
GCP-VQVAE: A Geometry-Complete Language for Protein 3D Structure

Mahdi Pourmirzaei ^{1,2,*}

Alex Morehead ³

Farzaneh Esmaili ¹

Jarett Ren ⁴

Mohammadreza Pourmirzaei ⁵

Dong Xu ¹

¹ University of Missouri

{mpngf,f.esmaili,xudong}@missouri.edu

² ProGene

³ Lawrence Berkeley National Laboratory (Berkeley Lab)

acmwhb@lbl.gov

⁴ Carnegie Mellon University

jzren@andrew.cmu.edu

⁵ Politecnico di Milano, Milan, Italy

mohammadreza.pourmirzaei@polimi.it

Abstract

Converting protein tertiary structure into discrete tokens via vector-quantized variational autoencoders (VQ-VAEs) creates a language of 3D geometry and provides a natural interface between sequence and structure models. While pose invariance is commonly enforced, retaining chirality and directional cues without sacrificing reconstruction accuracy remains challenging. In this paper, we introduce GCP-VQVAE, a geometry-complete tokenizer built around a strictly SE(3)-equivariant GCPNet encoder that preserves orientation and chirality of protein backbone. We vector-quantize pose-invariant readouts into a 4096-token vocabulary, and a transformer decoder maps tokens back to backbone coordinates via a 6D rotation head trained with SE(3)-invariant objectives.

Building on these properties, we train GCP-VQVAE on a corpus of 24 million monomer protein backbone structures gathered from the AlphaFold Protein Structure Database. On the CAMEO-2024, CASP15, and CASP16 evaluation datasets, the model achieves backbone RMSDs of 0.4377 Å, 0.5293 Å, and 0.7576 Å, respectively, and achieves 100% codebook utilization on a held-out validation set, substantially outperforming prior VQ-VAE-based tokenizers and achieving state-of-the-art performance. Lastly, we elaborate on the various applications of this foundation-like model, such as protein structure compression and the integration of generative AI models. We make the GCP-VQVAE source code and its pre-trained weights fully open for the research community.

1 Introduction

Proteins are the molecular machines of life, and their function is intricately tied to their three-dimensional structures [1, 2]. Understanding and predicting these structures remains one of the central challenges in computational biology [3]. Just as natural language is governed by grammatical and contextual rules, protein 3D structures exhibit spatial patterns and constraints that suggest an underlying “grammar” of folds and interactions [4–6].

Figure 1: Superposition of GCP-VQVAE reconstructions (orange) with native structures (green) for four long, held-out backbone coordinates of proteins. Left→right: T1079 (CASP14; 482 residues; TM-score 0.9909; RMSD 0.7533 Å), T2272S8 (CASP16; 818 residues; TM-score 0.9967; RMSD 0.5639 Å), T1157s1-D1 (CASP15; 661 residues; TM-score 0.9920; RMSD 0.8172 Å), and 8BQU, chain A (CAMEO-2024; 298 residues; TM-score 0.9764; RMSD 0.9981 Å).

Despite advances in protein structure prediction, effectively representing the 3D geometry of proteins in a form suitable for generative modeling remains an open problem [7, 8]. While recent methods have begun to leverage generative AI, such as diffusion models and autoregressive frameworks, to produce full-atom structures or backbone coordinates, they still lag behind other domains such as language or vision in terms of reconstruction precision, scalability to large and diverse datasets, and openness for the broader research community, like natural language or image and video generation [9]. These gaps continue to constrain our ability to build powerful, general-purpose protein models using modern AI techniques.

Beyond generative modeling, learning a discrete language for protein 3D structure opens up a wide range of downstream applications. First, compressing 3D coordinates into compact sequences of integer codes—while preserving accurate reconstruction—can substantially reduce storage and transmission costs for structural data [10]. Second, discrete structural representations enable fast, alignment-style comparison of protein shapes, analogous to multiple sequence alignment in sequence space [11]. Third, in learnable quantization frameworks such as vector-quantized autoencoders, these codes can be decoded into semantically rich continuous embeddings [9], facilitating structure-aware feature extraction for classification, clustering, structure-based comparison/search, and other predictive tasks. Finally, unifying protein sequence and structure through a shared discrete representation may pave the way for multimodal generative models that bridge amino acid sequences and 3D folds within a common language modeling framework [12].

However, most existing protein-structure VQVAEs are either closed-source or only partially released (e.g., code without full evaluation scripts or strongest checkpoints), which impedes reproducible comparison [13, 14]. Furthermore, the publicly available baselines often generalize with lower precision to *unseen* proteins. Consequently, the field lacks a fully open-source, high-accuracy tokenizer with transparent training and evaluation that demonstrably transfers to new proteins.

Contributions. (1) We introduce GCP-VQVAE, a geometry-complete tokenizer that preserves orientation and chirality while producing pose-invariant codes that support missing coordinates. (2) We scale training to 24M monomers and report exhaustive evaluations (CAMEO-2024, CASP14/15/16). (3) Our model achieves state-of-the-art reconstruction on a diverse range of unseen 3D structures, and stays ahead of other open-source methods. (4) We release code, checkpoints, and unified evaluation scripts for ourselves and baselines, enabling reproducible comparison.

2 Related Work

An early and influential approach to casting protein 3D structure as a discrete language is Fold-Seek [15], which learns a 20-state 3Di alphabet with a VQ-VAE trained for evolutionary conservation and encodes structures as token sequences for ultra-fast k-mer-based local/global alignment [15]. Building on the notion of a discrete structural language—but targeting generative reconstruction rather than search—the FoldToken series [16–18, 13] develops a VQ-VAE-style tokenizer and decoder: FoldToken introduces a SoftCVQ fold language with joint sequence–structure genera-

tion; FoldToken2 stabilizes quantization and extends to multi-chain settings; FoldToken3 mitigates gradient/class-space issues to reach 256-token compression with minimal loss; and FoldToken4 unifies cross-scale consistency and hierarchies in a single model, reducing redundant multi-scale training and code storage.

Another study [9] introduces AminoAseed codebook reparameterization plus Pareto-optimal KxD sizing. They proposed structtokenbench, a fine-grained evaluation suite and diagnoses codebook under-utilization in VQVAE PSTs. Concurrently, [19] tokenizes protein backbones with a VQ autoencoder (codebooks 4k–64k), its main open source limitations are not supporting fewer than 50 or more than 512 amino acids.

ESM-3 [14] couples its multimodal transformer with a VQVAE structure tokenizer that discretizes local 3D geometry into structure tokens; structure, sequence, and function are jointly trained under a masked-token objective. The tokenizer uses an SE(3)-aware module within the encoder, and ESM-3 employs a 4096-code structure codebook (plus special tokens) for downstream generation and masked reconstruction.

Across prior structure tokenizers, neither openness nor accuracy is yet satisfactory. The FoldToken line spans four variants, but to our knowledge, only FoldToken-4 offers a partial open release, without the strongest checkpoints, limiting reproducibility [13]. ESM-3 exposes an internal VQ-VAE tokenizer, yet public artifacts lack fully documented training/evaluation procedures and best weights, making directly comparable reconstruction benchmarking difficult [14]. The open VQ autoencoder of [19] supports a restricted length window (e.g., ~ 50 –512 residues), precluding fair assessment on long chains where reconstruction accuracy degradation is most evident. Finally, FoldSeek’s learned 3Di alphabet targets ultra-fast structure search and does not provide a generative decoder from discrete codes back to coordinates, so reconstruction fidelity cannot be evaluated [15]. Consequently, the community still lacks a fully open, end-to-end tokenizer with released best weights and source codes that attains high reconstruction accuracy on *unseen* proteins.

3 Dataset

We began with the latest release of UniRef50 [20]¹, which clusters protein sequences at 50% identity and thus offers a natural, non-redundant scaffold for large-scale structure modeling. For every UniRef50 entry with a corresponding model in the AlphaFold Database (AFDB; [21]), we downloaded the per-protein structure (PDB format at collection time). Limiting to UniRef50 reduces near-duplicate leakage by ensuring that homologs within clusters do not exceed 50% identity. After parsing and splitting multi-chain records into individual chains, this procedure yielded approximately 42M single-chain PDB samples.

From this $\text{AFDB} \cap \text{UniRef50}$ pool, we drew a uniform random sample of 24M single-chain structures to form the training set. This down-sampling keeps training throughput tractable while preserving the global distribution of lengths, folds, and taxa present in the full pool.

Table 1: Dataset and benchmark statistics. Training data is deduplicated at 100% sequence identity against all validation/test splits and external benchmarks (CAMEO-2024, CASP14–16).

Split	Source	Selection criterion	# Samples
Training	AFDB \cap UniRef50	Uniform random sample from ~ 42 M pool	24 000 000
Validation	From Tests A/B/C	2k random per test (A,B,C) merged	6 000
Test set A	PDB DB	pLDDT ≤ 70 ; len ≥ 25 ; < 25 consecutive missing residues; dedup	31 112
Test set B	AFDB	97 species; ~ 2.5 k/species; len ≥ 25 ; dedup	17 353
Test set C	PDB DB	under-represented taxonomies in SwissProt; pLDDT ≥ 95 ; < 25 consecutive missing residues; dedup	31 867
CAMEO 2024	CAMEO	-	574
CASP14	CASP	-	33
CASP15	CASP	-	45
CASP16	AF3 predictions	-	104

Test A (low-confidence) evaluates robustness under structural uncertainty using a curated subset of AlphaFold2 (AF2) models for SwissProt proteins. We enumerated all AF2-predicted structures available for SwissProt entries in AFDB and retained only those with average pLDDT ≤ 70 (AFDB’s 0–100 scale), discarding higher-confidence models. The surviving records were cross-referenced against the PDB to annotate the presence of experimental structures for the same pro-

¹March 2024 release.

teins. Multimer entries were decomposed into per-chain monomer samples, after which we removed chains shorter than 25 amino acids and retained only chains with fewer than 25 consecutive missing residues. A final deduplication step produced 33 112 single-chain samples for Test A.

Test B (species-diverse, taxonomic shift) assesses generalization under distributional shift in species rather than structure confidence. We assembled a broad species roster (expanded to 100 and finalized at 97 species) and targeted roughly 2 500 proteins per species from AFDB without pLDDT filtering to reflect natural variability, dropping species with fewer than 1 000 available structures. After aggregation, per-chain conversion, and deduplication, this suite comprised 19 353 single-chain samples.

Test C (high-confidence, under-represented taxa) measures performance on high-confidence structures from taxa under-represented in SwissProt. We selected species with low SwissProt coverage and required high average pLDDT (> 95). The selected taxonomies were cross-referenced against the PDB to find the presence of experimental structures for the proteins from those species. Applying the same preprocessing and deduplication as Test A above yielded 33 867 single-chain samples.

To obtain a balanced validation set independent of training, we first constructed three targeted hold-out suites and then set aside a fixed 2 000 randomly sampled chains from each to form a combined 6 000-chain validation set; the remaining examples constitute Test sets A, B, and C, respectively.

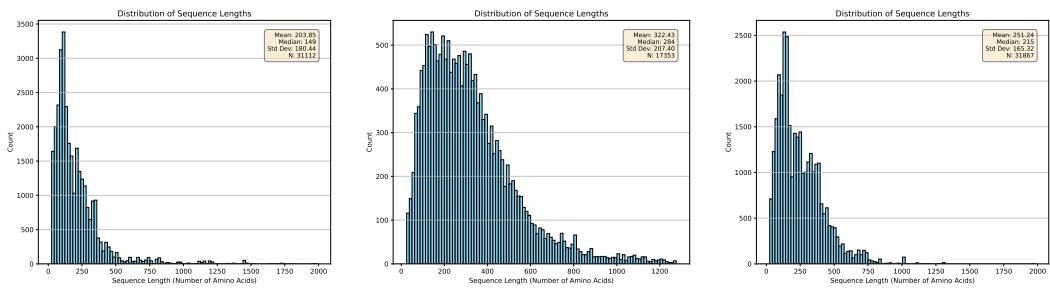


Figure 2: Distribution of sequence lengths in the three test sets: (left) Test set A, (middle) Test set B, and (right) Test set C. The majority of samples have sequence length < 1280 amino acids.

Independent benchmarks. In addition to the internal splits, we evaluate on community benchmarks to facilitate comparison with prior work: CAMEO 2024 [22, 23], CASP14 [24], CASP15 [25], and AlphaFold3 [26] predictions for CASP16 [27] targets. Each benchmark is processed with the same per-chain extraction and deduplication pipeline and is used strictly for out-of-distribution evaluation.

Table 1 summarizes the composition and selection criteria of all splits. Counts after converting multi-chain inputs into per-chain samples. Also, all samples are truncated to a maximum of 2048 amino acids in length. The distribution of length sequences in the test sets is displayed in Figure 2.

4 GCP-VQVAE Architecture

The proposed architecture leverages two main parts: (1) a GCPNet encoder to encode backbone coordinates into embeddings, and (2) a transformer-based VQVAE, which discretizes backbone embeddings and then converts them back into 3D coordinates.

4.1 GCPNet Encoder

GCPNet [28] extends the scalar–vector message-passing philosophy of GVP-GNN to a geometry-complete, SE(3)-equivariant encoder. Every atom i in a molecular graph $G = (V, E)$ carries scalars $s_i \in \mathbb{R}^{d_s}$ and row-wise vectors $\mathbf{v}_i \in \mathbb{R}^{d_v \times 3}$ that rotate as $\mathbf{v}_i \mapsto R\mathbf{v}_i$ under $g = (R, \mathbf{t}) \in \text{SE}(3)$, while each edge (i, j) stores analogous features $(s_{ij}, \mathbf{v}_{ij})$ and the relative displacement $\mathbf{r}_{ij} = \mathbf{x}_j - \mathbf{x}_i$. Before any update, the model attaches to every edge a right-handed orthonormal frame $F_{ij} =$

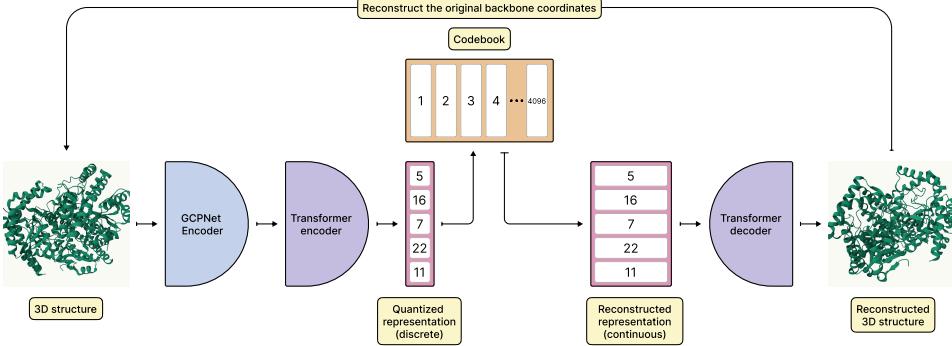


Figure 3: GCP-VQVAE overview. A protein backbone ($\text{N}-\text{C}_\alpha-\text{C}$) is first encoded by a $\text{SE}(3)$ -equivariant GCPNet that preserves orientation and chirality. A Transformer encoder produces latents that are vector-quantized into a sequence of code indices from a 4 096-entry codebook (e.g., 5, 16, 7, 22, 11), yielding pose-invariant discrete tokens. For reconstruction, the indices are de-quantized to continuous embeddings and passed to a Transformer decoder equipped with a 6-D rotation head, which predicts rigid updates to recover the original backbone coordinates.

$[\mathbf{a}_{ij}, \mathbf{b}_{ij}, \mathbf{c}_{ij}] \in \text{SO}(3)$ with $\mathbf{a}_{ij} = \mathbf{r}_{ij}/\|\mathbf{r}_{ij}\|$; this frame supplies a reference for chirality and orientation that GVP-GNN lacks.

The core computation is a Geometry-Complete Perceptron (GCP) micro-step that first down-scales the vectors and then projects them into the local frame to extract nine orientation-aware features. Denoting $\mathbf{z}_{ij} = W_d \mathbf{v}_{ij}$ and $\text{vec}(\cdot)$ the row-wise vectorization, the joint update mixes the old scalars with their orientation signatures (the frame-projected vectors and their norms) and gates the vectors through a learnable row-wise gate to preserve equivariance; ϕ_s is an MLP and σ denotes a learnable gating function that need not be a fixed sigmoid (Equation 1).

$$(s_{ij}, \mathbf{v}_{ij}) \mapsto \left(\phi_s[s_{ij}, \|\mathbf{z}_{ij}\|_2, \text{vec}(\mathbf{z}_{ij} F_{ij}^\top)], \sigma(W_g s_{ij}) \odot W_v \mathbf{z}_{ij} \right) \quad (1)$$

In the node update, the orientation features are averaged over neighbors. A sequence of such micro-steps, wrapped by a residual shortcut, forms a GCPConv edge block. After aggregating messages $m_i = \sum_{j \in \mathcal{N}(i)} \text{GCPConv}(i, j)$, a gated scalar–vector MLP updates the node features, and stacking L layers yields an invariant backbone. When tasks require coordinates, each layer appends an equivariant displacement head whose output is a learned 3-dimensional vector; this vector is added residually to \mathbf{x}_i and re-centered to ensure translation invariance, enabling force or trajectory prediction without breaking equivariance.

$$\mathbf{x}_i \leftarrow \mathbf{x}_i + \mathbf{f}_i, \quad \mathbf{f}_i = \text{MLP}_{\text{disp}}(m_i) \quad (2)$$

Equations 1 and 2 commute with every rigid motion, making the encoder strictly $\text{SE}(3)$ -equivariant, while projection through F_{ij} preserves the complete set of edge orientations so that the latent remains *geometry-complete* at any depth. Eliminating the frame ($F_{ij} = I$), replacing the orientation features by $\|\mathbf{v}_{ij}\|_2$, and dropping the coordinate head restores a frame-free, $\text{E}(3)$ -equivariant network akin to GVP-GNN—thereby isolating the contributions responsible for our empirical gains. Because GCPNet keeps directional and chiral cues that GVP-GNN discards, it supports optional equivariant coordinate updates for force or dynamics prediction and attains improved performance across invariant (e.g., binding affinity [28]), equivariant (e.g., force regression [28]), and coordinate-generative (e.g., molecular diffusion [29]) tasks with only modest extra computation.

4.2 VQVAE

The transformer-based VQVAE employed in this work is organized into the classical three-stage pipeline of *encoder*, *vector-quantization*, and *decoder*. The encoder processes the given embeddings into a sequence of latent vectors, the quantizer discretizes these latents, and the decoder reconstructs the original signal from the resulting code indices.

Both stacks adopt a lightweight pre-layer-normalized Transformer that integrates several recent efficiency upgrades: (i) Pre-LayerNorm places the LayerNorm before each sub-block [30], which keeps activations in a well-behaved range throughout the network, reduces gradient-scale drift, and therefore allows training with larger learning rates and much milder warm-up schedules; (ii) separately normalizes query and key vectors before computing attention logits [31]. This prevents overly large dot-products, stabilizes attention distributions, and mitigates softmax saturation, especially in low-resource or small-batch training scenarios; (iii) Grouped-Query Attention shares key–value projections across groups of query heads [32], reducing both memory and compute without harming quality; (iv) Rotary Positional Embeddings (RoPE) inject relative-position information by applying position-dependent planar rotations to each query–key pair [33], letting the model generalize to much longer sequences with virtually no extra computational cost; (v) We remove bias terms from projection and feed-forward layers, an established simplification that has negligible effect on accuracy while trimming a fraction of parameters and FLOPs.

In the architecture, the vector quantization layer provides the discrete bottleneck between the aforementioned encoder and decoder and follows the learnable formulation of VQVAE, augmented with several improvements described in the following to accelerate convergence, increase codebook usage, and stabilize large codebooks training.

Before training starts, we run k -means on the encoder outputs of the first mini-batch to seed the codebook as displayed in Equation 3, where $Z^{(0)} \subset \mathbb{R}^d$ are the features, K the codebook size, and T the number of Lloyd iterations. Empirically, this step mitigates early code collapse and improves utilization when K is large.

$$E^{(0)} = \text{KMEANS}(Z^{(0)}, K, T), \quad (3)$$

Given an encoder vector $\mathbf{z} \in \mathbb{R}^d$, quantization proceeds by nearest-neighbor lookup, Equation 4, which is identical to the vanilla VQ rule.

$$k = \arg \min_j \|\mathbf{z} - \mathbf{e}_j\|_2^2, \quad \mathbf{z}_q = \mathbf{e}_k, \quad (4)$$

To transmit gradients through this non-differentiable operation, instead of using the straight-through estimate (STE) [34], we adopt the rotation trick [35]. During back-propagation, the Jacobian is replaced by Equation 5, where R is the shortest-arc rotation aligning the unit vectors $\hat{\mathbf{z}}$ and $\hat{\mathbf{e}}_k$. This modification embeds both angular and magnitude mismatch into the back-propagated signal, yielding faster convergence and richer code usage in practice.

$$\mathbf{J}_k = \frac{\|\mathbf{e}_k\|}{\|\mathbf{z}\|} R(\hat{\mathbf{z}} \rightarrow \hat{\mathbf{e}}_k), \quad (5)$$

The codebook updates and the encoder commitment follow the standard VQ losses (Equation 6), with β balancing the commitment pressure.

$$\mathcal{L}_{\text{code}} = \|\text{sg}[\mathbf{z}] - \mathbf{e}_k\|_2^2, \quad \mathcal{L}_{\text{commit}} = \beta \|\mathbf{z} - \text{sg}[\mathbf{e}_k]\|_2^2, \quad (6)$$

To encourage diverse and well-separated embeddings, we regularize the codebook with the Frobenius norm (Equation 7) weighted by λ_{orth} . This orthogonality constraint spreads codes over the hypersphere and curbs under-utilization, which is a common failure mode in large books.

$$\mathcal{L}_{\text{orth}} = \|E^\top E - I_K\|_F^2, \quad (7)$$

To translate the decoder’s abstract embeddings into a physically meaningful 3D structure, we utilize a 6D rotation head on top of the decoder. This module’s primary purpose is to provide a stable and continuous parameterization of 3D rotations and translations, which is crucial for effective training of deep neural networks. This approach, notably used in AlphaFold2 and supported by the findings of Zhou et al. [36] on rotation representations, avoids the well-known issues of Gimbal lock in Euler angles and the double-cover ambiguity of quaternions.

Intuitively, the head operates by predicting an intermediate representation for each residue, comprising two 3D direction vectors and a translation. The direction vectors are deterministically converted into a stable rotation matrix via the Gram-Schmidt process, while the translation is scaled by a hyper-parameter, α , to an arbitrary range (e.g., Å). This resulting rigid transformation acts as an update, which is composed with the residue’s running pose. The final backbone coordinates are then generated by applying this new, refined pose to a fixed local atomic template ($\mathbf{X}^{\text{local}}$). This iterative process ensures the structure is built in a geometrically consistent and equivariant manner, with the full operational details provided in Algorithm 1.

The decoder is supervised with a weighted sum of three geometric objectives. Building on the loss terms defined in Algorithm 2 (distance, direction and aligned MSE) and the Kabsch alignment returned by Algorithm 3, we supervise the decoder with the weighted sum of Equation 8 as the reconstruction part (L_{rec}) of the final loss.

$$\mathcal{L}_{\text{rec}} = \lambda_{\text{mse}} \mathcal{L}_{\text{MSE}} + \lambda_{\text{dist}} \mathcal{L}_{\text{dist}} + \lambda_{\text{dir}} \mathcal{L}_{\text{dir}}, \quad (8)$$

Here, \mathcal{L}_{MSE} is the mean-squared error between predicted and native backbones after Kabsch alignment, $\mathcal{L}_{\text{dist}}$ penalises deviations in the $3L \times 3L$ backbone distance matrix (clamped at 5 Å²), and \mathcal{L}_{dir} measures squared differences of pairwise dot-product tensors over the six orientation vectors per residue (clamped at 20). Finally, the overall objective optimized for each iteration is demonstrated in Equation 9 where \mathcal{L}_{rec} is the decoder reconstruction.

$$\mathcal{L} = \mathcal{L}_{\text{rec}} + \mathcal{L}_{\text{code}} + \lambda_{\text{commit}} \mathcal{L}_{\text{commit}} + \lambda_{\text{orth}} \mathcal{L}_{\text{orth}}, \quad (9)$$

5 Experiments

In this section, optimization is used with AdamW [37] and a cosine-annealed learning-rate schedule with warm-up steps [38]. Experiments were implemented in PyTorch 2.7 [39]² with mixed-precision (BF16) training [40, 41] on four nodes of NVIDIA 8 × A100 GPUs. For the GCPNet encoder, we initialize from the ProteinWorkshop checkpoint [42]. The full GCP-VQVAE configuration and exact hyperparameter values are listed in Appendix A.2; Table 4 and 5.

Table 2: Comparison with the available open-source structure tokenizer methods. Except for FoldToken-4, which uses 256 vocab size, all methods use 4 096 vocab size. The Structure Tokenizer of [13] method only supports sequences of length 50–512, metrics for that baseline exclude out-of-range samples (other methods are evaluated on the full sets).

Dataset	Metric	GCP-VQVAE (Ours)	ESM-3 VQVAE [14]	FoldToken 4 [13]	[19]
CASP14	TM-score	0.9890	0.9734	0.8989	0.8940
	RMSD	0.5431	1.0968	2.0027	1.8913
CASP15	TM-score	0.9884	0.9418	0.9136	0.7911
	RMSD	0.5293	1.3407	1.6856	8.5592
CASP16	TM-score	0.9857	0.9103	0.8211	0.8345
	RMSD	0.7567	4.4918	5.4115	6.9375
CAMEO2024	TM-score	0.9918	0.9736	0.9346	0.9114
	RMSD	0.4377	1.0156	1.4069	2.1726

Training proceeds in two stages on the same training split. In Stage 1, sequences are truncated to 512 residues. In Stage 2, the maximum length is increased to 1 280 residues. To improve robustness to incomplete structural data, Stage 2 adds a random NaN-masking augmentation: with probability 5%, we sample a segment length uniformly from [1, 30], choose a random start position, set the backbone coordinates of that contiguous segment to NaN, and replace the corresponding sequence tokens with the unknown amino acid X. This mimics a common artifact in PDB structures where weak electron density yields missing coordinates of varying lengths. By applying attention masks over the NaN positions, the encoder, vector-quantization layer, and decoder learn to tolerate gaps during

²We built the VQVAE components extensively by using the x-transformers and vector-quantize-pytorch libraries.

tokenization and de-tokenization of backbone coordinates, which substantially improves reconstruction on experimental PDBs containing multiple missing-residue blocks (Appendix A.2; Figure 4). At the end of Stage 2 training, on the validation set, the model attains MAE 0.2239, RMSD 0.4281, GDT-TS 0.9856, and TM-score 0.9889 with 100% codebook utilization; per-test-set results appear in Table 3.

We compare against open-source structure tokenizers: FoldToken-4, ESM-3 VQ-VAE, and the Structure Tokenizer of [13]. In practice, ESM-3 does not provide documented usage or official evaluation scripts for its VQ-VAE; we therefore reproduced its evaluation using the publicly released weights and their GitHub codebase. The original FoldToken-4 evaluation repository was prohibitively slow, so we re-implemented it, yielding a $\sim 20\times$ speed-up with negligible loss in reconstruction rate. For [13] we used the authors’ released scripts with the 4 096-entry codebook checkpoint. Because that method only supports sequence lengths in $[50, 512]$, we excluded out-of-range samples for its columns only. See Table 2 for aggregate metrics.

Table 3: Evaluate our GCP-VQVAE method on the predefined test sets.

Method	Test set A	Test set B	Test set C
RMSD	0.5124	0.4027	0.4787
TM-score	0.9823	0.9951	0.9885

We examined how reconstruction error varies with sequence length on the validation set (Appendix A.2; Figure 5). Errors increase only mildly with length (Pearson $r = 0.326$, Spearman $\rho = 0.314$; slope $\approx 4 \times 10^{-4} \text{ \AA} / \text{residue}$), indicating that overall, the model maintains stable accuracy up to 1 280 residues, with only a slight rise in variance for very long chains.

6 Discussion

GCP-VQVAE delivers high-fidelity reconstruction across diverse suites of benchmarks, with TM-scores typically ≥ 0.98 and mean RMSDs in the $0.40\text{--}0.80, \text{\AA}$ range on CAMEO-2024, CASP14/15/16, and comparable performance on our internal Test A/B/C splits (e.g., $0.40\text{--}0.51, \text{\AA}$ RMSD). A key strength is robustness to missing coordinates, which is common in experimental PDBs: during training, we mask contiguous NaN blocks and propagate attention masks rather than infilling, so the model reconstructs the observed backbone faithfully while identifying gaps. Relative to available open-source tokenizers, our method shows a large margin while maintaining near-ceiling TM-scores. We believe part of this disparity stems from incomplete public releases: several baselines either restrict sequence lengths or withhold their strongest checkpoints (as is evident for FoldToken-4 repository) and end-to-end evaluation scripts. To enable rigorous verification, we release our checkpoints and evaluation pipelines for both GCP-VQVAE and reproduced baselines, and we invite the community to run, audit, and extend these comparisons. Although overall reconstruction is strong, we observe a mild RMSD drift with sequence length (Figure 5). We attribute this to length imbalance in training; short chains dominate, leaving the model relatively underexposed to long-range constraints and rare structural motifs. Mitigations include targeted fine-tuning on a length-balanced subset, reweighting/upsampling long sequences, and length-aware objectives, which should reduce the slope without architectural changes.

For the proposed GCP-VQVAE architecture, we see the following applications:

- (1) *Structure compression.* Using a 4 096-entry codebook yields about $\sim 24\times$ compression of backbone coordinates for a 512-residue monomer (see Appendix A.3). Given our low RMSDs of $\sim 0.4\text{--}0.8 \text{ \AA}$ (Table 2), this points to a practically usable lossy backbone codec;
- (2) *Structure comparison.* Our discrete geometry language converts backbones into high-resolution token strings that can be indexed ([43, 44]) and aligned with dynamic programming over a learned substitution matrix between codes. Compared to fixed 3Di alphabets as in FoldSeek, a learned 4 096-code vocabulary; optionally make it with side-chain-aware, captures finer local shape and orientation, enabling more accurate substructure and whole-chain comparisons;
- (3) *Downstream 3D learning representation.* De-quantized code embeddings yield continuous, structure-aware features that potentially are more separable and clusterable than base GCPNet outputs, providing a strong encoder for downstream tasks, as observed in [9];
- (4) *Generative modeling.* Because our structure representation is discrete and pose-invariant, it slots directly into autoregressive PLM pre-training: tokens can be interleaved with amino-acid symbols, letting us exploit next-token scaling laws observed in au-

toregressive Large Language Models (LLM) [45]. This unifies sequence and structure in a single model, enabling controllable generation via simple conditioning; e.g., sequence-given-structure and structure-given-sequence modes. Structure tokens serve as an explicit geometric prior for PLMs ([14, 46]), potentially enabling more control over protein design. Moreover, the same machinery supports higher-throughput structure prediction from sequence by first predicting structural tokens and then mapping them to backbones with our decoder [47–49].

Several avenues look promising to explore: evaluating GCP-VQVAE on under-represented homologs with out-of-distribution structural similarity to test generalization, scaling tokenization to multi-chain complexes, providing a lightweight variant for low-latency use, enriching tokens with side-chain information, and unifying sequence and structure generation via autoregressive PLM.

Acknowledgements This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy User Facility, using NERSC award DDR-ERCAP 0034574 awarded to AM.

References

- [1] Letícia MF Bertoline, Angélica N Lima, Jose E Krieger, and Samantha K Teixeira. Before and after alphafold2: An overview of protein structure prediction. *Frontiers in bioinformatics*, 3:1120370, 2023.
- [2] Timir Tripathi, Vladimir N Uversky, and Alessandro Giuliani. ‘intelligent’proteins. *Cellular and Molecular Life Sciences*, 82(1):239, 2025.
- [3] Jürgen Jänes and Pedro Beltrao. Deep learning for protein structure prediction and design—progress and applications. *Molecular Systems Biology*, 20(3):162–169, 2024.
- [4] Kiersten M Ruff, Yoon Hee Choi, Dezerae Cox, Angelique R Ormsby, Yoochan Myung, David B Ascher, Sheena E Radford, Rohit V Pappu, and Danny M Hatters. Sequence grammar underlying the unfolding and phase separation of globular proteins. *Molecular cell*, 82(17):3193–3208, 2022.
- [5] Henry R Kilgore, Itamar Chinn, Peter G Mikhael, Ilan Mitnikov, Catherine Van Dongen, Guy Zylberberg, Lena Afeyan, Salman F Banani, Susana Wilson-Hawken, Tong Ihn Lee, et al. Protein codes promote selective subcellular compartmentalization. *Science*, 387(6738):1095–1101, 2025.
- [6] Konstantin Weissenow and Burkhard Rost. Are protein language models the new universal key? *Current Opinion in Structural Biology*, 91:102997, 2025.
- [7] Eli J Draizen, Stella Veretnik, Cameron Mura, and Philip E Bourne. Deep generative models of protein structure uncover distant relationships across a continuous fold space. *Nature Communications*, 15(1):8094, 2024.
- [8] Tianyu Lu, Melissa Liu, Yilin Chen, Jinho Kim, and Po-Ssu Huang. Assessing generative model coverage of protein structures with shapes. *bioRxiv*, 2025.
- [9] Xinyu Yuan, Zichen Wang, Marcus Collins, and Huzeфа Rangwala. Protein structure tokenization: Benchmarking and new recipe. *arXiv preprint arXiv:2503.00089*, 2025.
- [10] Hyunbin Kim, Milot Mirdita, and Martin Steinegger. Foldcomp: a library and format for compressing and indexing large protein structure sets. *Bioinformatics*, 39(4):btad153, 2023.
- [11] Michel Van Kempen, Stephanie S Kim, Charlotte Tumescheit, Milot Mirdita, Jeongjae Lee, Cameron LM Gilchrist, Johannes Söding, and Martin Steinegger. Fast and accurate protein structure search with foldseek. *Nature biotechnology*, 42(2):243–246, 2024.
- [12] Cheng-Yen Hsieh, Xinyou Wang, Daiheng Zhang, Dongyu Xue, Fei Ye, Shujian Huang, Zaixiang Zheng, and Quanquan Gu. Elucidating the design space of multimodal protein language models. *arXiv preprint arXiv:2504.11454*, 2025.

- [13] Zhangyang Gao, Cheng Tan, and Stan Z Li. Foldtoken4: Consistent & hierarchical fold language. *bioRxiv*, pages 2024–08, 2024.
- [14] Thomas Hayes, Roshan Rao, Halil Akin, Nicholas J Sofroniew, Deniz Oktay, Zeming Lin, Robert Verkuil, Vincent Q Tran, Jonathan Deaton, Marius Wiggert, et al. Simulating 500 million years of evolution with a language model. *Science*, 387(6736):850–858, 2025.
- [15] Michel van Kempen, Stephanie S Kim, Charlotte Tumescheit, Milot Mirdita, Cameron LM Gilchrist, Johannes Söding, and Martin Steinegger. Foldseek: fast and accurate protein structure search. *Biorxiv*, pages 2022–02, 2022.
- [16] Zhangyang Gao, Cheng Tan, Jue Wang, Yufei Huang, Lirong Wu, and Stan Z Li. Foldtoken: Learning protein language via vector quantization and beyond. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pages 219–227, 2025.
- [17] Zhangyang Gao, Cheng Tan, and Stan Z Li. Foldtoken2: Learning compact, invariant and generative protein structure language. *arXiv preprint arXiv:2407.00050*, 2024.
- [18] Zhangyang Gao, Cheng Tan, and Stan Z Li. Foldtoken3: Fold structures worth 256 words or less. *bioRxiv*, pages 2024–07, 2024.
- [19] Benoit Gaujac, Jérémie Donà, Liviu Copoiu, Timothy Atkinson, Thomas Pierrot, and Thomas D Barrett. Learning the language of protein structure. *arXiv preprint arXiv:2405.15840*, 2024.
- [20] UniProt Consortium. Uniprot: a worldwide hub of protein knowledge. *Nucleic acids research*, 47(D1):D506–D515, 2019.
- [21] Mihaly Varadi, Stephen Anyango, Mandar Deshpande, Sreenath Nair, Cindy Natassia, Galabina Yordanova, David Yuan, Oana Stroe, Gemma Wood, Agata Laydon, et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. *Nucleic acids research*, 50(D1):D439–D444, 2022.
- [22] Xavier Robin, Juergen Haas, Rafal Gumienny, Anna Smolinski, Gerardo Tauriello, and Torsten Schwede. Continuous automated model evaluation (cameo)—perspectives on the future of fully automated evaluation of structure prediction methods. *Proteins: Structure, Function, and Bioinformatics*, 89(12):1977–1986, 2021.
- [23] Michèle Leemann, Ander Sagasta, Jerome Eberhardt, Torsten Schwede, Xavier Robin, and Janani Durairaj. Automated benchmarking of combined protein structure and ligand conformation prediction. *Proteins: Structure, Function, and Bioinformatics*, 91(12):1912–1924, 2023.
- [24] Andriy Kryshtafovych, Torsten Schwede, Maya Topf, Krzysztof Fidelis, and John Moult. Critical assessment of methods of protein structure prediction (casp)—round xiv. *Proteins: Structure, Function, and Bioinformatics*, 89(12):1607–1617, 2021.
- [25] Andriy Kryshtafovych, Torsten Schwede, Maya Topf, Krzysztof Fidelis, and John Moult. Critical assessment of methods of protein structure prediction (casp)—round xv. *Proteins: Structure, Function, and Bioinformatics*, 91(12):1539–1549, 2023.
- [26] Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure prediction of biomolecular interactions with alphaFold 3. *Nature*, 630(8016):493–500, 2024.
- [27] Rongqing Yuan, Jing Zhang, Andriy Kryshtafovych, R Dustin Schaeffer, Jian Zhou, Qian Cong, and Nick V Grishin. Casp16 protein monomer structure prediction assessment. *Proteins: Structure, Function, and Bioinformatics*, 2025.
- [28] Alex Morehead and Jianlin Cheng. Geometry-complete perceptron networks for 3d molecular graphs. *Bioinformatics*, 40(2):btae087, 2024.
- [29] Alex Morehead and Jianlin Cheng. Geometry-complete diffusion for 3d molecule generation and optimization. *Communications Chemistry*, 7(1):150, 2024.

[30] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture. In *International conference on machine learning*, pages 10524–10533. PMLR, 2020.

[31] Alex Henry, Prudhvi Raj Dachapally, Shubham Pawar, and Yuxuan Chen. Query-key normalization for transformers. *arXiv preprint arXiv:2010.04245*, 2020.

[32] Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints. *arXiv preprint arXiv:2305.13245*, 2023.

[33] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

[34] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in neural information processing systems*, 30, 2017.

[35] Christopher Fifty, Ronald G Jenkins, Dennis Duan, Aniketh Iyengar, Jerry W Liu, Ehsan Amid, Sebastian Thrun, and Christopher Ré. Restructuring vector quantization with the rotation trick. *arXiv preprint arXiv:2410.06424*, 2024.

[36] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao Li. On the continuity of rotation representations in neural networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 5745–5753, 2019.

[37] I Loshchilov. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*, 2017.

[38] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. *arXiv preprint arXiv:1608.03983*, 2016.

[39] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski, et al. Pytorch 2: Faster machine learning through dynamic python bytecode transformation and graph compilation. In *Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2*, pages 929–947, 2024.

[40] Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar Das, Kunal Banerjee, Sasikanth Avancha, Dharma Teja Vooturi, Nataraj Jammalamadaka, Jianyu Huang, Hector Yuen, et al. A study of bfloat16 for deep learning training. *arXiv preprint arXiv:1905.12322*, 2019.

[41] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision training. *arXiv preprint arXiv:1710.03740*, 2017.

[42] Arian Rokkum Jamasb, Alex Morehead, Chaitanya K Joshi, Zuobai Zhang, Kieran Didi, Simon V Mathis, Charles Harris, Jian Tang, Jianlin Cheng, Pietro Lio, et al. Evaluating representation learning on the protein structure universe. In *The Twelfth International Conference on Learning Representations*, 2024.

[43] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J Lipman. Basic local alignment search tool. *Journal of molecular biology*, 215(3):403–410, 1990.

[44] Bin Ma, John Tromp, and Ming Li. Patternhunter: faster and more sensitive homology search. *Bioinformatics*, 18(3):440–445, 2002.

[45] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. *arXiv preprint arXiv:2001.08361*, 2020.

[46] Jin Su, Chenchen Han, Yuyang Zhou, Junjie Shan, Xibin Zhou, and Fajie Yuan. Saprot: Protein language modeling with structure-aware vocabulary. *BioRxiv*, pages 2023–10, 2023.

- [47] Mahdi Pourmirzaei, Farzaneh Esmaili, Salhuldin Alqarghuli, Mohammadreza Pourmirzaei, Ye Han, Kai Chen, Mohsen Rezaei, Duolin Wang, and Dong Xu. Prot2token: A unified framework for protein modeling via next-token prediction. *arXiv preprint arXiv:2505.20589*, 2025.
- [48] Jiarui Lu, Xiaoyin Chen, Stephen Zhewen Lu, Chence Shi, Hongyu Guo, Yoshua Bengio, and Jian Tang. Structure language models for protein conformation generation. *arXiv preprint arXiv:2410.18403*, 2024.
- [49] Zhiyuan Chen, Tianhao Chen, Chenggang Xie, Yang Xue, Xiaonan Zhang, Jingbo Zhou, and Xiaomin Fang. Unifying sequences, structures, and descriptions for any-to-any protein generation with the large multimodal model helixprotx. *arXiv preprint arXiv:2407.09274*, 2024.

A Appendix

A.1 Methods

Algorithms 1–3 define the decoder head, geometric losses, and alignment used in training. Given per-residue embeddings, the 6D head projects to two direction vectors and a translation, constructs a proper rotation via Gram–Schmidt, composes this rigid update with the running pose, and applies it to a fixed (N–C_α–C) template to produce backbone coordinates. Reconstruction is supervised by the weighted sum in Equation 8: (i) aligned MSE after optimal Kabsch alignment, (ii) a clamped backbone distance-matrix loss, and (iii) a clamped pairwise orientation (direction) loss built from six backbone vectors per residue.

Algorithm 1 Pseudocode for 6D rotation-based structure prediction

```

def dim6rot_structure_head(h: Tensor[N, d],
                           g_initial: Tuple[Tensor[N,3,3], Tensor[N,3,1]],
                           alpha: float = 1.0):
    """
    Predicts backbone coordinates from embeddings using a 6D rotation representation.
    This process is vectorized over N residues.

    h: [N, d] float32           -- input embeddings for N residues
    g_initial: (R_0, t_0)        -- initial SE(3) pose (running transformation)
    alpha: float                 -- translation scaling hyper-parameter
    """
    # Define a fixed local reference frame for backbone atoms (N, C_alpha, C)
    X_local = torch.tensor(...) # Shape: [3, 3]

    # 1) Project embeddings to unconstrained translations and direction vectors
    # This represents the internal FFN and projection layers.
    h_ffn = LayerNorm(GELU(Linear(h)))
    # W_rigid projects h_ffn to 9 dimensions for t_tilde, a, and b
    rigid_proj = Linear(h_ffn) # Output shape: [N, 9]
    t_tilde, a, b = torch.split(rigid_proj, 3, dim=-1)

    # 2) Create rotation R_i via Gram–Schmidt orthonormalization
    a_hat = a / torch.norm(a, dim=-1, keepdim=True)
    c = torch.cross(a_hat, b, dim=-1)
    c_hat = c / torch.norm(c, dim=-1, keepdim=True)
    b_hat = torch.cross(c_hat, a_hat, dim=-1)

    # Stack column vectors to form the rotation matrix R
    R = torch.stack([a_hat, b_hat, c_hat], dim=-1) # Shape: [N, 3, 3]

    # 3) Scale the translation vector
    t = t_tilde * alpha # Shape: [N, 3]

    # 4) Form the local rigid body update g = (R, t) and compose it
    # with the running pose g_initial = (R_0, t_0)
    R_0, t_0 = g_initial
    R_new = R_0 @ R
    t_new = (R_0 @ t.unsqueeze(-1)) + t_0

    # 5) Apply the new pose g_new to the local template to get final coordinates
    # Unsqueeze t_new for broadcasting over the 3 atoms in X_local
    X_pred = (R_new @ X_local.T).transpose(-1, -2) + t_new.transpose(-1, -2)

    return X_pred, (R_new, t_new) # Return coords and the updated pose

```

A.2 Experiments

This subsection compiles all experimental assets: Table 4 lists the full optimization schedule and training hyperparameters for Stages 1–2; Table 5 specifies the exact model configuration (GCPNet, VQ, and Transformer stacks). Figure 4 shows qualitative robustness to contiguous missing-residue segments from benchmark structures; Figure 5 plots sequence length versus reconstruction RMSD with a least-squares fit on the validation set; Figure 6 visualizes the highest-RMSD (worst-case) examples per benchmark suite. Metrics use backbone atoms (C_α) after Kabsch alignment, and statistics are over the full, unfiltered test sets.

We set the coefficients λ (Equation 8) by monitoring the per-term gradient norms and equalizing their contribution to shared parameters. This gradient-norm balancing prevents any single term (e.g., direction or distance) from dominating updates and yields stable, faster convergence.

Table 4: Training hyperparameters for Stages 1 and 2.

Hyperparameter	Stage 1	Stage 2
Optimizer type	AdamW	
β_1	0.9	
β_2	0.98	
ϵ	10^{-7}	
Weight decay	10^{-3}	
Gradient clipping (max L_2 norm)	1.0	
Gradient accumulation	1	
8-bit parameters	✗	✓
Batch size (per GPU)	16	4
Learning-rate strategy	Cosine annealing	
Base learning-rate	$1e-4$	$5e-5$
Min learning-rate	$1e-6$	
Warm-up steps	16 000	
Total steps	375 000	1 500 000
MSE coefficient (λ_{MSE})	1×10^{-3}	5×10^{-3}
Backbone distance coefficient (λ_{dist})	10^{-2}	
Backbone direction coefficient (λ_{dir})	5×10^{-2}	

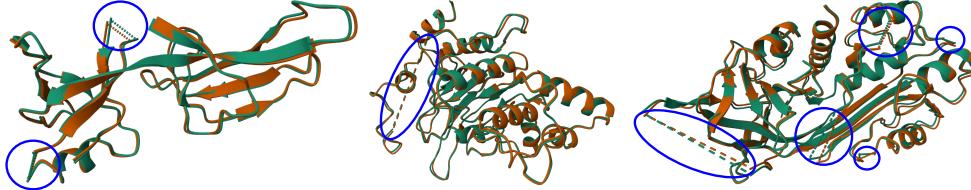


Figure 4: Superposition of GCP-VQVAE reconstructions (orange) with native backbones (green) for three proteins drawn from our external benchmark suites. Blue circles mark contiguous missing-residue segments (dashed guides span regions without deposited atoms); the model tracks the native structure outside the gaps.

A.3 Compression calculation

Each residue is encoded by one code from a 4 096-entry book, i.e., $\log_2(4096) = 12$ bits = 1.5 bytes/residue. For $L = 512$ residues, the token stream is $512 \times 1.5 = 768$ bytes. Raw backbone coordinates (N, C_α , C) stored as 32-bit floats require 3 atoms \times 3 coords \times 4 bytes = 36 bytes/residue, i.e., $36 \times 512 = 18,432$ bytes. If we include a tiny global pose header (e.g., rotation+translation) of ≈ 36 bytes, the coded footprint is $768 + 36 = 804$ bytes. Thus the compression ratio is $18,432/804 \approx 22.9 \times$ (approximately $24 \times$ if the pose header is omitted). This estimate concerns backbone only; metadata and format containerization add negligible overhead relative to the raw-float baseline.

Table 5: Configurations of GCP-VQVAE architecture.

Hyperparameter	Stage 1	Stage 2
GCPNet Encoder		
Initialization	[42]	Stage 1
Input dimension (node scalars h)	6	
Input dimension (node vectors χ)	3	
Input dimension (edge scalars e)	8	
Input dimension (edge vectors ξ)	1	
Hidden dimension (node scalars h)	128	
Hidden dimension (node vectors χ)	16	
Hidden dimension (edge scalars e)	32	
Hidden dimension (edge vectors ξ)	4	
Number of layers	6	
SE(3) equivariance	✓	
Vector Quantization		
Initialization	Random	Stage 1
Hidden dimension	256	
Vocab size	4096	
EMA Decay	0.99	0.995
Threshold EMA dead code	2	
Commitment weight (λ_{commit})	0.5	0.25
Orthogonal reg weight (λ_{orth})	10	
Orthogonal reg max codes	512	
Orthogonal reg active codes only	✓	
Rotation trick	✓	
KMeans initialization	✓	
KMeans iteration	10	
Transformer Encoder		
Initialization	Random	Stage 1
Hidden dimension	1024	
FF Multiplier	4 \times	
Blocks	12	
Query heads	12	
Key-value heads	3	
Positional encoding	RoPE	
Query-key norm	✓	
Pre-norm	✓	
Transformer Decoder		
Initialization	Random	Stage 1
Hidden dimension	1024	
FF Multiplier	4 \times	
Blocks	16	
Query heads	16	
Key-value heads	1	
Positional encoding	RoPE	
Query-key norm	✓	
Pre-norm	✓	

Algorithm 2 Pseudocode for backbone *distance*, *direction* and *MSE* losses

```

def compute_backbone_vectors(coords: Tensor[L, 3, 3]) -> Tensor[L, 6, 3]:
    """
    coords[..., 0/1/2] = (N, CA, C) atom positions for each residue.
    Returns six normalised vectors per residue:
        1) N → CA          4) -n_CA    (binormal of NCA plane)
        2) CA → C          5) n_N      (binormal of CN_prev-N plane)
        3) C → N_{i+1}     6) n_C      (binormal of CA C N_{i+1} plane)
    """
    # bond vectors -----
    v1 = coords[:, 1] - coords[:, 0]          # N → CA
    v2 = coords[:, 2] - coords[:, 1]          # CA → C
    v3 = pad_end(coords[1:, 0] - coords[:-1, 2])  # C → N_{i+1}
    v4 = -torch.cross(v1, v2)                 # -n_CA
    v5 = torch.cross(v3, v1)                  # n_N
    v6 = torch.cross(v2, v3)                  # n_C

    V = torch.stack([v1, v2, v3, v4, v5, v6], dim=1)
    return F.normalize(V, dim=-1)           # shape = [L, 6, 3]

def backbone_distance_loss(x_pred, x_true, mask):
    """
    x_pred/x_true : [L, 3, 3]  predicted & native backbone coords
    mask          : [L]          boolean, valid residues
    """
    P = x_pred[mask, :3].reshape(-1, 9)      # flatten 3 atoms → 9-D point
    T = x_true[mask, :3].reshape(-1, 9)

    D_pred = pairwise_l2(P, P)                # (N, N) distance matrix
    D_true = pairwise_l2(T, T)

    diff = (D_pred - D_true).pow(2).clamp(max=25.)
    return diff.mean()

def backbone_direction_loss(x_pred, x_true, mask):
    """
    Uses six orientation vectors per residue as returned by
    'compute_backbone_vectors'.
    """
    V_pred = compute_backbone_vectors(x_pred[mask, :3])
    V_true = compute_backbone_vectors(x_true[mask, :3])

    # Pairwise dot-product tensors: S_{ij}^{kl} = v_i^{(k)} · v_j^{(l)}
    S_pred = torch.einsum('ikd,jld->ijkl', V_pred, V_pred)
    S_true = torch.einsum('ikd,jld->ijkl', V_true, V_true)

    diff = (S_pred - S_true).pow(2).clamp(max=20.)
    return diff.mean()

def aligned_mse_loss(x_pred, x_true, mask):
    """
    Mean-squared error after optimal rigid alignment
    (Kabsch) between predicted and native backbone coords.

    Args
    -----
    x_pred : Tensor[L, 3, 3]  # predicted (N, CA, C)
    x_true : Tensor[L, 3, 3]  # ground truth
    mask   : BoolTensor[L]    # valid residues
    """
    # 1) select masked residues and flatten atoms -----
    P = x_pred[mask].reshape(-1, 3)  # (3N, 3)
    T = x_true[mask].reshape(-1, 3)  # (3N, 3)

    # 2) best-fit rotation / translation via Kabsch -----
    R, t = kabsch(P, T)            # R ∈ SO(3), t ∈ ℝ³
    T_aln = (T @ R.T) + t          # align native coords

    # 3) mean-squared error -----
    mse = ((P - T_aln).pow(2)).mean()
    return mse

```

Algorithm 3 Pseudocode for rigid alignment via Kabsch

```

def kabsch_align(A: Tensor[N, 3],
                  B: Tensor[N, 3],
                  allow_reflections : bool = False):
    """
    Optimal rigid alignment (rotation R, translation t) of
    point cloud A onto reference cloud B.

    A, B : [N, 3] float32 -- corresponding coordinates
    """
    # 1) centre the clouds -----
    centroid_A = A.mean(0); centroid_B = B.mean(0)
    AA = A - centroid_A # centred source
    BB = B - centroid_B # centred target

    # 2) SVD of covariance -----
    H = AA.T @ BB # 3x3
    U, _, Vh = torch.linalg.svd(H) # H = U S Vh

    # 3) ensure proper rotation (det = +1) -----
    if not allow_reflections and torch.det(Vh.T @ U.T) < 0:
        Vh[-1, :] *= -1

    R = Vh.T @ U.T # rotation
    t = centroid_B - R @ centroid_A # translation

    return (R @ A.T).T + t # aligned A

```

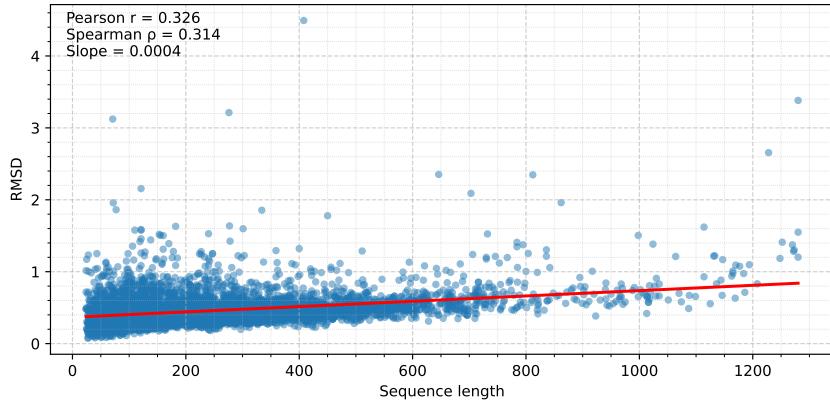


Figure 5: Sequence length vs. reconstruction error (validation set). Each point is one protein; the red line is a least-squares fit. The dependence on length is modest (Pearson $r = 0.326$, Spearman $\rho = 0.314$) with a small slope of $\approx 4 \times 10^{-4} \text{ \AA}/\text{residue}$ ($\sim 0.4 \text{ \AA}$ per 1k residues).

Figure 6: Superposition of GCP-VQVAE (orange) and native backbones (green) for the highest-backbone-RMSD example in each suite, left→right: CASP14, CASP15, CASP16, CAMEO2024.