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Abstract

Intent learning, which aims to learn users’ intents for user understanding and
item recommendation, has become a hot research spot in recent years. However,
existing methods suffer from complex and cumbersome alternating optimization,
limiting performance and scalability. To this end, we propose a novel intent
learning method termed ELCRec, by unifying behavior representation learning
into an End-to-end Learnable Clustering framework, for effective and efficient
Recommendation. Concretely, we encode user behavior sequences and initialize
the cluster centers (latent intents) as learnable neurons. Then, we design a novel
learnable clustering module to separate different cluster centers, thus decoupling
users’ complex intents. Meanwhile, it guides the network to learn intents from
behaviors by forcing behavior embeddings close to cluster centers. This allows
simultaneous optimization of recommendation and clustering via mini-batch data.
Moreover, we propose intent-assisted contrastive learning by using cluster centers
as self-supervision signals, further enhancing mutual promotion. Both experimental
results and theoretical analyses demonstrate the superiority of ELCRec from six
perspectives. Compared to the runner-up, ELCRec improves NDCG@5 by 8.9%
and reduces computational costs by 22.5% on the Beauty dataset. Furthermore, due
to the scalability and universal applicability, we deploy this method on the industrial
recommendation system with 130 million page views and achieve promising results.
The codes are available on GitHub3. A collection (papers, codes, datasets) of deep
group recommendation/intent learning methods is available on GitHub4.

∗Equal Contribution
†Corresponding Author
3https://github.com/yueliu1999/ELCRec
4https://github.com/yueliu1999/Awesome-Deep-Group-Recommendation
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1 Introduction

Sequential recommendation (SR), which aims to recommend relevant items to users by learning
patterns from users’ historical behavior sequences, is a vital and challenging task in the machine
learning domain. In recent years, benefiting the strong representation learning ability of deep neural
networks (DNNs), DNN-based sequential recommendation methods[105, 39, 94, 129, 50, 108, 52, 67]
have achieved promising recommendation performance and attracted researchers’ high level of
attention.

More recently, intent learning has become a hot topic in both research and industrial field of recom-
mendation. It aims to model users’ intents by learning from users’ historical behaviors. For example,
a user interacts with shoes, bags, and rackets in history. Thus, the user’s potential intent can be
inferred as playing badminton. Then, the system may recommend the intent-relevant items to the
user. Following this principle, various intent learning methods [44, 14, 45, 18, 49, 53, 5, 54] have
been proposed to achieve better user understanding and item recommendation.

The optimization paradigm of recent representative intent learning methods can be summarized as
a generalized Expectation Maximization (EM) framework. To be specific, at the E-step, clustering
algorithms are adopted to learn the latent intents from users’ behavior embeddings. In addition, in the
M-step, self-supervised learning methods are utilized to embed behaviors. The optimizations of these
two steps are performed alternately, achieving promising performance.

However, we highlight two issues in this complex and tedious alternating optimization. (1) At
the E-step, we need to apply the clustering algorithm on the whole data, limiting the model’s
scalability, especially in large-scale industrial scenarios, e.g., apps with billion users. (2) In the EM
framework, the optimization of behavior learning and the clustering algorithm are separated, leading
to sub-optimal performance and increasing the implementation difficulty.

To this end, we propose a novel intent learning model named ELCRec via integrating represen-
tation learning into an End-to-end Learnable Clustering framework, for effective and efficient
Recommendation. Specifically, the user’s behavior process is first embedded into the latent space.
Cluster centers, recognized as users’ latent intents, are initialized as learnable neural network parame-
ters. Then, a simple yet effective learnable clustering module is proposed to decouple users’ complex
intents into different simple intent units by separating the cluster centers. Meanwhile, it makes the
behavior embeddings close to cluster centers to guide the models to learn more accurate intents from
users’ behaviors. This improves the model’s scalability and alleviates issue (1) by optimizing the
cluster distribution on mini-batch data. Furthermore, to further enhance the mutual promotion of
representation learning and clustering, we present intent-assisted contrastive learning to integrate the
cluster centers as self-supervision signals for representation learning. These settings unify behavior
learning and clustering optimization in an end-to-end optimizing framework, improving recommen-
dation performance and simplifying deployment. Therefore, issue (2) has also been solved. The
contributions of this paper are summarized as follows.

• We innovatively promote the existing optimization framework of intent learning by unifying
behavior representation learning and clustering optimization.

• A new intent learning model termed ELCRec is proposed with a simple yet effective learnable
cluster module and intent-assisted contrastive learning.

• Comprehensive experiments and theoretical analyses show the advantages of ELCRec from six
aspects, including superiority, effectiveness, efficiency, sensitivity, convergence, and visualization.

• We successfully deployed it on an industrial recommendation system with 130 million page views
and achieved promising results, providing various practical insights.

2 Related Work

We provide a brief overview of the related work for this paper. It can be divided into three parts,
including sequential recommendation, intent learning, and clustering algorithms. At first, Sequential
Recommendation (SR) focuses on recommending relevant items to users based on their historical
behavior sequences. In addition, intent learning has emerged as a promising and practical technique in
recommendation systems. It aims to capture users’ latent intents to achieve better user understanding
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and item recommendation. Lastly, clustering algorithms play a crucial role in recommendation
systems since they can identify patterns and similarities in the users or items. Due to the limitation of
the pages, we introduce the detailed related methods in the Appendix 8.11.

3 Methodology

We present our proposed framework, ELCRec, in this section. Firstly, we provide the necessary
notations and task definition. Secondly, we analyze and identify the limitations of existing intent
learning. Finally, we propose our solutions to address these challenges. Before introducing our
method, we first provide the intuitions and insights of designing ELCRec. Concretely, we first analyze
the challenge of scaling the intent learning methods to large-scale industrial data. The existing intent
learning methods always adopt the expectation and maximization framework, where E-step and M-
step are conducted alternately and mutually promote each other. However, we find the EM framework
is hard to scale to large-scale data since it faces two challenges. First, the clustering algorithm is
performed on the full data, easily leading to the out-of-memory problem. Second, the EM paradigm
limits performance since it separates the behavior learning process and the intent learning process. To
solve these two problems, we aim to propose a new intent learning method for the recommendation
task. For the first challenge, our initial idea is to design an online clustering method to update the
clustering centers at each step. Specifically, we propose an end-to-end learnable clustering module
(ELCM) to solve this problem by setting the clustering center as the learnable neural parameters and
the pull-and-push cluster loss functions. In addition, for the second challenge, we aim to integrate the
intent learning process into the behavior learning process and optimize them together. Benefitting
from setting the cluster centers as the learnable neural parameters, we can utilize them to assist the
behavior contrastive learning. Namely, we propose intent-assisted contrastive learning, which not
only supports the learning process of online clustering but also unifies behavior learning and intent
learning. Therefore, with the above two designs, we can solve the challenges of scaling the intent
learning method to large-scale data.

3.1 Basic Notation

In a recommendation system, U denotes the user set, and V denotes the item set. For each user u ∈ U ,
the historical behaviors are described by a sequence of interacted items Su = [su1 , s

u
2 , ..., s

u
t , ..., s

u
|Su|].

Su is sorted by time. |Su| denotes the interacted items number of user u. sut denotes the item which
is interacted with user u at t step. In practice, during sequence encoding, the historical behavior
sequences are limited with a maximum length T [34, 39, 18]. The sequences are truncated and remain
the most recent T interacted items if the length is greater than T . Besides, the shorter sequences are
filled with “padding” items on the left until the length is T . Due to the limitation of the pages, we list
the basic notations in Table 5 of the Appendix 8.2.

3.2 Task Definition

Given the user set U and the item set V , the recommendation system aims to precisely model the user
interactions and recommend items to users. Take user u for an example, the sequence encoder firstly
encodes the user’s historical behaviors Su to the latent embedding Eu. Then, based on the historical
behavior embedding, the target of the recommendation task is to predict the next item that is most
likely interacted with by user u at |Su|+ 1 step.

3.3 Problem Analyses

Among the techniques in recommendation, intent learning has become an effective technique for
understanding users. We summarize the optimization procedure of the intent learning as the Expecta-
tion Maximization (EM) framework. It contains two steps including E-step and M-step. These two
steps are conducted alternately, mutually promoting each other. However, we find two issues of the
existing optimization framework as follows.

(1) In the process of E-step, it needs to perform a clustering algorithm on the full data, easily
leading to out-of-memory or long-running time problems. It restricts the scalability of the
model on large-scale industrial data.
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(2) The alternative optimization approach within the EM framework separates the learning process
for behaviors and intents, leading to sub-optimal performance and increased implementation
complexity. Also, it limits the training and inference of real-time data. That is, when users’
behaviors and intents change over time, there is a long lag in the training and inference process.

Therefore, we aim to develop a new optimization framework for intent learning to solve issues (1)
and issues (2). For issue (1), a new learnable online clustering method is the key solution. For the
issue (2), we aim to break the alternative optimization in the EM framework.

3.4 Proposed Method

To this end, we present a new intent learning method termed ELCRec by unifying sequence rep-
resentation learning into an End-to-end Learnable Clustering framework, for Recommendation. It
contains three parts, including behavior encoding, end-to-end learnable cluster module (ELCM), and
intent-assisted contrastive learning (ICL).

3.4.1 Behavior Encoding

In this process, we aim to encode the users’ behavior sequences. Concretely, given the user set U , the
item set V , and the users’ historical behavior sequence set {Su}|U|

u=1, the behavior encoder F embeds
the behavior sequences of each user u into the latent space as follows.

Eu = F(Su), (1)

where Eu ∈ R|Su|×d′
denotes the behavior sequence embedding of user u, d′ is the dimension

number of latent features, and |Su| denotes the length of behavior sequence of user u. Note that the
behavior sequence lengths of different users are different. Therefore, all user behavior sequences
are pre-processed to the sequences with the same length T by padding or truncating. The encoder F
is designed as a Transformer-based [100] architecture. Subsequently, to summarize the behaviors
over different times of each user, the behavior sequence embedding is aggregated by the concatenate
pooling function P as follows.

hu = P(Eu) = concat(eu1 ||...eui ...||euT ), (2)

where eui ∈ R1×d′
denotes the embedding of user behavior at i-th step and hu ∈ R1×Td′

denotes the
aggregated behavior embedding of user u. We re-denote Td′ as d for convenience. By encoding and
aggregation, we obtain the behavior embeddings of all users H ∈ R|U|×d.

3.4.2 End-to-end Learnable Cluster Module

After behavior encoding, we guide the model to learn the users’ latent intents from the behavior
embeddings. To this end, an end-to-end learnable cluster module (ELCM) is proposed to break
the alternative optimization in the previously mentioned EM framework. This module can group
the users’ behaviors embeddings into various clusters, which represent the users’ latent intents or
interests. Concretely, at first, the cluster centers C ∈ Rk×d are initialized as the learnable neural
parameters, i.e., the tensors with gradients. Then, we design a simple yet effective clustering loss to
train the networks and cluster centers as formulated as follows.

Lcluster =
−1

(k − 1)k

k∑
i=1

k∑
j=1,j ̸=i

∥ĉi − ĉj∥22︸ ︷︷ ︸
Intent Decoupling

+
1

bk

b∑
i=1

k∑
j=1

∥∥∥ĥi − ĉj

∥∥∥2
2︸ ︷︷ ︸

Intent-behavior Alignment

,
(3)

where ĥi = hi/∥hi∥2, ĉi = ci/∥ci∥2. In Eq. (3), k denotes the number of clusters (intents), and b
denotes the batch size. hi ∈ R1×d denotes the i-th user’s behavior embedding and cj ∈ R1×d denotes
the j-th cluster center. For better network convergence, we constrain the behavior embeddings and
cluster center embeddings to distribute on a unit sphere. Concretely, we apply the l-2 normalization
to both the user behavior embeddings H, and the cluster centers C during calculating Lcluster.

In the proposed clustering loss, the first term is designed to disentangle the complex users’ intents
into simple intent units. Technically, it pushes away different cluster centers, therefore reducing the
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overlap between different clusters (intents). The time complexity and space complexity of this term
are O(k2d) and O(kd), respectively. The number of users’ intents is vastly less than the number of
users, i.e., k ≪ |U|. Therefore, the first term will not bring significant time or space costs.

In addition, the second term of the proposed clustering loss aims to align the users’ latent intents
with the behaviors by pulling the behavior embeddings to the cluster centers. This design makes
the in-class cluster distribution more compact and guides the network to condense similar behaviors
into one intention. Also, on another aspect, it forces the model to learn users’ intents from behavior
embeddings. Note that the behavior embedding hi is pulled to all center centers cj , j = 1, ..., k
rather than the nearest cluster center. The main reason is that the practical clustering algorithm
is imperfect, and pulling to the nearest center easily leads to the confirmation bias problem [75].
To this end, the proposed clustering loss Lcluster aims to optimize the clustering distribution in an
adversarial manner by pulling embeddings together to cluster centers while pushing different cluster
centers away. Besides, it enables the optimization of this term via mini-batch samples, avoiding
performance clustering algorithms on the whole data. The time complexity and space complexity of
the second term are O(bkd) and O(bk + bd+ kd), respectively. Since the batch size is essentially
less than the number of users, namely, b ≪ |U|, the second term of clustering loss Lcluster alleviates
the considerable time or space costs.

In the existing EM optimization framework, the clustering algorithm needs to be applied on the entire
users’ behavior embeddings H ∈ R|U|×d. Take the classical k-Means clustering as an example,
at each E-step, it leads to O(t|U|kd) time complexity and O(|U|k + |U|d+ kd) space complexity,
where t denote the iteration steps of k-Means clustering algorithm. We find that, at each step, the
time and space complexity is linear to the number of users, thus leading to out-of-memory or running
time problems (issue (1)), especially on large-scale industrial data with millions or billions of users.

Fortunately, our proposed end-to-end learnable cluster module can solve this issue (1). By summaris-
ing previous analyses, we draw that the overall time and space complexity of calculating the clustering
loss Lcluster are O(bkd+k2d+bd) and O(bk+bd+kd), respectively. They are both linear to the batch
size b at each step, enabling the model’s scalability. Besides, the proposed module is plug-and-play
and easily deployed in real-time large-scale industrial systems. We provide detailed evidence and
practical insights in Section 5. The proposed ELCM can not only improve the recommendation
performance (See Section 4.1 & 4.2) but also promote efficiency (See Section 4.3).

3.4.3 Intent-assisted Contrastive Learning

Next, we aim to enhance further the mutual promotion of behavior learning and clustering. To this end,
Intent-assisted contrastive learning (ICL) is proposed by adopting cluster centers as self-supervision
signals for behavior learning. Firstly, we conduct contrastive learning among the behavior sequences.
The new views of the behavior sequences are constructed via sequential augmentations, including
mask, crop, and reorder. The two views of behavior sequence of user u are denoted as (Su)v1

and (Su)v2. According to Section 3.4.1, the behaviors are encoded to the behavior embeddings
hv1
u ,hv2

u ∈ R1×d. Then, the sequence contrastive loss of user u is formulated as follows.

Lu
seq_cl = −

(
log

esim(hv1
u ,hv2

u )∑
neg e

sim(hv1
u ,hneg)

+ log
esim(hv1

u ,hv2
u )∑

neg e
sim(hv2

u ,hneg)

)
, (4)

where “sim” denotes the dot-product similarity, “neg” denotes the negative samples. Here, the same
sequence with different augmentations is recognized as the positive sample pairs, and the other
sample pairs are recognized as the negative sample pairs. By minimizing Lseq_cl =

∑
u Lu

seq_cl, the
similar behaviors are pulled together, and the others are pushed away from each other, therefore
enhancing the representation capability of users’ behaviors. The learned cluster centers C ∈ Rk×d

are adopted as the self-supervision signals. The index of the assigned cluster of hv1
u is queried as

follows.
idx = argmin

i
(
∥∥ci − hv1

u

∥∥2
2
), (5)

where ci ∈ R1×d denotes the i-th cluster (intent) center embedding. Then, the intent information is
fused to the user behavior during the sequence contrastive learning. Here, we consider two optional
fusion strategies, including the concatenate fusion hv1

u = concat(hv1
u ||cidx) and the shift fusion

hv1
u = hv1

u + cidx. A similar operation is applied to the second view of the behavior embedding hv2
u .

After fusing the intent information to user behaviors, the networks are trained by minimizing Lseq_cl.

5



In addition, to further collaborate intent learning and sequential representation learning, we conduct
contrastive learning between the user’s behaviors and the learnable intent centers. The intent
contrastive loss is formulated as follows.

Lu
intent_cl = −

(
log

mini e
sim(hv1

u ,ci)∑
neg e

sim(hv1
u ,cneg)

+ log
mini e

sim(hv2
u ,ci)∑

neg e
sim(hv2

u ,cneg)

)
, (6)

where hv1
u ,hv2

u are two-view behavior embedding of the user u. Besides, “neg” denotes the negative
behavior-intent pairs among all pairs. Here, we regard the behavior embedding and the corresponding
nearest intent center as the positive pair and others as negative pairs. By minimizing the intent
contrastive loss Lintent_cl =

∑
u Lu

intent_cl, behaviors with the same intents are pulled together, but
behaviors with different intents are pushed away. The objective of ICL is formulated as follows.

Licl = Lseq_cl + Lintent_cl. (7)

The effectiveness of ICL is verified in Section 4.2. With the proposed ELCM and ICL, we develop a
new end-to-end optimization framework for intent learning, improving performance and convenience.
By these designs, the issue (2) is also solved.

3.4.4 Overall Objective

The neural networks and learnable clusters are trained with multiple tasks, including intent learning,
intent-assisted contrastive learning, and next-item prediction. The intent learning task aims to capture
the users’ underlying intents. Besides, intent-assisted contrastive learning aims to collaborate with
intent learning and behavior learning. In addition, the next-item prediction task is a widely used task
for recommendation systems. The overall objective of ELCRec is formulated as follows.

Loverall = Lnext_item + 0.1× Licl + α× Lcluster, (8)

where Lnext_item, Licl, and Lcluster denotes the next item prediction loss, intent-assisted contrastive
learning loss, and clustering loss, respectively. α is a trade-off hyper-parameter. We present the
overall algorithm process of the proposed ELCRec method in Algorithm 1 in Appendix.

We detail and summarize the devised loss in equation (8). We train our proposed ELCRec method
with multiple tasks, including the next-item prediction task, intent-assisted contrastive learning, and
intent learning (learnable clustering) task. Accordingly, Equation (8), which denotes the overall loss
function of ELCRec, contains three parts: next-item prediction loss Lnext_item, the intent-assisted
contrastive learning loss Licl, and the intent learning loss Lcluster. Concretely, the next-item prediction
loss is a commonly used loss function for the sequential recommendation. It aims to predict the next
item in the interaction sequence based on the previous sequence. In addition, the intent learning
loss aims to optimize the cluster center embeddings by pulling the samples to the corresponding
cluster centers and pushing away different cluster centers. Moreover, the intent-assisted contrastive
learning loss aims to conduct self-supervised learning to unify the behavior representation learning
and intent representation learning. Overall, equation (8) trains the network through three tasks by a
linear combination of three loss functions.

4 Experiment

This section aims to comprehensively evaluate ELCRec by answering research questions (RQs).

(i) Superiority: does it outperform the state-of-the-art sequential recommendation methods?
(ii) Effectiveness: are the ELCM and ICL modules effective?

(iii) Efficiency: how about the time and memory efficiency of the proposed ELCRec?
(iv) Sensitivity: what is the performance of the proposed method with different hyper-parameters?
(v) Convergence: have the loss function and recommendation performance converged?

(vi) Visualization: Can the visualized learned embeddings reflect the promising results?

We answer RQ(i), (ii), (iii) in Section 4.1, 4.2, 4.3, respectively. Due to the limited pages, RQ(iv), (v),
(vi) are answered in the Appendix 8.6, 8.7, and 8.8 respectively.
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Table 1: Recommendation performance on benchmarks. Bold values and underlined values denote
the best and runner-up results. ∗ indicates that, in the t-test, the best method significantly outperforms
the runner-up with p < 0.05. "-" indicates models do not converge.
Dataset Metric BPR-MF

[88]
GRU4Rec

[34]
Caser
[96]

SASRec
[39]

BERT4Rec
[94]

DSSRec
[69]

S3-Rec
[129]

CL4SRec
[108]

DCRec
[116]

MAERec
[118]

IOCRec
[49]

ICLRec
[18]

ELCRec
Ours Impro. p-value

Sports

HR@5 0.0141 0.0162 0.0154 0.0206 0.0217 0.0214 0.0121 0.0217 0.0172 0.0225 0.0246 0.0263 0.0286 8.75%↑ 2.34e-6∗

HR@20 0.0323 0.0421 0.0399 0.0497 0.0604 0.0495 0.0344 0.0540 0.0357 0.0488 0.0641 0.0630 0.0648 1.09%↑ 2.29e-4∗

NDCG@5 0.0091 0.0103 0.0114 0.0135 0.0143 0.0142 0.0084 0.0137 0.0118 0.0152 0.0162 0.0173 0.0185 6.94%↑ 3.54e-5∗

NDCG@20 0.0142 0.0186 0.178 0.0216 0.0251 0.0220 0.0146 0.0227 0.0170 0.0225 0.0280 0.0276 0.0286 2.14%↑ 7.87e-3∗

Beauty

HR@5 0.0212 0.0111 0.0251 0.0374 0.0360 0.0410 0.0189 0.0423 0.0368 0.0414 0.0408 0.0495 0.0529 6.87% ↑ 3.18e-6∗

HR@20 0.0589 0.0478 0.0643 0.0901 0.0984 0.0914 0.0487 0.0994 0.0674 0.0854 0.0916 0.1072 0.1079 0.65%↑ 3.30e-3∗

NDCG@5 0.0130 0.0058 0.0145 0.0241 0.0216 0.0261 0.0115 0.0281 0.0269 0.0283 0.0245 0.0326 0.0355 8.90%↑ 4.48e-6∗

NDCG@20 0.0236 0.0104 0.0298 0.0387 0.0391 0.0403 0.0198 0.0441 0.0357 0.0407 0.0444 0.0491 0.0509 3.67%↑ 9.08e-6∗

Toys

HR@5 0.0120 0.0097 0.0166 0.0463 0.0274 0.0502 0.0143 0.0526 0.0399 0.0477 0.0311 0.0586 0.0585 0.17%↓ 1.22e-1
HR@20 0.0312 0.0301 0.0420 0.0941 0.0688 0.0975 0.0235 0.1038 0.0679 0.0904 0.0781 0.1130 0.1138 0.71%↑ 4.20e-3∗

NDCG@5 0.0082 0.0059 0.0107 0.0306 0.0174 0.0337 0.0123 0.0362 0.0296 0.0336 0.0197 0.0397 0.0403 1.51%↑ 2.87e-4∗

NDCG@20 0.0136 0.0116 0.0179 0.0441 0.0291 0.0471 0.0162 0.0506 0.0374 0.0458 0.0330 0.0550 0.0560 1.82%↑ 3.72e-5∗

Yelp

HR@5 0.0127 0.0152 0.0142 0.0160 0.0196 0.0171 0.0101 0.0229

-

0.0166 0.0222 0.0233 0.0236 1.29% ↑ 7.81e-3∗

HR@20 0.0346 0.0371 0.0406 0.0443 0.0564 0.0464 0.0314 0.0630 0.0460 0.0640 0.0645 0.0653 1.24%↑ 3.73e-4∗

NDCG@5 0.0082 0.0091 0.0080 0.0101 0.0121 0.0112 0.0068 0.0144 0.0105 0.0137 0.0146 0.0150 2.74%↑ 1.23e-2∗

NDCG@20 0.0143 0.0145 0.0156 0.0179 0.0223 0.0193 0.0127 0.0256 0.0186 0.0263 0.0261 0.0266 1.14%↑ 6.82e-3∗

4.1 Superiority

In this section, we aim to answer the research question (i) and demonstrate the superiority of
ELCRec. To be specific, we compare ELCRec with nine state-of-the-art recommendation baselines
[88, 34, 96, 39, 69, 94, 129, 108, 18]. Experimental results are the mean values of three runs. As
shown in Table 1, the bold values and underlined values denote the best and runner-up results,
respectively. From these results, we have four conclusions as follows. (a) The non-sequential
model BPR-MF [88] has not achieved promising performance since the shallow method lacks the
representation learning capability of users’ historical behaviors. (b) The conventional sequential
methods [34, 96, 39] improve the recommendation via different DNNs such as CNN [42], RNN
[121], and Transformer [100]. But they perform worse since limiting self-supervision. (c) The recent
methods [94, 129, 108] enhance the self-supervised capability of models via the self-supervised
learning techniques. However, they neglect the underlying users’ intent, thus leading to sub-optimal
performance. (d) More recently, the intent learning methods [44, 14, 45, 18, 49, 53, 5] have been
proposed to mine users’ underlying intent to assist recommendation. Motivated by their success,
we propose a new intent learning method termed ELCRec. Befitting from the strong intent learning
capability of ELCRec, it surpasses all other intent learning methods.

The balance is set to 1 in equation (7). We can add one balance hyperparameter to control the balance
between sequence contrastive learning loss and intent contrastive learning loss to achieve better
performance. However, in equation (8), we find there are many balances that need to be controlled,
such as the balance of intent-assist contrastive learning loss and the balance of intent learning loss,
easily leading to the high cost of hyperparameter tuning. To lower the load of tune hyperparameters,
we fix the balance between sequence contrastive learning loss and intent contrastive learning loss as 1
and the balance between next item prediction loss and intent-assisted contrastive learning loss as 0.1.
This setting has already been able to achieve promising performance. For other complex scenarios,
we can set more balance hyperparameters for better performance in the future.

We did have one inconsistent finding on the toy dataset compared with other datasets. Concretely,
ELCRec (B+ELCM+ICL) cannot beat B+ELCM, indicating that ICL may be ineffective on the
B+ELCM variant on this dataset. However, we also find that B+ICL can beat B, indicating that ICL
works for the baseline model. This phenomenon is interesting. We have the following explanations
as follows. The ICL is conducted on both the behavior representations and the intent representations.
Therefore, it can be influenced by both these two optimization processes. Namely, both the quality
of behavior embeddings and the quality of the intent embeddings are crucial for the quality of ICL.
Thus, it may not be very robust in all cases. For B+ICL, adding ICL to the baseline can improve the
behavior-learning process. However, we find that B+ELCM has already achieved a very promising
performance compared with other variants, indicating the quality of intent representations is excellent.
Then we add ICL to B+ELCM, the ICL may downgrade the quality of intent representations. To
solve this issue, we will conduct more careful training and optimize the training procedure to achieve
better performance.
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(a) Sports (b) Beauty (c) Toys (d) Yelp

Figure 1: Ablation studies of the proposed end-to-end learnable cluster module (ELCM) and the
intent-assisted contrastive learning (ICL). The results are the sum of four metrics, including HR@5,
HR@20, NDCG@5, and NDCG@20.

To further verify the superiority of ELCRec, we conduct the t-test between the best and runner-
up methods. As shown in Table 1, the most p-value is less than 0.05 except HR@5 on the Toys
dataset. It indicates that ELCRec significantly outperforms runner-up methods. Overall, the extensive
experiments demonstrate the superiority of ELCRec. In addition, we also conduct comparison
experiments on recommendation datasets of other domains, including movie recommendation and
news recommendation, as shown in the Appendix 8.4.1 and 8.4.2. These experimental results
demonstrate a broader applicability of our proposed ELCRec.

4.2 Effectiveness

This section is dedicated to answering the research question (ii) and evaluating the effectiveness of
the End-to-end Learnable Cluster Module (ELCM) and Intent-assisted Contrastive Learning (ICL).
To achieve this, we conducted meticulous ablation studies on four benchmarks. Figure 1 illustrates
the experimental results. In each sub-figure, “B”, “B+ICL,” “B+ELCM,” and “ELCRec” correspond
to the backbone, backbone with ICL, backbone with ELCM, and backbone with both ICL and ELCM,
respectively. Through the ablation studies, we draw three key conclusions. (a) “B+ICL” outperforms
the backbone “B” on all four benchmarks. It indicates that the proposed ICL effectively improves
behavior learning. (b) “B+ELCM” surpasses the backbone “B” significantly on all benchmarks.
This phenomenon demonstrates that our proposed end-to-end learnable cluster module helps the
model better capture the users’ underlying intents, thus improving recommendation performance. (c)
ELCRec achieves the best performance on three out of four datasets. It shows the effectiveness of
the combination of these two modules. On the Toys dataset, ELCRec can outperform the “B” and
“B+ICL” but perform worse than “B+ELCM”. This phenomenon indicates it is worth researching
the better collaboration of these two modules in the future. To summarize, these extensive ablation
studies verify the effectiveness of the proposed intent-assisted contrastive learning and end-to-end
learnable cluster module in ELCRec.

4.3 Efficiency

We test the efficiency of ELCRec on four benchmarks and answer the research question (iii). Con-
cretely, the efficiency contains two perspectives, including running time costs (in seconds) and GPU
memory costs (in MB). Note that we use the same epoch number of our method and the baseline
when we test the running time. Besides, we calculate the average GPU memory cost during the
training process. We have two observations as follows. (a) ELCRec can speed up ICLRec on three
out of four datasets (See Table 2). Overall, on four datasets, the running time is decreased by 7.18%
on average. The reason is that our proposed end-to-end optimization of intent learning breaks the
alternative optimization of the EM framework, saving computation costs. (b) The results demonstrate
that the GPU memory costs of our ELCRec are lower than that of ICLRec on four datasets (See
Table 2). On average, the GPU memory costs are decreased by 9.58%. It is because we enable the
model to conduct intent learning via the mini-batch users’ behaviors. Therefore, in summary, we
demonstrate the efficiency of ELCRec from both time and memory aspects. Please note that, due to
the relatively small size of the open benchmarks, the efficiency improvements are not particularly
significant. However, on large-scale data, our method can achieve more substantial improvements.

We observe that in most cases, our proposed method can save time and memory costs, e.g., saving
7.18% time and 9.48% memory on average. For the time cost of our method on the Sports dataset,
we regard it as a corner case. By careful analyses, we provide the explanation as follows. We suspect
the raised time costs are caused by the wrong direction of the optimization. Setting the cluster
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embeddings as the learnable neural parameters and optimizing them during training may be a harder
task for the model compared to conducting the offline clustering algorithm on the learned embeddings
directly. We analyze the performance and loss curve of our method on the Sports dataset and find
that the decline of loss slowdowns and the performance seem to drop a little at almost the end of the
training. We think this wrong optimization leads to the comparable time cost of our method compared
with the baseline. But for other datasets, their optimization processes are great, therefore saving time
and memory costs essentially. In the future, we can avoid this wrong optimization direction through
some strategies, such as early-stopping and penalty terms.

Table 2: Running time and memory costs. Bold values denote better results.

Cost Dataset Sports Beauty Toys Yelp Average

ICLRec 5282 3770 4374 4412 4460

Time ELCRec 5360 2922 4124 4151 4139

Improvement 1.48% ↑ 22.49% ↓ 5.72% ↓ 5.92% ↓ 7.18% ↓

ICLRec 1944 1798 2887 3671 2575

Memory ELCRec 1781 1594 2555 3383 2328

Improvement 8.38% ↓ 11.35% ↓ 11.50% ↓ 7.85% ↓ 9.58% ↓

5 Application

Our proposed ELCRec is versatility and plug-and-play. Benefiting its advantages, we aim to apply it
to real-time large-scale industrial recommendation systems with millions of users. First, we introduce
the background and settings of the application. Then, we conduct extensive A/B testing and analyze
the experimental results. Besides, due to the page limitation, we provide deployment details and
practical insights in Appendix 8.13 and 8.10, respectively.

5.1 Application Background

The applied scenario is the live streaming recommendation on the front page of the Alipay app.
The user view (UV) and page view (PV) of this application are about 50 million and 130 million,
respectively. Note that most users are new to this application, therefore leading to the sparsity of
users’ behaviors. To solve this cold-start problem in the recommendation system, we adopt our
proposed method to group users and recommend items based on the groups. Concretely, due to the
sparsity of users’ behaviors, we first replace the users’ behavior with the users’ activities features in
this application and model them via the multi-gate mixture-of-expert (MMOE) model [68]. Th,en we
aim to group the users into various groups. For the existing intent learning methods, they easily lead
to long-running time or out-of-memory problems. To solve this problem, we adopt the end-to-end
learnable cluster module to group the users into various groups effectively and efficiently. Through
this module, the high-activity users and new users are grouped into different clusters, alleviating the
cold-start issue and assisting in better recommendations. Besides, during the learning process of the
cluster embeddings, the low-activity users can transfer to high-activity users, improving the overall
users’ activities in the application. Eventually, the networks are trained with multiple tasks. In the
next section, we conduct experiments to demonstrate the effectiveness of our proposed method on
real-time large-scale industrial data.

5.2 A/B Testing on Real-time Large-scale Data

We conduct A/B testing on the real-time large-scale industrial recommendation system. The experi-
mental results are listed in Table 3. We evaluate the models with two metric systems, including live
streaming metrics and merchandise metrics. livestreaming metrics contain Page View Click Through
Rate (PVCTR) and Video View (VV). Merchandise metrics contain PVCTR and User View Click
Through Rate (UVCTR). The results indicate that our method can improve the recommendation
performance of the baseline by about 2%. Besides, the improvements are significant with p < 0.05
in three out of four metrics.
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Table 3: A/B testing on real-time large-scale industrial recommendation. Bold values denotes the
significant improvements with p < 0.05. The symbol “-” denotes business secret.

Method
Livestreaming Metrics Merchandise Metrics

PVCTR VV PVCTR UVCTR

Baseline - - - -

Impro. 2.45% ↑ 2.28% ↑ 2.41% ↑ 1.62% ↑

In addition, to further explore why our method can work well in real-time large-scale recommendation
systems, we further analyze the recommendation performance of different user groups. The results
are shown in Table 4. Based on the users’ activity, we classify them into five groups, including
Pure New users (PN), New users (N), Low-Activity users (LA), Medium-Activity users (MA), and
High-Activity users (HA). Compared with the general recommendation algorithms that are unfriendly
to new users, the experimental results show that our module not only improves the recommendation
performance of high-activity users but also improves the recommendation performance of new users.
Therefore, it can alleviate the cold-start problem and construct a more friendly user ecology.

For the utilization of group embeddings, there are many ways. For the conventional user recom-
mendation or the group recommendation, we utilize the historical group embeddings and conduct
continued training for the recommendation model. For other downstream tasks in other domains, we
can provide the restore group embeddings for them. Therefore, for the recommendation model, the
group embeddings are restored in the model parameters and updated daily. Besides, for other indirect
downstream tasks, the group embeddings will be stored in the database.

Table 4: Results on different user groups. Bold values denotes improvements with p < 0.05.

Metric PN N LA MA HA

PVCTR 6.96% ↑ 1.67% ↑ 1.98% ↑ 0.35% ↑ 19.02% ↑

VV 6.81% ↑ 1.50% ↑ 1.50% ↑ 0.04% ↑ 16.90% ↑

6 Conclusion

In this paper, we explore intent learning in recommendation systems. To be specific, we summarize
and analyze two drawbacks of the existing EM optimization framework of intent learning. The
complex and cumbersome alternating optimization limits the scalability and performance of existing
methods. To this end, we propose a novel intent learning method termed ELCRec with an end-to-end
learnable cluster module and intent-assisted contrastive learning. Extensive experiments on four
benchmarks demonstrate ELCRec’s six abilities. In addition, benefiting from the versatility of
ELCRec, we successfully apply it to the real-time large-scale industrial scenario and also achieve
promising performance. Due to the limited pages, We discuss the limitations and future work of this
paper in Appendix 8.14, such as pre-defined cluster number, limited recommendation domains, and
uncontrollable update rate of cluster centers.
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8 Appendix

8.1 Experimental Setup

8.1.1 Experimental Environment

Experimental results on the public benchmarks are obtained from the desktop computer with one
NVIDIA GeForce RTX 4090 GPU, six 13th Gen Intel(R) Core(TM) i9-13900F CPUs, and the
PyTorch platform. During training, we monitored the training process via the Weights & Biases.

8.1.2 Public Benchmark

We performed our experiments on four public benchmarks: Sports, Beauty, Toys, and Yelp5. The
Sports, Beauty, and Toys datasets are subcategories of the Amazon Review Dataset [71]. The Sports
dataset contains reviews for sporting goods, the Beauty dataset contains reviews for beauty products,
and the Toys dataset contains toy reviews. On the other hand, the Yelp dataset focuses on business
recommendations and is provided by Yelp company. Table 6 summarizes the datasets’ details. We
only kept datasets where all users and items have at least five interactions. Besides, we adopted the
dataset split settings used in the previous method [18].

8.1.3 Evaluation Metric

To evaluate ELCRec, we adopt two groups of metrics, including Hit Ratio@k (HR@k) and Normal-
ized Discounted Cumulative Gain@k (NDCG@k), where k ∈ {5, 20}.

8.1.4 Compared Baseline

We compare our method with nine baselines including BPR-MF [88], GRU4Rec [34], Caser [96],
SASRec [39], DSSRec [69], BERT4Rec [94], S3-Rec [129], CL4SRec [108], and ICLRec [18].
Detailed introductions to these methods are in the Appendix 8.11.2.

5https://www.yelp.com/dataset
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8.1.5 Implementation Detail

For the baselines, we adopt their original code with the original settings to reproduce the results on
four benchmarks. Due to page limitation, the detailed implementation of the baselines are listed in
Appendix 8.12. The proposed method, ELCRec, was implemented using the PyTorch deep learning
platform. In the Transformer encoder, we employed self-attention blocks with two attention heads.
The latent dimension, denoted as d, was set to 64, and the maximum sequence length, denoted as T ,
was set to 50. We utilized the Adam optimizer with a learning rate of 1e-3. The decay rate for the
first moment estimate was set to 0.9, and the decay rate for the second moment estimate was set to
0.999. The cluster number, denoted as k, was set to 256 for the Yelp and Beauty datasets and 512
for the Sports and Toys datasets. The trade-off hyper-parameter, denoted as α, was set to 1 for the
Sports and Toys datasets, 0.1 for the Yelp dataset, and 10 for the Beauty dataset. During training, we
monitored the training process via the Weights & Biases.

8.2 Notation and Dataset

We list the basic notations in Table 5. And Table 6 summarizes the datasets’ details.

Table 5: Basic notations.

Notation Meaning
U User set
V Item set

{Su}|U|
u=1 Users’ behavior sequence set

(Su)vk Users’ behavior sequence set in view k

d′ Dimension number of latent features
d Dimension number of aggregated latent features
b Batch size
k Cluster number
T Maximum sequence length

Lcluster Clustering loss
Lseq_cl Behavior sequence contrastive loss
Lintent_cl Intent contrastive loss
Licl intent-assisted contrastive learning loss

Lnext_item Next item prediction loss
Loverall Overall loss of the proposed ELCRec
F Behavior Encoder
P Concatenate pooling function

Eu ∈ R|Su|×d′
Behavior sequence embedding of user u

H ∈ R|U|×d Behavior embeddings of all users
Ĥ ∈ R|U|×d Normalized Behavior embeddings of all users
Hvk ∈ R|U|×d Behavior embeddings of all users in view vk

C ∈ Rk×d Learnable cluster center embeddings
Ĉ ∈ Rk×d Normalized Learnable cluster center embeddings

8.3 Algorithm Table

We summarize the overall process of the ELCRec method in Algorithm 1.

19



Table 6: Statistical information of four public datasets.

Dataset #User #Item #Action Avg. Len. Sparsity
Sports 35,598 18,357 0.3M 8.3 99.95%
Beauty 22,363 12,101 0.2M 8.9 99.95%
Toys 19,412 11,924 0.17M 8.6 99.93%
Yelp 30,431 20,033 0.3M 8.3 99.95%

Algorithm 1 End-to-end Learnable Clustering Framework for Recom-
mendation (ELCRec)

Input: user set U ; item set V; historical behavior sequences {Su}|U|
u=1;

cluster number k; epoch number E; learning rate; trade-off parameter
α.
Output: Trained ELCRec.

1: Initialize model parameters in encoders.
2: for epoch = 1, 2, ..., E do
3: for u = 1, 2, ..., |U| do
4: Obtain u-th user’s behavior sequence embedding Eu ∈

R|Su|×d′
via encoding Su in Eq. (1).

5: Obtain u-th user’s aggregated behavior embedding hu ∈
R1×d via aggregating Eu in Eq. (2)

6: end for
7: Obtain behavior embeddings of all users H ∈ R|U|×d.
8: Initialize cluster centers C ∈ Rk×d as learnable.
9: Calculate clustering loss to conduct intent learning.

10: Generate two views of behaviors via data augmentations.
11: Encode the two views of the behavior sequences.
12: Calculate Lseq_cl to conduct behavior contrastive learning.
13: Query cluster index of the behavior embeddings via Eq. (5).
14: Fuse the intent information to behavior embeddings.
15: Calculate Lintent_cl to conduct intent contrastive learning.
16: Calculate Lnext_item to conduct next item prediction task.
17: Minimize Loverall to train the model in Eq. (8).
18: end for
19: Return Well-trained ELCRec model.

8.4 Applicability on Diverse Domains

To further demonstrate the applicability of ELCRec on different recommendation domains, we
conduct additional experiments on movie recommendation and news recommendation.

8.4.1 Movie Recommendation

For the movie recommendation, we conducted experiments on the MovieLens 1M dataset (ML-1M)
[29]. This dataset contains 1M ratings from about 6K users on about 4K movies, as shown in Table 7.
In this experiment, we compared our proposed ELCRec with the most related baseline ICLRec. The
experimental results are presented in the Table 8.

Table 7: Statistical information of ML-1M dataset.

Dataset #User #Movie #Rating Rating per User Rating per Movie

ML-1M 6,040 3,706 1,000,209 166 270

From these experimental results, we draw two conclusions as follows.
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Table 8: Recommendation performance on ML-1M dataset. Bold values denote the best results. *
indicates the p-value<0.05.

Method HR@5 HR@20 NDCG@5 NDCG@20

ICLRec 0.0293 0.0777 0.0186 0.0320

ELCRec 0.0333 0.0836 0.0208 0.0347

Impro. 13.65%↑ 7.59%↑ 11.83%↑ 8.44%↑
p-value 4.03e-6* 6.68e-9* 6.36e-6* 1.66e-6*

(a) ELCRec achieves better recommendation performance, as evidenced by higher values for all
four metrics: HR@5, HR@20, NDCG@5, and NDCG@20. For example, with the HR@5
metric, ELCRec outperforms ICLRec by 13.65%.

(b) We calculated the p-value between our method and the runner-up. The results indicate that all
the p-values are less than 0.05, suggesting that our ELCRec significantly outperforms ICLRec.

(c) We demonstrate the applicability and superiority of the proposed ELCRec in the movie recom-
mendation domain.

8.4.2 News Recommendation

In addition, for news recommendation, we aim to conduct experiments on the MIND-small dataset
[106]. MIND contains about 160k English news articles and more than 15 million impression logs
generated by 1 million users. Every news article contains rich textual content, including title, abstract,
body, category, and entities. Each impression log contains the click events, non-clicked events, and
historical news click behaviors of this user before this impression. To protect user privacy, each user
was de-linked from the production system when securely hashed into an anonymized ID. MIND-small
is a small version of the MIND dataset by randomly sampling 50,000 users and their behavior logs
from the MIND dataset. We list the experimental results in Table 9.

Table 9: Recommendation performance on MIND-small dataset. Bold values denote the best results.
* indicates the p-value<0.05.

Method HR@5 HR@20 NDCG@5 NDCG@20

ICLRec 0.0890 0.2128 0.0578 0.0926

ELCRec 0.0944 0.2332 0.0603 0.0994

Impro. 6.07%↑ 9.59%↑ 4.33%↑ 7.34%↑
p-value 7.09e-17* 9.57e-09* 6.11e-7* 1.09e-7*

From these experimental results, we have three conclusions as follows.

(a) ELCRec surpasses the runner-up for all four metrics, including HR@5, HR@20, NDCG@5,
and NDCG@20. Significantly, ELCRec improve the runner-up by 9.59% with HR@20.

(b) We conduct t-test for ELCRec and the runner-up method and find all the p-values are less than
0.05. It indicates that our method significantly outperforms the runner-up method.

(c) We demonstrate the applicability and superiority of the proposed ELCRec in the news recom-
mendation domain.

Overall, we further demonstrate the applicability of ELCRec in diverse domains from the news and
movie aspects.

8.5 Precise Data of Ablation Study

Due to the limitation of the main pages of the paper, we provide the precise data of the ablation
studies in this section.
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Table 10: The precise date of the ablation studies. “B”, “B+ICL”, “B+ELCM”, and “ELCRec” denote
the baseline, the baseline with intent-assisted contrastive learning, the baseline with the end-to-end
learnable clustering module, and the baseline with both, respectively.

B B+ICL B+ELCM ELCRec

Sports 0.1343 0.1379 0.1396 0.1405

Beauty 0.239 0.2398 0.2432 0.2473

Toys 0.2664 0.2675 0.2718 0.2686

Yelp 0.1258 0.1262 0.1285 0.1305

8.6 Sensitivity

This section aims to answer the research question (iv). To verify the sensitivity of the proposed EL-
CRec to hyper-parameters, we test the performance on four datasets with different hyper-parameters.
The experimental results are demonstrated in Figure 2. The x-axis denotes the values of hyper-
parameters, and the y-axis denotes the values of the HR@5 metric. We obtain two conclusions as
follows.

(a) Trade-off α (b) Cluster number k

Figure 2: Sensitivity analyses of ELCRec. The results are evaluated by the HR@5 metric.

(a) For the trade hyper-parameter α, we test the performance with α ∈ {0.01, 0.1, 1, 10, 100}. We
find that our proposed ELCRec is not very sensitive to trade-off α. And ELCRec can achieve
promising performance when α ∈ [0.1, 10].

(b) For the cluster number k, we test the recommendation performance with α ∈
{32, 64, 128, 256, 512}. The results show that ELCRec is also not very sensitive to cluster
number k and can perform well when k ∈ [256, 512].

8.7 Convergence

To answer the research question (v), we monitor the recommendation performance and training loss
as shown in Figure 3. We find that the losses gradually decrease and eventually converge. Besides,
during the training process, the recommendation performance gradually increases and eventually
reaches a promising value.

8.8 Visualization

We conduct visualization experiments on four public datasets to further demonstrate ELCRec’s
capability to capture users’ underlying intents. Concretely, the learned behavior embeddings are
visualized via t-SNE during training. As shown in Figure 6, the first row to the fourth row denotes
the results on Sports, Beauty, Toys, and Yelp, respectively. From these experimental results, we have
three observations as follows.
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(a) Sports (b) Beauty (c) Toys (d) Yelp

Figure 3: Convergence analyses. The first and second row denotes HR@5 on the evaluation set and
training loss, respectively.

8.9 Additional Cost Experiment

We provide the additional cost experiments in this section. Concretely, we add the conventional
self-supervised-learning-based sequential recommendation method S3-Rec in the cost comparison
experimens, since ICLRec is based on S3-Rec and comparing other regular methods is not very
informative. The experimental results are demonstrated as follows. We find that the conventional self-
supervised-learning-based recommendation method S3-Rec costs more time and memory compared
with the ICLRec and ELCRec since 1) it contains two training phases, including the pre-training and
the fine-tuning. 2) It incorporates four complex self-supervised learning tasks, including associated
attribute prediction, masked item prediction, segment prediction, and masked item prediction.

Table 11: Running time and memory costs.

Cost Dataset Sports Beauty Toys Yelp Average

Time

S3-Rec 8319 4414 4452 5925 5778

ICLRec 5282 3770 4374 4412 4460

ELCRec 5360 2922 4124 4151 4139

Memory

S3-Rec 2512 2294 2975 3982 2941

ICLRec 1944 1798 2887 3671 2575

ELCRec 1781 1574 2555 3383 2328

8.10 Practical Insights

In this section, we provide practical experiences and insights for the deployment of our proposed
method. They contain three parts, including a case study, solutions to rapid shift problem, and
solutions to balance problems.

8.10.1 Case Study

To explore how our proposed method works well, we conduct case studies on large-scale industrial
data. They contain two parts: case studies on user group distribution and case studies on the learned
clusters.
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Firstly, for the user group distribution, the results are demonstrated in Figure 4. We visualize the
cluster distribution of different user groups. “top” denotes the cluster IDs that have the highest
proportion in the user group. “bottom” denotes the cluster IDs that have the lowest proportion in the
user group. From these analyses, we have two findings as follows.

(a) New users (b) Low-activity users (c) Medium-activity users (d) High-activity users

Figure 4: Case studies on different user groups. The distributions of different user groups are
visualized. “top” denotes the cluster IDs, which have the highest proportion in the user group.
“bottom” denotes the cluster IDs, which have the lowest proportion in the user group.

(a) As the user activity increases, the distribution becomes sharper. Namely, the users who have
higher activities tend to distribute to one or two clusters. For example, about 60% of the
high-activity users are attributed to cluster 10.

(b) The “top” cluster IDs of the high-activity user group, such as cluster 10 and cluster 8, are
exactly the “bottom” cluster IDs of the low-activity user group. Similarly, the “bottom” cluster
IDs of the high-activity user group, such as cluster 9, are exactly the “top” cluster IDs of
the low-activity user group. This indicates that the learned cluster centers can well separate
different user groups.

(a) Cluster 6 (b) Cluster 8 (c) Cluster 10 (d) Cluster 13

Figure 5: Case studies on the learned cluster. We visualize the distribution of the learned clusters.
“HA”, “MA”, “LA”, and “N” denote the high-activity, medium-activity, low-activity, and new user
groups, respectively.

Secondly, we also conduct extensive case studies on the learned clusters. To be specific, we analyze
the user distribution of each cluster, as shown in Figure 5. From the results, we can observe that, in
cluster 6, most users are new. Besides, in the cluster 8, the most users are with medium activity. In
addition, in cluster 10, most users are with high activity and medium activity. Moreover, in cluster 13,
most users are with low activity and medium activity. Previous observations show that the learned
centers can separate the users into different groups based on their activities.

In summary, these case studies further verify the effectiveness of ELCRec. Also, they provide insights
for future work.
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8.10.2 Solutions to Rapid Shift Problem

On real-time large-scale industrial data, the users’ behaviors and intents will shift rapidly. Therefore,
we argue that the existing EM optimization can not capture the latest users’ intents, thus easily
misunderstanding users and harming recommendation performance. Fortunately, our proposed
ELCRec method can alleviate this problem. Concretely, the end-to-end learnable cluster module can
guide the network to learn users’ intents dynamically. It can update the learned clusters (intents) at
each batch, satisfying the requirement of rapid update. However, our method makes it hard to control
the update rate of the users’ intents. That is one of drawbacks of ELCRec, we will discuses it and the
potential solution in 8.14.

8.10.3 Solutions to Balance Problem

Balancing the different loss functions in our model is indeed an important challenge. Our overall loss
function consists of next-item prediction loss, intent-assisted contrastive loss, and cluster loss. It is
formulated as follows: Loverall = Lnext_item + 0.1× Licl + α× Lcluster. We set the weight of Licl as
0.1 to maintain it in the same order of magnitude as the first term. This reduces the number of hyper-
parameters and simplifies the selection process. The weight of Lcluster is set as a hyper-parameter α.
We test different values of α ∈ {0.01, 0.1, 1, 10, 100} and find that our ELCRec method is not very
sensitive to the trade-off α. Promising performance is achieved when α ∈ [0.1, 10]. The sensitivity
analysis experiments are presented in Figure 2 (b). In our proposed model, we set α to 1 for the
Sports and Toys datasets, 0.1 for the Yelp dataset, and 10 for the Beauty dataset. The selection of α is
mainly based on the model performance. We provide several practical strategies to balance multiple
losses in multi-task learning.

• Weighted Balancing. Assign weights to each loss function to control their contribution to the
overall loss. By adjusting the weights, a balance can be achieved between different loss functions.
This can be determined through prior knowledge, empirical rules, or methods like cross-validation.

• Dynamic Weight Adjustment. Adjust the weights of the loss functions in real time based on the
model’s training progress or the characteristics of the data. For example, dynamically adjust the
weights based on the model’s performance on a validation set, giving relatively smaller weights to
underperforming loss functions.

• Multi-objective Optimization. Treat different loss functions as multiple optimization objectives
and use multi-objective optimization algorithms to balance these objectives. This allows for the
simultaneous optimization of multiple loss functions and seeks balance between them.

• Gradient-based Adaptive Adjustment. Adaptively adjust the weights of loss functions based on
their gradients. If a loss function has a larger gradient, it may have a greater impact on the model’s
training, and its weight can be increased accordingly.

• Ensemble Methods. Train multiple models based on different loss functions and use ensemble
learning techniques to combine their prediction results. By combining the predictions of different
models, a balance between different loss functions can be achieved.

In the future, we will continue to improve our model based on the above strategies.

(a) At the beginning of training, the behavior embeddings are disorganized and can not reveal the
underlying intents.

(b) During the training process, the latent distribution is optimized, and similar behaviors are
grouped into latent intents.

(c) After optimization, the users’ underlying intents appear, and we highlight them with circles in
Figure 6. These intents can assist recommendation systems in better modeling users’ behavior
and recommending items. In summary, the above experiments and observations verify the
effectiveness of our proposed ELCRec.

8.11 Detailed Related Work

8.11.1 Sequential Recommendation

Sequential Recommendation (SR) poses a significant challenge as it strives to accurately capture
users’ evolving interests and recommend relevant items by learning from their historical behavior
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Figure 6: t-SNE visualization on four public datasets. The first row to the fourth row denotes the
results on Sports, Beauty, Toys, and Yelp.

sequences. In the early stages, classical techniques such as Markov Chains and matrix factorization
have assisted models [32, 86, 87] in learning patterns from past transactions. Deep learning has
garnered significant attention in recent years and has demonstrated promising advancements across
various domains, including vision and language. Inspired by the remarkable success of Deep
Neural Networks (DNNs), researchers have developed a range of deep Sequential Recommendation
(SR) methods. For instance, Caser [96] leverages Convolutional Neural Networks (CNNs) [42] to
embed item sequences into an "image" representation over time, enabling the learning of sequential
patterns through convolutional filters. Similarly, GRU4Rec [34] utilizes Recurrent Neural Networks
(RNNs) [121], specifically the Gated Recurrent Unit (GRU), to model entire user sessions. The
Transformer architecture [100] has also gained significant popularity and has been extended to
the recommendation domain. For example, SASRec [39] employs a unidirectional Transformer
to model users’ behavior sequences, while BERT4Rec [94] utilizes a bidirectional Transformer to
encode behavior sequences from both directions. To enhance the time and memory efficiency of
Transformer-based SR models, LSAN [50] introduces aggressive compression techniques for the
original embedding matrix. Addressing the cold-start issue in SR models, ASReP [66] proposes
a pre-training and fine-tuning framework. Furthermore, researchers have explored the layer-wise
disentanglement of architectures [126] and introduced novel modules like the Wasserstein self-
attention module in STOSA [25] to model item-item position-wise relationships. In addition to
Transformers, graph neural networks [117, 125, 52, 17] and multilayer perceptrons [48, 47, 130]
have also found applications in recommendation systems. More recently, Self-Supervised Learning
(SSL) [119, 84], particularly contrastive learning [38], has gained popularity due to its ability to learn
patterns from large-scale unlabeled data. As a result, SSL-based SR models have been increasingly
introduced. For instance, in CoSeRec [65], Liu et al. propose two informative augmentation operators
that leverage item correlations to generate high-quality views. They then utilize contrastive learning
to bring positive sample pairs closer while pushing negative pairs apart. Subsequently, TiCoSeRec
[20] is designed by considering the time intervals in the behavior sequences. Another contrastive SR
method, ECL-SR [131], ensures that the learned embeddings are sensitive to invasive augmentations
while remaining insensitive to mild augmentations. Additionally, DCRec [116] addresses the issue
of popularity bias through a debiased contrastive learning framework. Moreover, DuoRec [82] is
proposed to solve the representation degeneration problem in contrastive recommendation methods.
Techniques such as hard negative mining [24, 78] have also proven beneficial for recommendation
systems. Besides, motivated by the success of Mask Autoencoder (MAE) [31], MAERec [118] is
proposed with the graph masked autoencoder.
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8.11.2 Intent Learning for Recommendation

The preferences of users towards items are implicitly reflected in their intents. Recent studies
[44, 14, 45, 18, 49, 53, 5] have highlighted the significance of users’ intents in the user understanding
and enhancing the performance of recommendation systems. For instance, MCPRN [103] introduces
a mixture-channel method to model subsets of items with multiple purposes. Inspired by capsule
networks [92], MIND [44] utilizes dynamic routing to learn users’ multiple interests. Furthermore,
ComiRec [14] employs a multi-interest module to capture diverse interests from user behavior se-
quences, while the aggregation module combines items from different interests to generate overall
recommendations. Besides, MITGNN [64] treats intents as translated tail entities and learns embed-
dings using graph neural networks. In addition, Pan et al. [77] propose an intent-guided neighbor
detector to identify relevant neighbors, followed by a gated fusion layer that adaptively combines the
current session with the neighbor sessions. Moreover, Ma et al. [69] aim to disentangle the intentions
underlying users’ behaviors and construct sample pairs within the same intention. Meanwhile, the
ASLI method [97] incorporates a temporal convolutional network layer to extract latent users’ intents.
More recently, a general latent learning framework called ICLRec [18] is introduced, which utilizes
contrastive learning [127, 128] and k-Means clustering to group the users’ behaviors to intents. Chang
et al. [15] formulate users’ intents as latent variables and infer them based on user behavior signals
using the Variational Auto Encoder (VAE) [40]. To mitigate noise caused by data augmentations in
contrastive SR models, IOCRec [49] proposes building high-quality views at the intent level. Besides,
ICSRec [81] is proposed to solve this issue by conducting contrastive learning on cross sub-sequences.
DIMPS [5] aims to build dynamic and intent-oriented document representations for intent learning.
PoMRec [22] insert the specific prompts into user interactions to make them adaptive to different
learning objectives. Furthermore, Teddy [53] is proposed by utilizing the intent trend and diversity.

Firstly, we want to clearly claim the target of this paper and the demand of the industrial scenario
as follows. 1) For the open benchmarks, we aim to develop an intent learning method to decouple
user’s intents for a better recommendation based on the appropriate intents of the user. 2) For the
industrial data, we aim to design a user grouping method to cluster the users into different groups to
solve the cold-start problem via mapping the new users into the user group, which contains more
useful information. Therefore, the designed method needs to have the following abilities. 1) It can
explicitly decouple users’ behaviors into different intents (grouping users into different clusters).
2) It can be easily adapted to large-scale real-time industrial data, saving memory and time costs.
Secondly, we surveyed massive recent state-of-the-art methods to solve the above challenges in the
related work part of this paper. We highlight the drawbacks of the related methods [49] [3] and claim
why they will fail in our scenario. In the IOCRec method [49], they define the prototype intention of
users as a k × d matrix. And the these prototype intention are directly used to calculate the relevance
weights and the intentions. However, there are no designs for the initialization and optimization of
the prototype intention, e.g., guiding the prototype intention to represent the users’ behaviors, and
different intentions are separated. Therefore, it lacks explainability and persuasiveness, especially
in the scenario where there is a need to conduct different recommendation strategies for different
groups, i.e., user grouping recommendations. Also, we do not find theoretical or experimental
evidence to support that the learned intents are separated well and reveal the representative behaviors
of users in the original paper [49]. For the DCCF method [85], 1) it is based on the graph neural
networks, limiting the model scalability and efficiency on large-scale data due to the large costs
of graph constructing, graph storage, and neighbor sampling. And the sequential methods are
more efficient since our data is naturally the sequences of the user behaivors. 2) Besides, in the
DCCF method, the intents are randomly initialized via Xavier normalization. Then, they are used
to aggregate information. In the loss function part, we notice that there is only a penalty item to
limit the complexity of the parameters of intent embeddings. Thus, there are no operations or loss
functions to explicitly optimize the users’ intents, such as separating different intents, learning intents
from behaviors, etc. We claim this intent decoupling is relatively weak and may not really learn
well and separate the different intents of users. Also, in Figure 4 of the original paper [85], we find
that the cluster pattern is not revealed well in the sampled data. We speculate the cluster pattern
will also not be revealed well on the whole samples of the datasets. Thirdly, we explain why we
chose ICLRec [18] as our baseline. 1) ICLRec is a sequential recommendation method, which is
more suitable for our data. Compared to the GNN-based methods, it can save more time and memory
costs. 2) ICLRec adopts the clustering algorithm to explicitly separate the users’ intents, which can
also be adapted for user grouping. It explicitly optimizes the intents based on the users’ behavior
embeddings. We believe this technique can better seperate the users’ intents well and also better
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obtain the users’ intents from their behaviors. In Figure 7 of the original paper, [18], we find that
ICLRec can reveal the cluster pattern well on the sampled data. Fourthly, we claim our motivation.
Although ICLRec can achieve promising performance and effectively decouple users’ intents, the EM
optimization framework limits the scalability and performance. 1) At the E-step, we need to apply
the clustering algorithm on the whole data, limiting the model’s scalability, especially in large-scale
industrial scenarios, e.g., apps with billion users. 2) In the EM framework, the optimization of
behavior learning and the clustering algorithm are separated, leading to sub-optimal performance
and increasing the implementation difficulty. We admit that our analyses of the problems start from
ICLRec methods. But, actually, there are many intent learning methods [81, 70, 72, 74, 98] that
adopt the clustering algorithms and the EM framework. They will meet the above problems and may
fail when scaling to real-time large-scale data. Therefore, we claim our mentioned challenges are
general recommendation systems, especially for intent decoupling methods. We believe our proposed
end-to-end learnable clustering module can bring performance improvement and save time and space
costs for these methods.

8.11.3 VQ/RQ-based Recommendation

VQ-Rec [35] is proposed to solve the issues, including over-emphasizing the effect of text features
and exaggerating the negative impact of the domain gap by learning the vector-quantized item
representation. The schema of VQ-Rec is summarized as text->code->representation. However, VQ-
Rec mainly focuses on item representation, and the number of items is always largely smaller than the
number of users in the large-scale recommenders. In addition, the original paper of VQ-Rec mentions
that “the used technique for training OPQ, i.e., k-means, tends to generate clusters with a relatively
uniform distribution on ...”. It seems that VQ-Rec adopts the conventional k-means clustering
for the code; therefore may lead to out-of-memory and long training time problems. Similarly,
[37] proposes an extremely memory-efficient factorization machine named xLightFM, where each
category embedding is composited with latent vectors selected from the codebooks. xLightLM
is a factorization-machine-based recommendation method, which is different from the sequential
recommendation methods and makes it hard to process the sequence data. Additionally, in the original
paper of xLightLM, the authors mentioned: “..., which first decomposes the embedding space into the
Cartesian product of subspaces and conducts the k-means clustering in each subspace for obtaining
center vectors”. It also simply adopts the k-means clustering algorithm on the embedding to obtain
the codebooks. Thus, it also meets the out-of-memory and long training time problems on large-
scale data. Moreover, a generative retrieval approach named TIGER [83] is proposed by creating a
semantically meaningful tuple of codewords to serve as a Semantic ID for each item. Although the
residual quantization is verified effective, the method seems still based on offline clustering since the
authors mentioned, “we use k-means clustering-based initialization for the codebook.” In addition,
it also mainly focuses on the item embeddings and aims to provide the semantical information for
the items. Different from them, our method mainly focuses on the user embeddings, which are
more numerous compared with the items. Also, our proposed method utilizes end-to-end learnable
clustering to unify intent learning and behavior learning in a unified framework. It not only improves
the recommendation performance but also improves the scalability of the intent learning method. The
evidence can be found in the experiment part of the paper. Moreover, these three related papers seem
not to focus on the intent learning of users.

8.11.4 Clustering Algorithm

Clustering is a fundamental and challenging task that aims to group samples into distinct clusters
without supervision. By leveraging the power of unlabeled data, clustering algorithms have found
applications in various domains, including computer vision [16, 7], natural language processing [3],
graph learning [61, 9, 115], and recommendation systems [18, 81, 112, 114]. In the early stages,
several traditional clustering methods [30, 101, 89, 23, 90, 120] were proposed. For instance, the
classical k-Means clustering [30] iteratively updates cluster centers and assignments to group samples.
Spectral clustering [101] constructs a similarity graph and utilizes eigenvalues and eigenvectors to
perform clustering. Additionally, probability-based Gaussian Mixture Models (GMM) [89] assume
that the data distribution is a mixture of Gaussian distributions and estimate parameters through
maximum likelihood. Moreover, the repulsive clustering methods [43, 21, 2] cluster data via the
repulsive terms. In contrast, density-based methods [23, 90, 19] overcome the need for specifying
the number of clusters as a hyperparameter. In recent years, the impressive performance of deep
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learning has sparked a growing interest in deep clustering [51, 91, 73, 4, 80, 46, 27, 26, 8, 10, 104].
For instance, Xie et al. propose DEC [107], a deep learning-based approach for clustering. They
initialize cluster centers using k-Means clustering and optimize the clustering distribution using a
Kullback-Leibler divergence clustering loss [107]. IDEC [28] improves upon DEC by incorporating
the reconstruction of original information from latent embeddings. JULE [109] and DeepCluster [11]
both adopt an iterative approach, updating the deep network based on learned data embeddings and
clustering assignments. SwAV [12], an online method, focuses on clustering data and maintaining
consistency between cluster assignments from different views of the same image. DINO [13]
introduces a momentum encoder to address representation collapse. Additionally, SeCu [79] proposes
a stable cluster discrimination task and a hardness-aware clustering criterion. While deep clustering
has been extensively applied to image data, it is also utilized in graph clustering [57, 63, 102, 59,
58, 76, 61, 62, 60, 110, 111, 113] and text clustering [3, 56, 36, 93]. However, the application of
clustering-based recommendation [18, 81] is relatively unexplored. Leveraging the unsupervised
learning capabilities of clustering could benefit intent learning in recommendation systems.

8.12 Implementation Details of Baselines

For the baseline methods, we adopt the public source code with the default parameter set-
tings and reproduce their results on the four benchmarks. The source codes of these meth-
ods are available in Table 12. Besides, for the used benchmarks, following [18], we only
kept datasets where all users and items have at least five interactions. Besides, we adopted
the dataset split settings used in [18]. The Sports, Beauty, and Toys datasets [71, 33] are ob-
tained from: http://jmcauley.ucsd.edu/data/amazon/index.html. The Yelp dataset is obtained from
https://www.yelp.com/dataset.

For the results that have already existed in the original papers, we reuse them in our paper. For
the results that do not exist in the original papers, we adopt the official codes of the baselines to
reproduce the experimental results. Concretely, for the hyperparameters, we adopt and try several
sets of the default hyperparameters on different datasets released by the original authors. We report
the best result obtained from the best hyper-parameters. By the way, we also observe these results
have already converged well. Besides, we conducted three runs on different random seeds for all
experimental results and reported the average performance.

Table 12: Implementation URLs of baseline methods.

Method Url
BPR-MF [88] https://github.com/xiangwang1223/neural_graph_collaborative_filtering
GRU4Rec [34] https://github.com/slientGe/Sequential_Recommendation_Tensorflow

Caser [96] https://github.com/graytowne/caser_pytorch
SASRec [39] https://github.com/kang205/SASRec

BERT4Rec [94] https://github.com/FeiSun/BERT4Rec
DSSRec [69] https://github.com/abinashsinha330/DSSRec
S3-Rec [129] https://github.com/RUCAIBox/CIKM2020-S3Rec

CL4SRec [108] https://github.com/HKUDS/SSLRec
ICLRec [18] https://github.com/salesforce/ICLRec
DCRec [116] https://github.com/HKUDS/DCRec

MAERec [118] https://github.com/HKUDS/MAERec
IOCRec [49] https://github.com/LFM-bot/IOCRec

8.13 Deployment Details

We aim to apply our proposed method to the real-time large-scale industrial recommendation systems.
Concretely, the ELCRec algorithm is applied to live streaming recommendations on the front page
of the Alipay app. The user view (UV) and page view (PV) of this application are about 50 million
and 130 million, respectively. Since most of the users are new to this application, it easily leads to
the sparsity of users’ behaviors, namely, the cold-start problem in recommendation systems. Our
proposed ELCRec can alleviate this problem by grouping users and then making recommendations.
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This method can map a new user to a user group, which contains more intent behaviour information
from similar users, such as other similar new users and similar users with low/middle activities. In
this manner, we can guide the model to learn the behavior of new users and provide more precise
recommendations for them even with sparse behaviors.

First, we introduce the online baseline of this project. Since the sparsity of the users’ behaviors,
we replaced the users’ behaviors with the users’ activities. Then, the online baseline multi-gate
mixture-of-expert (MMOE) [68] models the users’ activities. In this model, the experts are designed
to extract the features of users, and the multi-gates are designed to select specific experts. The inputs
of the multi-gates are the activities of the users. This design aims to train an activity-awarded model
to group different users and then conduct recommendations.

However, we found the performance of this model is limited, and the output of the gates is smooth,
indicating that this model may fail to group users. Meanwhile, on the open benchmarks, extensive
experiments demonstrate the proposed end-to-end learnable clustering module is effective and
scalable. Thus, to solve the above problem, ELCRec is adopted in this project. It is designed to
assist the gate to group users. For example, the high-activity users and new users are grouped into
different clusters, and then the users in different groups will be recommended differently. Therefore, it
alleviates the cold-start issue and further improves the recommendation performance. Besides, during
the learning process of the cluster embeddings, the low-activity users can transfer to high-activity
users, improving the overall users’ activities in the application. It is worth mentioning that the
networks are trained with multi-task targets, e.g., CTR prediction, CVR prediction, etc. Following the
previous online baseline, the method is implemented with the TensorFlow deep learning platform [1].

We discuss the user group assignment problem at two different stages of the recommendation. For the
recommendation produced by the model, i.e., at the rank stage, it just needs to separate the different
user groups and provide personalized recommendations for new users and users with high activities,
and it does not need to know which groups are exactly the new user group or the high-activity user
group. This way can already provide personalized recommendations for different user groups and
solve the cold-start problem in recommendation. Moreover, at the pre-rank stage, we may design
some recommendation strategies for different user groups. Therefore, we need to know the clustering
assignment of the different user groups. Note that, after training and clustering, we can obtain the
clustering assignment of all samples (users). And then we need to label the different user groups
based on the user activities or other manual tags of the users by some simple strategies, such as
voting and ensemble. After labeling different user groups, we can provide different recommendation
strategies, such as boosting or un-boosting for different user groups. In summary, at the rank stage,
there is no need for the model inference to provide the exact labels for each user group. Besides,
at the re-rank stage, if we want to design some strategies for different user groups, we can adopt
the vote or ensemble methods to label the user group embeddings based on their activities or other
manual tags of the users.

8.14 Limitations & Future Work

In this paper, we propose a novel intent learning method named ELCRec based on the end-to-end
learnable clustering framework. It can better mine users’ underlying intents via unifying represen-
tation learning and clustering optimization. Besides, the end-to-end learnable clustering module
optimizes the clustering distribution via mini-batch data, thus improving the scalability and conve-
nience of deployment. Moreover, we demonstrate the superiority, effectiveness, efficiency, sensitivity,
convergence, and visualization of ELCRec on four benchmarks. ELCRec is also successfully applied
in the real-time large-scale industrial recommendation system. Although achieving promising results,
we admit the proposed ELCRec algorithm has several limitations and drawbacks. We summarize
them as follows.

• Pre-defined Cluster Number. The cluster number in ELCRec is a pre-defined hyperparameter. In
real-time large-scale data, it is hard to determine the cluster number, especially under unsupervised
conditions. In this paper, for the open benchmarks, we search the cluster number in {32, 64,
128, 256, 512}. Besides, for the industrial application, the cluster number is set to 20 based on
the number of user groups. However, either the search method or the expert knowledge can not
determine the cluster number well at once. The cluster number may change dynamically during
model training, and the proposed method may fail to achieve promising performance.
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• Limited Recommendation Domains. In this paper, we adopt four recommendation benchmarks,
including Sports, Beauty, Toys, and Yelp, for the main experimental results. But, these four
datasets are all buying recommendation datasets. Besides, we adopt ML-1M [29] and MIND-
small [106] for the movie and news recommendation for the additional experiments. However, the
recommendation domains are still limited. In the future, we can further demonstrate the boarder
applicability of ELCRec in other domains.

• Uncontrollable Update Rate of Cluster Centers. In the real-time recommendation system, the users’
behaviors and intents usually change rapidly. Although our proposed ELCRec can dynamically
learn the users’ intents, it is hard to control the update rate of the underlying clusters (intents).

To solve these issues, we summarize several future works and the potential technical solutions as
follows.

• Density-based Clustering. As mentioned above, the cluster number is a pre-defined value in this
paper, limiting the recommendation performance and flexibility of the method. To solve this
issue in the future, firstly, we can determine the cluster number based on some cluster number
estimation methods. They can help to determine the cluster number by performing multiple
clustering runs and selecting the best cluster number based on the unsupervised criterion. The
mainstream cluster number estimation methods [41] include the thumb rule, ELBOW [95], t-SNE
[99], etc. The thumb rule simply assigns the cluster number k with

√
n/2, where n is the number

of samples. This manual setting is empirical and can not be applicable to all datasets. Besides, the
ELBOW is a visual method. Concretely, they start the cluster number k = 2 and keep increasing
k in each step by 1, calculating the WSS (within-cluster sum of squares) during training. They
choose the value of k when the WSS drops dramatically, and after that, it reaches a plateau.
However, it will bring large computational costs since the deep neural network needs to be trained
with repeated times. Another visual method termed t-SNE visualizes the high-dimension data
into 2D sample points and helps researchers determine the cluster number. The effectiveness of
t-SNE heavily relies on the experience of researchers. Therefore, secondly, we can determine the
cluster number based on the data density [90, 91]. Concretely, the areas with high data density
are identified as the cluster centers, while the areas with low data density are identified as the
decision boundaries between cluster centers. Besides, reinforcement learning is also a potential
solution [59]. Through these designs, the cluster number will be changeable during the training
process. It will be determined based on the embeddings itself, better revealing the users’ behavior
and may achieve better recommendation performance.

• More Recommendation Domains. As mentioned above, the applied recommendation domains
of our method are limited. We aim to test ELCRec on more recommendation domains, such as
music recommendation [123, 6], group recommendation [124, 55], group buying [122], bundle
recommendation [132], etc.

• Controllable Intent Learning. As mentioned above, in the real-time recommendation system, the
intents of the users may change rapidly. Our method makes it hard to control the intent update
rate during training and inference. To this end, in the future, we can propose a controllable
cluster center learning method, such as the momentum update, to control the change rate of the
users’ intents. Concretely, Ct = m ·Ct + (1−m) ·Ct−1. Here, Ct denote the cluster center
embeddings at t and m denotes the momentum. Then, the cluster centers (intents of users) will
be changed rapidly when m is large, and the cluster centers (intents of users) will be changed
slowly when m is small. This strategy will control the change rate of the users’ intent embeddings,
therefore alleviating the above problem.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See the abstract and introduction part. We propose a novel intent learning
method termed ELCRec by unifying behavior representation learning into an end-to-end
learnable clustering framework for effective and efficient Recommendation. We clearly
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introduce the existing methods and their drawbacks. To solve the problem, we design the
corresponding novel modules. Experimental results and theoretical analyses demonstrate
ELCRec from six aspects.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental resuls, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Appendix 8.14: Limitations & Future work. We summarize the drawbacks
of our proposed method, such as pre-defined cluster number, limited recommendation
domains, and uncontrollable update rate of cluster centers. And then, we provide the
potential solutions.
Guidelines:

• The answer NA means that the paper has no limitations, while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any solid assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach were
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when the image
resolution is low, or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an essential
role in developing norms that preserve the integrity of the community. Reviewers will
be specifically instructed not to penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [No]
Justification: NA
Guidelines:

32



• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental materi. However,ut

if they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in the appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be appropriately referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Appendix 8.12 and 8.13, where we provide the details about the experi-
ments and deployments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is essential, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it
may be necessary to either make it possible for others to replicate the model with the
same dataset, or provide access to the model. In general. Releasing code and data is
often one good way to accomplish th. Still, reproducibilityty can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users). Still, it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
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Justification: The used benchmarks are opened. And the codes are released on Anonymous
GitHub.

Guidelines:

• The answer NA means that the paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Appendix 8.12 and 8.13. All details are provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in the appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We calculate the p-value to demonstrate the significant improvement of the
experiments. All experiments are obtained with three runs with different random seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the central claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar and then state that they have a 96% CI if the
hypothesis of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g., negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of computing workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix 8.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute worker CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the entire research project required more computing

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We check the NeurIPS Code of Ethics, and our paper conforms in every aspect
with them.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the unique circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g. if there is a special consider-

ation due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We demonstrate the practical application of our proposed method in real-world
scenarios that directly impact people’s lives.
Guidelines:

• The answer NA means that there is no societal impact on the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any harmful applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for the responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We release the model’s weights trained on open benchmarks and protect the
model’s weights trained on the sensitive data of users.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example, by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing adequate safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have mentioned and cited their papers.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We release the codes and models at Anonymous GitHub.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowd-sourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowd-sourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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