 0(] 07)| +oih 6

JF—measurable

Therefore, applying the pulling-out-known-factor property of the conditional expectation, the JF;-
measurable part will cancel out when calculating the conditional variance. Then, we can approxi-
mate the variance of the estimated preference probability by

Var[o (] 6,)|F] = E[(o(#] 6:) — E[o(e/ 6,)|F:])°|F]
%E{(E[Otdl( :0*) ;At_1¢t‘]‘—t])2 ]:t}
< E[Ot[o’(¢?0*)]2ll¢tlli;1Ift] < [a’(¢30*)}2ll¢tlli;u
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Algorithm 1 Robust Contextual Dueling Bandit (RCDB)

1: Require: o > 0, Regularization parameter A, confidence radius 5.

2: fort=1,...,Tdo

3 Compute =, = AL+ /" Jwy; (i, a:) — Pp(wi, b)) (i, a:) — P, bz‘))T-
4:  Calculate the MLE 6, by solving the following equation:

Ak6 + Y w; [U<(¢($z‘, ai) — ¢(xi, bi))Te) - 07‘} (P(wi,ai) — Pp(xi,b;)) =0. (4.4)

Observe the context vector x;.
-
Choose a;, b; = argmax, , {(d)(xt, a) + ¢y, b)) 0, + BHd)(xt,a) — (x4, b)||2;1 }
7:  The adversary sees the feedback I; = 1(a; > b;) and decides the indicator ¢;. Observe

o; = l; when ¢; = 0, otherwise observe o, = 1 — ;.

8:  Set weight w; as (4.3).
9: end for

where the first inequality holds due to the Jensen’s inequality and 0? = o;, and the last inequality
holds due to E[o;|F;] < 1. Using o’/ (¢p; 0*) < 1, Ay > kX441 > k3, where X is defined in Line

of Algorithm , we can see that Var[o(¢, 6,)|F;] < £ ||¢p ||§:_1. Since higher variance leads to
a

rger uncertainty, which harms the credibility of the data, it is natural to assign a smaller weight to
the data with high uncertainty. Thus, we choose the weight to cancel out the uncertainty as follows

w; = min{l,a/HqﬁiHZ;l}, 4.3)

where a/|¢;||s,—1 normalizes the variance of the estimated probability. To prevent excessively

large weights, we apply truncation to this value. A similar weight has been used in|He et al.| (2022)
for linear contextual bandits under corruption. Different from their setting where the weight is an
estimate of the variance of the linear model, our weight is an estimate of a generalized linear model.
Furthermore, by selecting a proper threshold parameter, e.g., a = v/d /C, the weighted MLE shares
the same confidence radius with that of the no-adversary scenario.

Remark 4.1. Here, we use approximations to illustrate the motivation of our uncertainty-based
weight. Rigorous proof for the algorithm’s performance is presented in Section which relies
solely on our specific choice of weights and does not use the approximation.

After constructing the estimator 8, from the weighted MLE, the sum of the estimated reward for

each duel (a,b) can be calculated as (¢(z,a) + ¢(ay, b))TOt. To encourage the exploration of
duel (a,b) with high uncertainty during the learning process, we introduce an exploration bonus
with the following S||@(z,a) — ¢(x, b)HE,l, which follows a similar spirit to the bonus term

in the context of linear bandit problems (Abbtasi-Yadkori et al., [2011). However, the reward term
and the bonus term exhibit different combinations of the feature maps ¢(z¢, a) and ¢(x¢, b), which
is the key difference between bandits and dueling bandits. The selection of action pairs (a, b) is
subsequently determined by maximizing the estimated reward with the exploration bonus term, i.e.,

(¢ar,a) + lai,b) 0, + | plar, @) = Bl b)| -

More discussion about the selection rule was discussed in Appendix A of Di et al.|(2023).
Computational Complexity. We assume there is a computation oracle to solve the optimization
problems of the action selection over A. A similar oracle is implicitly assumed in almost all existing
works for solving standard linear bandit problems with infinite arms (e.g., (Abbasi-Yadkori et al.,
2011 He et al.} |2022)). In the special case where the decision set is finite, we can iterate across all
actions, resulting in O(k2d?) complexity for each iteration, where k is the number of actions, and d
is the feature dimension.

5 MAIN RESULTS

5.1 KNOWN NUMBER OF ADVERSARIAL FEEDBACK

At the center of our algorithm design is the uncertainty-weighted MLE. When faced with adversarial
feedback, the estimation error of the weighted MLE 6, can be characterized by the following lemma.
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Lemma 5.1. If we set 8 = VAB + (aC + \/dlog((1 +2T/X)/5))/k, then with probability at
least 1 — 0, for any ¢ € [T, we have

|6; — 6

5, <6

The proof of this lemma is postponed to Section [C.I]

Remark 5.2. If we set o = (v/d + /AB)/C, then the bonus radius /3 has no direct dependency on
the number of adversarial feedback C'. This observation plays a key role in proving the adversarial
term in the regret without polynomial dependence on the total number of rounds 7.

With Lemma|[5.1] we can present the following regret guarantee of our algorithm RCDB in the duel-
ing bandit framework.

Theorem 5.3. Under Assumption [3.1] and let 0 < § < 1, the total number of adversarial
feedback be C. If we set the bonus radius to be

B =VAB + (aC + \/dlog((1 + 2T/))/3)) /x,

then with probability at least 1 — §, the regret in the first ¢ rounds can be upper bounded by

Regret(T") < 4(\5\3 + aC/K) VdT log(1 + 2T/ \)
+4d(VT/k + VAB/a +4C/x) log (1 + 2T/) /5)

+4d"/log® (1 + 2T/3)/5) /(o).

Moreover, if we set a = (v/d + v AB)/C, A = 1/B?, the regret upper bound can be simplified to

Regret(T) = 6(dﬁ/n +dC/k).

Remark 5.4. The proof of Theorem [5.3]is postponed to Section Our regret bound consists
of two terms. The first one is a C-independent term O(d+/T'), which matches the lower bound
Q(dv/T) proved in|Bengs et al.|(2022). This indicates that our result is optimal in scenarios without
adversarial feedback (C' = 0). Additionally, our result includes an additive term that is linearly de-
pendent on the number of adversarial feedback C. When C' = O(+/T), the order of regret will be the
same as the stochastic setting. It indicates the robustness of our algorithm to adversarial feedback.
Additionally, the following theorem we present establishes a lower bound for this adversarial term,
indicating that our dependency on the number of adversarial feedback C' and the context dimension
d is also optimal.

Theorem 5.5. For any dimension d, there exists an instance of dueling bandits with |.A| = d, such
that any algorithm with the knowledge of the number of adversarial feedback C' must incur (dC)
regret with probability at least 1/2.

Remark 5.6. The proof of Theorem @] follows Bogunovic et al.| (2021). In the constructed in-
stances, only one action has reward 1, while others have 0. Compared with linear bandits, where
the feedback is an exact reward, dueling bandits deal with the comparison between a pair of actions.
A critical observation from our preference model, as formulated in (3.1)), is that two actions with
identical rewards result in a pair that is challenging to differentiate. The lower bound can be proved
by corrupting every comparison into a random guess until the total times of adversarial feedback
have been used up. For detailed proof, please refer to Section Our proved lower bound (dC)
shows that our result is nearly optimal because of the linear dependency on C d and only logarithmic
dependency on the total number of rounds 7T'.

5.2 UNKNOWN NUMBER OF ADVERSARIAL FEEDBACK

In our previous analysis, the selection of parameters depends on having prior knowledge of the total
number of adversarial feedback C. In this subsection, we extend our previous result to address
the challenge posed by an unknown number of adversarial feedback C. Our approach to tackle
this uncertainty follows He et al.| (2022)), we introduce an adversarial tolerance threshold C' for the
adversary count. This threshold can be regarded as an optimistic estimator of the actual number of
adversarial feedback C'. Under this situation, the subsequent theorem provides an upper bound for
regret of Algorithm[I]in the case of an unknown number of adversarial feedback C.



Under review as a conference paper at ICLR 2025

Theorem 5.7. Under Assumptions [3.T]and [3.2] if we set the the confidence radius as

B =VAB + [aC + \[dlog (1 +27/3)/6)] /x,

with the pre-defined adversarial tolerance threshold C' and o = (v/d + v/AB)/C, then with proba-
bility at least 1 — 4, the regret of Algorithm [I]can be upper bounded as following:

« If the actual number of adversarial feedback C' is smaller than the adversarial tolerance threshold

C, then we have
Regret(T) = O(dvVT/k + dC /).

* If the actual number of adversarial feedback C' is larger than the adversarial tolerance threshold

C, then we have Regret(T') = O(T).

Remark 5.8. The COBE framework (Wei et al., [2022) converts any algorithm with the known ad-
versarial level to an algorithm in the unknown case. However, such a framework only works for
weak adversaries and does not work in our strong adversary setting. In fact,|He et al.| (2022)) proved
that any algorithm cannot simultaneously achieve near-optimal regret when uncorrupted and main-
tain sublinear regret with corruption level C' = Q(+/T'). Therefore, there exists a trade-off between
robust adversarial defense and near-optimal algorithmic performance, which is very common in
dealing with strong adversaries (He et al., |2022; |Ye et al.| 2023)). Our algorithm achieves the same
nearly optimal O(d+v/T) regret as the no-adversary case even when C' = ©(+/T)), which indicates
that our results are optimal in the presence of an unknown number of adversarial feedback.

6 EXPERIMENTS

6.1 EXPERIMENT SETUP

Preference Model. We study the effect of adversarial feedback with the preference model deter-
mined by , where o(x) = 1/(1 4+ e~*). We randomly generate the underlying parameter in
[—0.5,0.5]% and normalize it to be a vector with [|@*||; = 2. Then, we set it to be the underlying
parameter and construct the reward utilized in the preference model as r*(z,a) = (0*, d(z, a)).

We set the action set A = { — 1/Vd, l/ﬁ}d. For simplicity, we assume ¢(x,a) = a. In our
experiment, we set the dimension d = 5, with the size of action set |A| = 2d — 32.

Adversarial Attack Methods. We study the performance of our algorithm using different adver-
sarial attack methods. We categorize the first two methods as “weak” primarily because the adver-
sary in these scenarios does not utilize information about the agent’s actions. In contrast, we classify
the latter two methods as “strong” attacks. In these cases, the adversary leverages a broader scope
of information, including knowledge of the actions selected by the agent and the true preference
model. This enables it to devise more targeted adversarial methods.

» “Greedy Attack”: The adversary will flip the preference label for the first C' rounds. After that, it
will not corrupt the result anymore.

» “Random Attack”: In each round, the adversary will flip the preference label with the probability
of 0 < p < 1, until the times of adversarial feedback reach C.

* “Adversarial Attack”: The adversary can have access to the true preference model. It will only
flip the preference label when it aligns with the preference model, i.e., the probability for the
preference model to make that decision is larger than 0.5, until the times of adversarial feedback
reach C.

* “Misleading Attack™: The adversary selects a suboptimal action. It will make sure this arm is
always the winner in the comparison until the times of adversarial feedback reach C. In this way,
it will mislead the agent to believe this action is the optimal one.

Experiment Setup. For each experiment instance, we simulate the interaction with the environ-
ment for 7" = 2000 rounds. In each round, the feedback for the action pair selected by the algorithm
is generated according to the defined preference model. Subsequently, the adversary observes both
the selected actions and their corresponding feedback and then engages in one of the previously de-
scribed adversarial attack methods. We report the regret defined in (3.2)) averaged across 10 random
runs.
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Figure 1: Comparison of RCDB (Our Algorithm |I|), MaxInp (Sahal2021), CoLSTIM (Bengs et al
2022) and MaxPairUCB (Di et al., [2023). We report the cumulative regret with various adversarial
attack methods (Greedy, Random, Adversarial, Misleading). For the baselines, the parameters are
carefully tuned to achieve better results with different attack methods. The total number of adver-

sarial feedback is C' = [v/T'].

6.2 PERFORMANCE COMPARISON

We first introduce the algorithms studied in this section.

* MaxInP: Maximum Informative Pair by [Sahal (2021)). It involves maintaining a standard MLE.
With the estimated model, it then identifies a set of promising arms possible to beat the rest. The
selection of arm pairs is then strategically designed to maximize the uncertainty in the difference
between the two arms within this promising set, referred to as “maximum informative”.

* CoLSTIM: The method by Bengs et al.| (2022). It involves maintaining a standard MLE for
the estimated model. Based on this model, the first arm is selected as the one with the highest
estimated reward, implying it is the most likely to prevail over competitors. The second arm is
selected to be the first arm’s toughest competitor, with an added uncertainty bonus.

* MaxPairUCB: This algorithm was proposed in Di et al.|(2023)). It uses the regularized MLE to
estimate the parameter 8*. Then it selects the actions based on a symmetric action selection rule,
i.e. the actions with the largest estimated reward plus some uncertainty bonus.

 RCDB: Algorithm [T] proposed in this paper. The key difference from the other algorithms is the
use of uncertainty weight in the calculation of MLE (@4). The we use the same symmetric action
selection rule as MaxPairUCB. Our experiment results show that the uncertainty weight is critical
in the face of adversarial feedback.

Our results are demonstrated in Figure[T] In Figure[I(a) and Figure[T[b), we observe scenarios where
the adversary is “weak” due to the lack of access to information regarding the selected actions and
the underlying preference model. Notably, in these situations, our algorithm RCDB outperforms all
other baseline algorithms, demonstrating its robustness. Among the other algorithms, CoLSTIM
performs as the strongest competitor.
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In Figure [T[c), the adversary employs a ’stronger’ adversarial method. Due to the inherent ran-
domness of the model, some labels may naturally be ’incorrect’. An adversary with knowledge
of the selected actions and the preference model can strategically neglect these naturally incorrect
labels and selectively flip the others. This method proves catastrophic for algorithms to learn the
true model, as it results in the agent encountering only incorrect preference labels at the beginning.
Our results indicate that this leads to significantly higher regret. However, it’s noteworthy that our
algorithm RCDB demonstrates considerable robustness.

In Figure [T(d), the adversary employs a strategy aimed at misleading algorithms into believing a
suboptimal action is the best choice. The algorithm CoLSTIM appears to be the most susceptible
to being cheated by this method. Despite the deployment of ’strong’ adversarial methods, as shown
in both Figure [T{c) and Figure [T(d), our algorithm, RCDB, consistently demonstrates exceptional
robustness against these attacks. A significant advantage of RCDB lies in that our parameter is
selected solely based on the number of adversarial feedback C, irrespective of the nature of the
adversarial methods employed. This contrasts with other algorithms where parameter tuning must
be specifically adapted for each distinct adversarial method.

Cumulative Regret versus Adversarial Feedback

—— Maxinp
3500 ColLSTIM
—— MaxPairUCB
—— RCDB

3000

2500

Regret

2000

1500

1000

500

25 50 75 100 125 150 175 200
Adversarial Feedback

Figure 2: The relationship between cumulative regret and the number of adversarial feedback C'. For
this specific experiment, we employ the “greedy attack” method to generate the adversarial feedback.
C is selected from the set [20, 40, 60, 80, 100, 120, 140, 160, 180, 200] (10 adversarial levels).

6.3 ROBUSTNESS TO DIFFERENT NUMBERS OF ADVERSARIAL FEEDBACK

In this section, we test the performance of algorithms with increasing times of adversarial feedback.
Our results show a linear dependency on the number of adversarial feedback C, which is consis-
tent with the theoretical results we have proved in Theorem [5.3] and [5.3] In comparison to other
algorithms, RCDB demonstrates superior robustness against adversarial feedback, as evidenced by
its notably smaller regret.

7 CONCLUSION

In this paper, we focus on the contextual dueling bandit problem from adversarial feedback. We
introduce a novel algorithm, RCDB, which utilizes an uncertainty-weighted Maximum Likelihood
Estimator (MLE) approach. This algorithm not only achieves optimal theoretical results in scenarios
with and without adversarial feedback but also demonstrates superior performance with synthetic
data. For future direction, we aim to extend our uncertainty-weighted method to encompass more
general settings involving preference-based data. A particularly promising future direction of our
research lies in addressing adversarial feedback within the process of aligning large language models
using Reinforcement Learning from Human Feedback (RLHF).

Limitations and Future Works. We assume that the reward is linear with respect to some known
feature maps. Although this setting is common in the literature, we observe that some recent works
on dueling bandits can deal with nonlinear rewards (Li et al., 2024; [Verma et al., [2024)). Recently,
Verma et al.| (2024) studied the problem of approximating reward models using neural networks,
addressing nonlinear rewards for dueling bandits. It is an interesting future direction to design
robust algorithms for nonlinear reward functions, such as with neural networks. Another assumption
concerns the lower bound of the derivative of the link function. Notably, in the logistic bandit model,
which shares similarities with our setting through Bernoulli variables, some work (Abeille et al.,
20215 [Faury et al., 2022)) can improve the dependency of « from 1/x to y/k. A similar improvement
might be achieved in our setting as well.

10
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BROADER IMPACT

This paper studies contextual dueling bandits with adversarial feedback. Our primary objective is
to propel advancements in bandit theory by introducing a more robust algorithm backed by solid
theoretical guarantees. The uncertainty-weighted approach we have developed for dueling bandits
holds significant potential to address the issue of adversarial feedback in preference-based data,
which could be instrumental in enhancing the robustness of generative models against adversarial
attacks, thereby contributing positively to the societal impact and reliability of machine learning
applications.

A ROADMAP OF THE PROOF

A.1  UNCERTAINTY-WEIGHTED MLE WITH ADVERSARIAL FEEDBACK

In this section, we offer an overview of the proof for Lemma The general proof idea for the
uncertainty-weighted MLE with adversarial feedback lies in decomposing the estimation error into
three terms, a stochastic error term, an adversarial term, and an additional regularization term. Fol-
lowing the analysis of standard (weighted) MLE (L1 et al.,|2017), we introduce an auxiliary function:

G+(0) = \kO + tz:iwi [0((({)(:51-, a;) — qb(xi,bi))—r@)

. U((qb(xi, ai) — By, bi))TG*)} (p(xi,ai) — (i, b))

It satisfies two conditions: First, for the true parameter value 0, G¢(6*) has a simple expression,
i.e.,

G4(0%) = ArO™.
Second, according to @]), we can get the value of function G at the MLE 6,

t—1
Gi(0:) = > wiyi(p(ws, ai) — dli, i), (A.T)
i=1

where v; = 0; — o ((¢(x;,a;) — ¢(xi,b;)) " 6*). To connect the desired estimation error with the
function G}, we use the mean value theorem. This leads to an upper bound of the estimation error:

1
100 = 67llz. < ~[[Ge(8) — Gu(67) | 1

| 1
< E/\HB Hz:;l +E’|Gt(0t)”>:;1'

Regularization term I
For term I;, we can decompose the summation in (A.1)) based on the adversarial feedback ¢, i.e.,

Gi(60:) = Z wiyi (P(i, ai) — P, b)) + Z wiyi (x4, a:) — i, b;)),

1<t:c;=0 1<t:c;=1

Iz
where /5 can be further decomposed as
I, = Z wiei (P(xi, a;) — P, b)) + Z w; (7 — €)(P(x5,a;) — P(wi, b;)).
i<tic;=1 i<tic;=1

where ¢; = I; — o ((¢(w4,a;) — ¢(xi,b;)) T 6%). With our notation of adversarial feedback, when
¢; = 0, we have ; = ¢;. Therefore, we have |y; — ¢;| < 1 and

I < %H fwiei(ﬁb(xiyai) - ¢(!Ei>bz‘))Hz_1 + %H Z w; (p(x,a;) — ¢($i7bi))HE_1 :
i=1 t t

i<tic;=1

Stochastic term Adversarial term

The stochastic term can be upper bounded with the concentration inequality (Lemma |D.2)). Addi-
tionally, by employing our specifically chosen weight, as (@.3), we can control the adversarial term,
with w;||¢(z;, a;) — d(x;, b;) H2;1 < a. Therefore, the adversarial term can be bounded by aC/x.
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A.2 REGRET UPPER BOUND

With a similar discussion of the symmetric arm selection rule to |D1i et al.| (2023)), the regret defined
in (3.2)) can be bounded by

T
Regret(T) < > min {4,281 ¢(ws, ar) — ple,br) |3+ |-
t=1

Note that in our selection of weight wy, it has two possible values. We decompose the summation
based on the two cases separately. We have

Regret(T') < Z min {4726H¢<xt»at) - ¢($tabt)”z:;1}

we=1

J1

4 Z min {4, 28| (xt, ar) — Py, bt)”z;l} :

we<1

Ja2

We consider Jq, J> separately. For the term J;, we define A; = A\I + Zigt71,wi:1 (qb(xi, a;) —
o(x;, bz)) ((b(xi, a;) — ¢z, bi))T. Then, we have 3; = A;, and therefore

[p(e, ar) — @, be)l[g o1 < ll@(we, ar) — S, b)l 5
Using Lemma[D.3|with x;, = ¢(z, a;) — (x4, by), we have

Ji < 4B+/dTlog(1 + 2T/)). (A.2)

For term J3, we note that w; < 1 implies that w; = o/||¢(xt, ar) — Pp(z, by) ||):;1. Therefore, we
have /

T
1< P in {1, (e ar) — Sl b)) b
t=1

Using Lemma [D.3|with x} = \/w;(d(x, ar) — ¢(24,bt)), we have

_ 4dBlog(1 +2T/))
— a .
We conclude the proof of regret by combining (A.2)) and (A.3).

Jo

(A.3)

B PROOF OF THEOREMS IN SECTION

B.1 PROOF OF THEOREM

In this subsection, we provide the proof of Theorem[5.3] We condition on the high-probability event
in Lemma[5.1]

e={l6. -6

|, < 8.Vt e Tl

Let r = 2r*(a¢,a)) — r*(zs, ar) — r*(z¢, be) be the regret incurred in round ¢. The following
lemma provides the upper bound of r;.

Lemma B.1. Let 0 < § < 1. If we set 3 = VAB + (aC + /dlog((1 + 2T'/\)/5)) /k, on event
&, the regret of Algorithm [I)incurred in round ¢ can be upper bounded by

r¢ < min {472ﬁ”¢($t7at) - Cb(xtabt)Hz;l}'

Moreover, the regret can be upper bounded by

T
Regret(T) < > min {4,268 ¢, ar) — plar,br) | |-
t=1
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With Lemma B.T] we can provide the proof of Theorem [5.3]
Proof of Theorem Using Lemma B.1] the total regret can be upper bounded by

T
Regret(T) < min {4,28]¢(ws, ar) — (e, bi) 5,1 }-
t=1

Our weight w, has two possible values. We decompose the summation based on the two cases
separately. We have

Regret(T') < Z min {4,26“(]&(@,@) — ¢(xt,bt)|\2:1}

wy=1
J1
+ 3 min {4,280 (e, ar) = dlwe, bl |-
we <1
J2
For the term J;, we consider a partial summation in rounds when w; = 1. Let A; = AI +

D i<k lwi=1 (d(w,a:) — P23, b)) (s, 0a5) — P, bi))T. Then we have
K248 3 min{ L@ 0) = b b s}

trwg=1

<48 Z min {1, |p(xs,as) — ¢(mtabt)”1\;1}

trwp=1

<48 |T > min{1,||¢(xs,ar) — ¢($t;bt)|‘i:1}

tiwe=1

< 4B+/dTlog(1 + 2T /), (B.1)
where the second inequality holds due to 3, >~ A;. The third inequality holds due to the Cauchy-
Schwartz inequality, The last inequality holds due to Lemma|D.3

For the term J5, the weight in this summation satisfies w; < 1, and therefore w; = a/||p(z, ar) —
d(x,by) Hzt—l. Then we have

Jo = Z min {47 20| (wt, ar) — ¢, be) | -1 wel| (e, ar) — ¢(93t,bt)H2;1/0‘}

we<1

T
<> min {4,268/l ($(ar,ar) = b, b))l |

IA

t=1

& 45 . 2
Z ™ mm{l, IVwi(@(xs, ar) — (ﬁ(ft»bt))uzt—l}
t=1

< 4dpBlog(1 + 2T/))
- «

5 (B.2)

where the first equality holds due to the choice of w,. The first inequality holds because each term
in the summation is positive. The last inequality holds due to Lemma [D.3] Combining (B.T)) and
(B.2), we complete the proof of Theorem [5.3] O

B.2 PROOF OF THEOREM

Proof of Theorem[5.3] Our proof adapts the argument in[Bogunovic et al|(2021) to dueling bandits.
For any dimension d, we construct d instances, each with 8; = e;, where e; is the i-th standard basis
vector. We set the action set A = {e;}¢_,. Therefore, in the i-th instance, the reward for the i-th
action will be 1. For the other actions, it will be 0. Therefore, the i-th action will be more preferable
to any other action. While for other pairs, the feedback is simply a random guess.

Consider an adversary that knows the exact instance. When the comparison involves the ¢-th action,
it will corrupt the feedback with a random guess. Otherwise, it will not corrupt. In the ¢-th instance,
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the adversary stops the adversarial attack only after C' times of comparison involving the i-th action.
However, after C'd/4 rounds, at least d/2 actions have not been compared for C' times. For the
instances corresponding to these actions, the agent learns no information and suffers from Q(dC)
regret. This completes the proof of Theorem|5.3] O

B.3 PROOF OF THEOREM

Proof of Theorem[5.7] Here, based on the relationship between C' and the threshold C, we discuss
two distinct cases separately.

* In the scenario where C' < C, Algorithm can ensures a trivial regret bound, with the guarantee
that Regret(T") < 2T.

* In the scenario where C' < C, we know that C' is remains a valid upper bound on the number of
adversarial feedback. Under this situation, Algorithm operates successfully with C' adversarial
feedback. Therefore, according to Theorem[5.3] the regret is upper bounded by

Regret(T) < O(dVT + dC).

C PROOF OF LEMMAS[5.1]AND
C.1 PROOF OF LEMMA

Proof of Lemmal5.1} Using a similar reasoning in [Li et al| (2017), we define some auxiliary quanti-
ties
-1
Gi(8) = kb + > wil o ((d(ws,a0) — plai, b)) "0)
i=1
o ((lwiai) = dlwisb) ' 07)| (@i, a:) = plai, b)),
€t :lt _0((¢ xtvat xtvbt))—ra*)a
7t=0t—0((¢ Ty, at) xnbt))Te*),
t—1
= Zwi% (@(xi, ai) — Pl b;)).
i=1
In Algorithm |1} 8; is chosen to be the solution to the following equation,
t—1
i=1
Then we have

G+(0; Af@@t—&-Zwl{ ( (i, a;) — (i, b;)) Ht)

The analysis in|Li et al.|(2017); D1 et al.[(2023) shows that this equation has a unique solution, with
0, = G, 1(Z,). Using the mean value theorem, for any 6;,8, € R, there exists m € [0, 1] and
6 = m6; + (1 — m)0,, such that the following equation holds,

Gi(61) — G1(82) = Ax(61 — 02) + Zw (7 ((B(1,0:) — d(ai, i) 61)

18
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— o (($lasa) = @i b)) '0:) | ($lai, i) = Bl b))

— [/\KI + Zwié’(((ﬁ(a?i, a;) — @(i, bi))Té)

(i, a:) — (i, bi)) (i, ai) — (s, bz’))T} (61— 62).

We define F'(0) as

Moreover, we can see that G;(0*) = Ak0*. Recall ; = A + Zf;i w; (P4, a;) —
d)(l’i, bz)) (¢)(.’E“ ai) — d)(xl, bl))—r We have
|Gu(81) — Gu(0) s = (6, — 0)T F(B)S*F(0)(68; - 67)
> k20, — 0") T XZ,(6, — 6%)
=26, - 0%,

where the first inequality holds due to ji(-) > x > 0 and F(0) > x3;. Then we have the following
estimate of the estimation error:

* 1 *
16: — 07[|5, < ;HGt(et) — Gy(0 )||g;1
. 1
< A\ll@ Hz;l + EHZtHZ:;l

1
< VA0 + | Zilg

where the second inequality holds due to the triangle inequality and G;(0*) = Ak@*. The last
inequality holds due to 3; = AL Finally, we need to bound the || Z; Hzt—l term. To study the impact

of adversarial feedback, we decompose the summation in (A.T)) based on the adversarial feedback
Ct, i.e.,

Zy = Z wivi (P, ai) — G, b;)) + Z wiyi (P(xi,a:) — (a3, bs)),
1<t:c;=0 1<tic;=1

When ¢; = 1, i.e. with adversarial feedback, |y; — €;| = 1. On the contrary, when ¢; = 0, y; = ¢;.
Therefore,

Z wiyi (P(x5,a:) — i, b)) = Z wie; (i, a;) — Pz, b)),

1<t:c;=0 1<t:c;=0
Z wiyi (x5, a:) — i, b)) = Z wiei (P(xi,a;) — (x4, b;))
i<tic;=1 i<tic;=1
+ Y wilv — ) (b(xi @) — Blwi,bi)).
i<tic;=1

Summing up the two equalties, we have

Z, = Z_:wzﬂ (plwi i) — dplai b)) + D> wilyi — &) (Dlwi, a;) — Plai, b))

1<t:c;=1

Therefore,

+

12150 <
=t

Z wi£i(¢(xi7 a;) — (s, bi))

Z ’U)l(¢($z7 ai) - ¢($i7 bl))

i<t:c;=1

=t

11 12
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For the term I, with probability at least 1 — 4, for all ¢ € [T, it can be bounded by

1/2 —1/2
Ilg\/mog(det(Et) (;et(Eo) )

due to Lemma|D.2] Using w; < 1, we have /w;|p(xi, a;) — ¢(xi, b;)||l2 < 2. Moreover, we have

det(S) < (T@))d

d
(d)\+ S | (i ai) — ¢(mi,bi>>|%)d

d
d
< (d)\+2T) ’
- d

where the first inequality holds because for every matrix A € R?*4, det A < (Tr(A)/d)?. The
second inequality holds due to \/w;||¢(z;, a;) — @(x;,b;)||2 < 2. Easy to see that det(Xg) = A%
The term I; can be bounded by

I < \/dlog((1+2T/\)/9). (C.2)
For I,, with our choice of the weight w;, we have
I, < Z wil| (@i, a:) — ¢(xi7bi))H2t—1
1<t:c;=1

< Z wi||(¢(96i7ai)_¢(xu Hz 1

<t:ic;=1

Y o«

1<t:c;=1

< aC, (C.3)

where the second inequality holds due to 3; > 3J;. The third inequality holds due to w; <
af||[(p(xi, a;) — d(zy, bl))ﬁz 1. The last inequality holds due to the definition of C. Combin-

ing (C2) and (C3), we complete the proof of Lemmal5.1] O
C.2  PROOF OF LEMMA|[B.]|

Proof of Lemma(B1] Let the regret incurred in the ¢-th round by 7 = 2r*(zy, af) — 7* (2, ar) —
r*(z, by). It can be decomposed as

Ty = 2r*(zy, a3 ) — ¥ (xp, ar) — (x4, by)

= (p(z¢,a7) — d(z1, 1), 0 > + (P(zt,a) — Pp(wt,bt), 07)

= (p(w1,af) — (T/taa ),0" — 04) + (D¢, a) — P21, 1), 0" — 6y)
+ (2¢(z¢, a;) — d(we, ar) — P4, bt), 64)

< l@(r, ar) — d(xe, )51 107 — Oclls, + [|[@(x1, af) — Sz, be) [ 511107 — 64|,
+ Q2d(2e, a7) — dae, ar) — P, br), 6;)

< Bllg(xe, af) — ¢z, ar) |51 + Blld (e, ai) — P4, byl g
+ 2¢(xt, af) — P(w4, ar) — P4, 1), 04),

where the first inequality holds due to the Cauchy-Schwarz inequality. The second inequality holds
due to the high probability confidence event £. Using our action selection rule, we have

(@(ze,a7) — d(xt, 1), 00) + Bl (e, a7) — (e, ar)|| 51

< {P(wr, br) — pae, ar), 0r) + Bl (e, ar) — (e, be)|[ 51
(@(ze,a7) = P2, bt), 0¢) + Bl (e, a7) — (e, by 51

< {@p(wr; ar) — d(ai,b0),01) + Bl (e, ar) — (w1, b) [ 51
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Adding the above two inequalities, we have
Bllp(xs, ap) — ¢z, ar)l| 50 + Bl ap) — (s, be)l| 5
< (@, ar) + (e, be) — 29w, a5), 1) + 28| (e, ar) — (w4, b1 || g1
Therefore, we prove that the regret in round ¢ can be upper bounded by

ry < 25||¢(xt7at) - ¢($t7bt)||2;1'

With a simple observation, we have r; < 4. Therefore, the total regret can be upper bounded by

T
Regret(T) < > min {4,28]¢(wr, ar) — (e, br) |5+ |-
t=1

D AUXILIARY LEMMAS

Lemma D.1 (Azuma—Hoeffding inequality, Cesa-Bianchi & Lugosi|2006). Let {nk}le be a mar-
tingale difference sequence with respect to a filtration {;} satisfying |n;| < R for some constant
R, n; is Fiq1-measurable, E[n:|F;] = 0. Then for any 0 < 6 < 1, with probability at least 1 — 4,
we have

T
Z’?t < Ry/2Tlog1/6.
t—1

Lemma D.2 (Lemma 9 Abbasi-Yadkori et al.[2011). Let {¢;}_; be a real-valued stochastic process
with corresponding filtration {F; }{_, such that ¢; is F;-measurable and ¢; is conditionally R-sub-
Gaussian, i.e.

A2 R?
YA € R, E[e*|F;_1] < exp ( )
Let {x;}7_; be an R%-valued stochastic process where x; is F;_1-measurable and for any ¢ € [T,

we further define 3; = AI + Z§=1 x;x; . Then with probability at least 1 — 4, for all ¢ € [T}, we
have

2

det(33,)/2 det(20)1/2>
5 .

T
§ XiMi
i=1

Lemma D.3 (Lemma 11, |Abbasi-Yadkori et al[2011). For any A > 0 and sequence {x;} ; C R?

fort € [T, define Z; = A\I + Z:;} x;x; . Then, provided that ||x;||2 < L holds for all t € [T], we
have

< 2R?log (
st

T
S min {1, ||xt||;,1} < 2dlog(1 + TL?/(dN)).
t=1
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