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ABSTRACT

Broadly intelligent agents should form task-specific abstractions that selectively
expose the essential elements of a task, while abstracting away the complexity of
the raw sensorimotor space. In this work, we present Neuro-Symbolic Predicates,
a first-order abstraction language that combines the strengths of symbolic and neu-
ral knowledge representations. We outline an online algorithm for inventing such
predicates and learning abstract world models. We compare our approach to hi-
erarchical reinforcement learning, vision-language model planning, and symbolic
predicate invention approaches, on both in- and out-of-distribution tasks across
five simulated robotic domains. Results show that our approach offers better sam-
ple complexity, stronger out-of-distribution generalization, and improved inter-
pretability.

1 INTRODUCTION

Planning and model-based decision-making for robotics demand an understanding of the world that
is both perceptually and logically rich. For example, a household robot needs to know that slippery
objects, such as greasy spatulas, are hard to grasp. Determining if the spatula is greasy is a subtle
perceptual problem. As an example of logical richness, for a robot to use a balance beam to weigh
objects, it must count up the mass on each side of the balance beam to determine which way the
beam will tip. Counting and comparing masses are logically sophisticated operations.

In this work, we show how to efficiently learn symbolic abstractions that are both perceptually and
logically rich, and which can plug into standard robot task-planners to solve long-horizon tasks. We
consider a robot that encounters a new environment involving novel physical mechanisms and new
kinds of objects, and which must learn how to plan in this new environment from relatively few
environment interactions (the equivalent of minutes or hours of training experience). The core of
our approach is to learn an abstract model of the environment in terms of Neuro-Symbolic Predi-
cates (NSPs, see Fig. 1), which are snippets of Python code that can invoke vision-language models
(VLMs) for querying perceptual properties, and further algorithmically manipulate those properties
using Python, in the spirit of ViperGPT and VisProg (Surı́s et al., 2023; Gupta & Kembhavi, 2022).

In contrast, traditional robot task planning uses hard-coded symbolic world models that cannot adapt
to novel environments (Garrett et al., 2021; Konidaris, 2019). Recent works pushed in this direction
with limited forms of learning that restrict the allowed perceptual and logical abstractions, and which
further require demonstration data instead of having the robot explore on its own (Silver et al., 2023;
Konidaris et al., 2018). The representational power of Neuro-Symbolic Predicates allows a much
broader set of perceptual primitives (essentially anything a VLM can perceive) and also deeper
logical structure (in principle, anything computable in Python).

Yet there are steep challenges when learning Neuro-Symbolic Predicates to enable effective plan-
ning. First, the predicates must be learned from input pixel data, which is extremely complex and
potentially noisy. Second, they should not overfit to the situations encountered during training, and
instead zero-shot generalize to complex new tasks at test time. Third, we need an efficient way of
exploring different possible plans to collect the data needed to learn good predicates. To address
these challenges we architect a new robot learning approach that interleaves proposing new predi-
cates (using VLMs), predicate scoring/validation (adapting the modern predicate-learning algorithm
by Silver et al. (2022)), and goal-driven exploration with a planner in the loop. The resulting archi-
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option: PlaceInMachine(jug, machine) option: TurnOn(machine)

HoldingJug(jug)
…

;; PDDL operator definition, TurnOn option

(def-op (?x0:coffee_machine ?x1:jug ?x2:robot)

 :option (TurnOn ?x2:robot ?x0:coffee_machine)

 :precondition (JugInMachine ?x1 ?x0)

 :postcondition (JugFilled ?x1:jug))

# NeuroSymbolic Predicate

def JugInMachine(state, objects):

 jug, machine = objects

 # If the jug is held, it cannot be in the machine.

 if Holding(state,[state.objects(robot_type)[0],jug]):

   return False

 # Crop to focus on jug and coffee machine

 attention_img = state.crop_to_objects([jug,machine])

 return state.query_VLM(

 f"{jug.id_name} is placed inside {machine.id_name}.", 

   attention_img)

…

JugInMachine(jug, machine)
GripperOpen()
…

JugFilled(jug)
HoldingJug(jug)
…

abstract state abstract state abstract state

option: Pour(jug, cup1)

option: Pick(block3) option: PutOnPlate(plate1)

DirectlyOn(block3, block2)
OnPlate(block3, plate2)
...
GripperOpen()

;; PDDL operator definition, PressButton option

(def-op (?x0:machine ?x1:plate ?x2:plate ?x3:robot)

 :option (PressButton ?x3:robot ?x1:plate ?x2:plate)

 :precondition (DistributedEvenly ?x2 ?x1)

 :postcondition (MachineOn ?x0:machine))

# NeuroSymbolic Predicate

def DistributedEvenly(atoms, objects):

 plate1, plate2 = objects

 if plate1 == plate2: return False

 count1, count2 = 0, 0

 for atom in atoms:

   if atom.predicate == OnPlate:

     if atom.objects[1] == plate1: count1 += 1

     elif atom.objects[1] == plate2: count2 += 1

 return count1 == count2

Holding(block3)
Clear(block2)
...
DirectlyOnPlate(block0, plate2)

DistributedEvenly(plate1, plate2)
GripperOpen()
…
OnPlate(block3, plate1)

abstract state abstract state abstract state

option: PressButton

(A) making and pouring coffee into a pair of cups example learned predicate+planning operator

(B) using a balance beam to activate a machine that requires balanced platters example learned predicate+planning operator

…

Figure 1: Robot learning domains illustrating learned neurosymbolic predicates. In (A) we learn a
predicate that queries a VLM to check if a coffee jug is inside a coffee machine. In (B) we learn a
predicate that checks if a balance beam is balanced. (Code lightly refactored to better fit in figure.)

tecture is then able to successfully learn across five different simulated environments, and is more
flexible and more sample-efficient compared to competing neural, symbolic, and LLM baselines.

We highlight the following contributions: (1) NSPs, a state representation for decision-making using
both logically and perceptually rich features; (2) An algorithm for inventing NSPs by interacting with
an environment, including an extension to a new operator learning algorithm; and (3) Evaluation
against 6 methods across 5 simulated robotics tasks.

2 PROBLEM FORMULATION

We consider the problem of learning state abstractions for robot planning over continuous state/ac-
tion spaces, and doing so from online interaction with the environment, rather than learning from
human-provided demonstrations. We assume a predefined inventory of basic motor skills, such as
pick/place, and also assume a basic object-centric state representation, which is a common assump-
tion (Kumar et al., 2024; Silver et al., 2023; 2022). Our goal is to learn state abstractions from
training tasks which generalize to held-out test tasks.

Tasks. A task T is a tuple ⟨O, x0, g⟩ of objects O, initial state x0, and goal g. The allowed states
depend on the objects O, so we write the state space as XO (or just X when the objects are clear
from context). Each state x ∈ XO includes a raw RGB image and associated object features, such
as 3D object position.

Environments. Tasks occur within an environment E , which is a tuple ⟨U , C, f,Λ⟩ where U ⊆ Rm

is a low-level action space (e.g. motor torques), C is a set of controllers for low-level skills (e.g.
pick/place), f : X × U → X is a transition function, and Λ is a set of object types (possible outputs
of an object classifier). The environment is shared across tasks.

Built-in Motor Skills. We assume skills C, each of which has parameters that abstract over which
object(s) the skill acts on. For example, the agent can apply a skill such as Place(?block1,
?block2) to stack any pair of blocks atop one another, where a block is a type in Λ. We assume
the agent can determine whether a skill has been successfully executed upon completion. Skills
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can be modeled within the options framework (Sutton et al., 1999). The skills C and the objects O
induce an action space AO (or simply A when the context is clear).

Skills, tasks, and environments are the primary inputs to our system. The primary outputs—what
we actually learn—are higher-level abstractions over these basic states and actions.

Predicates: Abstracting the State. A predicate ψ is a Boolean feature of a state, which can be
parametrized by specific objects in that state. We treat this as function ψ : Om → (X → B) that
is an indicator, given m objects, of whether a predicate holds in a state. For example, the predicate
On(?block1, ?block2) inputs a pair of blocks, and outputs a state classifier for whether the
first block is atop the second block. A set of predicates Ψ induces an abstract state corresponding
to all the predicate/object combinations that hold in the current state:

ABSTRACTΨ(x) = {(ψ, o1, ..., om) : ψ(o1, ..., om) holds in state x, for ψ ∈ Ψ and oj ∈ O} (1)

We write S for the set of possible abstract states.

High-Level Actions: Refining the action space.1 Planning requires predicting how each skill
transforms the abstract state representation. To make these predictions, High-Level Actions (HLAs)
augment skills with a precondition specifying which abstract states allow successful use of that skill,
and a postcondition, specifying how the skill transforms the abstract state. Like predicates, an HLA
is parametrized by the specific objects it acts upon. Formally, an HLA ω is a function from Om to a
tuple ⟨π, PRE, EFF+, EFF−⟩ where π ∈ AO is a skill, PRE is the precondition, and the postcondition
consists of EFF+ (predicates added to the abstract state) and EFF− (predicates removed from the
abstract state).

As an example of an HLA, consider PlaceOnTable(?block, ?table, ?underBlock),
with PRE = Clear(?block), EFF+ = On(?block,?table), and EFF− =
On(?block,?underBlock), using skill π = place(?block,?table). This means plac-
ing a block on a table, which was previously on top of underBlock, causes the block to be on
the table, and no longer on top of underBlock. This HLA is formally a function with arguments
?block,?table,?underBlock.

HLA Notation. We write Ω for the set of HLAs (what the agent learns), and ΩO for their instantia-
tions on objects O (how the agent uses them in a particular task). We use the variable ω for HLAs,
so we would write ω ∈ Ω. We use ω for HLAs applied to particular objects, so we’d write ω ∈ ΩO.2

Abstract State Transitions. The predicates and HLAs together define an abstract world model,
whose transition function F : S × ΩO → S is

F
(
s, ⟨π, PRE, EFF+, EFF−⟩

)
=

{
s ∪ EFF+\EFF− if PRE ⊆ s

undefined otherwise
(2)

Having learned predicates and high-level actions, we then solve problems by hierarchical planning:

A low-level plan is a sequence of n skills applied to objects (π1, . . . , πn) ∈ An
O. It solves a task

with goal g and initial state x0 if sequencing those skills starting from x0 satisfies g.

A high-level plan is a sequence of n HLAs applied to objects, ω1, . . . , ωn.

A note on types. Because the environment provides object types, we augment predicates and HLAs
with typing information for each object-valued argument. Equivalently, predicates return false, and
skills terminate immediately with failure, when applied to arguments of the wrong type.

3 NEURO-SYMBOLIC PREDICATES

Neuro-Symbolic Predicates (NSPs) represent visually grounded yet logically rich abstractions that
enable efficient planning and problem solving. As Figure 2 illustrates, these predicates are neuro-
symbolic because they combine programming language constructs (conditionals, numerics, loops
and recursion) with API calls to neural vision-language models for evaluating visually-grounded

1In the planning literature, High-Level Actions are also sometimes called operators.
2In the planning literature, ω is called a lifted operator, while ω would be a grounded operator.
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natural language assertions. NSPs can be grounded in visual perception, and also in proprioceptive
and object-tracking features, such as object poses, common in robotics (Kumar et al., 2024; 2023b;
Curtis et al., 2022; 2024b). We consider two classes of NSPs: primitive and derived. Primitive NSPs
are evaluated directly on the raw state, such as Holding(obj) (which would use VLM queries)
or GripperOpen (which would use proprioception). Derived NSPs instead determine their truth
value based on the truth value of other NSPs, analogous to derived predicates in planning (Thiébaux
et al., 2005; McDermott et al., 1998).

Primitive NSPs. We provide a Python API for computing over the raw state, including the ability
to crop the image to particular objects and query a VLM in natural language. See Appendix B.

Derived NSPs. Instead of querying the raw state, a derived NSP computes its truth value based only
on the truth value of other NSPs. Derived NSPs handle logically rich relations, such as OnPlate
in fig. 2, which recursively computes if a block is on a plate, or on something that is on a plate.

Evaluating Primitive NSPs. No VLM is 100% accurate, even for simple queries like “is the robot
holding the jug?”, especially in partially observable environments. To increase the accuracy and
precision of NSPs, we take the following two measures.

First, because a single image may not uniquely identify the state (e.g. due to occlusion), we provide
extra context to VLM queries. Consider a robot whose gripper is next to a jug, but whose own
arm occludes the jug handle, making it uncertain whether the jug is held by the gripper or merely
next to it. Knowing the previous action (e.g. Pick(jug)) helps resolve this uncertainty. We
therefore further condition NSPs on the previous action, as well as the previous visual observation
(immediately before the previous action was executed) and previous truth values for the queried
ground atom.

Second, we visually label each object in the scene by overlaying a unique ID number on each
object in the RGB image (following Yang et al., 2023). That way, to evaluate for example
Holding(block2), we can query a VLM with “the robot is holding block2”, where block2
is labeled with “2.” This disambiguates the objects in a scene, allowing an NSP to reason precisely
about which block is held, rather than merely represent that some block is held.

How Derived NSPs interact with HLAs. HLAs form an abstract world model that predicts which
predicates are true after performing a skill (the postcondition). Derived predicates do not need to

1 def Holding(state: RawState, objects: Sequence[Object]) -> bool:
2 """Is the robot holding the block."""
3 block, = objects
4 # The block can't be held if the robot's hand is open.
5 robot = state.get_objects(_robot_type)[0]
6 if state.get(robot, "fingers") >= 0.5:
7 return False
8 block_name = block.id_name
9 attention_image = state.crop_to_objects([block, robot])

10 return evaluate_simple_assertion(
11 f"{block_name} is held by the robot", attention_image)
12
13 def OnPlate(atoms: Set[GroundAtom], objects: Sequence[Object]) -> bool:
14 """Whether a block is directly or transitively on a plate."""
15 x, y = objects
16 for atom in atoms:
17 if atom.predicate == DirectlyOnPlate and atom.objects == [x, y]:
18 return True
19 other_blocks = {a.objects[0] for a in atoms if a.predicate == DirectlyOn or\
20 a.predicate == DirectlyOnPlate}
21 for other_block in other_blocks:
22 holds1 = False
23 for atom in atoms:
24 if atom.predicate == DirectlyOn and atom.objects == [x, other_block]:
25 holds1 = True
26 break
27 if holds1 and OnPlate(atoms, [other_block, y]):
28 return True
29 return False

Figure 2: Example classifiers for Holding and OnPlate NSP.
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occur in the postcondition, because we can immediately calculate which derived predicates are true
based on the predicted truth values of primitive NSPs. Therefore, HLAs can have derived predicates
in the precondition, but never in the postcondition.

4 HIERARCHICAL PLANNING

We use the learned abstract world model to first make a high-level plan (sequence of HLAs), which
then yields a low-level action sequence by calling the corresponding skill policy for each HLA.
High-level planning leverages widely-used fast symbolic planners, which, for example, conduct A*
search with automatically-derived heuristics (e.g. LM-Cut, Helmert & Domshlak, 2009).

However, there may be a mismatch between a high-level plan, which depends on potentially flawed
abstractions, and its actual implementation in the real world. Learning is driven by these failures.
More precisely, hierarchical planning can break down in one of two ways:

Planning Failure #1: Infeasible. A high-level plan is infeasible if one of its constituent skills fails
to execute.

Planning Failure #2: Not satisficing. A high-level plan is not satisficing if its constituent skills
successfully execute, but do not achieve the goal.

When solving a task we generate a stream of high-level plans and execute each one until a satisficing
plan (achieving the goal) is generated, or until hitting a planning budget.

5 LEARNING AN ABSTRACT WORLD MODEL FROM INTERACTING WITH THE
ENVIRONMENT

Algorithm 1 Online Pred. Invention(E , T ,Ψ0,Ω0,D)
1: init: ρbest ← −∞, best solve rate
2: init: νbest ←∞, best number of failed plans
3: for i ∈ range(1, nmax ite) do
4: Di, ρi, νi ← Explore(Ψi−1,Ωi−1, E , T ) ▷ section 5.1
5: if ρi > ρbest or (ρi = ρbest and νi < νbest) then
6: Ψbest,Ωbest, ρbest, νbest ← Ψi,Ωi, ρi, νi
7: if νi = 0 then
8: break
9: D ← D ∪Di

10: Ψ′ ← ∅
11: if ρi ≤ ρi−1 or (ρi = ρi−1 and νi > νi−1) then
12: Ψ′ ← Propose Predicates(D,Ψi−1) ▷ section 5.2
13: Ψi ← Select Predicates(D,Ψ′ ∪Ψi−1) ▷ section 5.3
14: Ωi ← Learn HighLevelActions(D,Ψi) ▷ section 5.4
15: return Ψbest,Ωbest

Algorithm 1 shows how we interleave
learning predicates (state abstraction),
learning HLAs (abstract transition func-
tion), and interacting with the environ-
ment. The learner takes in an en-
vironment E , a set of training tasks
T , an initial predicate set Ψ0 (which
is usually the goal predicates), an ini-
tial set of HLAs Ω0 (which are largely
empty, section 5.1), and an initial dataset
D (empty, except when doing transfer
learning from earlier environments). It
tracks its learning progress using ρbest,
the highest training solve rate, and νbest,
the lowest number of infeasible plans.

5.1 EXPLORATION

Our agent explores the environment by planning with its current predicates/HLAs, and executing the
plans. The agent is initialized with underspecified, mostly empty HLA(s) (that is, the preconditions
and effects are mostly empty sets, except with goal predicates if appropriate, so that the planner can
generate plans).3 It collects data by trying to solve the training tasks (generate and execute abstract
plans until the task is solved or nabstract plans are used, as described in section 4) and collects positive
transition segments (from successfully-executed skills), negative state-action tuples (from skills that
failed to execute) and satisficing plans, if any.

3Alternatively, it could perform exploration through random option selection, which should have similar or
improved performance at the first iteration.
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5.2 PROPOSING PREDICATES

We introduce three strategies for prompting VLMs to invent predicates – two that are conditioned
on collected data, and one that is not (see appendix A.3 for further details).

Strategy #1 (Discrimination) helps discover predicates that are good preconditions for the skills.
We prompt a VLM with example states where a skill succeeded and failed, and ask it to generate
code that predicts when the skill is applicable.

Strategy #2 (Transition Modeling) helps discover predicates helpful for postconditions. We
prompt a VLM with before (or after) snapshots of successful skill execution, and ask it to gener-
ate code that describes properties that changed before (or after, respectively).

Strategy #3 (Unconditional Generation) prompts VLMs to propose new predicates as logical ex-
tensions of existing ones (whether built-in or previously proposed), without conditioning on the raw
planning data. This approach helps create derived predicates.

5.3 SELECTING A PREDICATE SET

VLM-generated predicates typically have low precision—not all generations are useful or sensible—
and too many predicates will overfit the model to what little data it has collected. One solution
could be the propose-then-select paradigm (Silver et al., 2023). Silver et al. (2023) proposes an
effective predicate selection objective but requires around 50 expert plan demonstrations. We assume
no demonstration data, and in general, we might not find any satisficing plans early in learning.
Therefore we need a new way of learning from unsuccessful plans.

To address this, we devise a novel objective that scores a set of predicates Ψ based on classification
accuracy, plus a simplicity bias. The classification score is obtained by first learning HLAs using the
set of predicates Ψ (discussed more in section 5.4), and then computing the classification accuracy
of the HLAs (see Appendix A.2). Later in learning, after discovering enough (a hyperparameter
one can choose) satisficing plans , we switch to the objective from Silver et al. (2023), which takes
planning efficiency and simplicity into account.

We perform a greedy best-first search with either score function as the heuristic. It starts from the
set of goal predicates ΨG and adds a single new predicate from the proposed candidates at each step,
and finally returns the set of predicates with the highest score.

5.4 LEARNING HIGH-LEVEL ACTIONS

We further learn high-level actions Ω, which define an abstract transition model, in the learned
predicate space, from interactions with the environment. We follow the cluster and intersect operator
learning algorithm (Chitnis et al., 2022) and improve its precondition learner for more efficient
exploration and better generalization. Chitnis et al. (2022) assumes given demonstration trajectories
and learns restricted preconditions so that the plans are most similar to the demonstrations. Our agent
explores the environment from scratch and does not have demonstration data to follow restrictively.
On the other hand, our agent needs more optimistic world models to explore unseen situations to
solve the task. Our precondition learner ensures that each data in the transition dataset is modeled by
one and only one high-level action and minimizes the syntactic complexity of the HLA to encourage
optimistic world models. See appendix A.1 details.

6 EXPERIMENTS

We design our experiments to answer the following questions: (Q1) How well does our NSP rep-
resentation and predicate invention approach compare to other state-of-the-art methods, including
popular HRL or VLM planning approaches? (Q2) How do the abstractions learned by our method
perform relative to manually designed abstractions and the abstractions before any learning? (Q3)
How effective is our NSP representation compared to traditional symbolic predicates, where classi-
fiers are based on manually selected object features? (Q4) What is the contribution of our extended
operator learning algorithm to overall performance?

6
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Experimental Setup. We evaluated seven different approaches across five robotic environments
simulated using the PyBullet physics engine (Coumans & Bai, 2016). Each result is averaged over
three random seeds, and for each seed, we sample 50 test tasks that feature more objects and more
complex goals than those encountered during training. The agent is provided with 5 training tasks in
the Cover and Coffee environments, 10 tasks in Cover Heavy and Balance, and 20 tasks in Blocks.
The planning budget nabstract is set to 8 for all domains except Coffee, where it is set to 100.

Environments. We briefly discuss the environments used, with more details in appendix C.

1. Cover. The robot is tasked with picking and placing specific blocks to cover designated regions
on the table, using Pick and Place options. Training tasks involve 2 blocks and 2 targets, while
test tasks increase the difficulty with 3 blocks and 3 targets.

2. Blocks. The robot must construct towers of blocks according to a specified configuration, using
Pick, Stack, and PlaceOnTable options. The agent is trained on tasks involving 3 or 4 blocks and
tested on more challenging tasks with 5 or 6 blocks.

3. Coffee. The robot is tasked with filling cups with coffee. This involves picking up and placing
a jug into a coffee machine, making coffee, and pouring it into the cups. The jug may start at
a random rotation, requiring the robot to rotate it before it can be picked up. The environment
provides 5 options: Twist, Pick, Place, TurnMachineOn, and Pour. Training tasks involve filling
1 cup, while test tasks require filling 2 or 3 cups.

4. Cover Heavy. This is a variant of Cover with “impossible tasks” which asks the robot to pick
and placing white marble blocks that are too heavy for it to pick up. The environment retains
the same controllers and number of objects as the standard Cover environment. An impossible
task is considered correctly solved if the agent determines that the goal is unreachable with its
existing skills (i.e., no feasible plan can be generated).

5. Balance. In this environment, the agent is tasked with turning on a machine by pressing a button
in front of it, but without prior knowledge of the mechanism required to activate it (in this case,
balancing an equal number of blocks on both sides). The agent has access to a PressButton
option, along with the options from the Blocks domain. Training tasks involve 2 or 4 blocks,
while test tasks increase the difficulty with 4 or 6 blocks.

Approaches. We compare our approach against 5 baselines and manually designed state abstraction.

1. Ours. Our main approach.

2. MAPLE. a HRL baseline that learns to select high-level action by learning a Q function, but
does not explicit learn predicates and perform planning. This is inspired by the recent work on
MAPLE (Nasiriany et al., 2022b). While we have extended the original work with the capacity of
goal-conditioning, the implementation is still not able to deal with goals involving more objects

Tr
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Cover Blocks Coffee Cover Heavy Balance

E
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Ta

sk
s

Figure 3: Environments. Top row: train task examples. Bottom row: evaluation task examples.
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Figure 4: Top row: percentage solved for different Domains (↑). Bottom: percentage of planning
budget used to find the satisficing plans (↓). The dashed line shows the minimal number of plans
needed to solve all the tasks (1 plan per task).

than it has seen during training. Hence, we are only evaluating this approach with tasks from the
training distribution.

3. ViLa (Hu et al., 2023). A VLM planning baseline which zero-shot prompts a VLM to plan a
sequence of actions, without learning.

4. Sym. pred. A baseline that uses the same online learning algorithm but only has access to object
features that are commonly present in robotics tasks when writing predicates, i.e., without open-
ended VLM queries and derived predicates. This shares a similar representation as recent work
Interpret (Han et al., 2024) but is still distinct since they mostly learn from human instruction.

5. Ablate op. An ablation that does not use our extension to the operator learner.
6. No invent. A baseline that uses the abstractions our approach is initialized with and does not

perform any learning.
7. Manual. An “oracle” planning agent with manually designed predicates and operators.

Results and Discussion. Figure 4 presents the evaluation task solve rate and the planning budget
utilized. Examples of learned abstractions and further planning statistics (such as node expanded
and walltime) are provided in appendix D.2.

Our approach consistently outperforms the HRL and VLM planning baselines, MAPLE and ViLa,
across all tested domains, achieving near-perfect solve rates (Q1). With similar amounts of inter-
action data, MAPLE struggles to perform well, even on tasks within the training distribution. This
limitation could potentially be mitigated with significantly larger datasets, though this is often im-
practical in robotics due to the high cost of real-world interaction data and the sim-to-real gap in
transferring simulation-trained policies. ViLa demonstrates limited planning capabilities, which is
consistent with recent observations (Kambhampati et al., 2024). While it performs adequately on
simple tasks like Cover, where the robot picks and places blocks, its performance drops significantly
when blocks are initialized in the robot’s grasp, as it tends to redundantly attempt picking actions.
This behavior suggests overfitting. In more complex domains, ViLa often generates infeasible plans,
such as attempting to pick blocks from a stack’s middle or trying to grasp a jug without consider-
ing its orientation. We think introducing demonstrations or incorporating environment interactions
could potentially alleviate these issues.

Our approach significantly outperforms No invent, demonstrating the clear benefits of learning pred-
icate abstractions over relying on initial underspecified representations. It achieves similar solve
rates and efficiency to the Manual baseline, which uses manually designed abstractions (Q2). This
underscores the ability of our method to autonomously discover abstractions as effective as those
crafted by human experts.

Addressing (Q3), while Sym. pred. performs well in simple domains like Cover, it struggles to
invent predicates that require grounding in perceptual cues not explicitly encoded in object features.
For instance, in Coffee, it cannot reliably determine if a jug is inside a coffee machine based on
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object poses—a key precondition for the TurnMachineOn action. Similarly, in Cover Heavy, it
fails to recognize blocks that are too heavy to lift, which is critical for identifying unreachable goals.
Additionally, without derived NSPs, reasoning accurately and efficiently about abstract concepts in
the abstract world model (such as whether the number of blocks on both sides of a balance is equal)
becomes challenging, which is critical for solving Balance More generally, we hypothesize that
providing all feature-value pairs for every object in each state during prompting overwhelms existing
VLMs, leading to poor predicate invention. This likely accounts for the subpar performance, even
in simple domains like Blocks. These limitations emphasize the strengths of our NSP representation
and learning pipeline.

Finally, to answer (Q4), we find that our approach performs better than Ablate op., which sometimes
learns unnecessarily complex preconditions that overfit early, limited data, hindering further learning
on training tasks. In other cases, overly specific preconditions result in good training performance
but poor generalization, such as requiring JugInMachine for the Pour action. This demonstrates
the value of our operator learner, especially in data-scarce, exploration-based learning settings.

7 RELATED WORKS

Hierarchical Reinforcement Learning (HRL) HRL tackles the challenge of solving MDPs with
high-dimensional state and action spaces, common in robotics, by leveraging temporally extended,
high-level actions (Barto & Mahadevan, 2003). The Parameterized Action MDPs (PAMDPs) frame-
work (Masson et al., 2016) builds on this by integrating discrete actions with continuous parameters,
optimizing both the action and its parameterization using the Q-PAMDP algorithm. MAPLE (Nasiri-
any et al., 2022a) further builds on this by using a library of behavior primitives, such as grasping
and pushing, combined with a high-level policy that selects and parameterize these actions. We
implement a version of this with the extension of goal-conditioned high-level policy as a baseline.
Generative Skill Chaining (GSC) (Mishra et al., 2023) further improves long-horizon planning by
using skill-centric diffusion models that chain together skills while enforcing geometric constrains.
Despite these advancements, they still face challenges in sample complexity, generalization, and
interpretability.

Large Pre-Trained Models for Robotics With the rise of large (vision) language models (VLMs),
many works explore their application in robotic decision making. RT-2 (Brohan et al., 2023) treats
robotic actions as utterances in an “action language” learned from web-scale datasets. SayCan and
Inner Monologue (Ahn et al., 2022; Huang et al., 2022) use LLMs to select skills from a pretrained
library based on task prompts and prior actions. Code as Policy (Liang et al., 2023) prompts LLMs to
write policy code that handles perception and control. Recent works extend this to bilevel planning
(Curtis et al., 2024a), but do not learn new predicates. ViLa (Hu et al., 2023) queries VLMs for
action plans, executing the first step before replanning. We implement an open-loop version of ViLa
to compare with its initial planning capabilities.

Learning Abstraction for Planning Our work builds on a rich body of research focused on learning
abstractions for planning. Many prior works have explored offline methods such as learning action
operators and transition models from demonstrations using existing predicates (Silver et al., 2021;
Chitnis et al., 2022; Pasula et al., 2007; Silver et al., 2022; Kumar et al., 2023a). While Silver et al.
(2023) explores learning predicates grounded in object-centric features, our approach goes further
by inventing open-ended, visually and logically rich concepts, without relying on hand-selected fea-
tures. Additionally, unlike their demonstration-based approach, ours learns purely online. Konidaris
et al. (2018) and its consequent works (James et al., 2022; 2020) discover abstraction in an online
fashion by leveraging the initiable and terminations set of operators that satisfy an abstract subgoal
property. James et al. (2020) incorporates an egocentric observation space to learn more portable
representations, and James et al. (2022) defines equivalence of options effects on objects to derive
object types for better transferability. Nevertheless, they work on a constrained class of classifiers
(such as decision trees or linear regression with feature selection), which limits the effectiveness and
generalizability of learned predicates. Kumar et al. (2024) performs efficient online learning, but
focuses on sampler learning rather than predicate invention.

9
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8 CONCLUSION

In this work, we introduced Neuro-Symbolic Predicates (NSPs), a novel representation that combines
the flexibility of neural networks to represent open-ended, visually grounded concepts, and the in-
terpretability and compositionality of symbolic representations, for planning. To support this, we
developed an online algorithm for inventing NSPs and learning abstract world models, which allows
efficient acquisition of NSPs. Our experiments across five simulated robotic domains demonstrated
that our method outperforms existing approaches, including hierarchical reinforcement learning,
VLM planning, and traditional symbolic predicates, particularly in terms of sample efficiency, gen-
eralization, and interpretability. Future work will focus on incorporating recovery mechanisms for
failed plans, relaxing assumptions about options, enhancing exploration efficiency, and scaling to
partially observable and real-world domains.
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the proc3s: Solving long-horizon robotics problems with llms and constraint satisfaction, 2024a.

Aidan Curtis, George Matheos, Nishad Gothoskar, Vikash Mansinghka, Joshua Tenenbaum, Tomás
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A ADDITIONAL DETAILS ABOUT THE ONLINE INVENTION ALGORITHM

A.1 LEARNING HLAS BY EXTENDING THE CLUSTER-AND-INTERSECT ALGORITHM

We aim to learn high-level actions Ω, which define an abstract transition model in the
learned predicate space, from interactions with the environment. These interactions con-
sist of executing high-level plans, which are sequences of (grounded) HLAs ω1, . . . , ωn
(i.e. HLAs applied to concrete objects). Our learned abstract transition model should
both fit the transition dataset while being optimistic for efficient exploration (Tang et al.,
2024). Recalling the definitions from sec. 2, given the current transition dataset, D =

{. . . , (x(k), π(k), x
(k)
π ), . . . , (x(k

′), π(k′), FAIL), . . .}, we first transform it into the learned ab-
stract state space, DΨ = {. . . , (s(k), π(k), s

(k)
π )), . . . , (s(k

′), π(k′), FAIL), . . .}, where s =
ABSTRACTΨ(x). We aim to learn high-level actions, Ω, such that for all high-level actions ω ∈ ΩO
on objects O,

∀(s(k), π(k), s(k)π ) ∈ DΨ,∃ω ∈ Ωπ(k)

O , ω.PRE ⊆ s(k) ∧ s(k)π − s(k) = ω.EFF+ ∧ s(k) − s(k)π = ω.EFF−,

∀(s(k), π(k), s(k)π ) ∈ DΨ,∀ω ∈ Ωπ(k)

O , ω.PRE ⊆ s(k) ⇒
(
s(k)π − s(k)ω.EFF+ ∧ s(k) − s(k)π ω.EFF−

)
,

∀(s(k), π(k), FAIL) ∈ DΨ, ̸ ∃ω ∈ Ωπ(k)

O , ω.PRE ⊆ s(k),where Ωπ(k)

O = {ω : ω ∈ ΩO ∧ ω.π = π(k)},

while minimizing the syntactic complexity of the HLA, |ω.PRE|+ |ω.EFF+|+ |ω.EFF−|.
To find the high-level actions satisfying this objective, we first split the dataset according to the skills,
as each high-level action is only associated with one skill, Dπi

Ψ = {d : d ∈ DΨ ∧ d.π = πi}. We
then split each skill into one or multiple high-level actions by unifying the effects in Dπi

Ψ following
the cluster and intersect operator learner (Chitnis et al., 2022). This compensates for the fact that a
skill can have different effects in different situations, by first partitioning the transition datasets into
high-level actions,

Dω
Ψ = {d : d ∈ DΨ ∧ d.π = ω.π ∧ d.s(k)π − d.s(k) = ω.EFF+ ∧ d.s(k) − d.s(k)π = ω.EFF−

where ω = ω(o1, o2, . . .), for all oi ∈ O}.

Each partition associates a high-level action with the skill ω.π = d.π,∀d ∈ Dω
Ψ, while the postcon-

ditions of the high-level action (ω.EFF+ and ω.EFF−) are also learned, by unifying and lifting the
effects of data in Dω

Ψ. See Chitnis et al. (2022) for more details. For the preconditions, ω.PRE, we
learn them by maximizing

J(ω.PRE) =

1

|Dω.π
Ψ |

 ∑
d∈Dω

Ψ

1

(
ω.PRE ⊆ d.s(k)

)
+

∑
d∈(Dω.π

Ψ −Dω
Ψ)

1

(
ω.PRE ̸⊆ d.s(k)

)+ α · |ω.PRE|.

(3)

This ensures that all data in the partition is modeled by the associated high-level action, ω. It
specifies that the skill ω.π is applicable to states s(k) as ω.PRE ⊆ s(k). This high-level action also
models all other data in the transition dataset, specifying that its precondition is not satisfied if a skill
is not applicable on a state, (s(k), ω.π, FAIL) ∈ Dω.π

Ψ , or if a skill has different effects when applied
on the state, (s(k), ω.π, s(k)π ) ∈ Dω.π

Ψ ∧ (s(k), ω.π, s
(k)
π ) ̸∈ Dω

Ψ. We set the parameter α to a small
number, which softly penalizes syntactically complex preconditions.

Compared with the cluster and intersect operator learner (Chitnis et al., 2022), which simply inter-
secting over feasible states to build preconditions for each high-level action, our method optimisti-
cally enlarges the set of feasible states for each high-level actions using the minimum complexity
objective, while still retaining the abilities to distinguish infeasible states. The optimistic objective
is critical for predicate invention by interactions where optimal demonstration trajectories are not
available. Using the intersection method, the agent will only consider the feasible states in the cur-
rently curated dataset as feasible and never try the skill in other states that are potentially feasible as
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well. Planners usually fail to find plans with such restrictive world models, resulting in inefficient
random exploration and poor test-time performance.

The restricted preconditions are less generalizable as well. For example, for agents learning making
coffee in environments with one cup, the agent will find successful trajectories such as PutKettleIn-
CoffeeMachine, MakeCoffee, and PourCoffeeInCup. Using the intersection method, the agent sets
the preconditions of PourCoffeeInCup as KettleInMachine and KettleHasCoffee as both of them are
always true among feasible states of the PourCoffeeInCup action, even though only KettleHasCoffee
is needed. The more restricted preconditions are problematic when generalizing to environments
with more than one cups. The agent keeps putting the kettle back to the machine before pouring
the coffee for another cup, as the learned PourCoffeeInCup action has KettleInMachine as part of
its precondition. The agent eventually fails to solve the problem as the number of cups increases
due to the almost doubled length of feasible plans in the more restricted abstract world model. Our
method finds the correct precondition as KettleHasCoffee with the optimistic objective. We prefer
KettleHasCoffee over KettleInMachine as it fails to distinguish infeasible states for the Pour skill
with different effects, PourNothingInCup.

A.2 CLASSIFICATION-ACCURACY-BASED PREDICATE SETS SCORE FUNCTION

When no satisficing plan is found in early iterations of predicate invention (e.g., in Coffee), the
objective from Silver et al. (2023) is inapplicable. This issue is particularly prominent when the
space of possible plans is large (i.e., when there are many potential actions at each step and achieving
goals requires long-horizon plans). To address this, we introduce a predicate score function that does
not rely on satisficing plans. We propose an alternative objective based on classification accuracy,
in the same flavour as the score function defined earlier for operator preconditions.

Formally, given DΨ = {. . . , (s(k), π(k), s
(k)
π )), . . . , (s(k

′), π(k′), FAIL), . . .}, where s =
ABSTRACTΨ(x) as above, we denote the collection of all success transitions and failed tuples as
D+

Ψ = {(s(k), π(k), s
(k)
π ))} and D−

Ψ = {(s(k), π(k), FAIL) respectively. The the predicate set score
function is

J(Ψ) =
1

|DΨ|

( ∑
(s(k),π(k),s

(k)
π )∈D+

Ψ

1

(
∃ω.π = π(k).ω.PRE ⊆ s

)

+
∑

(s(k),π(k),FAIL)∈D−
Ψ

1

(
̸ ∃ω.π(k) = π.ω.PRE ⊆ s

))
+ α · |Ψ|. (4)

Intuitively, this objective selects for the minimal set of predicates Ψ such that the HLAs learned from
these predicates, ΩΨ, avoid attempting to execute a skill in states where it has previously failed while
ensuring that the HLAs enable the skill to be executed in states where it has previously succeeded.

A.3 PROMPTING FOR PREDICATES

Strategy #1 (Discrimination) is motivated by one of the primary functions of predicates–have them
in the preconditions of operators to distinguishing between the positive and negative states so the
plans the agent find are feasible. However, we observed that existing VLMs often struggle to reli-
ably understand and identify the differences between positive and negative states, especially when
dealing with scene images that deviate significantly from those seen during training. This limitation
motivates our second strategy.

Strategy #2 (Transition Modeling). With the observation that predicates present in an action’s
preconditions often also appear in some actions’ effects. We prompt the VLM to propose predicates
that describe these effects based on the positive transition segments it collects. This task is usually
easier for VLMs because it involves identifying the properties or relationships that have changed
from the start state to the end state, given the information that an action with a natural language
name (such as pick) has been successfully executed. However, this strategy alone is not exhaustive.
Certain predicates may exist solely within preconditions but not effects (e.g., an object’s material
that remains unchanged). Therefore, this method complements S1 and is used alternately with it
during the invention iterations.
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Strategy #3 (Unconditional Generation) prompts VLMs to propose derivations based on ex-
isting predicates. These derivations can incorporate a variety of logical operations, such as
negation, universal quantification (e.g., defining Clear(x) based on On(x,y)), transitive
closure, and disjunction (e.g., defining OnPlate(x,p) based on DirectlyOn(x,y) and
DirectlyOnPlate(x,p)). This approach helps create derived predicates, such as OnPlate
for Balanced (fig. 1). , which is unlikely to be proposed by the first two strategies but are essential
for correctly implementing complex predicates like Balanced. As a result, this S3 is used at every
invention iteration before either S1 or S2 is executed.

For each predicate proposal strategy, we propose a three-step method to guide the VLMs: 1) Ask the
VLM to propose predicates by providing a predicate name, a list of predicate types drawn from Λ,
and a natural language description of the assertion the predicate corresponds to. 2) Synthesize the
predicates classifiers using the syntax and API we provide for NSPs 3) Identify any potential derived
predicates and prompt a language model to transform them into the specified function signature for
derived NSPs. Given the challenges in S1, we add an additional step 0 just for this strategy. We
query the VLM to propose properties or relations among objects in natural language, which are then
formalized into predicates in Step 1.

B PYTHON API FOR NSPS

We provide the following Python API on for writing primitive NSPs: get_object(t: Type)
returns all objects in the state of a type t. get(o: Object, f: str) retrieves the feature with
name f for object o. We also have crop_to_objects(os: Sequence[Object], ...)
for cropping the state observation image to include just the specified list of ob-
jects to reduce the complexity for downstream visual reasoning. Finally, there is
evaluate_simple_assertion(a: str, i: Image) for evaluating the natural language
assertion a in the context of image i using a VLM.

C ADDITIONAL ENVIRONMENT DETAILS

Cover. This environment has goal predicate {Covers(?x:block, ?y:target)}. The ini-
tial operators are:
NSRT-Pick:

Parameters: [?block:block]
Preconditions: []
Add Effects: []
Delete Effects: []
Ignore Effects: []
Option Spec: Pick(?block:block)

NSRT-Place:
Parameters: [?block:block, ?target:target]
Preconditions: []
Add Effects: [Covers(?block:block, ?target:target)]
Delete Effects: []
Ignore Effects: []
Option Spec: Place(?block:block, ?target:target)

Blocks. This environment has goal predicates: {On(?x:block, ?y:block),
OnTable(?x:block)} and initial operators
NSRT-PickFromTable:

Parameters: [?block:block, ?robot:robot]
Preconditions: []
Add Effects: []
Delete Effects: [OnTable(?block:block)]
Ignore Effects: []
Option Spec: Pick(?robot:robot, ?block:block)

NSRT-PutOnTable:
Parameters: [?block:block, ?robot:robot]
Preconditions: []
Add Effects: [OnTable(?block:block)]
Delete Effects: []
Ignore Effects: []
Option Spec: PutOnTable(?robot:robot)

NSRT-Stack:
Parameters: [?block:block, ?otherblock:block,
?robot:robot]
Preconditions: []
Add Effects: [On(?block:block,
?otherblock:block)]
Delete Effects: []
Ignore Effects: []
Option Spec: Stack(?robot:robot,
?otherblock:block)

NSRT-Unstack:
Parameters: [?block:block, ?otherblock:block,
?robot:robot]
Preconditions: []
Add Effects: []
Delete Effects: [On(?block:block,
?otherblock:block)]
Ignore Effects: []
Option Spec: Pick(?robot:robot, ?block:block)

Coffee. This environment has goal predicates: {CupFilled(?cup:cup)}. We include the
predicate JugFilled(?jug:jug) in the initial set of predicates because it was very challenging
to have a VLM to determine this especially with the graphics in the simulator. It has initial operators:
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NSRT-PickJugFromTable:
Parameters: [?robot:robot, ?jug:jug]
Preconditions: []
Add Effects: []
Delete Effects: []
Ignore Effects: []
Option Spec: PickJug(?robot:robot, ?jug:jug)

NSRT-PlaceJugInMachine:
Parameters: [?robot:robot, ?jug:jug,
?machine:coffee_machine]
Preconditions: []
Add Effects: []
Delete Effects: []
Ignore Effects: []
Option Spec: PlaceJugInMachine(?robot:robot,

?jug:jug, ?machine:coffee_machine)

NSRT-PourFromNowhere:
Parameters: [?robot:robot, ?jug:jug,
?cup:cup]
Preconditions: []
Add Effects: [CupFilled(?cup:cup)]
Delete Effects: []
Ignore Effects: []
Option Spec: Pour(?robot:robot, ?jug:jug,
?cup:cup),

NSRT-TurnMachineOn:
Parameters: [?robot:robot, ?jug:jug,
?machine:coffee_machine]
Preconditions: []
Add Effects: [JugFilled(?jug:jug)]
Delete Effects: []
Ignore Effects: []
Option Spec: TurnMachineOn(?robot:robot,

?machine:coffee_machine),

NSRT-Twist:
Parameters: [?robot:robot, ?jug:jug]
Preconditions: []
Add Effects: []
Delete Effects: []
Ignore Effects: []
Option Spec: Twist(?robot:robot, ?jug:jug)

Cover Heavy. This has the same set of goal predicates and operators as Cover.

Balance. This has the goal predicate: {MachineOn(?x:machine)}. Here we con-
sider a continual learning setting where the agent is initialized with the abstractions com-
monly found in Blocks. They are {Clear(?x:block), ClearPlate(?x:plate),
DirectlyOn(?x:block, ?y:block), DirectlyOnPlate(?x:block,
?y:plate), GripperOpen(?x:robot), Holding(?x:block)}. The initial set
of operators is:
NSRT-PickFromTable:

Parameters: [?block:block, ?robot:robot,
?plate:plate]
Preconditions: [Clear(?block:block),
DirectlyOnPlate(?block:block, ?plate:plate),
GripperOpen(?robot:robot)]
Add Effects: [Holding(?block:block)]
Delete Effects: [Clear(?block:block),
DirectlyOnPlate(?block:block, ?plate:plate),
GripperOpen(?robot:robot)]
Ignore Effects: []
Option Spec: Pick(?robot:robot, ?block:block)

NSRT-PutOnPlate:
Parameters: [?block:block, ?robot:robot,
?plate:plate]
Preconditions: [ClearPlate(?plate:plate),
Holding(?block:block)]
Add Effects: [Clear(?block:block),
DirectlyOnPlate(?block:block, ?plate:plate),
GripperOpen(?robot:robot)]
Delete Effects: [ClearPlate(?plate:plate),
Holding(?block:block)]
Ignore Effects: []
Option Spec: PutOnPlate(?robot:robot, ?plate:plate),
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NSRT-Stack:
Parameters: [?block:block, ?otherblock:block,
?robot:robot]
Preconditions: [Clear(?otherblock:block),
Holding(?block:block)]
Add Effects: [Clear(?block:block),
DirectlyOn(?block:block, ?otherblock:block),
GripperOpen(?robot:robot)]
Delete Effects: [Clear(?otherblock:block),
Holding(?block:block)]
Ignore Effects: []
Option Spec: Stack(?robot:robot,
?otherblock:block)

NSRT-Unstack:
Parameters: [?block:block, ?otherblock:block,
?robot:robot]
Preconditions: [Clear(?block:block),
DirectlyOn(?block:block, ?otherblock:block),
GripperOpen(?robot:robot)]
Add Effects: [Clear(?otherblock:block),
Holding(?block:block)]
Delete Effects: [Clear(?block:block),
DirectlyOn(?block:block, ?otherblock:block),
GripperOpen(?robot:robot)]
Ignore Effects: []
Option Spec: Pick(?robot:robot,
?block:block)

NSRT-TurnMachineOn:
Parameters: [?robot:robot, ?machine:machine,
?plate1:plate, ?plate2:plate]
Preconditions: []
Add Effects: [MachineOn(?machine:machine)]
Delete Effects: []
Ignore Effects: []
Option Spec: TurnMachineOn(?robot:robot,
?plate1:plate, ?plate2:plate)

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 LEARNED ABSTRACTIONS

We show the example learned predicates and operators here.

D.1.1 COVER

1 ```python
2 def _GripperOpen_NSP_holds(state: RawState, objects: Sequence[Object]) -> bool:
3 robot, = objects
4 return state.get(robot, "fingers") > 0.5
5
6 name: str = "GripperOpen"
7 param_types: Sequence[Type] = [_robot_type]
8 GripperOpen = NSPredicate(name, param_types, _GripperOpen_NSP_holds)
9 ```

10
11 ```python
12 def _Holding_NSP_holds(state: RawState, objects: Sequence[Object]) -> bool:
13 robot, block = objects
14 # If the gripper is open, the robot cannot be holding anything
15 if state.get(robot, "fingers") > 0.5:
16 return False
17
18 # Crop the image to focus on the robot and block
19 attention_image = state.crop_to_objects([robot, block])
20 robot_name = robot.id_name
21 block_name = block.id_name
22 return state.evaluate_simple_assertion(
23 f"{robot_name} is holding {block_name}", attention_image
24 )
25
26 name: str = "Holding"
27 param_types: Sequence[Type] = [_robot_type, _block_type]
28 Holding = NSPredicate(name, param_types, _Holding_NSP_holds)
29 ```

NSRT-Op0:
Parameters: [?x0:block, ?x1:robot]
Preconditions: [GripperOpen(?x1:robot)]
Add Effects: [Holding(?x1:robot, ?x0:block)]
Delete Effects: [GripperOpen(?x1:robot)]
Ignore Effects: []
Option Spec: Pick(?x0:block)

NSRT-Op1:
Parameters: [?x0:block, ?x1:robot, ?x2:target]
Preconditions: [Holding(?x1:robot, ?x0:block)]
Add Effects: [Covers(?x0:block, ?x2:target), GripperOpen(?x1:robot)]
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Delete Effects: [Holding(?x1:robot, ?x0:block)]
Ignore Effects: []
Option Spec: Place(?x0:block, ?x2:target)

D.1.2 BLOCKS

1 Gripping
2 ```python
3 def _Gripping_NSP_holds(state: RawState, objects: Sequence[Object]) -> bool:
4 """Determine if the robot in objects is gripping the block in objects
5 in the scene image."""
6 robot, block = objects
7 robot_name = robot.id_name
8 block_name = block.id_name
9

10 # If the robot's fingers are open, it can't be gripping anything.
11 if state.get(robot, "fingers") > 0:
12 return False
13
14 # Crop the scene image to the smallest bounding box that include both objects.
15 attention_image = state.crop_to_objects([robot, block])
16 return state.evaluate_simple_assertion(
17 f"{robot_name} is gripping {block_name}.", attention_image)
18
19 name: str = "Gripping"
20 param_types: Sequence[Type] = [_robot_type, _block_type]
21 Gripping = NSPredicate(name, param_types, _Gripping_NSP_holds)
22 ```
23
24 Clear
25 ```python
26 # Define the classifier function
27 def _Clear_CP_holds(atoms: Set[GroundAtom], objects: Sequence[Object]) -> bool:
28 """Determine if there is no block on top of the given block."""
29
30 block, = objects
31
32 # Check if any block is on top of the given block
33 for atom in atoms:
34 if atom.predicate == On and atom.objects[1] == block:
35 return False
36 return True
37
38 # Define the predicate name here
39 name: str = "Clear"
40
41 # A list of object-type variables for the predicate, using the ones defined in the environment
42 param_types: Sequence[Type] = [_block_type]
43
44 # Instantiate the predicate
45 Clear = ConceptPredicate(name, param_types, _Clear_CP_holds)
46 ```
47
48 EmptyGripper
49 ```python
50 def _EmptyGripper_NSP_holds(state: RawState, objects: Sequence[Object]) -> bool:
51 """Determine if the gripper of robot in objects is empty in the scene image."""
52 robot, = objects
53 # If the robot's fingers are closed, it can't be empty.
54 if state.get(robot, "fingers") < 1:
55 return False
56 return True
57
58 name: str = "EmptyGripper"
59 param_types: Sequence[Type] = [_robot_type]
60 EmptyGripper = NSPredicate(name, param_types, _EmptyGripper_NSP_holds)
61 ```

NSRT-Op0:
Parameters: [?x0:block, ?x1:block, ?x2:robot]
Preconditions: [Clear(?x1:block), EmptyGripper(?x2:robot), On(?x1:block, ?x0:block)]
Add Effects: [Gripping(?x2:robot, ?x1:block)]
Delete Effects: [EmptyGripper(?x2:robot), On(?x1:block, ?x0:block)]
Ignore Effects: []
Option Spec: Pick(?x2:robot, ?x1:block)

NSRT-Op1:
Parameters: [?x0:block, ?x1:robot]
Preconditions: [Gripping(?x1:robot, ?x0:block)]

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Add Effects: [EmptyGripper(?x1:robot), OnTable(?x0:block)]
Delete Effects: [Gripping(?x1:robot, ?x0:block)]
Ignore Effects: []
Option Spec: PutOnTable(?x1:robot)

NSRT-Op2:
Parameters: [?x0:block, ?x1:robot]
Preconditions: [Clear(?x0:block), EmptyGripper(?x1:robot), OnTable(?x0:block)]
Add Effects: [Gripping(?x1:robot, ?x0:block)]
Delete Effects: [EmptyGripper(?x1:robot), OnTable(?x0:block)]
Ignore Effects: []
Option Spec: Pick(?x1:robot, ?x0:block)

NSRT-Op3:
Parameters: [?x0:block, ?x1:block, ?x2:robot]
Preconditions: [Clear(?x0:block), Gripping(?x2:robot, ?x1:block)]
Add Effects: [EmptyGripper(?x2:robot), On(?x1:block, ?x0:block)]
Delete Effects: [Gripping(?x2:robot, ?x1:block)]
Ignore Effects: []
Option Spec: Stack(?x2:robot, ?x0:block)

D.1.3 COFFEE

1 RobotHoldingJug
2
3 JugTilted
4 ```python
5 def _JugTilted_NSP_holds(state: RawState, objects: Sequence[Object]) -> bool:
6 """Determine if the jug is rotated by a non-zero angle."""
7 jug, = objects
8 # Assuming a rotation value of 0 means upright, any other value implies rotation
9 return abs(state.get(jug, "rot")) > 0.1

10
11 name: str = "JugTilted"
12 param_types: Sequence[Type] = [_jug_type]
13 JugTilted = NSPredicate(name, param_types, _JugTilted_NSP_holds)
14 ```
15
16 JugUpright
17
18 JugInMachine
19 ```python
20 def _JugInMachine_NSP_holds(state: RawState, objects: Sequence[Object]) -> bool:
21 """Jug ?x is placed inside coffee machine ?y."""
22 jug, machine = objects
23 # If the jug is being held, it cannot be in the machine.
24 if _RobotHolding_NSP_holds(state, [state.get_objects(_robot_type)[0], jug]):
25 return False
26
27 # Crop the image to focus on the jug and the coffee machine.
28 attention_image = state.crop_to_objects([jug, machine])
29 jug_name = jug.id_name
30 machine_name = machine.id_name
31 return state.evaluate_simple_assertion(
32 f"{jug_name} is placed inside {machine_name}.", attention_image
33 )
34
35 name: str = "JugInMachine"
36 param_types: Sequence[Type] = [_jug_type, _machine_type]
37 JugInMachine = NSPredicate(name, param_types, _JugInMachine_NSP_holds)
38 ```
39
40 GripperOpen

NSRT-Op0:
Parameters: [?x0:jug, ?x1:robot]
Preconditions: [GripperOpen(?x1:robot), JugUpright(?x0:jug)]
Add Effects: [RobotHoldingJug(?x1:robot, ?x0:jug)]
Delete Effects: [GripperOpen(?x1:robot)]
Ignore Effects: []
Option Spec: PickJug(?x1:robot, ?x0:jug)

NSRT-Op1:
Parameters: [?x0:coffee_machine, ?x1:jug, ?x2:robot]
Preconditions: [RobotHoldingJug(?x2:robot, ?x1:jug)]
Add Effects: [GripperOpen(?x2:robot), JugInMachine(?x1:jug, ?x0:coffee_machine)]
Delete Effects: [RobotHoldingJug(?x2:robot, ?x1:jug)]
Ignore Effects: []
Option Spec: PlaceJugInMachine(?x2:robot, ?x1:jug, ?x0:coffee_machine)

NSRT-Op2:
Parameters: [?x0:coffee_machine, ?x1:jug, ?x2:robot]
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Preconditions: [JugInMachine(?x1:jug, ?x0:coffee_machine)]
Add Effects: [JugFilled(?x1:jug)]
Delete Effects: []
Ignore Effects: []
Option Spec: TurnMachineOn(?x2:robot, ?x0:coffee_machine)

NSRT-Op3:
Parameters: [?x0:coffee_machine, ?x1:jug, ?x2:robot]
Preconditions: [JugInMachine(?x1:jug, ?x0:coffee_machine)]
Add Effects: [RobotHoldingJug(?x2:robot, ?x1:jug)]
Delete Effects: [GripperOpen(?x2:robot), JugInMachine(?x1:jug, ?x0:coffee_machine)]
Ignore Effects: []
Option Spec: PickJug(?x2:robot, ?x1:jug)

NSRT-Op4:
Parameters: [?x0:cup, ?x1:jug, ?x2:robot]
Preconditions: [JugFilled(?x1:jug), RobotHoldingJug(?x2:robot, ?x1:jug)]
Add Effects: [CupFilled(?x0:cup)]
Delete Effects: [JugFilled(?x1:jug), JugUpright(?x1:jug), RobotHoldingJug(?x2:robot, ?x1:jug)]
Ignore Effects: []
Option Spec: Pour(?x2:robot, ?x1:jug, ?x0:cup)

NSRT-Op5:
Parameters: [?x0:jug, ?x1:robot]
Preconditions: [GripperOpen(?x1:robot)]
Add Effects: [JugUpright(?x0:jug)]
Delete Effects: []
Ignore Effects: []
Option Spec: Twist(?x1:robot, ?x0:jug)

NSRT-Op6:
Parameters: [?x0:coffee_machine, ?x1:jug, ?x2:robot]
Preconditions: [JugInMachine(?x1:jug, ?x0:coffee_machine)]
Add Effects: [JugFilled(?x1:jug)]
Delete Effects: [JugInMachine(?x1:jug, ?x0:coffee_machine)]
Ignore Effects: []
Option Spec: TurnMachineOn(?x2:robot, ?x0:coffee_machine)

NSRT-Op7:
Parameters: [?x0:cup, ?x1:jug, ?x2:robot]
Preconditions: [JugFilled(?x1:jug), RobotHoldingJug(?x2:robot, ?x1:jug)]
Add Effects: [CupFilled(?x0:cup), JugTilted(?x1:jug)]
Delete Effects: [JugFilled(?x1:jug), RobotHoldingJug(?x2:robot, ?x1:jug)]
Ignore Effects: []
Option Spec: Pour(?x2:robot, ?x1:jug, ?x0:cup)

NSRT-Op8:
Parameters: [?x0:cup, ?x1:jug, ?x2:robot]
Preconditions: [JugFilled(?x1:jug), RobotHoldingJug(?x2:robot, ?x1:jug)]
Add Effects: [CupFilled(?x0:cup), JugTilted(?x1:jug)]
Delete Effects: []
Ignore Effects: []
Option Spec: Pour(?x2:robot, ?x1:jug, ?x0:cup)

NSRT-Op9:
Parameters: [?x0:cup, ?x1:jug, ?x2:robot]
Preconditions: [JugFilled(?x1:jug), RobotHoldingJug(?x2:robot, ?x1:jug)]
Add Effects: [CupFilled(?x0:cup), JugTilted(?x1:jug)]
Delete Effects: [RobotHoldingJug(?x2:robot, ?x1:jug)]
Ignore Effects: []
Option Spec: Pour(?x2:robot, ?x1:jug, ?x0:cup)

D.1.4 COVER HEAVY

1 EmptyHand
2 Holding
3 IsBlack
4 ```python
5 def _IsBlack_NSP_holds(state: State, objects: Sequence[Object]) -> bool:
6 block, = objects
7 block_id = block.id_name
8 attention_image = state.crop_to_objects([block])
9 return state.evaluate_simple_assertion(f"{block_id} is black.", attention_image)

10
11 name = "IsBlack"
12 param_types = [_block_type]
13 IsBlack = NSPredicate(name, param_types, _IsBlack_NSP_holds)
14 ```

NSRT-Op1:
Parameters: [?x0:block, ?x1:robot, ?x2:target]
Preconditions: [Holding(?x1:robot, ?x0:block)]
Add Effects: [Covers(?x0:block, ?x2:target), EmptyHand(?x1:robot)]
Delete Effects: [Holding(?x1:robot, ?x0:block)]
Ignore Effects: []
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Option Spec: Place(?x0:block, ?x2:target)
NSRT-Op0:

Parameters: [?x0:block, ?x1:robot]
Preconditions: [IsBlack(?x0:block), EmptyHand(?x1:robot)]
Add Effects: [Holding(?x1:robot, ?x0:block)]
Delete Effects: [EmptyHand(?x1:robot)]
Ignore Effects: []
Option Spec: Pick(?x0:block)

D.1.5 BALANCE

1 OnPlate
2 ```
3 def _OnPlate_CP_holds(atoms: Set[GroundAtom],
4 objects: Sequence[Object]) -> bool:
5 x, y = objects
6 for atom in atoms:
7 if atom.predicate == DirectlyOnPlate and\
8 atom.objects == [x, y]:
9 return True

10 other_blocks = {a.objects[0] for a in atoms if
11 a.predicate == DirectlyOn or\
12 a.predicate == DirectlyOnPlate}
13
14 for other_block in other_blocks:
15 holds1 = False
16 for atom in atoms:
17 if atom.predicate == DirectlyOn and\
18 atom.objects == [x, other_block]:
19 holds1 = True
20 break
21 if holds1 and _OnPlate_CP_holds(atoms, [other_block, y]):
22 return True
23 return False
24
25 name: str = "OnPlate"
26 param_types: Sequence[Type] = [_block_type, _plate_type]
27 OnPlate = ConceptPredicate(name, param_types, _OnPlate_CP_holds)
28 ```
29
30 BlocksDistributedEvenly
31 ```
32 def _BlocksDistributedEvenly_CP_holds(atoms: Set[GroundAtom],
33 objects: Sequence[Object]) -> bool:
34 plate1, plate2 = objects
35 if plate1 == plate2:
36 return False
37 count1 = 0
38 count2 = 0
39 for atom in atoms:
40 if atom.predicate == OnPlate:
41 if atom.objects[1] == plate1:
42 count1 += 1
43 elif atom.objects[1] == plate2:
44 count2 += 1
45 return count1 == count2
46
47 name: str = "BlocksDistributedEvenly"
48 param_types: Sequence[Type] = [_plate_type, _plate_type]
49 BlocksDistributedEvenly = ConceptPredicate(name, param_types,
50 _BlocksDistributedEvenly_CP_holds)
51 ```

NSRT-Unstack:
Parameters: [?block:block, ?otherblock:block, ?robot:robot]
Preconditions: [Clear(?block:block), DirectlyOn(?block:block, ?otherblock:block), GripperOpen(?robot:robot)]
Add Effects: [Clear(?otherblock:block), Holding(?block:block)]
Delete Effects: [Clear(?block:block), DirectlyOn(?block:block, ?otherblock:block), GripperOpen(?robot:robot)]
Ignore Effects: []
Option Spec: Pick(?robot:robot, ?block:block)

NSRT-Op3:
Parameters: [?block:block, ?otherblock:block, ?robot:robot]
Preconditions: [Clear(?otherblock:block), Holding(?block:block)]
Add Effects: [Clear(?block:block), DirectlyOn(?block:block, ?otherblock:block), GripperOpen(?robot:robot)]
Delete Effects: [Clear(?otherblock:block), Holding(?block:block)]
Ignore Effects: []
Option Spec: Stack(?robot:robot, ?otherblock:block)

NSRT-Op2:
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Parameters: [?x0:machine, ?x1:plate, ?x2:plate, ?x3:robot]
Preconditions: [BlocksDistributedEvenly(?x2:plate, ?x1:plate)]
Add Effects: [MachineOn(?x0:machine)]
Delete Effects: []
Ignore Effects: []
Option Spec: TurnMachineOn(?x3:robot, ?x1:plate, ?x2:plate)

NSRT-Op4:
Parameters: [?block:block, ?robot:robot, ?plate:plate]
Preconditions: [ClearPlate(?plate:plate), Holding(?block:block)]
Add Effects: [Clear(?block:block), DirectlyOnPlate(?block:block, ?plate:plate), GripperOpen(?robot:robot)]
Delete Effects: [ClearPlate(?plate:plate), Holding(?block:block)]
Ignore Effects: []
Option Spec: PutOnPlate(?robot:robot, ?plate:plate)

NSRT-PickFromTable:
Parameters: [?block:block, ?robot:robot, ?plate:plate]
Preconditions: [Clear(?block:block), DirectlyOnPlate(?block:block, ?plate:plate), GripperOpen(?robot:robot)]
Add Effects: [Holding(?block:block)]
Delete Effects: [Clear(?block:block), DirectlyOnPlate(?block:block, ?plate:plate), GripperOpen(?robot:robot)]
Ignore Effects: []
Option Spec: Pick(?robot:robot, ?block:block)

D.2 FURTHER PLANNING STATISTICS

The average planning node expaneded and wall-time statistics for our approach, alongside other
planning approaches, are summarized in the tables.

In the Blocks and Balance domains, our use of derived predicates is not out-of-box compatible with
relaxed planning heuristics, such as LM-cut, which we typically employ through Pyperplan. As a
result, we resorted to a simpler goal-count heuristic, which estimates the distance to the goal by
counting the number of unsatisfied goals. This heuristic is less informed than LM-cut, leading to
significantly larger node expansions and longer planning times in these domains than expected. In
future work, we aim to develop a version of LM-cut that is compatible with derived NSPs.

Ours Manual Sym. pred.
Environment Succ Node Time Succ Node Time Succ Node Time
Cover 100.0 9.4 0.142 100.0 8.4 0.129 100.0 26.9 0.151
Blocks 96.0 1117675 254.621 94.0 550630 101.737 7.2 121.4 4.279
Cover Heavy 97.0 7.9 0.057 100.0 5.4 0.060 46.0 5.7 0.061
Coffee 65.3 40.3 0.969 99.3 19.3 0.652 68.0 199.4 3.270
Balance 100.0 26.3 0.856 100.0 30.6 0.585 20.0 12.2 0.125

Ours Ablate op. No invent
Environment Succ Node Time Succ Node Time Succ Node Time
Cover 100.0 9.4 0.142 100.0 7.0 0.148 68.0 28.1 0.113
Blocks 96.0 1117675 254.621 12.0 24.8 0.222 1.3 321.0 0.224
Cover Heavy 97.0 7.9 0.057 46.0 5.7 0.128 36.7 29.5 0.099
Coffee 65.3 40.3 0.969 65.3 29.6 2.441 0.0 – –
Balance 100.0 26.3 0.856 100.0 28.0 1.180 25.3 13.5 0.204
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