
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ONLINE NEURO-SYMBOLIC PREDICATE INVENTION
FOR HIGH-LEVEL PLANNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Broadly intelligent agents should form task-specific abstractions that selectively
expose the essential elements of a task, while abstracting away the complexity of
the raw sensorimotor space. In this work, we present Neuro-Symbolic Predicates,
a first-order abstraction language that combines the strengths of symbolic and neu-
ral knowledge representations. We outline an online algorithm for inventing such
predicates and learning abstract world models. We compare our approach to hi-
erarchical reinforcement learning, vision-language model planning, and symbolic
predicate invention approaches, on both in- and out-of-distribution tasks across
five simulated robotic domains. Results show that our approach offers better sam-
ple complexity, stronger out-of-distribution generalization, and improved inter-
pretability.

1 INTRODUCTION

Planning and model-based decision-making for robotics demand an understanding of the world that
is both perceptually and logically rich. For example, a household robot needs to know that slippery
objects, such as greasy spatulas, are hard to grasp. Determining if the spatula is greasy is a subtle
perceptual problem. As an example of logical richness, for a robot to use a balance beam to weigh
objects, it must count up the mass on each side of the balance beam to determine which way the
beam will tip. Counting and comparing masses are logically sophisticated operations.

In this work, we show how to efficiently learn symbolic abstractions that are both perceptually and
logically rich, and which can plug into standard robot task-planners to solve long-horizon tasks. We
consider a robot that encounters a new environment involving novel physical mechanisms and new
kinds of objects, and which must learn how to plan in this new environment from relatively few
environment interactions (the equivalent of minutes or hours of training experience). The core of
our approach is to learn an abstract model of the environment in terms of Neuro-Symbolic Predi-
cates (NSPs, see Fig. 1), which are snippets of Python code that can invoke vision-language models
(VLMs) for querying perceptual properties, and further algorithmically manipulate those properties
using Python, in the spirit of ViperGPT and VisProg (Surı́s et al., 2023; Gupta & Kembhavi, 2022).

In contrast, traditional robot task planning uses hard-coded symbolic world models that cannot adapt
to novel environments (Garrett et al., 2021; Konidaris, 2019). Recent works pushed in this direction
with limited forms of learning that restrict the allowed perceptual and logical abstractions, and which
further require demonstration data instead of having the robot explore on its own (Silver et al., 2023;
Konidaris et al., 2018). The representational power of Neuro-Symbolic Predicates allows a much
broader set of perceptual primitives (essentially anything a VLM can perceive) and also deeper
logical structure (in principle, anything computable in Python).

Yet there are steep challenges when learning Neuro-Symbolic Predicates to enable effective plan-
ning. First, the predicates must be learned from input pixel data, which is extremely complex and
potentially noisy. Second, they should not overfit to the situations encountered during training, and
instead zero-shot generalize to complex new tasks at test time. Third, we need an efficient way of
exploring different possible plans to collect the data needed to learn good predicates. To address
these challenges we architect a new robot learning approach that interleaves proposing new predi-
cates (using VLMs), predicate scoring/validation (adapting the modern predicate-learning algorithm
by Silver et al. (2022)), and goal-driven exploration with a planner in the loop. The resulting archi-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

option: PlaceInMachine(jug, machine) option: TurnOn(machine)

HoldingJug(jug)
…

;; PDDL operator definition, TurnOn option

(def-op (?x0:coffee_machine ?x1:jug ?x2:robot)

 :option (TurnOn ?x2:robot ?x0:coffee_machine)

 :precondition (JugInMachine ?x1 ?x0)

 :postcondition (JugFilled ?x1:jug))

NeuroSymbolic Predicate

def JugInMachine(state, objects):

 jug, machine = objects

 # If the jug is held, it cannot be in the machine.

 if Holding(state,[state.objects(robot_type)[0],jug]):

 return False

 # Crop to focus on jug and coffee machine

 attention_img = state.crop_to_objects([jug,machine])

 return state.query_VLM(

 f"{jug.id_name} is placed inside {machine.id_name}.",

 attention_img)

…

JugInMachine(jug, machine)
GripperOpen()
…

JugFilled(jug)
HoldingJug(jug)
…

abstract state abstract state abstract state

option: Pour(jug, cup1)

option: Pick(block3) option: PutOnPlate(plate1)

DirectlyOn(block3, block2)
OnPlate(block3, plate2)
...
GripperOpen()

;; PDDL operator definition, PressButton option

(def-op (?x0:machine ?x1:plate ?x2:plate ?x3:robot)

 :option (PressButton ?x3:robot ?x1:plate ?x2:plate)

 :precondition (DistributedEvenly ?x2 ?x1)

 :postcondition (MachineOn ?x0:machine))

NeuroSymbolic Predicate

def DistributedEvenly(atoms, objects):

 plate1, plate2 = objects

 if plate1 == plate2: return False

 count1, count2 = 0, 0

 for atom in atoms:

 if atom.predicate == OnPlate:

 if atom.objects[1] == plate1: count1 += 1

 elif atom.objects[1] == plate2: count2 += 1

 return count1 == count2

Holding(block3)
Clear(block2)
...
DirectlyOnPlate(block0, plate2)

DistributedEvenly(plate1, plate2)
GripperOpen()
…
OnPlate(block3, plate1)

abstract state abstract state abstract state

option: PressButton

(A) making and pouring coffee into a pair of cups example learned predicate+planning operator

(B) using a balance beam to activate a machine that requires balanced platters example learned predicate+planning operator

…

Figure 1: Robot learning domains illustrating learned neurosymbolic predicates. In (A) we learn a
predicate that queries a VLM to check if a coffee jug is inside a coffee machine. In (B) we learn a
predicate that checks if a balance beam is balanced. (Code lightly refactored to better fit in figure.)

tecture is then able to successfully learn across five different simulated environments, and is more
flexible and more sample-efficient compared to competing neural, symbolic, and LLM baselines.

We highlight the following contributions: (1) NSPs, a state representation for decision-making using
both logically and perceptually rich features; (2) An algorithm for inventing NSPs by interacting with
an environment, including an extension to a new operator learning algorithm; and (3) Evaluation
against 6 methods across 5 simulated robotics tasks.

2 PROBLEM FORMULATION

We consider the problem of learning state abstractions for robot planning over continuous state/ac-
tion spaces, and doing so from online interaction with the environment, rather than learning from
human-provided demonstrations. We assume a predefined inventory of basic motor skills, such as
pick/place, and also assume a basic object-centric state representation, which is a common assump-
tion (Kumar et al., 2024; Silver et al., 2023; 2022). Our goal is to learn state abstractions from
training tasks which generalize to held-out test tasks.

Tasks. A task T is a tuple ⟨O, x0, g⟩ of objects O, initial state x0, and goal g. The allowed states
depend on the objects O, so we write the state space as XO (or just X when the objects are clear
from context). Each state x ∈ XO includes a raw RGB image and associated object features, such
as 3D object position.

Environments. Tasks occur within an environment E , which is a tuple ⟨U , C, f,Λ⟩ where U ⊆ Rm

is a low-level action space (e.g. motor torques), C is a set of controllers for low-level skills (e.g.
pick/place), f : X × U → X is a transition function, and Λ is a set of object types (possible outputs
of an object classifier). The environment is shared across tasks.

Built-in Motor Skills. We assume skills C, each of which has parameters that abstract over which
object(s) the skill acts on. For example, the agent can apply a skill such as Place(?block1,
?block2) to stack any pair of blocks atop one another, where a block is a type in Λ. We assume
the agent can determine whether a skill has been successfully executed upon completion. Skills

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

can be modeled within the options framework (Sutton et al., 1999). The skills C and the objects O
induce an action space AO (or simply A when the context is clear).

Skills, tasks, and environments are the primary inputs to our system. The primary outputs—what
we actually learn—are higher-level abstractions over these basic states and actions.

Predicates: Abstracting the State. A predicate ψ is a Boolean feature of a state, which can be
parametrized by specific objects in that state. We treat this as function ψ : Om → (X → B) that
is an indicator, given m objects, of whether a predicate holds in a state. For example, the predicate
On(?block1, ?block2) inputs a pair of blocks, and outputs a state classifier for whether the
first block is atop the second block. A set of predicates Ψ induces an abstract state corresponding
to all the predicate/object combinations that hold in the current state:

ABSTRACTΨ(x) = {(ψ, o1, ..., om) : ψ(o1, ..., om) holds in state x, for ψ ∈ Ψ and oj ∈ O} (1)

We write S for the set of possible abstract states.

High-Level Actions: Refining the action space.1 Planning requires predicting how each skill
transforms the abstract state representation. To make these predictions, High-Level Actions (HLAs)
augment skills with a precondition specifying which abstract states allow successful use of that skill,
and a postcondition, specifying how the skill transforms the abstract state. Like predicates, an HLA
is parametrized by the specific objects it acts upon. Formally, an HLA ω is a function from Om to a
tuple ⟨π, PRE, EFF+, EFF−⟩ where π ∈ AO is a skill, PRE is the precondition, and the postcondition
consists of EFF+ (predicates added to the abstract state) and EFF− (predicates removed from the
abstract state).

As an example of an HLA, consider PlaceOnTable(?block, ?table, ?underBlock),
with PRE = Clear(?block), EFF+ = On(?block,?table), and EFF− =
On(?block,?underBlock), using skill π = place(?block,?table). This means plac-
ing a block on a table, which was previously on top of underBlock, causes the block to be on
the table, and no longer on top of underBlock. This HLA is formally a function with arguments
?block,?table,?underBlock.

HLA Notation. We write Ω for the set of HLAs (what the agent learns), and ΩO for their instantia-
tions on objects O (how the agent uses them in a particular task). We use the variable ω for HLAs,
so we would write ω ∈ Ω. We use ω for HLAs applied to particular objects, so we’d write ω ∈ ΩO.2

Abstract State Transitions. The predicates and HLAs together define an abstract world model,
whose transition function F : S × ΩO → S is

F
(
s, ⟨π, PRE, EFF+, EFF−⟩

)
=

{
s ∪ EFF+\EFF− if PRE ⊆ s

undefined otherwise
(2)

Having learned predicates and high-level actions, we then solve problems by hierarchical planning:

A low-level plan is a sequence of n skills applied to objects (π1, . . . , πn) ∈ An
O. It solves a task

with goal g and initial state x0 if sequencing those skills starting from x0 satisfies g.

A high-level plan is a sequence of n HLAs applied to objects, ω1, . . . , ωn.

A note on types. Because the environment provides object types, we augment predicates and HLAs
with typing information for each object-valued argument. Equivalently, predicates return false, and
skills terminate immediately with failure, when applied to arguments of the wrong type.

3 NEURO-SYMBOLIC PREDICATES

Neuro-Symbolic Predicates (NSPs) represent visually grounded yet logically rich abstractions that
enable efficient planning and problem solving. As Figure 2 illustrates, these predicates are neuro-
symbolic because they combine programming language constructs (conditionals, numerics, loops
and recursion) with API calls to neural vision-language models for evaluating visually-grounded

1In the planning literature, High-Level Actions are also sometimes called operators.
2In the planning literature, ω is called a lifted operator, while ω would be a grounded operator.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

natural language assertions. NSPs can be grounded in visual perception, and also in proprioceptive
and object-tracking features, such as object poses, common in robotics (Kumar et al., 2024; 2023b;
Curtis et al., 2022; 2024b). We consider two classes of NSPs: primitive and derived. Primitive NSPs
are evaluated directly on the raw state, such as Holding(obj) (which would use VLM queries)
or GripperOpen (which would use proprioception). Derived NSPs instead determine their truth
value based on the truth value of other NSPs, analogous to derived predicates in planning (Thiébaux
et al., 2005; McDermott et al., 1998).

Primitive NSPs. We provide a Python API for computing over the raw state, including the ability
to crop the image to particular objects and query a VLM in natural language. See Appendix B.

Derived NSPs. Instead of querying the raw state, a derived NSP computes its truth value based only
on the truth value of other NSPs. Derived NSPs handle logically rich relations, such as OnPlate
in fig. 2, which recursively computes if a block is on a plate, or on something that is on a plate.

Evaluating Primitive NSPs. No VLM is 100% accurate, even for simple queries like “is the robot
holding the jug?”, especially in partially observable environments. To increase the accuracy and
precision of NSPs, we take the following two measures.

First, because a single image may not uniquely identify the state (e.g. due to occlusion), we provide
extra context to VLM queries. Consider a robot whose gripper is next to a jug, but whose own
arm occludes the jug handle, making it uncertain whether the jug is held by the gripper or merely
next to it. Knowing the previous action (e.g. Pick(jug)) helps resolve this uncertainty. We
therefore further condition NSPs on the previous action, as well as the previous visual observation
(immediately before the previous action was executed) and previous truth values for the queried
ground atom.

Second, we visually label each object in the scene by overlaying a unique ID number on each
object in the RGB image (following Yang et al., 2023). That way, to evaluate for example
Holding(block2), we can query a VLM with “the robot is holding block2”, where block2
is labeled with “2.” This disambiguates the objects in a scene, allowing an NSP to reason precisely
about which block is held, rather than merely represent that some block is held.

How Derived NSPs interact with HLAs. HLAs form an abstract world model that predicts which
predicates are true after performing a skill (the postcondition). Derived predicates do not need to

1 def Holding(state: RawState, objects: Sequence[Object]) -> bool:
2 """Is the robot holding the block."""
3 block, = objects
4 # The block can't be held if the robot's hand is open.
5 robot = state.get_objects(_robot_type)[0]
6 if state.get(robot, "fingers") >= 0.5:
7 return False
8 block_name = block.id_name
9 attention_image = state.crop_to_objects([block, robot])

10 return evaluate_simple_assertion(
11 f"{block_name} is held by the robot", attention_image)
12
13 def OnPlate(atoms: Set[GroundAtom], objects: Sequence[Object]) -> bool:
14 """Whether a block is directly or transitively on a plate."""
15 x, y = objects
16 for atom in atoms:
17 if atom.predicate == DirectlyOnPlate and atom.objects == [x, y]:
18 return True
19 other_blocks = {a.objects[0] for a in atoms if a.predicate == DirectlyOn or\
20 a.predicate == DirectlyOnPlate}
21 for other_block in other_blocks:
22 holds1 = False
23 for atom in atoms:
24 if atom.predicate == DirectlyOn and atom.objects == [x, other_block]:
25 holds1 = True
26 break
27 if holds1 and OnPlate(atoms, [other_block, y]):
28 return True
29 return False

Figure 2: Example classifiers for Holding and OnPlate NSP.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

occur in the postcondition, because we can immediately calculate which derived predicates are true
based on the predicted truth values of primitive NSPs. Therefore, HLAs can have derived predicates
in the precondition, but never in the postcondition.

4 HIERARCHICAL PLANNING

We use the learned abstract world model to first make a high-level plan (sequence of HLAs), which
then yields a low-level action sequence by calling the corresponding skill policy for each HLA.
High-level planning leverages widely-used fast symbolic planners, which, for example, conduct A*
search with automatically-derived heuristics (e.g. LM-Cut, Helmert & Domshlak, 2009).

However, there may be a mismatch between a high-level plan, which depends on potentially flawed
abstractions, and its actual implementation in the real world. Learning is driven by these failures.
More precisely, hierarchical planning can break down in one of two ways:

Planning Failure #1: Infeasible. A high-level plan is infeasible if one of its constituent skills fails
to execute.

Planning Failure #2: Not satisficing. A high-level plan is not satisficing if its constituent skills
successfully execute, but do not achieve the goal.

When solving a task we generate a stream of high-level plans and execute each one until a satisficing
plan (achieving the goal) is generated, or until hitting a planning budget.

5 LEARNING AN ABSTRACT WORLD MODEL FROM INTERACTING WITH THE
ENVIRONMENT

Algorithm 1 Online Pred. Invention(E , T ,Ψ0,Ω0,D)
1: init: ρbest ← −∞, best solve rate
2: init: νbest ←∞, best number of failed plans
3: for i ∈ range(1, nmax ite) do
4: Di, ρi, νi ← Explore(Ψi−1,Ωi−1, E , T) ▷ section 5.1
5: if ρi > ρbest or (ρi = ρbest and νi < νbest) then
6: Ψbest,Ωbest, ρbest, νbest ← Ψi,Ωi, ρi, νi
7: if νi = 0 then
8: break
9: D ← D ∪Di

10: Ψ′ ← ∅
11: if ρi ≤ ρi−1 or (ρi = ρi−1 and νi > νi−1) then
12: Ψ′ ← Propose Predicates(D,Ψi−1) ▷ section 5.2
13: Ψi ← Select Predicates(D,Ψ′ ∪Ψi−1) ▷ section 5.3
14: Ωi ← Learn HighLevelActions(D,Ψi) ▷ section 5.4
15: return Ψbest,Ωbest

Algorithm 1 shows how we interleave
learning predicates (state abstraction),
learning HLAs (abstract transition func-
tion), and interacting with the environ-
ment. The learner takes in an en-
vironment E , a set of training tasks
T , an initial predicate set Ψ0 (which
is usually the goal predicates), an ini-
tial set of HLAs Ω0 (which are largely
empty, section 5.1), and an initial dataset
D (empty, except when doing transfer
learning from earlier environments). It
tracks its learning progress using ρbest,
the highest training solve rate, and νbest,
the lowest number of infeasible plans.

5.1 EXPLORATION

Our agent explores the environment by planning with its current predicates/HLAs, and executing the
plans. The agent is initialized with underspecified, mostly empty HLA(s) (that is, the preconditions
and effects are mostly empty sets, except with goal predicates if appropriate, so that the planner can
generate plans).3 It collects data by trying to solve the training tasks (generate and execute abstract
plans until the task is solved or nabstract plans are used, as described in section 4) and collects positive
transition segments (from successfully-executed skills), negative state-action tuples (from skills that
failed to execute) and satisficing plans, if any.

3Alternatively, it could perform exploration through random option selection, which should have similar or
improved performance at the first iteration.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

5.2 PROPOSING PREDICATES

We introduce three strategies for prompting VLMs to invent predicates – two that are conditioned
on collected data, and one that is not (see appendix A.3 for further details).

Strategy #1 (Discrimination) helps discover predicates that are good preconditions for the skills.
We prompt a VLM with example states where a skill succeeded and failed, and ask it to generate
code that predicts when the skill is applicable.

Strategy #2 (Transition Modeling) helps discover predicates helpful for postconditions. We
prompt a VLM with before (or after) snapshots of successful skill execution, and ask it to gener-
ate code that describes properties that changed before (or after, respectively).

Strategy #3 (Unconditional Generation) prompts VLMs to propose new predicates as logical ex-
tensions of existing ones (whether built-in or previously proposed), without conditioning on the raw
planning data. This approach helps create derived predicates.

5.3 SELECTING A PREDICATE SET

VLM-generated predicates typically have low precision—not all generations are useful or sensible—
and too many predicates will overfit the model to what little data it has collected. One solution
could be the propose-then-select paradigm (Silver et al., 2023). Silver et al. (2023) proposes an
effective predicate selection objective but requires around 50 expert plan demonstrations. We assume
no demonstration data, and in general, we might not find any satisficing plans early in learning.
Therefore we need a new way of learning from unsuccessful plans.

To address this, we devise a novel objective that scores a set of predicates Ψ based on classification
accuracy, plus a simplicity bias. The classification score is obtained by first learning HLAs using the
set of predicates Ψ (discussed more in section 5.4), and then computing the classification accuracy
of the HLAs (see Appendix A.2). Later in learning, after discovering enough (a hyperparameter
one can choose) satisficing plans , we switch to the objective from Silver et al. (2023), which takes
planning efficiency and simplicity into account.

We perform a greedy best-first search with either score function as the heuristic. It starts from the
set of goal predicates ΨG and adds a single new predicate from the proposed candidates at each step,
and finally returns the set of predicates with the highest score.

5.4 LEARNING HIGH-LEVEL ACTIONS

We further learn high-level actions Ω, which define an abstract transition model, in the learned
predicate space, from interactions with the environment. We follow the cluster and intersect operator
learning algorithm (Chitnis et al., 2022) and improve its precondition learner for more efficient
exploration and better generalization. Chitnis et al. (2022) assumes given demonstration trajectories
and learns restricted preconditions so that the plans are most similar to the demonstrations. Our agent
explores the environment from scratch and does not have demonstration data to follow restrictively.
On the other hand, our agent needs more optimistic world models to explore unseen situations to
solve the task. Our precondition learner ensures that each data in the transition dataset is modeled by
one and only one high-level action and minimizes the syntactic complexity of the HLA to encourage
optimistic world models. See appendix A.1 details.

6 EXPERIMENTS

We design our experiments to answer the following questions: (Q1) How well does our NSP rep-
resentation and predicate invention approach compare to other state-of-the-art methods, including
popular HRL or VLM planning approaches? (Q2) How do the abstractions learned by our method
perform relative to manually designed abstractions and the abstractions before any learning? (Q3)
How effective is our NSP representation compared to traditional symbolic predicates, where classi-
fiers are based on manually selected object features? (Q4) What is the contribution of our extended
operator learning algorithm to overall performance?

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Experimental Setup. We evaluated seven different approaches across five robotic environments
simulated using the PyBullet physics engine (Coumans & Bai, 2016). Each result is averaged over
three random seeds, and for each seed, we sample 50 test tasks that feature more objects and more
complex goals than those encountered during training. The agent is provided with 5 training tasks in
the Cover and Coffee environments, 10 tasks in Cover Heavy and Balance, and 20 tasks in Blocks.
The planning budget nabstract is set to 8 for all domains except Coffee, where it is set to 100.

Environments. We briefly discuss the environments used, with more details in appendix C.

1. Cover. The robot is tasked with picking and placing specific blocks to cover designated regions
on the table, using Pick and Place options. Training tasks involve 2 blocks and 2 targets, while
test tasks increase the difficulty with 3 blocks and 3 targets.

2. Blocks. The robot must construct towers of blocks according to a specified configuration, using
Pick, Stack, and PlaceOnTable options. The agent is trained on tasks involving 3 or 4 blocks and
tested on more challenging tasks with 5 or 6 blocks.

3. Coffee. The robot is tasked with filling cups with coffee. This involves picking up and placing
a jug into a coffee machine, making coffee, and pouring it into the cups. The jug may start at
a random rotation, requiring the robot to rotate it before it can be picked up. The environment
provides 5 options: Twist, Pick, Place, TurnMachineOn, and Pour. Training tasks involve filling
1 cup, while test tasks require filling 2 or 3 cups.

4. Cover Heavy. This is a variant of Cover with “impossible tasks” which asks the robot to pick
and placing white marble blocks that are too heavy for it to pick up. The environment retains
the same controllers and number of objects as the standard Cover environment. An impossible
task is considered correctly solved if the agent determines that the goal is unreachable with its
existing skills (i.e., no feasible plan can be generated).

5. Balance. In this environment, the agent is tasked with turning on a machine by pressing a button
in front of it, but without prior knowledge of the mechanism required to activate it (in this case,
balancing an equal number of blocks on both sides). The agent has access to a PressButton
option, along with the options from the Blocks domain. Training tasks involve 2 or 4 blocks,
while test tasks increase the difficulty with 4 or 6 blocks.

Approaches. We compare our approach against 5 baselines and manually designed state abstraction.

1. Ours. Our main approach.

2. MAPLE. a HRL baseline that learns to select high-level action by learning a Q function, but
does not explicit learn predicates and perform planning. This is inspired by the recent work on
MAPLE (Nasiriany et al., 2022b). While we have extended the original work with the capacity of
goal-conditioning, the implementation is still not able to deal with goals involving more objects

Tr
ai

n
Ta

sk
s

Cover Blocks Coffee Cover Heavy Balance

E
va

l.
Ta

sk
s

Figure 3: Environments. Top row: train task examples. Bottom row: evaluation task examples.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: Top row: percentage solved for different Domains (↑). Bottom: percentage of planning
budget used to find the satisficing plans (↓). The dashed line shows the minimal number of plans
needed to solve all the tasks (1 plan per task).

than it has seen during training. Hence, we are only evaluating this approach with tasks from the
training distribution.

3. ViLa (Hu et al., 2023). A VLM planning baseline which zero-shot prompts a VLM to plan a
sequence of actions, without learning.

4. Sym. pred. A baseline that uses the same online learning algorithm but only has access to object
features that are commonly present in robotics tasks when writing predicates, i.e., without open-
ended VLM queries and derived predicates. This shares a similar representation as recent work
Interpret (Han et al., 2024) but is still distinct since they mostly learn from human instruction.

5. Ablate op. An ablation that does not use our extension to the operator learner.
6. No invent. A baseline that uses the abstractions our approach is initialized with and does not

perform any learning.
7. Manual. An “oracle” planning agent with manually designed predicates and operators.

Results and Discussion. Figure 4 presents the evaluation task solve rate and the planning budget
utilized. Examples of learned abstractions and further planning statistics (such as node expanded
and walltime) are provided in appendix D.2.

Our approach consistently outperforms the HRL and VLM planning baselines, MAPLE and ViLa,
across all tested domains, achieving near-perfect solve rates (Q1). With similar amounts of inter-
action data, MAPLE struggles to perform well, even on tasks within the training distribution. This
limitation could potentially be mitigated with significantly larger datasets, though this is often im-
practical in robotics due to the high cost of real-world interaction data and the sim-to-real gap in
transferring simulation-trained policies. ViLa demonstrates limited planning capabilities, which is
consistent with recent observations (Kambhampati et al., 2024). While it performs adequately on
simple tasks like Cover, where the robot picks and places blocks, its performance drops significantly
when blocks are initialized in the robot’s grasp, as it tends to redundantly attempt picking actions.
This behavior suggests overfitting. In more complex domains, ViLa often generates infeasible plans,
such as attempting to pick blocks from a stack’s middle or trying to grasp a jug without consider-
ing its orientation. We think introducing demonstrations or incorporating environment interactions
could potentially alleviate these issues.

Our approach significantly outperforms No invent, demonstrating the clear benefits of learning pred-
icate abstractions over relying on initial underspecified representations. It achieves similar solve
rates and efficiency to the Manual baseline, which uses manually designed abstractions (Q2). This
underscores the ability of our method to autonomously discover abstractions as effective as those
crafted by human experts.

Addressing (Q3), while Sym. pred. performs well in simple domains like Cover, it struggles to
invent predicates that require grounding in perceptual cues not explicitly encoded in object features.
For instance, in Coffee, it cannot reliably determine if a jug is inside a coffee machine based on

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

object poses—a key precondition for the TurnMachineOn action. Similarly, in Cover Heavy, it
fails to recognize blocks that are too heavy to lift, which is critical for identifying unreachable goals.
Additionally, without derived NSPs, reasoning accurately and efficiently about abstract concepts in
the abstract world model (such as whether the number of blocks on both sides of a balance is equal)
becomes challenging, which is critical for solving Balance More generally, we hypothesize that
providing all feature-value pairs for every object in each state during prompting overwhelms existing
VLMs, leading to poor predicate invention. This likely accounts for the subpar performance, even
in simple domains like Blocks. These limitations emphasize the strengths of our NSP representation
and learning pipeline.

Finally, to answer (Q4), we find that our approach performs better than Ablate op., which sometimes
learns unnecessarily complex preconditions that overfit early, limited data, hindering further learning
on training tasks. In other cases, overly specific preconditions result in good training performance
but poor generalization, such as requiring JugInMachine for the Pour action. This demonstrates
the value of our operator learner, especially in data-scarce, exploration-based learning settings.

7 RELATED WORKS

Hierarchical Reinforcement Learning (HRL) HRL tackles the challenge of solving MDPs with
high-dimensional state and action spaces, common in robotics, by leveraging temporally extended,
high-level actions (Barto & Mahadevan, 2003). The Parameterized Action MDPs (PAMDPs) frame-
work (Masson et al., 2016) builds on this by integrating discrete actions with continuous parameters,
optimizing both the action and its parameterization using the Q-PAMDP algorithm. MAPLE (Nasiri-
any et al., 2022a) further builds on this by using a library of behavior primitives, such as grasping
and pushing, combined with a high-level policy that selects and parameterize these actions. We
implement a version of this with the extension of goal-conditioned high-level policy as a baseline.
Generative Skill Chaining (GSC) (Mishra et al., 2023) further improves long-horizon planning by
using skill-centric diffusion models that chain together skills while enforcing geometric constrains.
Despite these advancements, they still face challenges in sample complexity, generalization, and
interpretability.

Large Pre-Trained Models for Robotics With the rise of large (vision) language models (VLMs),
many works explore their application in robotic decision making. RT-2 (Brohan et al., 2023) treats
robotic actions as utterances in an “action language” learned from web-scale datasets. SayCan and
Inner Monologue (Ahn et al., 2022; Huang et al., 2022) use LLMs to select skills from a pretrained
library based on task prompts and prior actions. Code as Policy (Liang et al., 2023) prompts LLMs to
write policy code that handles perception and control. Recent works extend this to bilevel planning
(Curtis et al., 2024a), but do not learn new predicates. ViLa (Hu et al., 2023) queries VLMs for
action plans, executing the first step before replanning. We implement an open-loop version of ViLa
to compare with its initial planning capabilities.

Learning Abstraction for Planning Our work builds on a rich body of research focused on learning
abstractions for planning. Many prior works have explored offline methods such as learning action
operators and transition models from demonstrations using existing predicates (Silver et al., 2021;
Chitnis et al., 2022; Pasula et al., 2007; Silver et al., 2022; Kumar et al., 2023a). While Silver et al.
(2023) explores learning predicates grounded in object-centric features, our approach goes further
by inventing open-ended, visually and logically rich concepts, without relying on hand-selected fea-
tures. Additionally, unlike their demonstration-based approach, ours learns purely online. Konidaris
et al. (2018) and its consequent works (James et al., 2022; 2020) discover abstraction in an online
fashion by leveraging the initiable and terminations set of operators that satisfy an abstract subgoal
property. James et al. (2020) incorporates an egocentric observation space to learn more portable
representations, and James et al. (2022) defines equivalence of options effects on objects to derive
object types for better transferability. Nevertheless, they work on a constrained class of classifiers
(such as decision trees or linear regression with feature selection), which limits the effectiveness and
generalizability of learned predicates. Kumar et al. (2024) performs efficient online learning, but
focuses on sampler learning rather than predicate invention.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

8 CONCLUSION

In this work, we introduced Neuro-Symbolic Predicates (NSPs), a novel representation that combines
the flexibility of neural networks to represent open-ended, visually grounded concepts, and the in-
terpretability and compositionality of symbolic representations, for planning. To support this, we
developed an online algorithm for inventing NSPs and learning abstract world models, which allows
efficient acquisition of NSPs. Our experiments across five simulated robotic domains demonstrated
that our method outperforms existing approaches, including hierarchical reinforcement learning,
VLM planning, and traditional symbolic predicates, particularly in terms of sample efficiency, gen-
eralization, and interpretability. Future work will focus on incorporating recovery mechanisms for
failed plans, relaxing assumptions about options, enhancing exploration efficiency, and scaling to
partially observable and real-world domains.

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning.
Discrete event dynamic systems, 13:341–379, 2003.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choroman-
ski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

Rohan Chitnis, Tom Silver, Joshua B Tenenbaum, Tomas Lozano-Perez, and Leslie Pack Kaelbling.
Learning neuro-symbolic relational transition models for bilevel planning. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 4166–4173. IEEE, 2022.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning, 2016.

Aidan Curtis, Xiaolin Fang, Leslie Pack Kaelbling, Tomás Lozano-Pérez, and Caelan Reed Garrett.
Long-horizon manipulation of unknown objects via task and motion planning with estimated
affordances. In 2022 International Conference on Robotics and Automation (ICRA), pp. 1940–
1946. IEEE, 2022.

Aidan Curtis, Nishanth Kumar, Jing Cao, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. Trust
the proc3s: Solving long-horizon robotics problems with llms and constraint satisfaction, 2024a.

Aidan Curtis, George Matheos, Nishad Gothoskar, Vikash Mansinghka, Joshua Tenenbaum, Tomás
Lozano-Pérez, and Leslie Pack Kaelbling. Partially observable task and motion planning with
uncertainty and risk awareness. arXiv preprint arXiv:2403.10454, 2024b.

Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Silver, Leslie Pack
Kaelbling, and Tomás Lozano-Pérez. Integrated task and motion planning. Annual review of
control, robotics, and autonomous systems, 4(1):265–293, 2021.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. ArXiv, abs/2211.11559, 2022.

Muzhi Han, Yifeng Zhu, Song-Chun Zhu, Ying Nian Wu, and Yuke Zhu. Interpret: Interac-
tive predicate learning from language feedback for generalizable task planning. arXiv preprint
arXiv:2405.19758, 2024.

Malte Helmert and Carmel Domshlak. Landmarks, critical paths and abstractions: what’s the dif-
ference anyway? In Proceedings of the International Conference on Automated Planning and
Scheduling, volume 19, pp. 162–169, 2009.

Yingdong Hu, Fanqi Lin, Tong Zhang, Li Yi, and Yang Gao. Look before you leap: Unveiling the
power of gpt-4v in robotic vision-language planning. arXiv preprint arXiv:2311.17842, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. arXiv preprint arXiv:2207.05608, 2022.

Steven James, Benjamin Rosman, and George Konidaris. Learning portable representations for
high-level planning. In International Conference on Machine Learning, pp. 4682–4691. PMLR,
2020.

Steven James, Benjamin Rosman, and GD Konidaris. Autonomous learning of object-centric ab-
stractions for high-level planning. In Proceedings of the The Tenth International Conference on
Learning Representations, 2022.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
Bhambri, Lucas Saldyt, and Anil Murthy. Llms can’t plan, but can help planning in llm-modulo
frameworks, 2024.

George Konidaris. On the necessity of abstraction. Current opinion in behavioral sciences, 29:1–7,
2019.

George Konidaris, Leslie Pack Kaelbling, and Tomas Lozano-Perez. From skills to symbols: Learn-
ing symbolic representations for abstract high-level planning. Journal of Artificial Intelligence
Research, 61:215–289, 2018.

Nishanth Kumar, Willie McClinton, Rohan Chitnis, Tom Silver, Tomás Lozano-Pérez, and
Leslie Pack Kaelbling. Learning efficient abstract planning models that choose what to predict.
In Conference on Robot Learning, pp. 2070–2095. PMLR, 2023a.

Nishanth Kumar, Willie McClinton, Kathryn Le, , and Tom Silver. Bilevel planning for robots: An
illustrated introduction. 2023b. https://lis.csail.mit.edu/bilevel-planning-for-robots-an-illustrated-
introduction.

Nishanth Kumar, Tom Silver, Willie McClinton, Linfeng Zhao, Stephen Proulx, Tomás Lozano-
Pérez, Leslie Pack Kaelbling, and Jennifer Barry. Practice makes perfect: Planning to learn skill
parameter policies, 2024.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 9493–9500. IEEE, 2023.

Warwick Masson, Pravesh Ranchod, and George Konidaris. Reinforcement learning with param-
eterized actions. In Proceedings of the AAAI conference on artificial intelligence, volume 30,
2016.

Drew McDermott, Malik Ghallab, Adele E. Howe, Craig A. Knoblock, Ashwin Ram, Manuela M.
Veloso, Daniel S. Weld, and David E. Wilkins. Pddl-the planning domain definition language.
1998. URL https://api.semanticscholar.org/CorpusID:59656859.

Utkarsh Aashu Mishra, Shangjie Xue, Yongxin Chen, and Danfei Xu. Generative skill chaining:
Long-horizon skill planning with diffusion models. In Conference on Robot Learning, pp. 2905–
2925. PMLR, 2023.

Soroush Nasiriany, Huihan Liu, and Yuke Zhu. Augmenting reinforcement learning with behavior
primitives for diverse manipulation tasks. In 2022 International Conference on Robotics and
Automation (ICRA), pp. 7477–7484. IEEE, 2022a.

Soroush Nasiriany, Huihan Liu, and Yuke Zhu. Augmenting reinforcement learning with behavior
primitives for diverse manipulation tasks. In 2022 International Conference on Robotics and
Automation (ICRA), pp. 7477–7484. IEEE, 2022b.

Hanna M Pasula, Luke S Zettlemoyer, and Leslie Pack Kaelbling. Learning symbolic models of
stochastic domains. Journal of Artificial Intelligence Research, 29:309–352, 2007.

11

https://api.semanticscholar.org/CorpusID:59656859

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tom Silver, Rohan Chitnis, Joshua Tenenbaum, Leslie Pack Kaelbling, and Tomás Lozano-Pérez.
Learning symbolic operators for task and motion planning. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 3182–3189. IEEE, 2021.

Tom Silver, Ashay Athalye, Joshua B Tenenbaum, Tomas Lozano-Perez, and Leslie Pack Kaelbling.
Learning neuro-symbolic skills for bilevel planning. arXiv preprint arXiv:2206.10680, 2022.

Tom Silver, Rohan Chitnis, Nishanth Kumar, Willie McClinton, Tomás Lozano-Pérez, Leslie Kael-
bling, and Joshua B Tenenbaum. Predicate invention for bilevel planning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pp. 12120–12129, 2023.

Dı́dac Surı́s, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution for
reasoning. Proceedings of IEEE International Conference on Computer Vision (ICCV), 2023.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

Hao Tang, Darren Key, and Kevin Ellis. Worldcoder, a model-based llm agent: Building world
models by writing code and interacting with the environment. arXiv preprint arXiv:2402.12275,
2024.

Sylvie Thiébaux, Jörg Hoffmann, and Bernhard Nebel. In defense of pddl axioms. Artificial Intelli-
gence, 168(1-2):38–69, 2005.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441,
2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A ADDITIONAL DETAILS ABOUT THE ONLINE INVENTION ALGORITHM

A.1 LEARNING HLAS BY EXTENDING THE CLUSTER-AND-INTERSECT ALGORITHM

We aim to learn high-level actions Ω, which define an abstract transition model in the
learned predicate space, from interactions with the environment. These interactions con-
sist of executing high-level plans, which are sequences of (grounded) HLAs ω1, . . . , ωn
(i.e. HLAs applied to concrete objects). Our learned abstract transition model should
both fit the transition dataset while being optimistic for efficient exploration (Tang et al.,
2024). Recalling the definitions from sec. 2, given the current transition dataset, D =

{. . . , (x(k), π(k), x
(k)
π), . . . , (x(k

′), π(k′), FAIL), . . .}, we first transform it into the learned ab-
stract state space, DΨ = {. . . , (s(k), π(k), s

(k)
π)), . . . , (s(k

′), π(k′), FAIL), . . .}, where s =
ABSTRACTΨ(x). We aim to learn high-level actions, Ω, such that for all high-level actions ω ∈ ΩO
on objects O,

∀(s(k), π(k), s(k)π) ∈ DΨ,∃ω ∈ Ωπ(k)

O , ω.PRE ⊆ s(k) ∧ s(k)π − s(k) = ω.EFF+ ∧ s(k) − s(k)π = ω.EFF−,

∀(s(k), π(k), s(k)π) ∈ DΨ,∀ω ∈ Ωπ(k)

O , ω.PRE ⊆ s(k) ⇒
(
s(k)π − s(k)ω.EFF+ ∧ s(k) − s(k)π ω.EFF−

)
,

∀(s(k), π(k), FAIL) ∈ DΨ, ̸ ∃ω ∈ Ωπ(k)

O , ω.PRE ⊆ s(k),where Ωπ(k)

O = {ω : ω ∈ ΩO ∧ ω.π = π(k)},

while minimizing the syntactic complexity of the HLA, |ω.PRE|+ |ω.EFF+|+ |ω.EFF−|.
To find the high-level actions satisfying this objective, we first split the dataset according to the skills,
as each high-level action is only associated with one skill, Dπi

Ψ = {d : d ∈ DΨ ∧ d.π = πi}. We
then split each skill into one or multiple high-level actions by unifying the effects in Dπi

Ψ following
the cluster and intersect operator learner (Chitnis et al., 2022). This compensates for the fact that a
skill can have different effects in different situations, by first partitioning the transition datasets into
high-level actions,

Dω
Ψ = {d : d ∈ DΨ ∧ d.π = ω.π ∧ d.s(k)π − d.s(k) = ω.EFF+ ∧ d.s(k) − d.s(k)π = ω.EFF−

where ω = ω(o1, o2, . . .), for all oi ∈ O}.

Each partition associates a high-level action with the skill ω.π = d.π,∀d ∈ Dω
Ψ, while the postcon-

ditions of the high-level action (ω.EFF+ and ω.EFF−) are also learned, by unifying and lifting the
effects of data in Dω

Ψ. See Chitnis et al. (2022) for more details. For the preconditions, ω.PRE, we
learn them by maximizing

J(ω.PRE) =

1

|Dω.π
Ψ |

 ∑
d∈Dω

Ψ

1

(
ω.PRE ⊆ d.s(k)

)
+

∑
d∈(Dω.π

Ψ −Dω
Ψ)

1

(
ω.PRE ̸⊆ d.s(k)

)+ α · |ω.PRE|.

(3)

This ensures that all data in the partition is modeled by the associated high-level action, ω. It
specifies that the skill ω.π is applicable to states s(k) as ω.PRE ⊆ s(k). This high-level action also
models all other data in the transition dataset, specifying that its precondition is not satisfied if a skill
is not applicable on a state, (s(k), ω.π, FAIL) ∈ Dω.π

Ψ , or if a skill has different effects when applied
on the state, (s(k), ω.π, s(k)π) ∈ Dω.π

Ψ ∧ (s(k), ω.π, s
(k)
π) ̸∈ Dω

Ψ. We set the parameter α to a small
number, which softly penalizes syntactically complex preconditions.

Compared with the cluster and intersect operator learner (Chitnis et al., 2022), which simply inter-
secting over feasible states to build preconditions for each high-level action, our method optimisti-
cally enlarges the set of feasible states for each high-level actions using the minimum complexity
objective, while still retaining the abilities to distinguish infeasible states. The optimistic objective
is critical for predicate invention by interactions where optimal demonstration trajectories are not
available. Using the intersection method, the agent will only consider the feasible states in the cur-
rently curated dataset as feasible and never try the skill in other states that are potentially feasible as

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

well. Planners usually fail to find plans with such restrictive world models, resulting in inefficient
random exploration and poor test-time performance.

The restricted preconditions are less generalizable as well. For example, for agents learning making
coffee in environments with one cup, the agent will find successful trajectories such as PutKettleIn-
CoffeeMachine, MakeCoffee, and PourCoffeeInCup. Using the intersection method, the agent sets
the preconditions of PourCoffeeInCup as KettleInMachine and KettleHasCoffee as both of them are
always true among feasible states of the PourCoffeeInCup action, even though only KettleHasCoffee
is needed. The more restricted preconditions are problematic when generalizing to environments
with more than one cups. The agent keeps putting the kettle back to the machine before pouring
the coffee for another cup, as the learned PourCoffeeInCup action has KettleInMachine as part of
its precondition. The agent eventually fails to solve the problem as the number of cups increases
due to the almost doubled length of feasible plans in the more restricted abstract world model. Our
method finds the correct precondition as KettleHasCoffee with the optimistic objective. We prefer
KettleHasCoffee over KettleInMachine as it fails to distinguish infeasible states for the Pour skill
with different effects, PourNothingInCup.

A.2 CLASSIFICATION-ACCURACY-BASED PREDICATE SETS SCORE FUNCTION

When no satisficing plan is found in early iterations of predicate invention (e.g., in Coffee), the
objective from Silver et al. (2023) is inapplicable. This issue is particularly prominent when the
space of possible plans is large (i.e., when there are many potential actions at each step and achieving
goals requires long-horizon plans). To address this, we introduce a predicate score function that does
not rely on satisficing plans. We propose an alternative objective based on classification accuracy,
in the same flavour as the score function defined earlier for operator preconditions.

Formally, given DΨ = {. . . , (s(k), π(k), s
(k)
π)), . . . , (s(k

′), π(k′), FAIL), . . .}, where s =
ABSTRACTΨ(x) as above, we denote the collection of all success transitions and failed tuples as
D+

Ψ = {(s(k), π(k), s
(k)
π))} and D−

Ψ = {(s(k), π(k), FAIL) respectively. The the predicate set score
function is

J(Ψ) =
1

|DΨ|

(∑
(s(k),π(k),s

(k)
π)∈D+

Ψ

1

(
∃ω.π = π(k).ω.PRE ⊆ s

)

+
∑

(s(k),π(k),FAIL)∈D−
Ψ

1

(
̸ ∃ω.π(k) = π.ω.PRE ⊆ s

))
+ α · |Ψ|. (4)

Intuitively, this objective selects for the minimal set of predicates Ψ such that the HLAs learned from
these predicates, ΩΨ, avoid attempting to execute a skill in states where it has previously failed while
ensuring that the HLAs enable the skill to be executed in states where it has previously succeeded.

A.3 PROMPTING FOR PREDICATES

Strategy #1 (Discrimination) is motivated by one of the primary functions of predicates–have them
in the preconditions of operators to distinguishing between the positive and negative states so the
plans the agent find are feasible. However, we observed that existing VLMs often struggle to reli-
ably understand and identify the differences between positive and negative states, especially when
dealing with scene images that deviate significantly from those seen during training. This limitation
motivates our second strategy.

Strategy #2 (Transition Modeling). With the observation that predicates present in an action’s
preconditions often also appear in some actions’ effects. We prompt the VLM to propose predicates
that describe these effects based on the positive transition segments it collects. This task is usually
easier for VLMs because it involves identifying the properties or relationships that have changed
from the start state to the end state, given the information that an action with a natural language
name (such as pick) has been successfully executed. However, this strategy alone is not exhaustive.
Certain predicates may exist solely within preconditions but not effects (e.g., an object’s material
that remains unchanged). Therefore, this method complements S1 and is used alternately with it
during the invention iterations.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Strategy #3 (Unconditional Generation) prompts VLMs to propose derivations based on ex-
isting predicates. These derivations can incorporate a variety of logical operations, such as
negation, universal quantification (e.g., defining Clear(x) based on On(x,y)), transitive
closure, and disjunction (e.g., defining OnPlate(x,p) based on DirectlyOn(x,y) and
DirectlyOnPlate(x,p)). This approach helps create derived predicates, such as OnPlate
for Balanced (fig. 1). , which is unlikely to be proposed by the first two strategies but are essential
for correctly implementing complex predicates like Balanced. As a result, this S3 is used at every
invention iteration before either S1 or S2 is executed.

For each predicate proposal strategy, we propose a three-step method to guide the VLMs: 1) Ask the
VLM to propose predicates by providing a predicate name, a list of predicate types drawn from Λ,
and a natural language description of the assertion the predicate corresponds to. 2) Synthesize the
predicates classifiers using the syntax and API we provide for NSPs 3) Identify any potential derived
predicates and prompt a language model to transform them into the specified function signature for
derived NSPs. Given the challenges in S1, we add an additional step 0 just for this strategy. We
query the VLM to propose properties or relations among objects in natural language, which are then
formalized into predicates in Step 1.

B PYTHON API FOR NSPS

We provide the following Python API on for writing primitive NSPs: get_object(t: Type)
returns all objects in the state of a type t. get(o: Object, f: str) retrieves the feature with
name f for object o. We also have crop_to_objects(os: Sequence[Object], ...)
for cropping the state observation image to include just the specified list of ob-
jects to reduce the complexity for downstream visual reasoning. Finally, there is
evaluate_simple_assertion(a: str, i: Image) for evaluating the natural language
assertion a in the context of image i using a VLM.

C ADDITIONAL ENVIRONMENT DETAILS

Cover. This environment has goal predicate {Covers(?x:block, ?y:target)}. The ini-
tial operators are:
NSRT-Pick:

Parameters: [?block:block]
Preconditions: []
Add Effects: []
Delete Effects: []
Ignore Effects: []
Option Spec: Pick(?block:block)

NSRT-Place:
Parameters: [?block:block, ?target:target]
Preconditions: []
Add Effects: [Covers(?block:block, ?target:target)]
Delete Effects: []
Ignore Effects: []
Option Spec: Place(?block:block, ?target:target)

Blocks. This environment has goal predicates: {On(?x:block, ?y:block),
OnTable(?x:block)} and initial operators
NSRT-PickFromTable:

Parameters: [?block:block, ?robot:robot]
Preconditions: []
Add Effects: []
Delete Effects: [OnTable(?block:block)]
Ignore Effects: []
Option Spec: Pick(?robot:robot, ?block:block)

NSRT-PutOnTable:
Parameters: [?block:block, ?robot:robot]
Preconditions: []
Add Effects: [OnTable(?block:block)]
Delete Effects: []
Ignore Effects: []
Option Spec: PutOnTable(?robot:robot)

NSRT-Stack:
Parameters: [?block:block, ?otherblock:block,
?robot:robot]
Preconditions: []
Add Effects: [On(?block:block,
?otherblock:block)]
Delete Effects: []
Ignore Effects: []
Option Spec: Stack(?robot:robot,
?otherblock:block)

NSRT-Unstack:
Parameters: [?block:block, ?otherblock:block,
?robot:robot]
Preconditions: []
Add Effects: []
Delete Effects: [On(?block:block,
?otherblock:block)]
Ignore Effects: []
Option Spec: Pick(?robot:robot, ?block:block)

Coffee. This environment has goal predicates: {CupFilled(?cup:cup)}. We include the
predicate JugFilled(?jug:jug) in the initial set of predicates because it was very challenging
to have a VLM to determine this especially with the graphics in the simulator. It has initial operators:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

NSRT-PickJugFromTable:
Parameters: [?robot:robot, ?jug:jug]
Preconditions: []
Add Effects: []
Delete Effects: []
Ignore Effects: []
Option Spec: PickJug(?robot:robot, ?jug:jug)

NSRT-PlaceJugInMachine:
Parameters: [?robot:robot, ?jug:jug,
?machine:coffee_machine]
Preconditions: []
Add Effects: []
Delete Effects: []
Ignore Effects: []
Option Spec: PlaceJugInMachine(?robot:robot,

?jug:jug, ?machine:coffee_machine)

NSRT-PourFromNowhere:
Parameters: [?robot:robot, ?jug:jug,
?cup:cup]
Preconditions: []
Add Effects: [CupFilled(?cup:cup)]
Delete Effects: []
Ignore Effects: []
Option Spec: Pour(?robot:robot, ?jug:jug,
?cup:cup),

NSRT-TurnMachineOn:
Parameters: [?robot:robot, ?jug:jug,
?machine:coffee_machine]
Preconditions: []
Add Effects: [JugFilled(?jug:jug)]
Delete Effects: []
Ignore Effects: []
Option Spec: TurnMachineOn(?robot:robot,

?machine:coffee_machine),

NSRT-Twist:
Parameters: [?robot:robot, ?jug:jug]
Preconditions: []
Add Effects: []
Delete Effects: []
Ignore Effects: []
Option Spec: Twist(?robot:robot, ?jug:jug)

Cover Heavy. This has the same set of goal predicates and operators as Cover.

Balance. This has the goal predicate: {MachineOn(?x:machine)}. Here we con-
sider a continual learning setting where the agent is initialized with the abstractions com-
monly found in Blocks. They are {Clear(?x:block), ClearPlate(?x:plate),
DirectlyOn(?x:block, ?y:block), DirectlyOnPlate(?x:block,
?y:plate), GripperOpen(?x:robot), Holding(?x:block)}. The initial set
of operators is:
NSRT-PickFromTable:

Parameters: [?block:block, ?robot:robot,
?plate:plate]
Preconditions: [Clear(?block:block),
DirectlyOnPlate(?block:block, ?plate:plate),
GripperOpen(?robot:robot)]
Add Effects: [Holding(?block:block)]
Delete Effects: [Clear(?block:block),
DirectlyOnPlate(?block:block, ?plate:plate),
GripperOpen(?robot:robot)]
Ignore Effects: []
Option Spec: Pick(?robot:robot, ?block:block)

NSRT-PutOnPlate:
Parameters: [?block:block, ?robot:robot,
?plate:plate]
Preconditions: [ClearPlate(?plate:plate),
Holding(?block:block)]
Add Effects: [Clear(?block:block),
DirectlyOnPlate(?block:block, ?plate:plate),
GripperOpen(?robot:robot)]
Delete Effects: [ClearPlate(?plate:plate),
Holding(?block:block)]
Ignore Effects: []
Option Spec: PutOnPlate(?robot:robot, ?plate:plate),

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

NSRT-Stack:
Parameters: [?block:block, ?otherblock:block,
?robot:robot]
Preconditions: [Clear(?otherblock:block),
Holding(?block:block)]
Add Effects: [Clear(?block:block),
DirectlyOn(?block:block, ?otherblock:block),
GripperOpen(?robot:robot)]
Delete Effects: [Clear(?otherblock:block),
Holding(?block:block)]
Ignore Effects: []
Option Spec: Stack(?robot:robot,
?otherblock:block)

NSRT-Unstack:
Parameters: [?block:block, ?otherblock:block,
?robot:robot]
Preconditions: [Clear(?block:block),
DirectlyOn(?block:block, ?otherblock:block),
GripperOpen(?robot:robot)]
Add Effects: [Clear(?otherblock:block),
Holding(?block:block)]
Delete Effects: [Clear(?block:block),
DirectlyOn(?block:block, ?otherblock:block),
GripperOpen(?robot:robot)]
Ignore Effects: []
Option Spec: Pick(?robot:robot,
?block:block)

NSRT-TurnMachineOn:
Parameters: [?robot:robot, ?machine:machine,
?plate1:plate, ?plate2:plate]
Preconditions: []
Add Effects: [MachineOn(?machine:machine)]
Delete Effects: []
Ignore Effects: []
Option Spec: TurnMachineOn(?robot:robot,
?plate1:plate, ?plate2:plate)

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 LEARNED ABSTRACTIONS

We show the example learned predicates and operators here.

D.1.1 COVER

1 ```python
2 def _GripperOpen_NSP_holds(state: RawState, objects: Sequence[Object]) -> bool:
3 robot, = objects
4 return state.get(robot, "fingers") > 0.5
5
6 name: str = "GripperOpen"
7 param_types: Sequence[Type] = [_robot_type]
8 GripperOpen = NSPredicate(name, param_types, _GripperOpen_NSP_holds)
9 ```

10
11 ```python
12 def _Holding_NSP_holds(state: RawState, objects: Sequence[Object]) -> bool:
13 robot, block = objects
14 # If the gripper is open, the robot cannot be holding anything
15 if state.get(robot, "fingers") > 0.5:
16 return False
17
18 # Crop the image to focus on the robot and block
19 attention_image = state.crop_to_objects([robot, block])
20 robot_name = robot.id_name
21 block_name = block.id_name
22 return state.evaluate_simple_assertion(
23 f"{robot_name} is holding {block_name}", attention_image
24)
25
26 name: str = "Holding"
27 param_types: Sequence[Type] = [_robot_type, _block_type]
28 Holding = NSPredicate(name, param_types, _Holding_NSP_holds)
29 ```

NSRT-Op0:
Parameters: [?x0:block, ?x1:robot]
Preconditions: [GripperOpen(?x1:robot)]
Add Effects: [Holding(?x1:robot, ?x0:block)]
Delete Effects: [GripperOpen(?x1:robot)]
Ignore Effects: []
Option Spec: Pick(?x0:block)

NSRT-Op1:
Parameters: [?x0:block, ?x1:robot, ?x2:target]
Preconditions: [Holding(?x1:robot, ?x0:block)]
Add Effects: [Covers(?x0:block, ?x2:target), GripperOpen(?x1:robot)]

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Delete Effects: [Holding(?x1:robot, ?x0:block)]
Ignore Effects: []
Option Spec: Place(?x0:block, ?x2:target)

D.1.2 BLOCKS

1 Gripping
2 ```python
3 def _Gripping_NSP_holds(state: RawState, objects: Sequence[Object]) -> bool:
4 """Determine if the robot in objects is gripping the block in objects
5 in the scene image."""
6 robot, block = objects
7 robot_name = robot.id_name
8 block_name = block.id_name
9

10 # If the robot's fingers are open, it can't be gripping anything.
11 if state.get(robot, "fingers") > 0:
12 return False
13
14 # Crop the scene image to the smallest bounding box that include both objects.
15 attention_image = state.crop_to_objects([robot, block])
16 return state.evaluate_simple_assertion(
17 f"{robot_name} is gripping {block_name}.", attention_image)
18
19 name: str = "Gripping"
20 param_types: Sequence[Type] = [_robot_type, _block_type]
21 Gripping = NSPredicate(name, param_types, _Gripping_NSP_holds)
22 ```
23
24 Clear
25 ```python
26 # Define the classifier function
27 def _Clear_CP_holds(atoms: Set[GroundAtom], objects: Sequence[Object]) -> bool:
28 """Determine if there is no block on top of the given block."""
29
30 block, = objects
31
32 # Check if any block is on top of the given block
33 for atom in atoms:
34 if atom.predicate == On and atom.objects[1] == block:
35 return False
36 return True
37
38 # Define the predicate name here
39 name: str = "Clear"
40
41 # A list of object-type variables for the predicate, using the ones defined in the environment
42 param_types: Sequence[Type] = [_block_type]
43
44 # Instantiate the predicate
45 Clear = ConceptPredicate(name, param_types, _Clear_CP_holds)
46 ```
47
48 EmptyGripper
49 ```python
50 def _EmptyGripper_NSP_holds(state: RawState, objects: Sequence[Object]) -> bool:
51 """Determine if the gripper of robot in objects is empty in the scene image."""
52 robot, = objects
53 # If the robot's fingers are closed, it can't be empty.
54 if state.get(robot, "fingers") < 1:
55 return False
56 return True
57
58 name: str = "EmptyGripper"
59 param_types: Sequence[Type] = [_robot_type]
60 EmptyGripper = NSPredicate(name, param_types, _EmptyGripper_NSP_holds)
61 ```

NSRT-Op0:
Parameters: [?x0:block, ?x1:block, ?x2:robot]
Preconditions: [Clear(?x1:block), EmptyGripper(?x2:robot), On(?x1:block, ?x0:block)]
Add Effects: [Gripping(?x2:robot, ?x1:block)]
Delete Effects: [EmptyGripper(?x2:robot), On(?x1:block, ?x0:block)]
Ignore Effects: []
Option Spec: Pick(?x2:robot, ?x1:block)

NSRT-Op1:
Parameters: [?x0:block, ?x1:robot]
Preconditions: [Gripping(?x1:robot, ?x0:block)]

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Add Effects: [EmptyGripper(?x1:robot), OnTable(?x0:block)]
Delete Effects: [Gripping(?x1:robot, ?x0:block)]
Ignore Effects: []
Option Spec: PutOnTable(?x1:robot)

NSRT-Op2:
Parameters: [?x0:block, ?x1:robot]
Preconditions: [Clear(?x0:block), EmptyGripper(?x1:robot), OnTable(?x0:block)]
Add Effects: [Gripping(?x1:robot, ?x0:block)]
Delete Effects: [EmptyGripper(?x1:robot), OnTable(?x0:block)]
Ignore Effects: []
Option Spec: Pick(?x1:robot, ?x0:block)

NSRT-Op3:
Parameters: [?x0:block, ?x1:block, ?x2:robot]
Preconditions: [Clear(?x0:block), Gripping(?x2:robot, ?x1:block)]
Add Effects: [EmptyGripper(?x2:robot), On(?x1:block, ?x0:block)]
Delete Effects: [Gripping(?x2:robot, ?x1:block)]
Ignore Effects: []
Option Spec: Stack(?x2:robot, ?x0:block)

D.1.3 COFFEE

1 RobotHoldingJug
2
3 JugTilted
4 ```python
5 def _JugTilted_NSP_holds(state: RawState, objects: Sequence[Object]) -> bool:
6 """Determine if the jug is rotated by a non-zero angle."""
7 jug, = objects
8 # Assuming a rotation value of 0 means upright, any other value implies rotation
9 return abs(state.get(jug, "rot")) > 0.1

10
11 name: str = "JugTilted"
12 param_types: Sequence[Type] = [_jug_type]
13 JugTilted = NSPredicate(name, param_types, _JugTilted_NSP_holds)
14 ```
15
16 JugUpright
17
18 JugInMachine
19 ```python
20 def _JugInMachine_NSP_holds(state: RawState, objects: Sequence[Object]) -> bool:
21 """Jug ?x is placed inside coffee machine ?y."""
22 jug, machine = objects
23 # If the jug is being held, it cannot be in the machine.
24 if _RobotHolding_NSP_holds(state, [state.get_objects(_robot_type)[0], jug]):
25 return False
26
27 # Crop the image to focus on the jug and the coffee machine.
28 attention_image = state.crop_to_objects([jug, machine])
29 jug_name = jug.id_name
30 machine_name = machine.id_name
31 return state.evaluate_simple_assertion(
32 f"{jug_name} is placed inside {machine_name}.", attention_image
33)
34
35 name: str = "JugInMachine"
36 param_types: Sequence[Type] = [_jug_type, _machine_type]
37 JugInMachine = NSPredicate(name, param_types, _JugInMachine_NSP_holds)
38 ```
39
40 GripperOpen

NSRT-Op0:
Parameters: [?x0:jug, ?x1:robot]
Preconditions: [GripperOpen(?x1:robot), JugUpright(?x0:jug)]
Add Effects: [RobotHoldingJug(?x1:robot, ?x0:jug)]
Delete Effects: [GripperOpen(?x1:robot)]
Ignore Effects: []
Option Spec: PickJug(?x1:robot, ?x0:jug)

NSRT-Op1:
Parameters: [?x0:coffee_machine, ?x1:jug, ?x2:robot]
Preconditions: [RobotHoldingJug(?x2:robot, ?x1:jug)]
Add Effects: [GripperOpen(?x2:robot), JugInMachine(?x1:jug, ?x0:coffee_machine)]
Delete Effects: [RobotHoldingJug(?x2:robot, ?x1:jug)]
Ignore Effects: []
Option Spec: PlaceJugInMachine(?x2:robot, ?x1:jug, ?x0:coffee_machine)

NSRT-Op2:
Parameters: [?x0:coffee_machine, ?x1:jug, ?x2:robot]

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Preconditions: [JugInMachine(?x1:jug, ?x0:coffee_machine)]
Add Effects: [JugFilled(?x1:jug)]
Delete Effects: []
Ignore Effects: []
Option Spec: TurnMachineOn(?x2:robot, ?x0:coffee_machine)

NSRT-Op3:
Parameters: [?x0:coffee_machine, ?x1:jug, ?x2:robot]
Preconditions: [JugInMachine(?x1:jug, ?x0:coffee_machine)]
Add Effects: [RobotHoldingJug(?x2:robot, ?x1:jug)]
Delete Effects: [GripperOpen(?x2:robot), JugInMachine(?x1:jug, ?x0:coffee_machine)]
Ignore Effects: []
Option Spec: PickJug(?x2:robot, ?x1:jug)

NSRT-Op4:
Parameters: [?x0:cup, ?x1:jug, ?x2:robot]
Preconditions: [JugFilled(?x1:jug), RobotHoldingJug(?x2:robot, ?x1:jug)]
Add Effects: [CupFilled(?x0:cup)]
Delete Effects: [JugFilled(?x1:jug), JugUpright(?x1:jug), RobotHoldingJug(?x2:robot, ?x1:jug)]
Ignore Effects: []
Option Spec: Pour(?x2:robot, ?x1:jug, ?x0:cup)

NSRT-Op5:
Parameters: [?x0:jug, ?x1:robot]
Preconditions: [GripperOpen(?x1:robot)]
Add Effects: [JugUpright(?x0:jug)]
Delete Effects: []
Ignore Effects: []
Option Spec: Twist(?x1:robot, ?x0:jug)

NSRT-Op6:
Parameters: [?x0:coffee_machine, ?x1:jug, ?x2:robot]
Preconditions: [JugInMachine(?x1:jug, ?x0:coffee_machine)]
Add Effects: [JugFilled(?x1:jug)]
Delete Effects: [JugInMachine(?x1:jug, ?x0:coffee_machine)]
Ignore Effects: []
Option Spec: TurnMachineOn(?x2:robot, ?x0:coffee_machine)

NSRT-Op7:
Parameters: [?x0:cup, ?x1:jug, ?x2:robot]
Preconditions: [JugFilled(?x1:jug), RobotHoldingJug(?x2:robot, ?x1:jug)]
Add Effects: [CupFilled(?x0:cup), JugTilted(?x1:jug)]
Delete Effects: [JugFilled(?x1:jug), RobotHoldingJug(?x2:robot, ?x1:jug)]
Ignore Effects: []
Option Spec: Pour(?x2:robot, ?x1:jug, ?x0:cup)

NSRT-Op8:
Parameters: [?x0:cup, ?x1:jug, ?x2:robot]
Preconditions: [JugFilled(?x1:jug), RobotHoldingJug(?x2:robot, ?x1:jug)]
Add Effects: [CupFilled(?x0:cup), JugTilted(?x1:jug)]
Delete Effects: []
Ignore Effects: []
Option Spec: Pour(?x2:robot, ?x1:jug, ?x0:cup)

NSRT-Op9:
Parameters: [?x0:cup, ?x1:jug, ?x2:robot]
Preconditions: [JugFilled(?x1:jug), RobotHoldingJug(?x2:robot, ?x1:jug)]
Add Effects: [CupFilled(?x0:cup), JugTilted(?x1:jug)]
Delete Effects: [RobotHoldingJug(?x2:robot, ?x1:jug)]
Ignore Effects: []
Option Spec: Pour(?x2:robot, ?x1:jug, ?x0:cup)

D.1.4 COVER HEAVY

1 EmptyHand
2 Holding
3 IsBlack
4 ```python
5 def _IsBlack_NSP_holds(state: State, objects: Sequence[Object]) -> bool:
6 block, = objects
7 block_id = block.id_name
8 attention_image = state.crop_to_objects([block])
9 return state.evaluate_simple_assertion(f"{block_id} is black.", attention_image)

10
11 name = "IsBlack"
12 param_types = [_block_type]
13 IsBlack = NSPredicate(name, param_types, _IsBlack_NSP_holds)
14 ```

NSRT-Op1:
Parameters: [?x0:block, ?x1:robot, ?x2:target]
Preconditions: [Holding(?x1:robot, ?x0:block)]
Add Effects: [Covers(?x0:block, ?x2:target), EmptyHand(?x1:robot)]
Delete Effects: [Holding(?x1:robot, ?x0:block)]
Ignore Effects: []

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Option Spec: Place(?x0:block, ?x2:target)
NSRT-Op0:

Parameters: [?x0:block, ?x1:robot]
Preconditions: [IsBlack(?x0:block), EmptyHand(?x1:robot)]
Add Effects: [Holding(?x1:robot, ?x0:block)]
Delete Effects: [EmptyHand(?x1:robot)]
Ignore Effects: []
Option Spec: Pick(?x0:block)

D.1.5 BALANCE

1 OnPlate
2 ```
3 def _OnPlate_CP_holds(atoms: Set[GroundAtom],
4 objects: Sequence[Object]) -> bool:
5 x, y = objects
6 for atom in atoms:
7 if atom.predicate == DirectlyOnPlate and\
8 atom.objects == [x, y]:
9 return True

10 other_blocks = {a.objects[0] for a in atoms if
11 a.predicate == DirectlyOn or\
12 a.predicate == DirectlyOnPlate}
13
14 for other_block in other_blocks:
15 holds1 = False
16 for atom in atoms:
17 if atom.predicate == DirectlyOn and\
18 atom.objects == [x, other_block]:
19 holds1 = True
20 break
21 if holds1 and _OnPlate_CP_holds(atoms, [other_block, y]):
22 return True
23 return False
24
25 name: str = "OnPlate"
26 param_types: Sequence[Type] = [_block_type, _plate_type]
27 OnPlate = ConceptPredicate(name, param_types, _OnPlate_CP_holds)
28 ```
29
30 BlocksDistributedEvenly
31 ```
32 def _BlocksDistributedEvenly_CP_holds(atoms: Set[GroundAtom],
33 objects: Sequence[Object]) -> bool:
34 plate1, plate2 = objects
35 if plate1 == plate2:
36 return False
37 count1 = 0
38 count2 = 0
39 for atom in atoms:
40 if atom.predicate == OnPlate:
41 if atom.objects[1] == plate1:
42 count1 += 1
43 elif atom.objects[1] == plate2:
44 count2 += 1
45 return count1 == count2
46
47 name: str = "BlocksDistributedEvenly"
48 param_types: Sequence[Type] = [_plate_type, _plate_type]
49 BlocksDistributedEvenly = ConceptPredicate(name, param_types,
50 _BlocksDistributedEvenly_CP_holds)
51 ```

NSRT-Unstack:
Parameters: [?block:block, ?otherblock:block, ?robot:robot]
Preconditions: [Clear(?block:block), DirectlyOn(?block:block, ?otherblock:block), GripperOpen(?robot:robot)]
Add Effects: [Clear(?otherblock:block), Holding(?block:block)]
Delete Effects: [Clear(?block:block), DirectlyOn(?block:block, ?otherblock:block), GripperOpen(?robot:robot)]
Ignore Effects: []
Option Spec: Pick(?robot:robot, ?block:block)

NSRT-Op3:
Parameters: [?block:block, ?otherblock:block, ?robot:robot]
Preconditions: [Clear(?otherblock:block), Holding(?block:block)]
Add Effects: [Clear(?block:block), DirectlyOn(?block:block, ?otherblock:block), GripperOpen(?robot:robot)]
Delete Effects: [Clear(?otherblock:block), Holding(?block:block)]
Ignore Effects: []
Option Spec: Stack(?robot:robot, ?otherblock:block)

NSRT-Op2:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Parameters: [?x0:machine, ?x1:plate, ?x2:plate, ?x3:robot]
Preconditions: [BlocksDistributedEvenly(?x2:plate, ?x1:plate)]
Add Effects: [MachineOn(?x0:machine)]
Delete Effects: []
Ignore Effects: []
Option Spec: TurnMachineOn(?x3:robot, ?x1:plate, ?x2:plate)

NSRT-Op4:
Parameters: [?block:block, ?robot:robot, ?plate:plate]
Preconditions: [ClearPlate(?plate:plate), Holding(?block:block)]
Add Effects: [Clear(?block:block), DirectlyOnPlate(?block:block, ?plate:plate), GripperOpen(?robot:robot)]
Delete Effects: [ClearPlate(?plate:plate), Holding(?block:block)]
Ignore Effects: []
Option Spec: PutOnPlate(?robot:robot, ?plate:plate)

NSRT-PickFromTable:
Parameters: [?block:block, ?robot:robot, ?plate:plate]
Preconditions: [Clear(?block:block), DirectlyOnPlate(?block:block, ?plate:plate), GripperOpen(?robot:robot)]
Add Effects: [Holding(?block:block)]
Delete Effects: [Clear(?block:block), DirectlyOnPlate(?block:block, ?plate:plate), GripperOpen(?robot:robot)]
Ignore Effects: []
Option Spec: Pick(?robot:robot, ?block:block)

D.2 FURTHER PLANNING STATISTICS

The average planning node expaneded and wall-time statistics for our approach, alongside other
planning approaches, are summarized in the tables.

In the Blocks and Balance domains, our use of derived predicates is not out-of-box compatible with
relaxed planning heuristics, such as LM-cut, which we typically employ through Pyperplan. As a
result, we resorted to a simpler goal-count heuristic, which estimates the distance to the goal by
counting the number of unsatisfied goals. This heuristic is less informed than LM-cut, leading to
significantly larger node expansions and longer planning times in these domains than expected. In
future work, we aim to develop a version of LM-cut that is compatible with derived NSPs.

Ours Manual Sym. pred.
Environment Succ Node Time Succ Node Time Succ Node Time
Cover 100.0 9.4 0.142 100.0 8.4 0.129 100.0 26.9 0.151
Blocks 96.0 1117675 254.621 94.0 550630 101.737 7.2 121.4 4.279
Cover Heavy 97.0 7.9 0.057 100.0 5.4 0.060 46.0 5.7 0.061
Coffee 65.3 40.3 0.969 99.3 19.3 0.652 68.0 199.4 3.270
Balance 100.0 26.3 0.856 100.0 30.6 0.585 20.0 12.2 0.125

Ours Ablate op. No invent
Environment Succ Node Time Succ Node Time Succ Node Time
Cover 100.0 9.4 0.142 100.0 7.0 0.148 68.0 28.1 0.113
Blocks 96.0 1117675 254.621 12.0 24.8 0.222 1.3 321.0 0.224
Cover Heavy 97.0 7.9 0.057 46.0 5.7 0.128 36.7 29.5 0.099
Coffee 65.3 40.3 0.969 65.3 29.6 2.441 0.0 – –
Balance 100.0 26.3 0.856 100.0 28.0 1.180 25.3 13.5 0.204

22

	Introduction
	Problem Formulation
	Neuro-Symbolic Predicates
	Hierarchical Planning
	Learning an Abstract World Model from Interacting with the Environment
	Exploration
	Proposing Predicates
	Selecting a Predicate Set
	Learning High-Level Actions

	Experiments
	Related Works
	Conclusion
	Additional Details about the Online Invention Algorithm
	Learning HLAs by extending the cluster-and-intersect algorithm
	Classification-Accuracy-Based Predicate Sets Score Function
	Prompting for predicates

	Python API for NSPs
	Additional Environment Details
	Additional Experimental Results
	Learned Abstractions
	Cover
	Blocks
	Coffee
	Cover Heavy
	Balance

	Further Planning Statistics

