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ABSTRACT
Graph Contrastive Learning (GCL) applied in real-world scenarios
aims to alleviate label scarcity by harnessing graph structures to
disseminate labels from a limited set of labeled data to a broad spec-
trum of unlabeled data. Recent advancements in amalgamating neu-
ral network capabilities with graph structures have demonstrated
promising progress. However, prevalent GCL methodologies of-
ten overlook the fundamental issue of semi-supervised learning
(SSL), relying on uniform negative sample selection schemes such
as random sampling, thus yielding suboptimal performance within
contexts. To address this challenge, we present GraphSaSe, a tai-
lored approach designed specifically for graph representation tasks.
Our model consists of two pivotal components: a Graph Contrastive
Learning Framework (GCLF) and a Selection Distribution Genera-
tor (SDG) propelled by reinforcement learning to derive selection
probabilities. We introduce an innovative strategy whereby the di-
vergence between positive graph representations is translated into
a reward mechanism, dynamically guiding the selection of negative
samples during training. This adaptive methodology aims to min-
imize the divergence between augmented positive pairs, thereby
enriching graph representation learning crucial for applications.
Comprehensive experimentation across diverse real-world datasets
validates the effectiveness of our algorithm, positioning it favorably
against contemporary state-of-the-art methodologies.1

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

KEYWORDS
Graph contrastive learning, Graph neural networks, Reinforcement
learning

1 INTRODUCTION
Graph neural networks (GNNs) have emerged as the leading ap-
proach for graph representation learning, owing to their capacity
to iteratively aggregate information from neighboring nodes and
edges, thereby effectively capturing both the structural properties
of graphs and the features associated with nodes and edges [22, 42].
GNNs have demonstrated remarkable success across a wide range of
1Source code is available at: https://anonymous.4open.science/r/RL-CDC5/.
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domains, including social networks [27], protein molecules [6], and
transportation networks [19]. However, the practical application of
GNNs in contexts often encounters challenges due to the scarcity of
labeled data [3]. For instance, in industrial settings, such as manu-
facturing processes or supply chain management, obtaining labeled
data for graph learning can be arduous and resource-intensive. Ad-
ditionally, in fields like chemical engineering, where understanding
molecular structures is crucial for product development and opti-
mization, acquiring labeled data for graph learning may involve
costly and time-consuming experiments. To address these chal-
lenges, researchers are increasingly exploring self-supervised or
unsupervised learning approaches for graph representation learn-
ing in applications. By leveraging techniques that require limited
or no labeled data, such as contrastive learning or generative mod-
els, these methods aim to enhance graph learning efficiency and
scalability in contexts. This shift towards unsupervised learning
paradigms offers promising avenues for advancing graph-based
solutions, where labeled data may be scarce or costly to obtain.

Due to their demonstrated effectiveness, graph contrastive learn-
ing (GCL) has emerged as a leading self-supervised approach, aim-
ing to extract discriminative representations without relying on
human annotations. These methodologies typically achieve this by
learning representations that remain invariant to data augmenta-
tions, achieved by maximizing the agreement between embedding
vectors derived from various distortions of the same graph [39].
Central to contrastive learning are two essential components: the
concept of similar (positive) pairs

(
𝑥, 𝑥+

)
and dissimilar (negative)

pairs (𝑥, 𝑥−) of data points. Subsequently, the training objective
guides the learned representation to map positive pairs closer to-
gether while pushing negative pairs farther apart [26]. However,
the effectiveness of these methods heavily relies on the design of
these positive and negative pairs, which cannot fully exploit true
similarity information due to the lack of supervision.

While existing literature has predominantly focused on refining
positive pairs through diverse graph augmentation strategies like
node dropping and edge perturbation, the significance of adept
negative sample selection in graph contrastive learning (GCL) has
often been overlooked. Surprisingly, in practical scenarios, superior
or comparable test performance can be achieved by meticulously
selecting relevant negative samples for GCL. Recent findings under-
score the unequal contributions of individual samples to training,
with lower-quality samples hindering progress and undermining
overall performance. Consequently, the careful curation of high-
quality negative samples emerges as pivotal for optimizing perfor-
mance and safeguarding against training stagnation. In industrial
contexts, the meticulous selection of negative samples holds sig-
nificant promise for enhancing various processes. For instance,
in manufacturing, precise negative sample selection can aid in
optimizing production workflows and identifying potential ineffi-
ciencies. Similarly, in supply chain management, leveraging graph

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Schematic illustration of negative sampling methods. Top row: randomly sampling negative examples from a batch
apart from the anchor, but may even sample examples from the same class. Bottom row: utilizing reinforcement learning to
adaptively select the negative samples that share a different label with the anchor.

contrastive learning with adept negative sample selection can offer
insights into network relationships among suppliers, manufactur-
ers, and distributors, thereby enhancing decision-making processes
and supply chain efficiency. Moreover, in fields like chemical engi-
neering and materials science, where molecular structure analysis
is paramount, effective negative sample selection can facilitate the
prediction of material properties and the design of novel materi-
als with tailored characteristics. Thus, refining negative sample
selection methodologies holds potential for driving efficiency and
innovation across diverse industrial domains. However, devising ef-
fective negative samples presents its own set of challenges. Current
methodologies frequently resort to random sampling from batches,
a practice depicted in Figure 1. Yet, this approach risks the inad-
vertent inclusion of invalid-negative samples sharing labels with
the anchor, potentially exacerbating the training process. Although
some studies, like Cuco [3], recognize the importance of negative
samples, their methods entail comparing entire datasets during
training, demanding substantial computational resources. In light
of these considerations, a pertinent inquiry arises: is there a more
refined approach to selecting appropriate negative samples
for graph contrastive learning?

We should eliminate the influence of “invalid” negative sam-
ples in graph contrastive learning. Careful treatments and addi-
tional strategies are usually needed to circumvent invalid-negative
samples and pick hard negative ones [26]. Thus, making graph
contrastive learning self-adapted to select the negative samples is
a challenge and has become increasingly important to learn the
representations of entire graphs. Considering that data selection is,
in general, a combinatorial optimization problem with complexity,
it is impossible to try all possible combinations of training instances
[21]. In this way, we hope that the previous data selection of GCL
should influence the later data decisions. In this case, reinforcement
learning (RL) can be an appropriate vehicle, which has proved to
be a prospective approach for data training selection in leverag-
ing pertinent data [5]. Such reinforcement mechanisms make GCL
especially appealing in selecting a significant portion of training

data for graphs. However, how to effectively take advantage of
RL to benefit GCL remains largely under-explored, which is still a
significant challenge.

In this paper, we present Graph Sample Selection Contrastive
Learning (GraphSaSe), a novel approach that integrates reinforce-
ment learning (RL) with graph contrastive learning (GCL) to ad-
dress the aforementioned challenge effectively. By dynamically
selecting appropriate negative samples from training data, Graph-
SaSe enhances graph representations, making it particularly suit-
able for real-world applications. Comprising a graph contrastive
learning framework (GCLF) and a selection distribution genera-
tor (SDG), GraphSaSe optimizes the contrastive objective function
by maximizing similarity between graph augmentations (positive
views) while minimizing similarity to other samples within a batch
(negative views). Through comprehensive experimentation, Graph-
SaSe demonstrates its efficacy in enhancing graph representation
learning across a spectrum of applications. Its ability to dynami-
cally adapt to diverse datasets and optimize representation learning
makes it a promising tool for addressing challenges in real-world
scenarios.

The main contributions of this work are summarized as follows:
• We propose an effective methodology termed Graph Sample
Selection Contrastive Learning, denoted as GraphSaSe, designed
to refine graph representation techniques to show its efficacy in
enhancing graph representation learning across a spectrum of
applications. To the best of our knowledge, we are the first to
attempt to utilize RL to select the appropriate negative samples
in graph contrastive learning.
• In our novel approach, we ingeniously translate the divergence
observed between positive graph representations into a reward-
ing mechanism. Additionally, we meticulously devise a selection
distribution generator, enabling adaptive selection of negative
samples to effectively steer the training process.
• Extensive experimentation conclusively demonstrates the re-
markable superiority of our approach over state-of-the-art base-
lines. Our method consistently achieves statistically significant
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improvements across real-world datasets, affirming its efficacy
and robustness.

2 RELATEDWORK
2.1 Graph Convolutional Network.
Graph Convolutional Networks (GCNs) represent a groundbreaking
extension of the powerful Convolutional Neural Networks (CNNs)
into the realm of graph-structured data [18]. The applications of
GCNs extend far beyond traditional domains into various industrial
contexts. For example, in smart grid management, GCNs can model
complex power distribution networks, optimizing energy flow and
predicting potential failures. Hence, the integration of GCNs with
contrastive learning not only advances the field of graph repre-
sentation learning but also holds immense promise for enhancing
industrial processes and innovation. This process seamlessly in-
tegrates connectivity patterns and feature attributes inherent in
graph-structured data, leading to superior performance over many
state-of-the-art methods on various benchmarks [37], including
L2-GCN [40] and AM-GCN [33]. To address the scalability chal-
lenge posed by spectral-based GCNs when dealing with large-scale
images, spatial-based GCNs have emerged rapidly [8]. For instance,
PATCHY-SAN addresses this issue by sorting nodes and selecting
a fixed number of adjacent points for graph convolution, inspired
by GCN principles [24]. Similarly, the Graph Attention Network
(GAT) introduces an attention mechanism to define graph convo-
lutional operations [32]. In this study, we harness the potential of
contrastive learning techniques to tap into the rich information con-
tained within unlabeled graphs. By applying contrastive learning,
we aim to extract meaningful representations from unlabeled data,
thus enhancing the performance and scalability of graph-based
models, which is crucial for various real-world applications.

2.2 Graph Contrastive Learning.
Existing graph contrastive learning methods [4, 14, 46] train an
encoder to measure the divergence in latent space by contrast-
ing samples from a distribution that contains depict statistical de-
pendencies of interest and those that do not [9]. Their basic idea
is to make multiple views from the same instance under various
graph transformations agree with each other to optimize model
parameters. Despite the similarity in principle, these methods are
elaborately designed and differ from each other in various aspects,
such as network architecture, augmented view design, and con-
trastive objectives. For instance, InfoGraph [28] maximizes the
mutual information between the graph-level representation and
the representations of substructures of different scales. GraphCL
[39] first designs four types of graph augmentations to incorporate
various priors and then systematically study the impact of vari-
ous combinations of graph augmentations. The theoretical analysis
sheds light on the reasons behind their success [46]. Objectives used
in these methods can be seen as designing different graph augmen-
tation strategies to enhance the graph representation, while little
effort from previous works for negative sample selection strategy.
In contrast, our method adopts the RL to optimize the data selection
process, which can be trained with GNNs in an end-to-end manner.

2.3 Reinforcement Learning.
Reinforcement learning (RL) is one of the effective machine learning
paradigms, aiming to learn how to make decisions for maximiz-
ing the cumulative future rewards [43]. Previous empirical studies
[5, 21] have shown that RL generally does not require numerous
labeled datasets but obtains samples for training through ongo-
ing interactive trial and error among the environment, which is
closer to the human learning process. Recent trends in RL field is
to combine CNNs with RL algorithms for solving high-dimensional
complex problems, such as object localization [45] and object de-
tection [11]. Unlike their works, we leverage RL to guide GCL and
narrow the divergence between the augmented positive pairs, so
as to further improve graph representations.

3 PRELIMINARY
Graph Neural Networks. Graph neural networks (GNNs) have
emerged as a promising approach for analyzing graph-structured
data recently [39]. We use G = (V, E) to denote an undirected
graph and define X ∈ R𝑁×𝐷 as the feature matrix, where V =

{𝒗𝑖 }𝑁𝑖=1 represent a set of 𝑁 nodes, E =
[
𝒆𝑖, 𝑗

]
∈ R𝑁×𝑁 denotes

the adjacency matrix, 𝒙𝑖 = X [𝑖, :]𝑇 is the 𝐷-dimensional attribute
vector of the node 𝒗𝑖 ∈ V . GNNs use a neighborhood aggregation
approach, whose propagation process can be writen as:

h𝑘𝑖 = 𝚯

(
h𝑘−1𝑖 , 𝛿 𝑗 ∈N𝑖

𝜙

(
h𝑘−1𝑖 , h𝑘−1𝑗 , 𝒆𝑖, 𝑗

))
(1)

where h𝑘
𝑖
represents the output of the 𝑘-th network layer with

h0𝑖 = 𝒙𝑖 i.e, the initial feature of node.N𝑖 is a set of vertices adjacent
to 𝒗𝑖 . 𝒆𝑖, 𝑗 represents the edge feature between node 𝑖 and 𝑗 , which is
an option. 𝛿 denotes differentiable, permutation invariant function,
such as sum or mean. 𝚯 and 𝜙 represent differentiable functions
or network layers, such as multi-layer perceptron (MLP). After the
𝐾-layer propagation, the output embedding for G is summarized
on layer embeddings through the READOUT function:

𝑓 (G) = READOUT(
{
h𝑘𝑖 : 𝒗𝑖 ∈ V, 𝑘 ∈ 𝐾

}
) (2)

ProblemDefinition. Prior to going further, we first provide the
problem definition used in this paper. For self-supervised graph rep-
resentation learning, a set of unlabeled graphsG = {G1,G2, · · · ,G𝑛}
are given, and we aim to learn a 𝑑-dimensional vector 𝒛G𝑖 ∈ R𝑑
for each graph G𝑖 ∈ G under the guidance of the data itself, whose
representation can be used in the downstream tasks.

4 METHODOLOGY
The main goal of this paper is to train a GNN encoder with an
RL-based adaptive sampling strategy. As shown in Figure 2, our
method consists of two critical components: A graph contrastive
learning framework (GCLF), and selection distribution generator
(SDG) in the following.

4.1 Graph Contrastive Learning Framework
This section discusses how to perform contrastive learning on
graphs. We aim to capture the intrinsic patterns and properties
of input graph data without using human-provided labels. The
process of GCLF is generating augmented examples from original
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Figure 2: The architecture of our GraphSaSe approach, with a graph contrastive learning framework and a selection distribu-
tion generator. All black solid arrows refer to data flow, while the red dashed arrow denotes reward.

graph data, learning their representations with a graph encoder, and
selecting negative samples for the final graph contrastive learning.

GraphAugmentations. Previouswork [39] suggests that struc-
tural feature expansion can effectively improve the performance of
graph classification. Data augmentation aims to create novel and
realistically rational data by applying certain transformations with-
out affecting the semantics label. To perform GraphSaSe on graphs,
given a original graph G ∈

{
G𝑞 : 𝑞 ∈ 𝑄

}
in the dataset of𝑄 graphs,

we perform graph augmentation to formulate augmented graphs Ĝ
from the original graphs satisfying: Ĝ ∼ M(Ĝ|G), whereM(·|G)
is the augmentation distribution conditioned on the original graph,
which is pre-defined, representing the human prior for data dis-
tribution. We focus on graph-level augmentations and adopt four
basic data augmentation strategies to construct positive pairs of
graphs [39], which are node dropping, edge perturbation, attribute
masking and subgraph, respectively. More details can be seen in
Appendix A. After that, augmented graphs Ĝ could preserve task-
relevant information, while simultaneously minimizing irrelevant
information across views.

Graph Encoder. The purpose of training a graph encoder is to
extract the most important information that, is data self-correlation,
preserve task-relevant properties, and prevent themodel from learn-
ing results that may lead to brittle representations. Notice that our
method allows various choices of network architecture without any
constraints. Formally, considering the general GNN framework in
Table 1, we take GIN [37] as an example to instantiate the GNN
encoder in the anomaly problem. GIN calculates the representation
for each node via a sum-like neighborhood aggregation function.
We initialize ℎ (0)

𝑖
= 𝑥𝑣𝑖 . After 𝑘 rounds of aggregation, each node

𝑣𝑖 ∈ V obtains its representation ℎ (𝑘)
𝑖
∈ R𝑑 , aggregated from

their neighborsN𝑣𝑖 . The other three GNN frameworks have similar
neighborhood aggregation and can be generalized to more datasets
for graph embeddings. Finally, we obtain the output embedding

𝑓 (H) through the READOUT function (See Eq.(2)). Then a multi-
layer perceptron (MLP) is adopted, e.g., 𝑧𝑖 = MLP(𝑓 (H)), for the
graph-level downstream task (e.g., classification or regression).

Table 1: Neighborhood aggregation schemes.

Methods Aggregation and combination functions for round 𝑘 (1 ≤ 𝑘 ≤ 𝐾)

General GNN ℎ
(𝑘 )
𝑖

= COMBINE(𝑘 )
({
ℎ
(𝑘−1)
𝑖

,AGGREGATE(𝑘 ) (
{
ℎ
(𝑘−1)
𝑗

: 𝑣𝑗 ∈ N𝑣𝑖

}
)
})

GCN [16] ℎ
(𝑘 )
𝑖

= Θ
©«
∑

𝑣𝑗 ∈N𝑣𝑖 ∪{𝑣𝑖 }
1√

(
���N𝑣𝑖 ���+1) ·(���N𝑣𝑗 ���+1) ·W(𝑘−1) · ℎ (𝑘−1)𝑣𝑗

ª®®¬
GIN [37] ℎ

(𝑘 )
𝑖

= Θ
(
(1 + 𝜖) · ℎ (𝑘−1)

𝑖
+∑

𝑣𝑗 ∈N𝑣𝑖
ℎ
(𝑘−1)
𝑗

)
GraphSAGE [8] ℎ

(𝑘 )
𝑖

= Θ
(
W(𝑘−1) ·

[
ℎ
(𝑘−1)
𝑖

∥ ∑𝑣𝑗 ∈N𝑣𝑖
ℎ
(𝑘−1)
𝑗

] )
GAT [32] ℎ

(𝑘 )
𝑖

= Θ
(∑

𝑣′∈N𝑣∪{𝑣} 𝑎
(𝑘−1) ·
𝑖,𝑗

W(𝑘−1) · ℎ (𝑘−1)
𝑗

)

4.2 Selection Distribution Generator
Recent GCL works fail to consider the class information, leading
to more miniature discriminative graph representations issue [44].
More concretely, without access to labels, the randomly selected
negative samples may have the same label as the positive sample
in a situation, causing a performance drop. Thus, we attempt to
exploit these probabilities to opt for the negative samples to widen
the differences between their classes. Specifically, a sequence of 0-1
states is obtained through Bernoulli distribution to sample negative
instances. However, how to produce the selection probabilities
matters, which will discuss in the following.

Obviously, a multi-layer perceptron (MLP) model is used as
the SDG, which learns the selection policy optimized by the re-
ward from the divergence between positive graphs representa-
tion based on RL. The reward can be trained by SDG and then
generate selection probabilities that stay away from positive sam-
ples. In what follows, we will introduce a novel negative sampling
method by adopting RL. The main idea is to opt for negative sam-
ples far away from positive samples during training based on the



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

A Sample-driven Selection Framework: Towards Graph Contrastive Networks with Reinforcement Learning ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

selection probabilities. For a more rigorous description, given a
graph dataset D ∈ {𝑥1, 𝑥2, · · · , 𝑥𝑛}, we divide it into 𝑁 mutu-
ally exclusive batch sets marked as D = {𝐵1, 𝐵2, . . . , 𝐵𝑁 }, where
𝐵 𝑗 =

{
𝑥 ( 𝑗−1)𝑛/𝑁+1, 𝑥 ( 𝑗−1)𝑛/𝑁+2, . . . , 𝑥 𝑗𝑛/𝑁

}
, 𝑗 ∈ {1, 2, . . . , 𝑁 }. 𝑛 is

the total number of a dataset and we marked
��𝐵 𝑗 �� as the number

of samples in one batch set. Subsequently, we denote the collec-
tion of graph representations with the aforementioned graph en-

coder for the batch sets as Φ𝐵 𝑗
=

{
𝑏
𝑗

1, 𝑏
𝑗

2, · · · , 𝑏
𝑗

|𝐵 𝑗 |

}
, where 𝑏 𝑗

𝑙
(𝑙 =

1, 2, · · · ,
��𝐵 𝑗 ��) is the vector of the 𝑙-th sample in 𝐵 𝑗 . Then SDG maps

the graph representation Φ𝐵 𝑗
or Φ𝐴 𝑗

(𝐴 𝑗 is the augmented graphs

of 𝐵 𝑗 ) to generate a selection vector Γ𝐵 𝑗
=

{
𝑣
𝑗

1, 𝑣
𝑗

2, · · · , 𝑣
𝑗

|𝐵 𝑗 |

}
∈

R1×|𝐵 𝑗 | , which represents the probability for each instance on the
confidence of select. Generally speaking, RL is defined by specifying
three ingredients: state, action, and reward, described as follows.

State.We then define a state collection marked as 𝑠𝑡𝑎𝑡𝑒 ={
𝑠1, 𝑠2, . . . , 𝑠 𝑗 , . . . , 𝑠𝑁

}
, which includes a collection of states for all

𝑗 with respect to 𝑁 batch sets, where each 𝑠 𝑗 indicates a state
including selected positive graph instances 𝐵 𝑗 sampled from 𝐵 𝑗
according to the distribution vector Γ𝐵 𝑗

, For simplicity we use Φ
�̂� 𝑗

and Φ
�̂� 𝑗

(𝐴 𝑗 is the augmented graphs of �̂� 𝑗 ) to represent state 𝑠 𝑗 .
Action. For each state, the action space A is a 0-1 judgment

of how to select positive and negative samples. We take instances
(1) to choose positive pairs, while instances (0) for negative ones.
We get a list of actions 𝑎 = {𝑎𝑙 }

|𝐵 𝑗 |
𝑙=1 ∈ {0, 1}

|𝐵 𝑗 | from Γ
𝐵 𝑗
, whose

process of assigning the value, i.e., 1 or 0, to 𝑙-th element of action 𝑎
can be formulated by sampling from a Bernoulli distribution. After
each action, the framework gives new Φ

�̂� 𝑗
, then the satate 𝑠 𝑗 is

changed to 𝑠 ′
𝑗
. The policy is defined as P𝜔 (𝑎 | 𝑠).

Reward. Reward mechanism is the core of RL, here we set a
reward 𝑟 (𝑠, 𝑎, 𝑠 ′) to assess the distance between Φ

�̂� 𝑗
and Φ

�̂� 𝑗
in

the current state (𝑠 ′) and its previous state (𝑠):

𝑟
(
𝑠, 𝑎, 𝑠 ′

)
= 𝑑 (Φ𝑠

�̂� 𝑗−1
,Φ𝑠
�̂� 𝑗−1
) − 𝛾𝑑 (Φ𝑠

′

�̂� 𝑗

,Φ𝑠
′

�̂� 𝑗

) (3)

where 𝑑 (·, ·) is a distribution discrepancy measurement (DDM)
implemented by different information-bearing functions, discussed
in the following part. 𝛾 ∈ (0, 1) is a discounting constant that
decreases the impact from future distribution divergences. Note
that our reward is related not only to the current status of the 𝑗-th
selected batch set �̂� 𝑗 , but also to the status of the ( 𝑗-1)-th selected
samples �̂� 𝑗−1. Eq.(6) is conducted in a sequential manner based
on two adjacent batch sets 𝐵 𝑗−1 and 𝐵 𝑗 , of which Φ𝑠

′

�̂� 𝑗

is impacted

by Φ𝑠
�̂� 𝑗−1

via parameters of the GCN Encoder updated by �̂� 𝑗−1.

When better instances are selected, the reward is then expected to
produce a higher value because the measurement for the previous
state 𝑑 (Φ𝑠

�̂� 𝑗−1
,Φ𝑠
�̂� 𝑗−1
) is supposed to give a larger distance between

Φ𝑠
�̂� 𝑗−1

and Φ𝑠
�̂� 𝑗−1

than that for the current state. Our design aims to

ensure that the actions obtained from SDG can also have a particular
gain on the selection of the next batch set, rather than only affecting
the current batch set, which makes the selection stable.
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Figure 3: Selecting samples, where 𝑢 represents a graph.

Distribution Discrepancy Measurements. To measure each
selected original graphs �̂� 𝑗 and augmented graphs 𝐴 𝑗 , let 𝑃 =

(𝑝1, · · · , 𝑝𝑛) be the normalized element-wise average of Φ
�̂� 𝑗

and𝑄
the average of Φ

�̂� 𝑗
similarly. We calculate 𝑑 (·, ·) with the following

three different distribution discrepancy measurements (DDM) for
reward function, namely MMD, RÉNYI, and JS.

MMD: The maximum mean discrepancy [1],

𝑑 (𝑃,𝑄) = ∥𝑃 −𝑄 ∥ (4)

RÉNYI: The symmetric Rényi divergence [25], we set 𝛼 = 0.99
following [30].

𝑑 (𝑃,𝑄) = 1
2
[𝑅𝑦 (𝑃, 𝑃 +𝑄

2
) + 𝑅𝑦 (𝑄, 𝑃 +𝑄

2
)] (5)

𝑅𝑦 (𝑃,𝑄) = 1
𝛼 − 1 log

(
𝑛∑
𝑖=1

𝑝𝛼
𝑖

𝑞𝛼−1
𝑖

)
(6)

JS: The Jensen-Shannon divergence [20],

𝑑 (𝑃,𝑄) = 1
2

[
𝐷𝐾𝐿 (𝑃 ∥

𝑃 +𝑄
2
) + 𝐷𝐾𝐿 (𝑄 ∥

𝑃 +𝑄
2
)
]

(7)

𝐷𝐾𝐿 (𝑃 ∥𝑄) =
𝑛∑
𝑖=1

𝑝𝑖 log
𝑝𝑖

𝑞𝑖
(8)

Note that our method can adopt any related graph difference
measurements, not limited to the MMD, RENYI, and JS. Just exam-
ples in this part.

How to select negative samples adaptively? As shown in
Figure 3, for instance, suppose a graph batch is 6, and a 0-1 se-
lection vector [0, 1, 1, 0, 1, 0] is obtained through SDG based on
RL. In this way, a batch of 6 graphs will be divided into 3 graphs
closed to positive pairs and 3 graphs far away from positive pairs
as negative samples memory bank for the following contrastive
learning process. Note that due to the award generated by the diver-
gence between the positive pairs, such that samples with the same
label will roughly gather in feature space finally and we can use
this information to help samples in the same class closer. Finally,
choosing the graph representation far away from the positive pairs
as corresponding negative samples memory bank.

4.3 Model Optimization
The following object is optimized to obtain the optimal distribution
generation policy:
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𝐽 (𝜔) = E𝑝𝜔 (𝑎 |𝑠)

𝑁∑
𝑗=1

𝛾 𝑗−1𝑟
(
𝑠 𝑗 , 𝑎 𝑗

) (9)

Then the parameters of the SDG, i.e., 𝜔 , is updated via policy
gradient [17] by:

𝜔 ← 𝜔 + 𝜏∇𝜔 𝐽 (𝜔) (10)
where 𝜏 is the discounting learning rate and can be self-adapted by
optimizer, such as Adam. The gradient ∇𝜔 𝐽 (𝜔) is approximated
by:

∇𝜔 𝐽 (𝜔) =

1
𝑇

𝑇∑
𝑘=1

𝑁∑
𝑗=1
∇𝜔 log𝜋𝜔

(
𝑎𝑘𝑗 | 𝑠

𝑘
𝑗

) 𝑁∑
𝑗=1

𝛾 𝑗−1𝑟
(
𝑠𝑘𝑗 , 𝑎

𝑘
𝑗

) (11)

with 𝑗 referring to the 𝑗-th step (corresponding to the 𝑗-th batch set)
in Reinforcement Learning, and 𝑘 is the 𝑘-th selection process to
estimate ∇𝜔 𝐽 (𝜔), which is updated after every𝑇 times of selection
over all 𝑁 data batch sets.

To maximize the consistency between positive pairs
{
𝑧𝑖 , 𝑧 𝑗

}
com-

pared with negative pairs {𝑧𝑘 }𝐾𝑘=1, we adopt the noise-contrastive
estimation loss [31]:

L𝑁𝐶𝐸 =

− 𝑙𝑜𝑔
𝑒𝑥𝑝 (𝑠𝑖𝑚(𝑧𝑖 , 𝑧 𝑗 )/𝜏)∑𝐾

𝑘=1 𝑒𝑥𝑝 (𝑠𝑖𝑚(𝑧𝑖 , 𝑧 𝑗 )/𝜏) + 𝑒𝑥𝑝 (𝑠𝑖𝑚(𝑧𝑖 , 𝑧𝑘 )/𝜏)
(12)

where 𝜏 denotes the temperature parameter. 𝐾 denotes the number
of negative sample in one batch. To simplify the calculation, we use
dot product as the similarity metric function 𝑠𝑖𝑚(·, ·). Finally, we
combine L𝑁𝐶𝐸 and 𝐽 (𝜔) to get the total loss function:

L𝑡𝑜𝑡𝑎𝑙 = L𝑁𝐶𝐸 + 𝜆𝐽 (𝜔) (13)

where 𝜆 is a hyper-parameter to control the magnitude of rein-
forcement learning task. The entire learning process is described
in Appendix B.

5 EXPERIMENTS
In this section, we aim to showcase the rapid and robust learning
capabilities of our self-supervised model, GraphSaSe, in the realm
of graph representation, which holds immense significance for var-
ious industrial applications. To achieve this, we conduct extensive
comparisons with state-of-the-art methods (SOTAs) across unsu-
pervised and transfer learning scenarios for graph classification
tasks, providing insights into GraphSaSe’s effectiveness in indus-
trial contexts. Through these comparisons, we seek to highlight the
superior performance and efficiency of GraphSaSe in learning high-
quality representations from graph-structured data, thus bolstering
its potential impact on industrial processes and innovation.

5.1 Unsupervised Representation Learning
Datasets. To evaluate our model, we conduct experiments on
eight real-world datasets 2 in three fields, including three molecules
2Eight widely used datasets are publicly available at https://ls11-
www.cs.tudortmund.de/staff/morris/graphkerneldatasets.

datasets:MUTAG, PTC, NCI-1, three social network datasets: REDDIT-
BIN, IMDB-BINARY (IMDB-B), IMDB-MULTI (IMDB-M), and two
bioinformatics datasets: PROTEINS, D&D. More details can be
found in Appendix C.

Baseline Methods. The following models, which are the ad-
vanced and closely related works, including HGCL [15], AD-GCL
[29], SimGRACE [34], GraphMAE [12], LaGraph [35], CuCo
[3], GraphCL [39], InfoGraph [28], JOAO [38], LG2AR [10], are
used as representative baselines to evaluate the performance of the
proposed model. More details can be found in Appendix D.

Experimental Setting. For graph classification tasks, we adopt
the same procedure of previous works [3, 23, 28, 39] to make a fair
comparison and used 10-fold cross-validation accuracy to report
the classification performance. Experiments are repeated 5 times.
For some classical supervised learning algorithms, we report results
from previous papers since we have the same experimental setup.
If results are not previously reported, we implement them and con-
duct a hyper-parameter search according to the original paper. For
all methods, the parameters of downstream classifiers are indepen-
dently tuned using cross-validation on training folds of data. The
best average classification accuracy is reported for each method.
The classification accuracies are computed using LIBSVM [2],
and the 𝐶 parameter was selected from

{
10−3, 10−2, · · · , 102, 103

}
.

For our proposed model, we adopt a four-layer GNNs with 32-
dimensional hidden units and a sum pooling readout function for
performance comparisons. Tomeasure each original and augmented
graph, we select RÉNYI to calculate the DDM for a reward.

5.1.1 Overall Comparison. Table 2 shows the results of evalu-
ating unsupervised graph-level representations using downstream
graph classification tasks on multiple fields datasets. We have the
following observations: (1) Overall, our proposed GraphSaSe con-
sistently achieves top-tier performance across all datasets and ar-
chitectures, affirming the effectiveness of our approach. Notably, on
theMUTAG dataset, where existing baselines have already achieved
high performance, GraphSaSe continues to push the boundaries
further. This underscores the robustness and efficacy of our method
in selecting negative samples for graph contrastive learning, even
in scenarios where performance levels are already elevated. (2) Ad-
ditionally, we observe that our method consistently outperforms
recent unsupervised baselines. This superiority can be attributed
to our deliberate consideration of the advantages stemming from
high-quality and well-selected negative samples, which play a piv-
otal role in the training process. While approaches like CuCo also
address this limitation by selecting negative samples, their reliance
on comparisons among all graphs in the dataset demands substan-
tial computational resources. As a result, our approach offers a
more efficient and resource-friendly alternative while achieving
competitive performance.

5.1.2 Analysis on Reward. Our reward is based on RL, and its
formula is :

𝑟
(
𝑠, 𝑎, 𝑠 ′

)
= 𝑑 (Φ𝑠

�̂� 𝑗−1
,Φ𝑠
�̂� 𝑗−1
) − 𝛾𝑑 (Φ𝑠

′

�̂� 𝑗

,Φ𝑠
′

�̂� 𝑗

) (14)

wherewe assess the distance between the current state (e.g.,𝑑 (Φ𝑠′
�̂� 𝑗

,Φ𝑠
′

�̂� 𝑗

))
and its previous state (e.g., 𝑑 (Φ𝑠

�̂� 𝑗−1
,Φ𝑠
�̂� 𝑗−1
)). We use the 𝛾 to con-

trol the magnitude of the current status for getting better reward
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Table 2: Graph classification accuracy (%) of our method compared with state-of-the-art graph classification methods on three
fields datasets. Their results are obtained from the corresponding original papers. The best performers are shown in bold.

Methods
Molecules Social networks Bioinformatics

MUTAG PTC NCI-1 REDDIT-BIN IMDB-B IMDB-M PROTEINS D&D
HGCL 90.1 ± 0.8 59.3 ± 2.1 77.3 ± 1.2 83.4 ± 1.6 73.9 ± 0.7 51.3 ± 0.5 75.5 ± 0.5 79.2 ± 0.6

InfoGraph 89.0 ± 1.1 61.6 ± 1.4 76.2 ± 1.0 82.5 ± 1.4 73.0 ± 0.8 49.6 ± 0.5 74.4 ± 0.3 72.8 ± 1.7
GraphCL 86.8 ± 1.3 59.2 ± 2.5 77.8 ± 0.4 87.5 ± 0.8 71.1 ± 0.4 48.6 ± 1.2 74.3 ± 0.4 78.6 ± 0.4
AD-GCL 89.7 ± 1.1 57.2 ± 1.3 75.1 ± 0.3 85.8 ± 0.9 72.3 ± 0.6 49.8 ± 0.6 73.9 ± 0.4 77.3 ± 0.8

SimGRACE 89.0 ± 1.3 59.1 ± 0.7 79.1 ± 0.4 86.2 ± 1.1 71.3 ± 0.7 48.2 ± 0.9 75.3 ± 0.1 76.2 ± 1.3
JOAO 87.7 ± 0.8 55.3 ± 1.4 74.8 ± 0.7 86.4 ± 1.5 70.8 ± 0.3 49.3 ± 0.8 74.6 ± 0.4 77.4 ± 1.2
LG2AR 90.0 ± 0.6 56.8 ± 1.6 75.6 ± 0.9 91.8 ± 0.4 74.5 ± 0.6 51.9 ± 0.3 75.0 ± 0.5 79.1 ± 0.3

GraphMAE 88.1 ± 1.2 60.2 ± 2.3 80.4 ± 0.3 89.2 ± 0.9 75.5 ± 0.6 51.6 ± 0.5 75.3 ± 0.3 78.1 ± 1.3
LaGraph 90.2 ± 1.1 58.1 ± 1.9 79.9 ± 0.5 90.4 ± 0.3 73.7 ± 0.9 49.2 ± 1.1 75.2 ± 0.4 77.2 ± 1.5
CuCo 90.5 ± 0.9 58.9 ± 1.8 79.2 ± 0.5 88.6 ± 0.5 71.6 ± 2.2 48.7 ± 1.8 75.9 ± 0.5 79.2 ± 1.1
Ours 93.3 ± 1.2 64.4 ± 1.9 81.5 ± 1.4 92.5 ± 0.9 75.8 ± 1.3 53.9 ± 2.2 77.1 ± 0.8 82.3 ± 0.8
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Figure 4: Analysis on the value𝛾 of reward on three datasets.

Table 3: Graph performance

Models MUTAG NCI-1 PROTEINS Time (s)/Epoch

GCN 85.6% 76.2% 75.1% 0.29/3.26/1.32
GraphCL 86.8% 77.8% 74.3% 0.49/8.23/3.15
CuCo 90.5% 79.2% 75.9% 0.51/49.17/3.89

Ours 93.3% 81.5% 77.1% 0.38/7.61/2.88

𝑟 (𝑠, 𝑎, 𝑠 ′). Thus, we design three simple reward functions by chang-
ing the value of𝛾 . (1)RewardA: We set (𝛾 = 0.5, 0.1) to conduct the
situation that *reward* goes up. (2) Reward B: We set (𝛾 = 1.5, 2)
to conduct the situation that *reward* goes down. (3) Reward C:
We set (𝛾 = 1) to conduct the situation that the current status is
equally important as the previous status.

As for our data selection, we set 𝛾 = 0.9 that the current status is
slightly smaller than the previous status. We choose datasets: PTC,
IMDB-M, D&D as examples and conduct experiments. As exhibited
in Figure 4, when we set 𝛾 = 0.9, we get the best performance. The
main reason is that 𝛾 = 0.9 puts the *reward* in a state of dynamic
equilibrium, in which the *reward* goes down or up to select the
balanced samples (e.g., the balance positive and negative samples).
Although 𝛾 = 1 also has the same effect, 𝛾 = 0.9 has the trend
that the reward is expected to produce a higher value which the
previous state can affect the current state.

5.1.3 Efficiency Analysis. As shown in Table 3, we can see that
our model yields excellent performance over the up-to-date base-
lines and has a 2-4% relative improvement on three datasets (e.g.,
we choose MUTAG, NCI-1, PROTEINS as examples). Furthermore,

we perform an additional experiment to evaluate the training ef-
ficiency of all models. The values of the last column in Table 3
represent the training time of models in one epoch on three graph
datasets. Unfortunately, the efficiency of our model is not outstand-
ing, but it gets ahead of some baselines. The main reason is that
our model employs reinforcement learning to select samples for
better training. Lastly, we simply apply RL to generate selection
probabilities, which require less computational cost and can achieve
greater performance improvements, which indeed is also a bright
spot of our method.

5.1.4 Ablation Study. Our GraphSaSe pairs reinforcement learn-
ing with contrastive learning to automatically select the appropriate
negative samples in the training data through the probability pro-
duced based on RL. To verify where the performance improvement
of the selection probability in our model comes from, we conduct ex-
periments on three datasets to investigate the contribution of each
component. Specially, we design two variant versions of GraphSaSe:
w/o Probability: We do not use any probability, and randomly se-
lect negative samples. w/o Negative: We do not use any negative
samples, and use the BYOL framework [7] to conduct the experi-
ment. As shown in Table 5, for dataset NCI-1, compared with the
variant w/o Probability, GraphSaSe yields a result of 81.5% in Accu-
racy, which brings a 2.3% improvement. We infer that our negative
sample selection strategy can select higher-quality negative sam-
ples to further enhance graph representations. Likewise, GraphSaSe
outperforms the w/o Negative by 3.4%, demonstrating that pushing
away the embedding vectors from different samples (i.e., negative
instances) in representation space can also prevent the training from
complete collapsed representations, so as to widen the differences
between positive and negative samples for contrastive learning.
These trends continued to be the same on the dataset IMDB-B and
PROTEINS.We conclude that each component is necessary and con-
tributes to performance improvement. Meanwhile, it also reflects
that RL is a prospective strategy for data selection in leveraging
pertinent data, which benefits graph contrastive learning.

5.1.5 Other Experiments. We also do other experiments, such
as Analysis on DDM, Analysis on the Position of Selection, and
Hyperparameters Analysis. They can be found in Appendix E.
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Table 4: Transfer learning comparison with different manually designed pre-training schemes.

Dataset BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE Avg
No-Pre-Train 65.8 ± 4.5 74.0 ± 0.8 63.4 ± 0.6 57.3 ± 1.6 58.0 ± 4.4 71.8 ± 2.5 75.3 ± 1.9 70.1 ± 5.4 67
EdgePred 67.3 ± 2.4 76.0 ± 0.6 64.1 ± 0.6 60.4 ± 0.7 64.1 ± 3.7 74.1 ± 2.1 76.3 ± 1.0 79.9 ± 0.9 70.3
InfoGraph 68.2 ± 0.7 75.5 ± 0.6 63.1 ± 0.3 59.4 ± 1.0 70.5 ± 1.8 75.6 ± 1.2 77.6 ± 0.4 78.9 ± 1.1 70.3
AttrMasking 64.3 ± 2.8 76.7 ± 0.4 64.2 ± 0.5 61.0 ± 0.7 71.8 ± 4.1 74.7 ± 1.4 77.2 ± 1.1 79.3 ± 1.6 71.1
ContextPred 68.0 ± 2.0 75.7 ± 0.4 63.9 ± 0.6 60.9 ± 0.6 65.9 ± 3.8 75.8 ± 1.7 77.3 ± 1.0 79.6 ± 1.2 70.9

GraphPartition 70.3 ± 0.7 75.2 ± 0.4 63.2 ± 0.3 61.0 ± 0.8 64.2 ± 0.5 75.4 ± 1.7 77.1 ± 0.7 79.6 ± 1.8 70.8
CuCo 71.4 ± 1.2 75.8 ± 0.4 65.2 ± 0.5 62.1 ± 0.5 76.8 ± 2.6 72.2 ± 2.5 79.8 ± 0.7 80.6 ± 1.3 72.9
Ours 73.4 ± 1.1 76.9 ± 0.7 67.3 ± 0.8 64.5 ± 0.6 77.2 ± 1.5 75.9 ± 2.5 80.2 ± 1.1 82.3 ± 0.9 74.7

Table 5: Ablation study on the key components of our
method. The term "w/o" indicates "without".

Variants NCI-1 IMDB-B PROTEINS
GraphSaSe 81.5% 75.8% 77.1%

w/o Probability 79.2% 72.6% 75.8%
w/o Negative 78.1% 71.8% 74.7%

5.2 Transfer Learning
In our study, we delve into the realm of transfer learning applied
to two critical domains: molecular property prediction in chem-
istry and protein function prediction in biology. Following [14], our
approach involves a comprehensive pre-training and fine-tuning
strategy to assess the transferability of the pre-training scheme
across different real-world datasets. To elaborate, our methodol-
ogy begins with pre-training a GNN model on a source dataset.
Subsequently, we fine-tune this pre-trained model using a limited
subset of labeled data from the target dataset. This fine-tuning pro-
cess allows the model to adapt its learned representations to the
specifics of the target task, effectively leveraging the knowledge
gained during pre-training. Moreover, we aim to ascertain whether
the pre-trained representations capture generalizable features that
can be beneficially transferred across diverse datasets and domains.

5.2.1 Experimental Setting. In our experimental setup, wemetic-
ulously adhere to a rigorous train-test and model selection protocol,
akin to the methodology outlined in Xu et al.[36]. This entails
conducting 10-fold cross-validation and meticulously selecting the
epoch with the optimal cross-validation performance, averaged
across the 10 folds. Our chosen evaluation metric is the ROC-AUC
score, renowned for its effectiveness in assessing model perfor-
mance across diverse datasets. When fine-tuning our models for
downstream tasks, we augment the pre-trained GNN with a lin-
ear classifier. This supplementary classifier enables us to adapt
the learned representations to the specific nuances of the target
task. Importantly, all reported results are meticulously averaged
over five independent runs, ensuring robustness and reliability un-
der consistent configurations. In our transfer learning endeavors,
we use OGB[13] datasets, a widely recognized real-wolrd dataset
in the field. Notably, traditional unsupervised methods lack the
prowess to transfer knowledge to datasets from disparate domains.
To benchmark our approach effectively, we compare against six
baselines, encompassing both non-pretrained (direct supervised

learning) methods and six state-of-the-art GNN self-supervised
learning techniques. These include EdgePred [8], InfoGraph [28],
AttrMasking [14], ContextPred [14], CuCo [3] and GraphPartition
[41]. These baselines serve as essential reference points for as-
sessing the efficacy and generalizability of our proposed approach
across diverse molecular property prediction tasks.

5.2.2 Overall Comparison. Table 4 presents a comprehensive
comparison of our proposed GraphSaSe method with other state-
of-the-art approaches in the transfer learning setting. We focus
our evaluation on two critical domains: molecular property predic-
tion in chemistry and protein function prediction in biology. These
domains represent fundamental areas of research with significant
implications for drug discovery, molecular design, and understand-
ing biological mechanisms. (1) Our meticulous analysis reveals that
GraphSaSe consistently outperforms all baseline methods. This
achievement is particularly notable given the complexity and di-
versity of the datasets involved in molecular property and protein
function prediction tasks. (2) Furthermore, our method exhibits
a notable 7% performance enhancement over the non-pretrained
baseline, underscoring its efficacy in leveraging self-supervised
learning techniques for knowledge transfer across diverse domains.
This improvement not only validates the effectiveness of Graph-
SaSe but also highlights its potential to drive advancements in both
computational chemistry and biology. (3) In summary, our findings
underscore the pivotal role of GraphSaSe in advancing transfer
learning methodologies across critical domains. By harnessing the
power of self-supervised learning, GraphSaSe holds promise for
accelerating research and innovation in drug discovery, molecular
design, and biological understanding.

6 CONCLUSION
In this paper, we systematically investigate the common issues
encountered in current graph contrastive learning methods, and
propose a novel framework named GraphSaSe. Indeed, the ability
to automatically select and learn from the most relevant training
instances holds promise for enhancing graph representation tasks
in various industrial applications. Moreover, while the research on
combining reinforcement learning and graph contrastive learning is
still in its nascent stages, ourwork highlights its potential for further
exploration and development. The fusion of these methodologies
presents exciting opportunities for advancing industrial processes
and innovation.
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