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Abstract

Point cloud classification is a pivotal procedure in 3D computer vision, and its deployment in practical applications is often
constrained by limited computational and memory resources. To address these issues, we introduce a Semantics-Augmented
Quantization-Aware Training (SAQAT) framework designed for efficient and precise classification of point cloud data. The
SAQAT framework incorporates a point importance prediction semantic module as a side output, which assists in identifying
crucial points, along with a point importance evaluation algorithm (PIEA). The semantics module leverages point importance
prediction to skillfully select quantization levels based on local geometric properties and semantic context. This approach
reduces errors by retaining essential information. In synergy, the PIEA acts as the cornerstone, providing an additional layer of
refinement to SAQAT framework. Furthermore, we integrates a loss function that mitigates classification loss, quantization error,
and point importance prediction loss, thereby fostering a reliable representation of the quantized data. The SAQAT framework
is designed for seamless integration with existing point cloud models, enhancing their efficiency while maintaining high levels
of accuracy. Testing on benchmark datasets demonstrates that our SAQAT framework surpasses contemporary quantization
methods in classification accuracy while simultaneously economizing on memory and computational resources. Given these
advantages, our SAQAT framework holds enormous potential for a wide spectrum of applications within the rapidly evolving
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domain of 3D computer vision. Our code is released to this URL: https.//github.com/h-liming/SAQAT.
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1. Introduction

In the rapidly evolving domain of 3D computer vision [CCC*21],
research has increasingly centered on point clouds classification,
possessing considerable potential for progress. Point clouds, in-
herently high-dimensional and devoid of inherent structure, serve
as repositories for spatial information, capturing the complex ge-
ometrical nuances that define tangible environmental landscapes.
This data structure supports a wide spectrum of applications,
from autonomous vehicles, robotics, and virtual reality to 3D re-
construction and beyond [RMB*08, LYWU18, WSM™18, GKF09,
GKOM18]. Given its extensive utility, the demand for accurate and
efficient classification of these point clouds has escalated, driv-
ing researchers and practitioners to overcome this formidable chal-
lenge.

Nevertheless, the journey towards optimal practical applications
is fraught with obstacles. The imperative for real-time data process-
ing via confined computational and storage capacities is juxtaposed
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against an incontrovertible principle: the efficacy of a deep learn-
ing model is commensurately linked to its computational complex-
ity. Consequently, models with elevated predictive fidelity tend to
be encumbered by sluggish operational velocities, augmented en-
ergy expenditures, and inflated requisites for both memory storage
and model dimensions [LTL13]. This precarious balance acts as a
potential Achilles’ heel, jeopardizing the integrity and potency of
classification algorithms, and thus yielding a stagnation in advance-
ments within the discipline.

Quantization is the process of converting a large set of values
into more compact ones and is a crucial step in processing point
cloud data within the field of 3D computer vision applications. This
data condensation facilitates efficient storage and computation, ren-
dering data management more tractable. However, this indispens-
able process is not without its pitfalls. Careless or overly aggressive
quantization can result in the loss of vital data, leading to quantiza-
tion errors that can severely compromise classification outcomes,
yielding less accurate and less reliable results. Concurrently, the
task of handling voluminous point cloud datasets often comes with
substantial memory requirements, posing an additional challenge
in a field where computational efficiency is paramount [ZYX*21].


https://orcid.org/0009-0000-0748-6486
https://orcid.org/0000-0003-2115-858X
https://orcid.org/0000-0002-4266-6420
https://orcid.org/0000-0001-9392-2597
https://orcid.org/0000-0002-2635-7716
https://github.com/h-liming/SAQAT

20of 11  Liming Huang, Yunchuan Qin, Ruihui Li, Fan Wu & Kenli Li / Semantics-Augmented Quantization-Aware Training for Point Cloud Classification

In response to these multifaceted challenges, we introduce the
innovative SAQAT framework, which optimizes efficiency while
minimizing precision loss during point cloud classification. It
achieves this through the integration of a semantic prediction mod-
ule that forecasts the importance of points, coupled with a PIEA
and a loss function.

The semantic prediction module, a linchpin of our framework,
predicts point importance based on a variety of factors, includ-
ing local geometric properties and semantic context. By leverag-
ing these predictions as a guiding principle, the SAQAT framework
can discerningly select quantization levels. This judicious selection
process significantly reduces errors by preserving essential infor-
mation. In conjunction, the PIEA, another key component of our
model, refines the quantization process by generating point impor-
tance labels. Furthermore, the loss function is specifically designed
to mitigate classification loss, quantization error, and point impor-
tance prediction loss.

Designed for adaptability, the SAQAT model can be seam-
lessly integrated with existing point cloud models such as Point-
Net [QSMG17], PointNet++ [QYSG17] and DGCNN [WSL*19],
enhancing their efficiency and maintaining high levels of accu-
racy. We provides a comprehensive evaluation of the SAQAT
model’s performance, underscoring its superior classification ac-
curacy compared to baseline methods. Given these compelling ad-
vantages, the SAQAT model holds considerable potential for broad
application across diverse 3D computer vision tasks. In brief, our
contributions are summarized as follows:

e We propose a SAQAT framework suitable for 3D point cloud
classification, improving quantized network performance in var-
ious bit-widths.

e We design a point importance evaluation algorithm and loss
function, enabling the semantic module to predict the importance
of points based on local geometric properties and semantic con-
text before quantization.

e Unlike previous quantization methods that quantize the net-
work to the same bit-width, our framework decides whether to
quantize a point’s data based on it’s importance, allowing both
floating-point and integer data to coexist in quantization-aware
training.

e Experimental results on both ModelNet40 [WSK*15] and
ScanObjectNN [UPH*19] benchmarks demonstrate that our
SAQAT framework can effectively and efficiently enhance the
accuracy of various quantized models in point cloud classifica-
tion tasks.

For clarity, the rest is organized into distinct sections. Section
II provides a review of existing work on point cloud classification
and quantization methods. Section III offers a detailed exposition
of our SAQAT framework. Section IV presents a discussion of the
experimental results, illuminating the performance of our SAQAT
framework. Finally, Section V concludes the paper, summarizing
our findings and suggesting potential avenues for future research in
this fascinating area.

2. Related Work

The development and application of point cloud data in the realm
of 3D computer vision have been the focus of numerous studies in
recent years. This section presents a review of the current literature,
with a specific focus on point cloud classification and quantization
methods.

2.1. Point Cloud Classification

Classification of point cloud data is a fundamental task in 3D vi-
sion, with a broad range of applications including robotics, au-
tonomous vehicles, and 3D reconstruction. Several models have
been proposed to tackle this task.

A groundbreaking development in this area was PointNet
[QSMG17] which directly processes point cloud data by leverag-
ing a symmetric function to achieve permutation invariance. The
PointNet framework, despite its simplicity, demonstrated impres-
sive results in point cloud classification and segmentation tasks.
The PointNet++ [QYSG17] algorithm introduced a hierarchical ar-
chitecture designed for the meticulous extraction of local features
at multiple scales. Employing a FPS (farthest point sampling) algo-
rithm, PointNet++ contextualizes individual points by incorporat-
ing the attributes of their proximal neighbors. Building upon this,
PointCNN [LBS* 18] emerged as an extension to PointNet++, its
seminal contribution being the X-Conv operation, a mechanism ca-
pable of weighting and substituting both input points and their asso-
ciated features prior to subjecting them to convolutional processes.

In an attempt to capture local structures and patterns in the
point cloud data, a dynamic graph-based convolutional neural net-
work (DGCNN) [WSL*19] was introduced. The DGCNN em-
ploys EdgeConv modules that operate on local neighborhoods of
points, addressing PointNet’s limitation in capturing local fea-
tures. The LDGCNN [ZHW*19] algorithm enhances the capabil-
ities of DGCNN through the integration of hierarchical features
sourced from multi-tiered dynamic graphs via residual connections
[WZL*22]. This advancement obviates the necessity for a trans-
formation network, while empirically demonstrating that Multi-
Layer Perceptrons (MLPs) [Hor91] are efficacious in the extraction
of transformation-invariant characteristics. PointMLP [MQY *22]
employs a pure residual network architecture and integrates a
lightweight geometric affine module, significantly improving infer-
ence speed. DeLLA [CXZ*23] presents a method to decouple spatial
relations from local aggregation, demonstrating that simple neigh-
bor pooling can effectively fuse features, improving speed and per-
formance.

Transformer [VSP* 17] have achieved remarkable success in the
2D vision field, and recently, numerous researchers have extended
this architecture to the processing of point clouds. The initial suc-
cessful works in this direction were PCT [GCL*21] and Point
Transformer [ZJJ*21]. PCT [GCL*21] introduced offset-attention
that incorporates an implicit Laplace operator and a normalization
refinement, offering permutation invariance. Point Transformer
[Z1J*21] utilized local vector attention to save on computational
resources, overall resembling a deeper PointNet++ with favorable
results. Point-MAE [PWT*22], Point-BERT [YTR*22] and Point-
GPT [CWY*24] focus on using pre-trained models to perform
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Figure 1: Illustration of the proposed SAQAT framework. For an inputted point cloud, it is first fed into the point importance prediction
semantic module, from which the importance scores for each point are obtained. When the point cloud is input into the classification backbone,
the quantization mask generated based on the importance scores is used to select the quantization precision. The PIEA algorithm is used
before the max-pooling layer of the classification backbone to obtain the importance label.

masked modeling of point clouds to learn more effective feature
representations.

However, these methods, while having contributed significantly
to the progress in point cloud classification, do not directly address
issues related to quantization, which can have a substantial impact
on the model’s computational efficiency and accuracy.

2.2. Quantization for Deep Neural Networks

In deep neural networks, the exploration and application of quan-
tization techniques have been extensive. These methods are crucial
in reducing the model’s size and enhancing the speed of inference,
without altering the model’s original structure. An extensive cor-
pus of scholarly investigations has been undertaken to elucidate the
effect of quantization across various bit-widths [CBD15, HMD15,
LUWI17] and data representation formats [MNA*17, CLK*19,
KMM*19]. Quantization-aware training (QAT) has risen to promi-
nence as a standard method for crafting sturdy quantized models
with a minimal margin of error [WLL*19, ZBIW19]. Core QAT
methodologies simulate the numerical imprecisions that arise as
collateral effects of the quantization process during the forward
pass [JKC*18]. These techniques employ the Straight-Through Es-
timator (STE) [BLC13] to calculate gradients, operating under the
premise that the quantization effects are inconsequential. Degree-
Quant [TFML20] developed a tailored quantization approach for
graph neural network (GNN), which involves creating masks for
high-degree nodes and quantizing only those nodes that are un-
masked, effectively mitigating the issue of substantial degree varia-
tion between nodes. The precision loss of GNNSs is almost negligi-
ble when quantized to 8-bit using Degree-Quant [TFML20]. How-

ever, when quantized to lower bit, the accuracy of this method sig-
nificantly decreases.

Several quantization methods with prediction-head structure and
using feature maps as quantization metrics have been introduced
for 2D computer vision tasks. SeerNet [CMX*19] introduces a
novel method to speed up CNN inference by leveraging feature map
sparsity, using a highly quantized version of the original network
to accurately predict output sparsity. However, this work merely
accelerates the inference speed of CNNs that have already been
quantized and does not involve QAT. DynamicQuant [LWH*22]
presents a novel approach to deep neural network quantization,
where the quantization bit-width of each layer dynamically adjusts
based on the specific image being processed. Although this tech-
nique acknowledges the diversity and complexity of natural images
and allows for customized quantization, it is not applicable to 3D
computer vision tasks due to the inherent differences in data struc-
ture between 2D images and 3D point clouds.

Recently, a number of advancements have been made in QAT
techniques, particularly focusing on enhancements to the STE.
APQ [YLS*21] presents a new training approach for neural net-
works that allows for dynamic adjustment of numerical precision
during inference, facilitating a real-time trade-off between compu-
tational efficiency and accuracy across various vision tasks without
performance degradation. EWGS [LKH21] introduces Element-
wise Gradient Scaling (EWGS), an alternative to the STE, for train-
ing quantized neural networks by adaptively scaling each gradi-
ent element to account for discretization errors, thereby improving
both stability and accuracy. LLT [WDW*22] introduces learnable
lookup tables for neural network quantization, offering an end-to-
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end trainable and computationally efficient approach that outper-
forms traditional linear quantizers across multiple tasks.

To address the resource limitations of point cloud applications
on edge devices, several quantization techniques for point clouds
have been developed. BiPointNet [QCZ*20] introduces the pio-
neering binarization approach for optimizing deep learning with
point clouds, employing Entropy-Maximizing Aggregation and
Layer-wise Scale Recovery to significantly surpass contemporary
binarization methods. LIDAR-PTQ [ZLZ*24] is a tailored Post-
Training Quantization method that identifies the underlying reasons
behind performance decline in quantizing LiDAR-based detection,
offering favorable efficiency compared to conventional QAT ap-
proaches.

2.3. Point Cloud Saliency Map

In the field of 2D computer vision, saliency map has been widely
studied to assess which pixels are more important for model clas-
sification performance [SVZ13, PMJ*16]. Saliency map has also
been proposed as a crucial technique in point clouds learning to
mitigate noise and reduce data dimensions resulting from their un-
structured nature, enhancing both model robustness and compu-
tational efficiency [ALM19, ALM20]. In [ZCY*19], they sequen-
tially relocate points to the center of the point cloud and construct
a saliency map by determining their importance for classification
based on their impact on the classification loss. In [SYX*21], they
developed a technique employing a projection neural network to
generate a saliency map. SD-GCN [ML22] creates a saliency map
by measuring the distance between the normal of each point’s fea-
tures and the principal normal of the input point cloud.

The existing point cloud saliency methods share certain similar-
ities with our PIEA, but also differ notably. The similarity is that
both can only calculate the point importance after the point cloud
backbone network has produced predictions. The difference lies in
that these methods rely on pre-trained point cloud networks and
gradients, whereas our algorithm operates independently of these
requirements.

3. Methodology

Fig. 1 provides a comprehensive depiction of the SAQAT frame-
work proposed in this study. In Section 3.1, our discourse initially
unravels the SAQAT framework. We then discuss three key features
of our framework that make it particularly effective. They are: the
point importance prediction semantic module, the PIEA, and the
loss function. These are described in detail in Sections 3.2, 3.3, and
3.4, respectively, illuminating their individual and collective roles
in advancing the state of point cloud classification.

3.1. SAQAT Framework for Point Cloud Classification

Consider a point cloud P, containing N points and represented as
P e RVX3, Inspired by [TFML20], we propose a novel SAQAT
mechanism to quantize the point cloud. Notably, our work stands
apart from typical QAT architectures as it integrates an auxiliary se-
mantic branch that enables real-time prediction of the importance
of points within the point cloud. With this foresight, we can assign
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Figure 2: Block diagram of the point importance prediction seman-
tic module.

full precision to semantically important points, thus preserving crit-
ical data while compressing relatively unimportant points to reduce
the overall bit-width.

Our network architecture bifurcates into two main branches-
the classification backbone for 3D classification tasks, and a more
streamlined network for predictive functions. During training, the
point cloud P serves as an input to both the classification backbone
and the semantic prediction branch. We first route each point cloud
through the point importance prediction semantic module (eluci-
dated in Section 3.2). Consequently, the semantic branch yields
a continuous [0, 1] vector of importance, p, equal in length to the
number of points for each point cloud. This vector indicates the de-
gree of semantic information each point holds. According to The-
orem 2 proposed in the PointNet [QSMG17] paper, after the point
cloud passes through the maxpooling layer of the backbone net-
work, only the features of the points in the critical point set are
retained. We consider the points with more retained features to be
more important, contributing more significantly to the final classi-
fication result. In our model, a higher value of p; corresponds to
greater importance of point i, given that points of high importance
are typically the primary contributors to classification backbone er-
rors. It’s important to note that such semantic prediction is per-
formed only once at the input position of each point cloud frame.

Regarding the classification backbone, prior to performing quan-
tization, we use a hyperparameter pmqy which, when multiplied
with the point importance vector p, produces a vector of mask-
ing probabilities q. Subsequently, this probability vector, q, is con-
verted into a protective point mask m, a {0,1} vector, using a
Bernoulli function: m ~ Bernoulli(q). Owing to the sparse na-
ture of point clouds and the operational characteristics of 3D sparse
convolution, we observe less diffusion of semantic information in
3D point clouds compared to 2D images. Therefore, we pass this
point mask from the first layer to the last layer of our network,
keeping the prediction overhead minimal. SAQAT is designed to
promote precise transfer of semantic information by probabilisti-
cally protecting important points from quantization. All masked
points maintain full precision during processing in the classifica-
tion backbone. During testing, protection is deactivated, allowing
all points to operate at low precision. We adopt this training strat-
egy because the quantization errors of important points can produce
large backpropagation gradients, leading to unstable updates of the
model weights. The use of a Bernoulli function during training en-
sures that most important points maintain FP32 precision in each
epoch, with only a small fraction being quantized. This allows for
smoother updates to the model weights. Over 200 epochs, almost
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Figure 3: llustration of the proposed PIEA.

every important point is quantized several times, resulting in better
outcomes on the test set when fully quantized.

In this study, we emphasize point cloud based 3D object classi-
fication, a crucial aspect for 3D computer vision applications. Ac-
cordingly, we adopt the conventional classification loss, L, for
our QAT framework. However, to further enhance the quality of
semantic prediction, we incorporate a PIEA (elaborated in Section
3.3), and an additional semantic prediction loss Lsenm. For the i-th
point, we assign an importance label s; € [0, 1] using the PIEA, and
subsequently train the prediction p; to approximate s;.

3.2. Point Importance Prediction Semantic Module

Since PIEA can only obtain the point importance label after the
point cloud has been processed by the classification backbone, and
we wish to obtain the point importance score at the time of point
cloud input so that the point importance score can be utilized in the
quantization of the classification backbone, therefore, we designed
the point importance prediction semantic module.

We initiate the procedure by assimilating local geometric traits
and semantic context corresponding to each point within the point
cloud. This process is enabled through the utilization of a varia-
tion of EdgeConv, which serves as a foundational filtration CNN to
transform the rudimentary input of the point cloud into a feature-
rich output. The block diagram of point importance prediction se-
mantic module is shown in Fig. 2. Contrasting starkly with the
standard EdgeConv operator that harnesses a duo of kernels in the
edge feature function, our approach deploys an triple-kernel for-
mula: he (x;,x; — x;, (x; —x,-)z) following [NTR*20]. This formula
encompasses an element-wise square operation between each indi-
vidual point, denoted as x;, and its neighbouring point, represented
as x j

Within the point importance prediction semantic module, apply-
ing EdgeConv equipped with 64 filters to the input point cloud of
dimensions n x 3 yields a transformed point cloud featuring dimen-

Algorithm 1 Point Importance Evaluation Algorithm (PIEA)
Input: F e RV*4
Output: S ¢ RY

: for i =0 to ncols(F) — 1 do

1

2:  id[i] = argmax(F[:,i])

3: end for

4: uid = unique(id)

5: £i[j] = | {i | id[i] == uid[}]} | // frequency of wid[/] in id
6: uf; = unique(f;)

7: sufj = sort(uf;)

8: fulk] = |{/j | £;[j] == sufi[k]} | // frequency of sufj[k] in f;
9: step_size = 1 + sum(fu)
10: disn = step_size X fu
11: disf = camsum(disn)
12: for i =0 to |uid| — 1 do
13:  S[uid[/]] =dis¢[suf;.index(f;[i])]
14: end for

sions of n x 64. Following this, a chain of MLP layers, size 256, 128
and 1 respectively, transform the feature vector into the importance
score. The concluding stage involves the application of a sigmoid
function, which regulates the importance score to fall within the
confines of 0 and 1. Additionally, we apply the LeakyReLU activa-
tion function and batch normalization across all layers to enhance
the module’s performance.

3.3. Point Importance Evaluation Algorithm

The training of the point importance prediction semantic module
necessitates the existence of the importance label s;. [QSMG17]
provides the definition of the critical point set. Identifying these
key points within a point cloud, which embody the maximal data
that ought to be safeguarded within a max pooling procedure, forms
the crux of this process. Such points may be susceptible to vari-
ations depending upon the task or application at hand. The data
fed into the max pooling layer comprises an unordered point cloud
embodying N points, wherein each is expressed through a feature
vector x € RY, with R denoting the set of real numbers and d rep-
resenting the dimension of the feature vector. The PIEA endeavors
to allocate importance label s; € [0, 1] to every input point.

A visualization of the proposed PIEA can be found in Fig. 3,
with the pseudo-code for PIEA elaborated upon in Algorithm 1.
The following elucidates the algorithm steps:

1. The input point cloud F is essentially a matrix comprising n
rows (equating to n input points) and d columns (paralleling to
d-dimensional feature vectors).

2. The first operation (Operation 2) entails the storage of the in-
dex of each row featuring maximum value into the index vector
id, which houses the indices of all points contributing to the fea-
ture vector. These points, by definition, are labeled as important
points.

3. id might encapsulate multiple iterations of the same point. To
mitigate these repetitions, unique indices are extracted from id
through the “unique" function (Operation 4). The output set of
unique indices is denoted as the important set uid. The frequency
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of each important point’s occurrence in id is designated as fj
(Operation 5).

4. Operation 6 involves the extraction of unique frequency from
f;, expressed as ufj. Following this, ufj is arranged in ascending
order to yield sufj (Operation 7). The frequency of each unique
frequency’s presence within f; is accounted for (Operation 8),
and is represented as fy.

5. Subsequent operations involve the calculation of the importance
score step size, equivalent to the reciprocal of sum(fy) (Opera-
tion 9). Number-based importance distributions disn are derived
by multiplying fy by the step size (Operation 10).

6. Frequency-based importance distributions, denoted as dis¢, are
obtained by executing cumsum(disn) (Operation 11).

7. Finally, the frequency of each point in uid is identified, with the
index of the frequency in sufj located. The importance score S is
then directly assigned using disg and the index (Operation 13). It
should be noted that all points deemed unimportant are allocated
0 as their importance score.

3.4. Defining the Loss Function

Training the point importance prediction semantic module solely
utilizing the basic loss functions related to the classification task
proves inadequate. Consequently, we formulate a loss function, £,
as follows:

L= L.+ 0Lsem, (H

where L, symbolizes the classification loss, while L signifies
the loss of the point importance prediction semantic module. The
o term serves as a weighting factor to equilibrate the impacts of
both terms. To elaborate, L corresponds to the original backbone
network classification loss. We employ a binary cross-entropy loss
computation for Lem, which gauges the disparity between the pre-
dicted importance score and the importance label. As for a, it con-
stitutes the hyperparameter for fine-tuning each individual back-
bone network and dataset.

4. Experiments

In this section, we evaluate our SAQAT framework by comparing
it with standard datasets and current leading quantization methods,
including APQ [YLS*21], EWGS [LKH21], and LLT [WDW*22].
To explicitly describe the quantization of weights and activations
as INTS8 or INT4, etc., we use labels such as “8-bit" or “4-bit".
Initially, we describe the experimental arrangement, which will be
succeeded by a comprehensive analysis of the derived outcomes.

4.1. Experimental Setup

Datasets: Our assessment is performed using the ModelNet40
[WSK*15] and ScanObjectNN [UPH"19] 3D object classifica-
tion dataset. The ModelNet40 dataset encompasses 12,311 CAD
models that have been meshed, hailing from 40 distinct object
categories. Among these, 9,843 models are employed for train-
ing purposes, while the remaining 2,468 are dedicated to testing.
The ScanObjectNN dataset comprises approximately 15,000 real-
world scanned objects, organized into 15 distinct categories fea-
turing 2,902 unique instances of objects. We focus on the most

challenging variant, known as PB_T50_RS. This variant is partic-
ularly demanding due to the presence of occlusions and noise, pre-
senting considerable obstacles for current methodologies in point
cloud classification. For the two datasets, points numbering 1,024
are uniformly extracted from each model’s mesh surface and then
normalized to fit within the confines of a unit sphere.

Implementation Specifics: Our framework employs PointNet
[QSMG17], PointNet++ [QYSG17] and DGCNN [WSL*19] as
backbone networks, alongside STE [CHS*16] for quantization
methods. PointNet [QSMG17] and PointNet++ [QYSG17] serves
as the underlying architecture for a multitude of point-based
3D methodologies [YSLJ20, LZC*21], while DGCNN [WSL*19]
finds its applications in an array of graph-centric 3D techniques
[LNL*19, XSW*20]. We have opted for PyTorch renditions of
PointNet [Yan19], PointNet++ [QYSG17] and DGCNN [Ta020],
and have harnessed the prowess of Brevitas [Pap23] as a library to
conduct quantization-aware training for neural network quantiza-
tion.

Each layer of the backbone network is subjected to quantization
protocols, encompassing both the first and last layers. When 8-bit
quantization is employed, both the input, weights and activations
of the model are quantized into 8-bit integers. However, under the
regime of 4-bit, 3-bit and 2-bit quantization, the input, weights and
activations of the model’s first layer are quantized into 8-bit inte-
gers, while the remaining components are quantized to 4-bit , 3-bit
and 2-bit respectively. Our approach, along with the three compar-
ative methods, all adopt this strategy for a fair comparison. This
stratagem was devised upon the realization that it strikes an effi-
cacious balance, augmenting the model’s accuracy without incur-
ring a substantial computational overhead [CLT*20]. We employ
the AbsMax method to monitor the quantization range, a technique
that is both expeditious and minimizes the introduction of substan-
tial quantization errors. For all output from activation functions, we
implement Per-Tensor quantization: a uniform quantization opera-
tion is executed across the entire tensor, with all elements sharing
a single scaling factor. Conversely, for all weights in convolutional
and linear layers, we adopt Per-Channel quantization: this signifies
that each channel—or equivalently, each input feature—possesses
an individual scaling factor. This form of quantization is markedly
more precise as it allows for channel-specific adjustments to the
quantization parameters in order to maximize accuracy. Neverthe-
less, this entails the necessity for storing a larger array of quantiza-
tion parameters, which could potentially augment the overall size
of the model.

The models are trained from scratch, eschewing the utilization of
pre-trained full-precision models. This training configuration fol-
lows [ZST*18, FSG*20], which can assist the network in dealing
with quantization noise when the network is partially quantized.
This setup minimizes the quantization errors associated with the
use of the STE, resulting in better outcomes compared to fine-tune
a pre-trained model, particularly when quantizing to lower than
8-bit. We utilize the Adam optimizer for the training of PointNet
and PointNet++, with the learning rate and decay rate set at Se-4
and le-4 respectively. PointNet training is conducted on an Nvidia
RTX2080Ti GPU with a batch size of 32, requiring approximately
7 hours to complete 200 epochs. PointNet++ training is performed
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Table 1: Classification performance achieved on the ModelNet40 and ScanObjectNN datasets in overall accuracy (OA, %).

Model Method ModelNet40 ScanObjectNN
FP32  8-bit 4-bit 3-bit 2-bit FP32 8-bit 4-bit 3-bit 2-bit
APQ [YLS*21] 90.6 90.6 89.8 89.3 66.7 660 658 654
PointNet EWGS [LKI;IZI] 90.6 859 856 752 509 68.2 59.3  49.1 387 249
LLT [WDW™22] 787 742 693 654 485 503 46.6 43.6
SAQAT(Ours) 90.7 90.6 903 888 68.0 684 663 649
APQ [YLS*21] 920 920 919 914 713 776 783 76.7
PointNetit EWGS [LKI;IZI] 902 912 90.7 903 343 79.8 76.8 742 705 205
LLT [WDW™22] 90.0 892 89.1 81.0 70.5 688 683 62.6
SAQAT(Ours) 925 926 923 917 794 795 784 78.0
APQ [YLS*21] 885 825 81.8 759 72.8 746 702 595
DGCNN EWGS [LKI;IZI] 933 8.1 77.1 413 258 781 422 325 336 202
LLT [WDW™22] 912 89.7 788 749 68.8 669 657 58.7
SAQAT(Ours) 928 925 919 893 799 780 762 67.6

Table 2: 8-bit latency results run on a 22 core 2.1GHz Intel Xeon
Gold 6152 CPU. Quantization provides large speedups.

Model Size (KB) Inference Time (ms)
Model
FP32  8-bit Ratio FP32 8-bit Ratio
PointNet 2721 718 3.79 27 8 3.38
PointNet++ 5751 1459 3.94 66 14 4.71
DGCNN 5036 1314 3.83 2812 705 3.99

on an Nvidia RTX4090 GPU, with a batch size of 32, necessitating
10 hours to finalize 200 epochs. For DGCNN, the SGD optimizer
is used with a learning rate and decay rate of le-3 and le-5 re-
spectively. The network training, conducted on an Nvidia RTX3090
GPU with a batch size of 32, requires 15 hours for completion of
250 epochs. To effectuate an equitable comparative analysis, we
have conducted a modest hyperparameter search across all SOTA
methodologies, inclusive of learning rates and their idiosyncratic
quantization parameters.

4.2. Results and Discussion
4.2.1. Evaluation of Classification Accuracy

Table 1 illustrates the superior quantization capabilities of SAQAT
across three backbone models, two datasets, and multiple quan-
tization bit-widths. Nearly all results obtained from our SAQAT
surpass other SOTA methods, as shown in the last row of each
model. The best results are highlighted in bold. We observe that
the APQ [YLS*21] performs well on PointNet and PointNet++ but
poorly on DGCNN. Conversely, the LLT [WDW *22] exhibits the
opposite behavior. The EWGS [LKH21] exhibits moderate perfor-
mance across three backbone networks, but its performance plum-
mets dramatically when the networks are quantized to 2-bit. How-
ever, our SAQAT quantization method demonstrates the highest
applicability, achieving the best results in almost all tests. In de-
tail, for PointNet, our method exhibits slightly lower classification

accuracy than APQ by 0.5% only in 2-bit quantization, while ac-
curacy at other bit-widths surpasses that of other methods, with a
maximum lead of 2.4% over the second best approach. For Point-
Net++, it shows the minimal reduction in performance across any
bit-width, our method yields results that are slightly ahead of the
second best approach. For the test results of DGCNN, our method
significantly outperforms other quantization methods under various
bit-widths. Compared to the second-best method (i.e., APQ), for the
ModelNet40 dataset, our method achieves 11.1% and 13.4% higher
accuracy when quantized to 3-bit and 2-bit, respectively. On the
ScanObjectNN dataset, when quantized to 8-bit, 3-bit, and 2-bit,
our method exceeds its accuracy by 7.1%, 6%, and 8.1%, respec-
tively.

In our framework configuration, we adopted an aggressive ap-
proach: quantization is applied across all network layers. When
quantizing the first layer of the network, the features of the in-
put points are solely their three-dimensional coordinates. Quantiza-
tion leads to the homogenization of coordinates for some adjacent
points. However, our framework preserves the salient information
of pivotal points during the training process, thereby augmenting
the overall accuracy of the entire network. To achieve optimal in-
ference acceleration, it is imperative to quantize each layer. This
ensures that the model consistently operates using integer-based
arithmetic, thereby eliminating the need for floating-point compu-
tations.

4.2.2. Evaluation of Classification Efficiency

In addition to significantly reducing model size, quantization also
serves to expedite model inference time and enhance throughput,
particularly when employing CPUs for inference [XLC*19]. Our
observations substantiate that the 8-bit algorithm can amplify in-
ference speed by up to 4.71x. It’s noteworthy that the multiplica-
tive increase in inference speed is contingent upon the depth of the
backbone network. Ergo, we conducted benchmark tests on Point-
Net, PointNet++ and DGCNN, with the results tabulated in Table
2. For PointNet, the model size was contracted by 3.79x, yielding
an acceleration of 3.38x. For PointNet++, the model size was re-
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Figure 4: Effectiveness test of the point importance prediction semantic module. The metric is training overall classification accuracy (%)
and semantic loss (Lsem) over epochs under 8-bit quantization. The dataset in the first row is ModelNet40, while that in the second row is
ScanObjectNN. The models in each column are: (a) PointNet. (b) PointNet++. (c) DGCNN.

Table 3: Effectiveness test of the PIEA. Experimental results on
the overall accuracy (%) of different point importance evaluation
methods under 8-bit quantization.

Model Method ModelNet40  ScanObjectNN
Finean 90.1 65.5
PointNet PIEAy;, 90.4 66.6
PIEA (Ours) 90.7 68.0
Fmean 92.0 78.8
PointNet++ PIEAy;, 92.3 78.5
PIEA (Ours) 92.5 79.4
Finean 92.3 78.9
DGCNN PIEAyi, 92.7 79.8
PIEA (Ours) 92.8 79.9

duced by 3.94x, resulting in an acceleration of 4.71x. For DGCNN,
the model was shrunk by 3.83x, engendering an acceleration of
3.99x. Equally salient is the imperative of deploying quantized net-
works for optimal utility on compact devices such as smartphones.
These accelerators predominantly expedite integer calculations and
CPUs remain the ubiquitous choice for model servicing on servers
[LLLB17]. The diminution of CPU latency is attributable to en-
hanced cache performance of sparse operations; in contrast, GPUs
offer lesser quantization advantages due to their massive parallel
architectures adopting non-cache strategies to mask the intrinsic
sluggish random memory accesses in such applications.

4.3. Ablation Study

In this section, a series of ablation studies were conducted to exam-
ine the contributions of the proposed point importance prediction
semantic module, PIEA, and the introduced loss function in en-
hancing the performance of classification tasks for quantized net-

works. Due to the considerable computational cost and extended
training time, we opted to utilize 8-bit quantization for these abla-
tion studies.

4.3.1. Effectiveness of Point Importance Prediction Semantic
Module

Our SAQAT framework harnesses point importance prediction to
adeptly select quantization levels, contingent on local geometric
features and semantic context. As a result, the prediction accu-
racy becomes pivotal for the succeeding quantization-aware train-
ing. We monitor the predictive loss of the semantics module (Lgen)
throughout the training process, with the outcomes displayed in
Fig. 4. In this experiment, a notable trend is observed with the in-
crease in training epochs: the Lyen gradually decreases, while the
overall training accuracy steadily improves. However, the decreas-
ing trend of L for the three backbone networks shows slight
variations; PointNet and DGCNN exhibit a relatively steady de-
cline in Lgem on the ModelNet40 dataset, while other sets of ex-
periments show some oscillations. The reason is that the ScanOb-
jectNN dataset makes it more difficult for the semantic module to
capture crucial point information, and in PointNet++, the SA (Set
Abstraction) module ultimately retains only 128 points for train-
ing the semantic module, whereas the other two backbone net-
works utilize all 1024 points in each iteration. The experimental re-
sults demonstrate that the accuracy of importance predictions made
by our semantic module continuously strengthens throughout the
learning process, thereby enhancing the backbone model’s ability
to classify samples. Consequently, this leads to an improvement in
the quantized model’s accuracy.

4.3.2. Effectiveness of Point Importance Evaluation Algorithm

The function of the PIEA lies in the computational generation of
a scalar metric of point importance, symbolically represented by
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Figure 5: Effectiveness test of the loss function. The metric is overall classification accuracy of 8-bit quantization on the ModelNet40 and
ScanObjectNN test sets. The left Y-axis represents accuracy on the ModelNet40 dataset, and the right Y-axis represents accuracy on the
ScanObjectNN dataset. The three backbone networks have different optimal o values.

si, which serves as an indispensable catalyst in the training pro-
cess of the semantic module. To substantiate the efficacy of the
PIEA approach, we juxtapose it against two rudimentary alterna-
tives: Fmean and PIEAy;,. Fmean simply adds up the feature vectors
of each point and then divides by the dimensionality of the fea-
ture vectors to calculate the average value of the features. Subse-
quently, based on the size of the average value, it uniformly maps
the importance of each point to a range from O to 1 using Min-
Max normalization. However, this strategy has a drawback: since
backbone networks utilize max pooling as a symmetric function to
extract features, it results in assigning greater importance to points
with larger average values but no prominent features in any dimen-
sion. Conversely, points with a few standout feature dimensions,
which should have a medium level of importance, are assigned
minimal importance by this strategy. This leads to a discrepancy
between the assigned importance and the actual expected impor-
tance. PIEAy;, employs a dichotomous assignment for s;. Under
this alternative schema, a specific point within the point cloud ac-
quires the label “important” if any one of its attributes influences
the maximal pooling operational output—this is irrespective of the
cumulative cardinality of such contributive features. To elucidate,
assume one point contributes a pair of features, while another con-
tributes a decuple; in the context of PIEAy,,, both instances are ac-
corded equivalent importance. Simplifying, within the confines of
PIEAy,,, the construct of “importance" is binarized; a point is ren-
dered as either important or not. Table 3 illustrates the comparative
outcomes, confirming that under 8-bit quantization, in the Model-
Net40 dataset, PIEA enhanced the prediction accuracy of Point-
Net by 0.3%, PointNet++ by 0.2%, and DGCNN by 0.1%. In the
ScanObjectNN dataset, PIEA increased the prediction accuracy of
PointNet by 1.4%, PointNet++ by 0.6%, and DGCNN by 0.1%.
This thereby corroborates its role in enhancing the overall accuracy
of the quantized backbone network.

4.3.3. Effectiveness of Loss Function

To validate the effectiveness of the loss function, we conducted
experiments on three types of backbone networks using multiple
o values under 8-bit quantization, and Fig. 5 displays the results.
When a isn’t zero, the value of the semantic module’s prediction
error factors into the calculation of the loss function. The larger the
o value, the more our framework emphasizes the prediction of the

semantic module. The smaller the o value, the more our framework
prioritizes the classification accuracy of the backbone networks.
When the o value is 0, backpropagation only uses the classification
loss of the backbone networks. The experimental results indicate
that for PointNet and PointNet++, the optimal o values are 0.5 and
5, respectively, on both datasets. For DGCNN, an o value of 0.5
yields the best results on the ModelNet40 dataset, and an o value
of 10 is most effective on the ScanObjectNN dataset. The compar-
ison data indicate that our loss function is particularly suitable for
the methodology described in this paper.

5. Conclusion

In conclusion, this work presented SAQAT, a novel framework
for efficient quantization of point cloud classification networks.
We adopted a unique approach incorporating a point importance
prediction semantic module and a point importance evaluation
algorithm, leading to enhanced effectiveness. Our loss function,
which combines backbone network classification loss, quantiza-
tion error and semantic module prediction loss, proved essential
in fine-tuning the model’s performance. Evaluations on benchmark
datasets highlighted the superiority of SAQAT over SOTA methods,
with significant accuracy improvements. While we demonstrated
the potency of SAQAT in this study, future research could explore
its applications across a broader range of tasks and architectures.
Ultimately, the findings from this work contribute to the advance-
ment of 3D computer vision, an area of crucial importance in fields
ranging from robotics to autonomous driving.
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