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Abstract

Transformer-based tabular foundation models have recently demonstrated promising in-
context learning (ICL) performance on structured data, emerging as competitive alternatives
to gradient-boosted trees. However, the fairness implications of this new paradigm remain
largely unexplored. We present the first investigation of fairness in tabular ICL, evaluating
three recently proposed foundation models—TabPFNv2, TabICL, and TabDPT—on multiple
benchmark datasets. To mitigate biases, we explore three pre-processing fairness-enhancing
methods: correlation removal (decorrelating input features from the sensitive attribute),
group-balanced sample selection (ensuring equal representation of protected groups in context
examples), and uncertainty-based sample selection (prioritizing context examples with high
sensitive-attribute prediction uncertainty). Our experiments show that the uncertainty-based
strategy consistently improves group fairness metrics (e.g., demographic parity, equalized odds,
and equal opportunity) with minimal impact on predictive accuracy. We release our code to
facilitate reproducibility (https://anonymous.4open.science/r/Fair-TabICL-Anonymized).

1 Introduction

Tabular data, represented in rows and columns, is a data modality widely used for prediction tasks in domains
such as finance and healthcare (Asuncion et al., 2007). Tree-based models such as XGboost (Chen et al., 2015)
and Gradient-Boosted Trees (Ke et al., 2017) have shown the strongest generalization performance on tabular
data. Recently, with the emergence of foundation models, Deep Learning (DL) based models have challenged
the dominance of tree-based models (Hollmann et al., 2025). Foundation models are models pretrained on
vast datasets, without a specific task in mind, and they can be adapted across a wide range of downstream
tasks. Large language models (LLMs) such as GPT-3 are common examples of foundation models, and they
have demonstrated emerging capabilities such as in-context learning (ICL) with few labelled data (Brown
et al., 2020). In-context learning (ICL) has primarily been applied to natural language tasks using large
language models (LLMs). For example, in text classification, labeled examples are formatted as textual
demonstrations and provided as context to a language model, enabling it to predict the label of a new instance
without any parameter updates or fine-tuning (Radford et al., 2019; Brown et al., 2020). More recently,
efforts have extended ICL to tabular data by serializing table rows into text or sentences (Hegselmann et al.,
2023). However, since LLMs are not pretrained to model the complex structural relationships inherent in
tabular data—such as interactions between rows and columns—their performance on large-scale tabular tasks
still lags behind tree-based methods (Hegselmann et al., 2023).

Alternatively, recent work has proposed foundation models explicitly tailored for tabular data, achieving
competitive performance with tree-based models while reducing the need for extensive model selection
and hyperparameter tuning. For instance, TabPFN (Hollmann et al., 2022) is a transformer-based model
pretrained on synthetic datasets, and its successor, TabPFNv2 (Hollmann et al., 2025), extends support to
larger datasets with up to 10k samples. Similarly, TabICL (Qu et al., 2025), also pretrained on synthetic
data, scales to datasets with up to 500k samples. These models leverage synthetic pretraining to encode a
wide range of statistical priors, enabling effective target inference from in-context examples.
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To better reflect the priors found in real-world datasets, other models incorporate real data during pretraining.
Tabular Discriminative Pre-trained Transformer (TabDPT) (Ma et al., 2024) is pretrained directly on real-
world datasets, while Real-TabPFN (Garg et al., 2025) builds on synthetic pretraining with additional
fine-tuning on real data. These approaches generally yield improved performance by aligning the learned
representations more closely with real-world data distributions.

Given the strong performance and in-context learning capabilities of tabular foundation models, we will likely
see widespread adoption in real-world decision-making tasks. This shift could mark a turning point in how
tabular data problems are approached. However, the use of ICL-based models in high-stakes domains—such
as healthcare, finance, or criminal justice—raises important ethical concerns. In particular, it is critical
to assess their potential to perpetuate or even amplify existing social biases. Traditional machine learning
models have already been shown to replicate biases present in the data (Mehrabi et al., 2022), and recent
studies indicate that LLM-based ICL can also produce biased predictions (Hu et al., 2024; Bhaila et al., 2024).
However, these studies rely on serialized representations of tabular data and therefore inherit the limitations
of LLMs in handling tabular structures (Ma et al., 2024).

This paper investigates the fairness of ICL prediction using transformer-based tabular foundation models.
First, our study reveals, perhaps unsurprisingly, that while these models focus on improving prediction
accuracy, they can also amplify bias. Motivated by recent studies on the sensitivity of ICL performance—in
terms of fairness and accuracy— to demonstration selection, we aim to address the following research question:
What in-context selection/transformation method can improve the fairness of ICL predictions?

In the fairness literature, several metrics have been proposed to measure fairness at the group or individual
levels (Dwork et al., 2012). In this work, we focus on widely used group fairness notions, including demographic
parity, equalized odds, and equal opportunity (Hardt et al., 2016). This group metrics measure the performance
disparity across different demographic groups while we acknowledge that other fairness metrics, beyond
group fairness, such as individual or counterfactual fairness, could be used depending on the use case. To
achieve these fairness notions, several fairness-enhancing methods have been proposed. They are generally
grouped into three categories: pre-processing, in-processing, and post-processing (Mehrabi et al., 2022)
methods. Projecting these categories into the ICL paradigm, pre-processing methods perform demonstration
transformation or selection before predicting in context (Hu et al., 2024). In-processing methods would
fine-tune or retrain the foundation model with fairness constraints (Robertson et al., 2024). Post-processing
methods would alter the ICL predictions to improve a given fairness metric (Hardt et al., 2016). Pre- and
Post-processing methods are more computationally friendly since they do not require model updates. This
motivates our choice to focus on the pre-processing techniques and leave post-processing interventions for
future exploration. More specifically, we propose and investigate three pre-processing fairness interventions:
(i) Correlation Remover (Feldman et al., 2015), a method that alters each input feature to reduce their
correlation with the sensitive attribute; (ii) group-balanced1 in-context selection, ensures that the in-context
set is group-balanced; (iii) Uncertainty-based in-context selection, estimates the uncertainty of predicting the
sensitive attribute of in-context samples and only selects samples with uncertain predictions. We performed
intensive experiments on eight fairness benchmark datasets to investigate the effectiveness of each method
in terms of fairness and accuracy. Our results reveal that the uncertainty-based method can provide better
fairness performance across datasets, fairness metrics, and foundational models, with marginal impact on
accuracy. Our contribution can be summarized as follows:

• While most existing studies focus on fair ICL with serialized tabular data, we provide, to our knowledge,
the first investigation into preprocessing methods for fair prediction in ICL using transformer-based
tabular foundation models.

• We propose and investigate three pre-processing intervention methods to enforce fair ICL predictions.
These methods aim to reduce the information about the sensitive attributes of in-context samples.
We demonstrate that uncertainty-based in-context sample selection can significantly improve the
fairness of ICL predictions with a slight drop in utility, e.g., accuracy.

1Underlined represents the method’s name throughout the paper and in the results.
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• We perform extensive experiments on a broad range of start-of-the-art fairness benchmarks and provide
insights into contexts where a given fairness intervention performs best in terms of fairness-utility
tradeoff.

• We release the code to ease reproduction of the results and help researchers and practitioners integrate
the proposed methods.

2 Related works

Fairness. Numerous methods have been developed to enforce group fairness in classical machine learning
models (Mehrabi et al., 2022; Mbiazi et al., 2023; Kenfack et al., 2024a). These methods are often categorized
as pre-processing, in-processing, or post-processing approaches. Model-agnostic methods in the pre-processing
category typically modify or reweight the input data to reduce information correlated with sensitive at-
tributes (Madras et al., 2018; Creager et al., 2019; Kamiran & Calders, 2012; Celis et al., 2020; Balunović et al.,
2021; Feldman et al., 2015). In contrast, post-processing techniques adjust the model’s prediction outcomes
after training to satisfy fairness constraints (Hardt et al., 2016; Petersen et al., 2021). Finally, in-processing
approaches embed fairness constraints directly into the training objective (Agarwal et al., 2018; Zhang et al.,
2018; Roh et al., 2020). Unlike prior work, our approach focuses on pre-processing interventions applied in
in-context learning (ICL) settings, where downstream predictions are made by foundation models without
any model updates. We emphasize that model-agnostic methods—particularly pre- and post-processing—are
especially suitable in ICL because they do not rely on access to or retraining of the model. However, their
effectiveness in this setting, especially for tabular foundation models, remains largely unexplored and is the
focus of our evaluation.

Tabular Foundation Models. In-context learning with tabular foundation models presents a notable
advantage over traditional machine learning approaches by enabling models to adapt dynamically to new data
without the need for retraining (Hollmann et al., 2022; Qu et al., 2025; Hollmann et al., 2025). Conventional
ML methods typically depend on predefined training datasets, meaning that any alteration in the data or
task necessitates a time-consuming and resource-intensive retraining process. In contrast, tabular foundation
models utilize in-context learning to execute tasks based on the specific context of the data provided at
inference time. This allows these models to interpret and process new tabular data with minimal prior
preparation, facilitating more flexible and efficient decision-making (Hollmann et al., 2022). The advantages of
this approach are particularly apparent in scenarios where data distributions change over time or when models
must quickly adjust to various data tasks without undergoing retraining. Thus, as in-context learning emerges
as a powerful tool for real-time, adaptive predictions in complex and dynamic environments, assessing and
mitigating biases in the prediction can make its use more socially acceptable. Existing models are pre-trained
using synthetic (Qu et al., 2025; Hollmann et al., 2022) or real-world data (Ma et al., 2024). Pre-training
on real-world data often provides competitive or better performance, and the performance of synthetic
pre-trained tabular foundation models can be boosted with continued pre-training on real-world data (Garg
et al., 2025). In this work, we consider tabular foundation models pretrained on synthetic (Hollmann et al.,
2025; Qu et al., 2025) and real-world data (Ma et al., 2024) and assess the fairness implications of each
pretraining strategy.

Fairness in ICL. Fairness in in-context learning has primarily been studied in the context of large language
models (LLMs) applied to tabular data serialized as text(Bhaila et al., 2024; Hu et al., 2024; Ma et al.,
2023). For instance, Hu et al. (2024) explore group-aware sampling strategies, finding that prioritizing
minority group demonstrations improves fairness outcomes. Similarly, Bhaila et al. (2024) propose a data
augmentation technique that guides demonstration selection to reduce bias during inference. While related in
spirit, our approach differs in two key ways: (1) we focus on numerical tabular foundation models (rather
than LLMs), and (2) our uncertainty-based selection method aims to reduce model reliance on sensitive
attributes rather than optimize informativeness per se. Prior uncertainty-driven methods(Mavromatis et al.,
2023; Kung et al., 2023) focus on selecting informative examples under a labeling budget, whereas we use
uncertainty to guide fair demonstration selection. It is also important to highlight that LLMs, though
flexible, are not optimized for tabular data and often perform worse than specialized numeric models, such as
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gradient-boosted trees (Hegselmann et al., 2023). As such, our work fills a key gap by investigating fairness
interventions tailored to numeric tabular foundation models. To our knowledge, this is the first study to
evaluate pre-processing fairness methods in this emerging model class.

Fairness-Aware Tabular Foundation Models. Recent work by Robertson et al. (2024) introduced
FairPFN, a TabPFN-like model trained to suppress the causal effect of sensitive attributes during pretraining.
Their approach seeks counterfactual fairness (Kusner et al., 2017), ensuring that model predictions remain
invariant when sensitive attributes are counterfactually changed. Our work is conceptually distinct in two
respects. First, we do not require model retraining and rely on model-agnostic pre-processing methods,
making our approach broadly applicable to any pretrained tabular foundation model. Second, we aim for
group fairness, focusing on improving performance disparities between subgroups, rather than enforcing
counterfactual invariance at the individual level.

3 Methodology

Problem Setup We consider a classification task with the given training data D = {(xi, yi, si)}N
i=1 where

xi is an input feature vector, yi is the corresponding class label, and si the corresponding demographic group.
The goal is to obtain a classifier f , via ICL, to accurately predict the target y given a sample x while being
fair w.r.t. demographic information s. Several metrics have been proposed to measure fairness at the group
or individual levels (Dwork et al., 2012). In this work, we focus on group fairness notions, measuring the
performance disparity across different demographic groups, i.e., demographic parity, equalized odds, and
equal opportunity (Hardt et al., 2016). A detailed description of these fairness metrics can be found in
Appendix B.1.

This section presents three pre-processing techniques proposed in this work to ensure fairer ICL inference
on tabular data. In particular, we consider correlation remover (Feldman et al., 2015), group-balanced
demonstration selection, and uncertainty-based demonstration selection.

3.1 In-context Samples Transformation

Correlation remover (Feldman et al., 2015; Bird et al., 2020) is a preprocessing method that reduces the
correlation between the sensitive and non-sensitive attributes before fitting the model. More specifically,
a linear transformation is applied to each non-sensitive feature to reduce its correlation with the sensitive
feature. We use the correlation remover as a preprocessing step over the training (in-context example) and
testing sets before performing in-context prediction. Ultimately, transforming input features to reduce their
linear dependency on the sensitive feature can reduce the reliance on sensitive features in the downstream
models. However, as we will see in Section 4.5, nonlinear and complex downstream models can still infer the
nonlinear dependencies over the sensitive feature and provide unfair results. A more detailed description of
correlation remover can be found in Appendix B.2.

3.2 In-context Samples Selection

In this work, we posit that in-context sample selection can have a significant impact on the fairness of ICL
prediction. We analyze two demonstration selection methods that can improve the fairness of ICL predictions
without model update.

3.2.1 Group-balanced demonstration set selection.

Representation bias is a common source of bias in machine learning models (Mehrabi et al., 2022). It occurs
when the collected training data does not reflect the demographic diversity of the population. As a result, some
demographic subgroups are under-represented, if not represented at all. Recent studies have demonstrated
the benefits of group-balanced training data on the fairness properties of the downstream model. Several
methods have been proposed to mitigate representation bias in the data, including subsampling the majority
group or reweighting the training data based on group proportions (Kamiran & Calders, 2012; Celis et al.,
2020). In this paper, we focus on subsampling since current tabular foundation models do not handle sample
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weights (Hollmann et al., 2025; Qu et al., 2025). We perform ICL with a group-balanced demonstration
set sampling from each group uniformly at random. When the demonstration set size does allow equal
group representation, we subsample the majority group at random. A similar strategy is employed by (Hu
et al., 2024) to select demonstrations for few-shot ICL prediction with LLMs. In this paper, we evaluate the
effectiveness of this fairness intervention with tabular foundation models instead of using LLMs on serialized
tabular data.

3.2.2 Uncertainty-based demonstration set selection.

Kenfack et al. (2024b) demonstrated that models trained without fairness constraints can have better fairness
properties when the training data consists of samples with uncertain sensitive attributes. We hypothesize
that the uncertainty of the sensitive attribute prediction can be a good measure to select demonstrations that
improve the fairness of in-context predictions. To validate this, we measure the uncertainty of predicting the
sensitive attribute in the demonstration set and use samples with high uncertainty for in-context learning.
We focus on conformal prediction (Shafer & Vovk, 2008; Vovk et al., 2005) as uncertainty measure since
it provides strong theoretical guarantees for the coverage. Instead of returning a single label, a conformal
predictor returns a prediction set containing the true label with a probability of at least 1 − ϵ, with ϵ being a
user-defined coverage parameter of the conformal prediction (Angelopoulos et al., 2023). For example, setting
ϵ = 0.1 ensures the prediction set contains the true sensitive attribute value with at least 90% probability.
Specifically, samples with prediction sets containing more than one value are uncertain. Intuitively, the
coverage parameter ϵ controls the fairness-utility tradeoff, with ϵ ≈ 1 meaning no fairness intervention where
all the datapoints are used and ϵ ≈ 0 meaning maximal fairness intervention where only uncertain samples
are included in the in-context examples. We show in Section 4.2.1 how the coverage parameter ϵ of the
conformal predictor consistently controls the tradeoff between accuracy and fairness across fairness metrics
and downstream foundational models.

Since conformal prediction is model agnostic, we considered both classical methods, e.g., Logistic Regression
(LR), and foundation models, e.g., TabPFN for training the sensitive attribute classifier to measure the
prediction uncertainties. Note that the method could be applied using other uncertainty measures, such
as Monte Carlo dropout and confidence interval (Kenfack et al., 2024b). We focus on conformal prediction
due to its rigorous theoretical guarantees, and it does not require a hyperparameter to threshold the level
from which a prediction is considered uncertain (Angelopoulos et al., 2023). More details about uncertainty
measurement with conformal prediction can be found in Appendix B.3.

3.3 In-Context Prediction

After performing demonstration selection or transformation using the fairness intervention methods presented
previously, we pass them through the tabular foundation model as in-context examples for predicting class
labels on the test set. In this paper, we consider three tabular foundation models: TabDPT (Ma et al., 2024),
TabICL (Qu et al., 2025), and TabPFNv2 (Hollmann et al., 2025). While all these models use Transformer
architectures as their backbones and are pretrained on a large amount of datasets, TabICL and TabPFN
use only synthetic data generated from structured causal networks, and TabDPT uses real-world data. The
current version of TabPFN can handle a maximum of 10k samples with 500 features, and TabICL can handle
up to 500K samples. We randomly subsample in-context examples when the context set size exceeds the
maximum number of samples allowed by the foundation model being evaluated.

4 Experiments

We describe the experimental setup and perform intensive experiments to answer the following research
questions:

• (R1) Does group-balanced demonstration selection and correlation remover effectively reduce infor-
mation about the sensitive attribute and improve the fairness of ICL?

• (R2) What fairness intervention provides a better fairness-utility tradeoff?
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• (R3) What foundation tabular model can provide a better fairness-utility tradeoff?

4.1 Experimental Setup

Datasets We experiment on tasks from folktables (Ding et al., 2022), which contains data extracted from
the American Community Survey (ACS) Public Use Microdata Sample (PUMS). More specifically, we experi-
ment with the following ACS PUMS tasks: ACSIncome, ACSMobility, ACSTravelTime, ACSEmployment,
ACSPublicCoverage. These tasks reflect a range of real-world predictive challenges with fairness concerns.
We use the data of the year 2018 from the state of Alabama (AL), which is one of the states with the largest
fairness violation (Ding et al., 2022). A limitation of the ACS PUMS datasets is that they are US-centric;
we diversify the experimental setup by including other tasks and datasets. Specifically, we also experiment
on the other tabular datasets and tasks including: Diabetes (Gardner et al., 2023), German Credit (Frank,
2010), and CelebA (Liu et al., 2018). More details about each dataset, including the sensitive attributes used,
the number of samples, and the number of features, can be found in the Appendix A.

Metrics We measure the utility of the model using accuracy, and measure fairness using three group
fairness metrics, i.e., Demographic Parity (∆DP), Equal Opportunity (∆EOP), and Equalized Odds (∆EOD).
More details about group fairness metrics can be found in B.1.

Baselines We evaluate ICL under four in-context selection strategies, comparing both fairness and accuracy:

• Vanilla: randomly selects in-context examples from the training set without fairness considerations.

• Group Balanced: samples in-context examples to maintain equal group ratios, uniformly downsam-
pling the majority group across runs.

• Correlation Remover (CR): applies correlation-removal (Feldman et al., 2015) to reduce dependence
between sensitive and non-sensitive features in both in-context and test examples. We use the
fairlearn implementation (Bird et al., 2020) with varying values of α, where α = 1 enforces
maximal fairness.

• Uncertain: selects in-context examples with high uncertainty in sensitive attribute prediction. We
estimate uncertainty using conformal prediction (Cordier et al., 2023) as implemented in Mapie (Taquet
et al., 2022), varying the coverage parameter ϵ to control the fairness–utility tradeoff. We study two
variants of sensitive attribute classifier: one with a Logistic Regression classifier (Uncertain+LR) and
one with a foundation model (Uncertain+TabPFN).

Evaluation For evaluation, we held out 20% of the data to train the sensitive attribute classifier used in
the uncertainty-based baseline. The remaining data were split into 80% for training and 20% for testing. We
applied the fairness interventions to the training set to derive in-context samples, and reported fairness and
accuracy on the test set, averaged over three random seeds. This setup provides robustness, as each data
point can appear as a test sample or an in-context sample across seeds. As noted above, we use TabICL,
TabDPT, and TabPFN with their default parameters.

4.2 Results and Discussion

We evaluate fairness in ICL predictions with tabular foundation models along several dimensions. First,
we compare the baseline methods in terms of fairness and accuracy. For interventions with a tunable
fairness–utility tradeoff, we vary the corresponding hyperparameter and compare their Pareto fronts. While
we use accuracy as the main utility metric, we verify in the Appendix that results are consistent when using
ROC AUC. Next, we compare foundation models under the best-performing intervention. Finally, we conduct
an ablation on the effect of in-context set size and analyze the failure case of the correlation-removal method.
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Figure 1: Comparing the fairness-utility Pareto-front of different fairness interventions using TabPFN on the
ACSIncome, ACSMobility, and ACSTravelTime datasets.

4.2.1 Fairness-Utility Tradeoff

Figure 1 shows the fairness–utility Pareto fronts on ACSIncome, ACSMobility, and ACSTravelTime datasets
using TabPFN as the foundation model. We compare the Vanilla baseline, Group Balanced, Correlation
Remover, and the two variants of our uncertainty-based method (Uncertain+LR and Uncertain+TabPFN).
For Correlation Remover and Uncertain, we vary the tradeoff parameters α and ϵ over [0, 1], with each
shaded point corresponding to a parameter setting. The main findings, consistent across datasets and models,
are as follows:
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• (R1) The Group Balanced method yields only marginal fairness gains over Vanilla ICL, with similar
utility. This suggests that representation bias alone does not explain observed disparities; even with
group-balanced contexts, subgroup performance gaps remain, likely due to other sources of bias such
as historical, algorithmic, or measurement bias (Mehrabi et al., 2022).

• (R1, CR failure) Surprisingly, Correlation Remover often exacerbates unfairness. For example, on
ACSIncome, demographic parity worsens from 0.14% to 0.26% at α = 1 (see Appendix Table 7). We
attribute this to bias amplification due to sensitive attribute leakage, as discussed in Section 4.5.

• (R2) In contrast, both variants of Uncertain consistently achieve Pareto-dominant points. They
offer stable control over the fairness–accuracy tradeoff across ϵ values, enabling significant fairness
improvements with modest accuracy loss. The reduced accuracy stems mainly from smaller in-context
sets, since excluding low-uncertainty samples decreases the size of the in-context set, which can
reduce accuracy as we discuss in Section 4.3).

• (R2, Uncertainty variants) Among the two uncertainty-based methods with different model classes,
Uncertain+TabPFN typically yields stronger Pareto fronts, indicating that TabPFN provides more
reliable conformal predictions than logistic regression, leading to better fairness-aware sample selection.

We observe similar patterns on other datasets. Additional results are reported in the Appendix: Figure 6 for
other datasets with TabPFN; Figures 7 and 9 for TabICL; and Figures 8 and 10 for TabDPT.

4.2.2 Accuracy of sensitive attribute reconstruction

We assess whether foundation models can reconstruct the sensitive attribute after different fairness interven-
tions. Specifically, we perform ICL to predict the sensitive attribute and measure test accuracy. Effective
debiasing should lower this accuracy, ideally approaching random guessing (50%).

Table 1 shows that the Group Balanced intervention only marginally reduces reconstruction accuracy for
TabPFN and TabICL on ACS datasets. This limited effect is expected, since ACS is nearly group-balanced
for gender (Ding et al., 2022), e.g., for the state of Alabama, the gender distribution is 51.96% females,
48.04% males. In contrast, the Diabetes dataset is highly imbalanced by race, and group balancing reduces
reconstruction accuracy from 80.2% for the vanilla baseline to 66.2%.

For Correlation Remover, we observe the opposite effect: reconstruction accuracy rises to nearly 100%.
We identify this as the source of bias amplification. Transformer-based foundation models, pretrained on
synthetic data with diverse structural priors, appear to detect and exploit the transformations applied by
Correlation Remover. Because each non-sensitive feature is modified using the sensitive attribute, sensitive
information leaks into the transformed features. The models leverage this leakage, relying on hidden sensitive
signals to predict the target variable and thereby amplifying unfairness. We provide further analysis in
Section 4.5, showing that applying correlation removal only to the training set—while keeping the test set
unchanged—improves fairness compared to the Vanilla baseline.

Finally, the Uncertain methods yield the lowest reconstruction accuracy across datasets. This suggests that
the selected in-context samples carry little information about the sensitive attribute, limiting the model’s
ability to exploit it and thereby improving fairness.

4.2.3 Comparison of Foundation Models: TabICL vs. TabDPT vs. TabPFN

In the previous experiment, we compared the Correlation Remover and Uncertain methods in terms
of their fairness–accuracy tradeoffs by varying their respective control parameters. The results showed
that the Uncertain methods often achieved better Pareto-dominant points compared to both Vanilla
ICL and Correlation Remover. Notably, using TabPFN for uncertainty estimation (Uncertain+TabPFN)
outperformed the variant that relies on logistic regression (Uncertain+LR).

In this experiment, we extend the comparison to different foundation models by applying the same setup using
our best-performing fairness intervention: Uncertain+TabPFN. Figures 2a and 2b show the fairness–accuracy
Pareto fronts on the ACSIncome and ACSMobility datasets, respectively.
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Dataset ICL Method TabPFN TabICL
Accuracy ↓ F1 Score ↓ Accuracy ↓ F1 Score ↓

ACSIncome

Vanilla 77.2±0.5 78.4±0.3 75.0±0.5 76.2±0.3
Group Balanced 77.1±0.5 77.8±0.2 75.0±0.4 75.5±0.1
Correlation R. 100.0±0.0 100.0±0.0 99.9±0.0 99.9±0.0
Uncertain+LR 74.7±1.3 76.7±0.6 74.9±0.5 76.0±0.4
Uncertain+TabPFN 51.3±2.3 66.1±4.4 71.7±0.4 73.6±0.6

ACSTravelTime

Vanilla 75.9±0.4 77.5±0.5 72.8±0.4 73.8±0.5
Group Balanced 75.9±0.5 77.0±0.5 72.5±0.6 72.6±0.6
Correlation R. 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uncertain+LR 75.9±0.6 77.8±0.5 72.8±0.5 74.3±0.5
Uncertain+TabPFN 74.6±1.1 75.7±1.7 67.4±1.6 66.2±2.4

ACSPublicCoverage

Vanilla 91.4±0.2 88.9±0.2 91.5±0.1 89.2±0.2
Group Balanced 91.1±0.4 89.0±0.3 90.9±0.3 88.9±0.4
Correlation R. 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uncertain+LR 56.4±10.0 55.3±4.0 57.7±11.9 60.0±3.6
Uncertain+TabPFN 42.5±0.9 58.7±0.6 42.7±1.1 58.6±0.6

ACSEmployment

Vanilla 64.0±0.4 62.0±1.8 65.0±0.3 62.2±1.4
Group Balanced 64.0±0.5 65.0±1.0 64.8±0.4 65.3±1.1
Correlation R. 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uncertain+LR 64.3±0.4 62.4±2.0 64.9±0.3 62.8±0.9
Uncertain+TabPFN 57.5±3.3 47.0±8.6 61.1±3.0 53.9±6.1

ACSMobility

Vanilla 68.3±0.8 67.8±1.0 67.6±1.0 67.4±1.2
Group Balanced 68.1±0.7 67.9±1.4 67.6±1.1 67.6±1.5
Correlation R. 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uncertain+LR 68.1±0.9 67.8±0.9 67.4±0.8 66.9±0.8
Uncertain+TabPFN 68.1±0.8 67.7±1.0 67.2±0.8 66.8±0.9

German Credit

Vanilla 72.5±3.1 70.3±3.1 71.8±3.1 71.0±3.0
Group Balanced 72.7±2.3 70.7±2.3 71.9±3.0 71.2±2.6
Correlation R. 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uncertain+LR 64.6±5.1 62.3±8.5 68.4±4.8 67.8±5.4
Uncertain+TabPFN 60.4±5.5 51.3±26.5 63.8±3.9 60.8±10.9

Diabetes

Vanilla 80.2±0.1 89.0±0.1 80.4±0.1 89.0±0.1
Group Balanced 66.2±0.9 75.9±0.8 65.1±0.4 74.6±0.4
Correlation R. 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uncertain+LR 70.4±20.7 77.1±26.8 80.3±0.1 89.0±0.1
Uncertain+TabPFN 74.9±10.0 84.8±8.0 80.2±0.1 89.0±0.1

CelebA

Vanilla 84.7±0.2 83.2±0.3 85.0±0.2 83.2±0.3
Group Balanced 84.6±0.2 83.2±0.3 84.9±0.2 83.3±0.3
Correlation R. 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uncertain+LR 72.4±11.7 61.2±21.7 84.9±0.2 83.1±0.3
Uncertain+TabPFN 74.5±8.4 70.8±10.1 81.2±7.2 77.2±11.9

Table 1: ICL prediction performance of sensitive attributes after applying different fairness
interventions. Smaller accuracy is better since it indicates how well the foundation model can reconstruct
the sensitive attribute after the pre-processing fairness interventions. Uncertain methods yield the smallest
accuracy, which justifies the improved fairness performance.

Without any fairness intervention (i.e., using the vanilla ICL approach), there is no clear winner among
the foundation models in terms of fairness; the results vary across datasets. While one might expect
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Figure 2: Comparing the fairness-utility tradeoffs of tabular foundation models (TabICL, TabDPT, and
TabPFN) under uncertainty-based in-context sample selection (Uncertain+TabPFN) for different coverage (ϵ
controlling the tradeoff). Results with other datasets can be found in the Appendix (Figure 5).

TabDPT—pretrained on real-world data—to encode more real-world biases and thus exhibit poorer fairness
performance, this is not consistently observed. In fact, TabDPT often performs comparably to or better than
foundation models pretrained on synthetic data (R3).

Under fairness intervention with Uncertain+TabPFN, all three foundation models exhibit similar fairness
performance, demonstrating that the Uncertain method can consistently control the fairness–accuracy
trade-off regardless of the underlying foundation model. However, both TabPFN and TabDPT consistently
achieve higher accuracy across datasets (R3). These findings are consistent with previous studies: the
benchmark Erickson et al. (2025) reported strong performance for TabPFN (Qu et al., 2025), while the
authors of TabDPT highlighted its competitive performance relative to TabPFN. We observe similar patterns
across additional datasets, and results are provided in the Appendix (see Figure 5).
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Figure 3: Ablation on the in-context example set size. Analyzing the impact of the in-context set size
on the fairness and accuracy of ICL prediction with TabPFN.

4.3 Ablation on Impact In-context Sample Size

In all previous experiments, we used the full training set as the in-context example set whenever possible.
For example, the current version of TabPFN is limited to handling a maximum of 10,000 samples (Hollmann
et al., 2025). To understand the impact of in-context set size, we conduct an ablation study by varying
the number of in-context examples across the range [100,300,500,700,1500,2000,2500,3000,4000,5000], while
keeping the evaluation setup identical as described above.

Figure 3 shows that accuracy increases substantially with larger in-context sets, particularly in the lower
range. However, unfairness shows a slight increase initially and then stabilizes once the in-context set exceeds
approximately 700 examples. Across all in-context sizes and datasets, the Correlation Remover method
consistently exhibits the highest level of unfairness, reinforcing earlier observations of its bias amplification.
In contrast, the Uncertain+TabPFN method consistently achieves the lowest fairness violation, demonstrating
robustness to the size of the in-context set. This indicates that even when only a subset of training data can
be used, Uncertain+TabPFN remains effective at mitigating bias without overly compromising accuracy. We
observe a similar trend when using TabICL model, and results are provided in Appendix 13.
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In Appendix C, we perform a computational analysis comparing running and inference time of different
fainress interventions and foundation models. This analysis shows that fairness interventions themselves
are computationally inexpensive. The runtime is dominated by the choice of the tabular foundation model.
TabPFN is the most efficient, benefiting from its compact architecture. The uncertainty-based variant with
LR is fastest, while using it with TabPFN itself for uncertainty estimation adds moderate overhead..

4.4 Comparison with LLM-based ICL Methods

Despite LLMs’ in-context learning capabilities, they often lag behind classical machine learning models on
large-scale tabular datasets (Hegselmann et al., 2023). To validate the effectiveness of our uncertainty-based
demonstration selection method, we compare it against fairness-aware LLM-based fair ICL approaches
proposed by Hu et al. (2024) and Bhaila et al. (2024) on the widely studied Adult dataset (Asuncion
et al., 2007). Table 2 presents the results. Vanilla TabPFN achieves an accuracy of 85.72%, significantly
outperforming the LLaMA-2-13B baseline, which reaches only 76.00%. This 10-point gap underscores the
performance advantage of specialized models for tabular data, consistent with prior findings that LLMs
struggle on such inputs when used naively (Hegselmann et al., 2023).

While these comparisons rely on LLMs that are not the most recent generation, and performance may have
improved with newer models, the results nonetheless highlight the continued strength of tabular foundation
models like TabPFN in this setting. Moreover, when fairness interventions are applied, our uncertainty-based
selection strategy consistently preserves high predictive performance while achieving comparable or better
fairness outcomes than the LLM-based fair ICL approaches—demonstrating that principled sample selection
can improve fairness without sacrificing accuracy.

Method Foundation model Accuracy ∆DP ∆EOP

Vanilla TabPFN 85.72±0.3 16.99±1.0 8.80±5.1
Vanilla LLaMA-2-13B 76.00±1.1 14.00±0.4 11.00±0.8

Hu et al. (2024) GPT-3.5-turbo 77.93 6.64 10.9
Bhaila et al. (2024) LLaMA-2-13B 75.72±1.6 8.00±2.0 3.00±3.0
Uncertain+TabPFN TabPFN 82.05±1.0 5.51±1.4 3.86±1.4

Table 2: Comparison of accuracy and fairness metrics (∆DP, ∆EOP) on the Adult dataset.

4.5 On the Failure of Correlation Remover

In our previous experiments, we observed that applying the CR to both the training and test data can
exacerbate unfairness in ICL predictions. We hypothesized that the foundation model infers the sensitive
attribute from the linear transformation applied to each non-sensitive feature, which inadvertently leaks
sensitive information and increases unfairness. To validate this hypothesis, we conducted correlation removal
prediction of the sensitive attribute after applying fairness interventions. As shown in Table 1, the ICL
prediction of the sensitive attribute achieves 100% accuracy following the application of CR. This indicates
that the foundation model continues to rely heavily on the sensitive attribute even after correlation removal
is performed.

For further verification, we tested a variant of correlation removal where the feature transformation (see
Eq. 10 in Appendix) is applied only to the training data, leaving the test data unchanged (referred to as
variant S2). Table 3 shows that this variant significantly reduces the ICL prediction accuracy of the sensitive
attribute. This demonstrates that the foundation model exploits the transformation applied to the test set in
the original correlation removal method (variant S1) as a proxy to fully reconstruct sensitive attributes.

This observation aligns with prior discussions by Aïvodji et al. (2021) regarding scenarios where data
transformations reduce correlation with sensitive attributes. Besides the classical correlation removal setting
(S1), where transformations are applied to both training and test sets, we evaluated the fairness–accuracy
trade-off when applying the transformation only to the training set (S2).
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Dataset Fairness Intervention TabPFN TabICL
Accuracy ↓ F1 Score ↓ Accuracy ↓ F1 Score ↓

ACSIncome
None 77.2±0.5 78.4±0.3 75.0±0.5 76.18±0.3
Correlation R. (S1) 100.0±0.0 100.0±0.0 99.9±0.0 99.93±0.0
Correlation R. (S2) 53.8±0.4 67.0±0.9 52.9±0.3 68.9±0.3

ACSTravelTime
None 75.9±0.4 77.5±0.5 72.8±0.4 73.75±0.5
Correlation R. (S1) 100.0±0.0 100.0±0.0 100.0±0.0 100.00±0.0
Correlation R. (S2) 53.6±1.4 54.2±14.5 51.8±1.4 66.4±3.4

ACSPublicCoverage
None 91.4±0.2 88.9±0.2 91.5±0.1 89.23±0.2
Correlation R. (S1) 100.0±0.0 100.0±0.0 100.0±0.0 100.00±0.0
Correlation R. (S2) 57.8±0.4 0.1±0.1 56.5±1.0 0.1±0.1

ACSEmployment
None 64.0±0.4 62.0±1.8 65.0±0.3 62.23±1.4
Correlation R. (S1) 100.0±0.0 100.0±0.0 100.0±0.0 100.00±0.0
Correlation R. (S2) 52.6±0.6 27.7±4.4 53.7±5.1 53.0±10.6

ACSMobility
None 68.3±0.8 67.8±1.0 67.6±1.0 67.40±1.2
Correlation R. (S1) 100.0±0.0 100.0±0.0 100.0±0.0 100.00±0.0
Correlation R. (S2) 49.2±1.5 49.2±13.2 49.2±0.8 40.2±31.2

Diabetes
None 80.2±0.1 89.0±0.1 80.4±0.1 89.04±0.1
Correlation R. (S1) 100.0±0.0 100.0±0.0 100.0±0.0 100.00±0.0
Correlation R. (S2) 67.8±13.8 78.9±12.2 79.3±0.9 88.4±0.6

German Credit
None 72.5±3.1 70.3±3.1 71.8±3.1 71.02±3.0
Correlation R. (S1) 100.0±0.0 100.0±0.0 100.0±0.0 100.00±0.0
Correlation R. (S2) 37.8±6.7 44.0±14.5 46.3±4.2 38.8±14.6

CelebA
None 84.7±0.2 83.2±0.3 85.0±0.2 83.16±0.3
Correlation R. (S1) 100.0±0.0 100.0±0.0 100.0±0.0 100.00±0.0
Correlation R. (S2) 54.8±0.3 1.0±0.8 45.2±0.2 62.2±0.2

Table 3: Accuracy ICL prediction of sensitive attribute after applying Correlation Remover on the training
and testing datasets (S1) or only to train dataset (S2). Applying the transformation only to the train dataset
significantly reduces the accuracy of predicting the sensitive attribute.

As illustrated in Figure 4, variant S2 of CR substantially improves fairness compared to S1. This confirms
the foundation models’ capacity to reconstruct sensitive information when the test set is transformed, leading
to bias amplification. And the drop in reconstruction accuracy of the sensitive attribute directly supports the
observed improvement in fairness when using variant S2

Based on these findings, we recommend practitioners apply the S2 variant of Correlation Re-
mover—transforming only the training data—when using correlation removal in in-context learning frameworks,
to avoid sensitive attribute leakage and mitigate bias amplification during testing.

5 Conclusion and future works

In this study, we proposed and analyzed the effectiveness of three preprocessing methods to enhance the fairness
of in-context learning (ICL) predictions. Our empirical results, performed on eight fairness benchmarks, posit
the uncertainty-based in-context selection method as a strong baseline for improving the fairness of tabular
ICL. The key advantages of this method are threefold: (1) it does not require fine-tuning or retraining the
foundation model to enforce the desired fairness metrics; (2) it can consistently improve three widely used
group fairness metrics; (3) it offers a parameter to control the fairness-utility tradeoff. To our knowledge, this
is the first work that explores pre-processing fairness intervention on tabular foundation models. We hope
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Figure 4: Evaluating variants of the correlation remover on the ACSIncome dataset with TabPFN
and TabICL. Applying correlation remover to the training and testing data exacerbates unfairness, while
applying the transformation only to the training set improves fairness.

this work will trigger more investigations into fair tabular ICL, since in-context learning as a new learning
paradigm will be increasingly adopted into decision-making tools. Interesting future research directions
include investigating in-processing and post-processing methods and analyzing the effect of distribution shift
between in-context and test examples on fairness and accuracy.
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Ethics Statement

This paper explores ways to reduce unfairness in tabular foundation models, emphasizing fair treatment for
various groups. We recognize the significance of fairness in machine learning, especially regarding sensitive
attributes like race, gender, and socio-economic status. Our research seeks to uncover and tackle potential
biases in these models, thereby enhancing transparency, accountability, and inclusivity. While the proposed
method uses a sensitive attributes predictor, which could be unlawful in some countries, we emphasized that
predicted sensitive values are not used either for training or measuring unfairness. We use the attribute
classifier only to quantify uncertainty, and emphasize that this method should not be used for any purpose
other than bias measuring or mitigation.
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Appendix

A Datasets

We experiment on tasks from the recently proposed folktables (Ding et al., 2022), which contains data
extracted from the American Community Survey (ACS) Public Use Microdata Sample (PUMS) (Ding et al.,
2022). More specifically, we experiment with the following ACS PUMS tasks:

• ACSIncome: The task involves predicting whether an individual’s income exceeds $50,000. The
dataset is filtered to include only individuals over the age of 16 who reported working at least 1 hour
per week during the past year and earned a minimum of $100.

• ACSMobility: This task involves predicting whether an individual had the same residential address
one year ago. The dataset is filtered to include individuals aged between 18 and 35. This filtering
increases the difficulty of the task, as more than 90% of the general population tends to stay at the
same address year-to-year.

• ACSTravelTime: This task predicts whether an individual has a commute longer than 20 minutes.
The dataset is filtered to include only employed individuals above the age of 16. The 20-minute
threshold corresponds to the median commute time in the US, according to the 2018 ACS PUMS
data.

• ACSEmployment: The objective is to predict whether an individual is employed, using a dataset
filtered to include individuals aged between 16 and 90.

• ACSPublicCoverage: The goal is to predict whether an individual has public health insurance.
The dataset is filtered to include individuals under 65 years of age and those with an income below
$30,000, focusing on low-income individuals who are ineligible for Medicare.

These tasks were selected to reflect a range of real-world predictive challenges with fairness concerns. A
limitation of the ACS PUMS datasets is that they are US-centric; we diversify the experimental setup by
including other tasks and datasets. Specifically, we also evaluate on the following tabular datasets and tasks:

• Diabetes (Gardner et al., 2023): The diabetes prediction task uses features related to physical
health, lifestyle factors, and chronic conditions, derived from the BRFSS questionnaires. Demographic
attributes like race, sex, state, and income are also included. The target is a binary indicator of
whether the respondent has ever been diagnosed with diabetes.

• German Credit (Frank, 2010): The German Credit dataset contains 20 attributes of 1,000
individuals. We create the task of classifying people according to whether they have a good
or bad credit risk using age (over or below 25 years old) as the sensitive attribute.

• CelebA (Liu et al., 2018): The dataset contains 202,599 samples described with 40 facial attributes
of human annotated images. We create the task of predicting attractiveness with facial attributes
using gender as the sensitive attribute (Kenfack et al., 2024b). Note that we do not train the model
with images and consider this task to diversify the experimental tasks.

B Background

B.1 Fairness Metrics

In this work, we focus on group fairness notions that measure the performance disparity across different
demographic groups. More specifically, we consider the following three widely used group fairness metrics:
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Table 4: Summary of datasets used in our experiments. For each dataset, we report the number of features
(including the sensitive attribute), the number of samples available, and the sensitive attribute used for
fairness evaluation.

Dataset # Features # Samples Sensitive Feature Prediction Task
ACSIncome 10 22,268 Gender Income ≥ $50,000
ACSEmployment 16 47,777 Gender Employment status
ACSTravelTime 16 19,492 Gender Commute time over 20 minutes
ACSMobility 21 8,625 Gender Residential mobility
ACSPublicCoverage 19 18,525 Gender Public health insurance coverage
CelebA 39 202,599 Gender Attractiveness
Diabetes 183 38,575 Race Prior diabetes diagnose
German 58 990 Age Credit risk

• Demographic parity (DP): DP enforces equal positive outcome rate for different groups (Dwork
et al., 2012) and is defined as follows:

P (f(X) = 1|S = s) = P (f(X) = 1) (1)

• Equalized Odds (EOD): EOdds is satisfied when the model makes correct and incorrect predictions
at the same rate for different demographic groups (Hardt et al., 2016). The metric enforces equal
true positive and false positive rates across groups and is measured as follows;

P (f(X) = 1|S = 0, Y = y) = P (f(X) = 1|S = 1, Y = y), ∀y ∈ {0, 1} (2)

• Equalized Opportunity (EOP): In some settings, one can care more about assessing unfairness
when the model makes correct predictions. EOP enforces equal true positive rates across groups, i.e.,
we only consider y = 1 in Eq. 2, i.e.,

P (f(X) = 1|S = 0, Y = 1) = P (f(X) = 1|S = 1, Y = 1) (3)

Empirically, we measure each fairness considered, i.e., Demographic Parity (∆DP), Equal Opportunity
(∆EOP), and Equalized Odds (∆EOD) as follows.

∆DP =
∣∣∣∣ E
x|A=0

[I{f(x) = 1}] − E
x|A=1

[I{f(x) = 1}]
∣∣∣∣ (4)

Where I(·) is the indicator function.

∆EOD = α0 + α1 (5)

∆EOP = α1 (6)

Where α0 and α1 measure the difference between the false positive and the true positive rates across groups,
respectively, and are empirically measured as follows.

Where α0 and α1 measure the difference between the false positive and the true positive rates across groups,
respectively, and are empirically measured as follows.
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αj =
∣∣∣∣ E
x|A=0,Y =j

[I{f(x) = 1}] − E
x|A=1,Y =j

[I{f(x) = 1}]
∣∣∣∣ j ∈ {0, 1} (7)

Since the disparities can be below 0.1 on some datasets, we scaled the fairness values reported throughout
the paper by 100 to make it easier to read.

B.2 Correlation Remover

The Correlation Remover (Feldman et al., 2015) is a preprocessing technique designed to eliminate linear
correlations between sensitive attributes and non-sensitive features in a dataset. This method is particularly
useful in mitigating biases that may arise due to such correlations, especially when employing linear models.

Considering a classification task with the given training data D = {(xi, yi, si)}n
i=1 where xi is an input feature

vector, yi is the corresponding class label, and si the corresponding demographic group.

To apply Correlation Remover, we assume the training data is formulated as follows:

• X ∈ Rn×d represents the training data matrix containing sensitive and non-sensitive features.

• S ∈ Rn×ms a matrix of the sensitive features. For simplicity, we assumed in this work ms = 1, which
corresponds to a single binary sensitive attribute.

• Z ∈ Rn×mz a matrix of non-senstive features such that X = [S Z]

The goal of Correlation Remover is to transform Z into Z∗ such that Z∗ is uncorrelated with S, while
retaining as much information from the original Z as possible.

For each non-sensitive feature vector zj ∈ Rn (the j-th column of Z), the algorithm solves the following least
squares problem:

min
wj

∥∥zj − (S − 1ns̄⊤)wj

∥∥2
2 (8)

where:

• s̄ = [s̄1, s̄2, . . . , s̄ms ] is the mean vector of the sensitive features, i.e., s̄j is the mean of j-th the
sensitive feature.

• 1n is an n-dimensional column vector of ones.

• wj ∈ Rmz is the weight vector that projects the centered sensitive features onto zj .

After computing the optimal weight vectors w∗
j for all j ∈ {1, . . . , mz}, they are assembled into a weight

matrix W∗ = [w∗
1, . . . , w∗

mz
]. The transformed non-sensitive features are then obtained by:

Z∗ = Z − (S − 1ns̄⊤)W∗ (9)

This operation effectively removes the linear correlations between S and Z, resulting in Z∗ that is uncorrelated
with the sensitive features.

Correlation Remover introduces a tunable parameter α ∈ [0, 1] that controls the extent of correlation
removal, i.e., (i) α = 1 corresponds to full removal of linear correlations, thus best possible fairness; (ii) α = 0
corresponds no transformation, the original data is used; (iii) 0 < α < 1 corresponds to partial removal,
balancing between the original and transformed data, thus controlling the fairness accuracy tradeoff. More
specifically, the final transformed dataset X′ is computed as:

X′ = αZ∗ + (1 − α)Z (10)

Note that X′ is derived using Z∗, since S is dropped after transformation. The convex combination 10 allows
practitioners to adjust the fairness accuracy tradeoff based on specific requirements of their application.

Equation 8 is optimized on the training dataset, and the optimal weight vectors w∗
j are used to apply the

transformation 10 on the test dataset.
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B.3 Uncertainty measure with conformal prediction

While any uncertainty measurement method could be used in our method, we employ conformal prediction
due to its strong coverage guarantees. Specifically, we used Split Conformal Prediction (Angelopoulos et al.,
2023), which is a distribution-free and model-agnostic method that provides prediction sets for classification
tasks, ensuring a user-specified coverage level 1 − ϵ with no assumptions beyond data exchangeability.

Given labeled data Dtrain = {(xi, si)}n
i=1 with binary sensitive attribute si ∈ {0, 1}, we split the data into

proper training set ( D1) and calibration set (D2). In the experiments, we did a 50%-50% split of the dataset
with sensitive attribute to obtain D1 and D2.

We then train a probabilistic classifier f : X → [0, 1], on D1, yielding predictions:

p̂i = f(xi) = P(S = 1 | X = xi). (11)

In our setup, f could be Logistic Regression (Uncertain+LR) or TabPFN (Uncertain+TabPFN). The starting
point for conformal prediction is what is called a nonconformity measure, a real-valued function that measures
how a prediction is different from any possible class label.

Nonconformity Scores After training f on the proper training set, we use the calibration dataset to
compute the nonconformity scores, which measure how far the prediction is from the true label. More
specifically, for each calibration point (xi, si) ∈ D2, we considered the nonconformity score is defined as:

ci = |si − p̂i|. (12)

We then compute the quantile threshold τ based on the user-defined target coverage ϵ ∈ [0, 1], e.g., ϵ = 0.05
mean 95% coverage. Specifically, τ is defined based on 1 − ϵ quantile of the nonconformity scores.

τ = Quantile1−ϵ ({ci}ncal
i=1 ) . (13)

Prediction Set The quantile threshold is used to build the prediction set of data points from the test set.
More specifically, for a test sample xtest, we compute the prediction probability p̂test = f(xtest) and derive its
prediction set as follows:

Γ(xtest) = {s ∈ {0, 1} : |s − p̂test| ≤ τ}. (14)

When the prediction set only contains {0} or {1}, then the prediction is confident with at least 1−ϵ probability,
while when the prediction set contains both labels, i.e., {0, 1}, the prediction is considered uncertain. Our
uncertainty-based demonstration selection method uses only samples whose prediction set contains two values.
The coverage guarantee of conformal prediction holds under the assumption that the calibration and test
data are exchangeable. We use the open-source implementation of split conformal prediction provided by the
MAPIE Python package.

Example. Consider a simplified task consisting of two non-sensitive features (f1 and f2), one binary target
(y), and a binary sensitive attribute (s).

To estimate the uncertainties, we first train a sensitive attribute classifier, using a fraction of the dataset
(20% in our experiments). We train the sensitive attribute classifier (Logistic Regression or TabPFN) using
f1 and f2 to predict s. A conformal predictor returns for a given (test) sample x a prediction set Γ(x) that
contains the true sensitive attribute with probability of at least 1 − ϵ. For example, setting ϵ = 0.05 means
95% of the data will contain the true label in their prediction sets. The size of the prediction set, therefore,
provides information about the prediction uncertainty, i.e., |Γ(x)| = 1 means the prediction is confident with
at least 1 − ϵ probability, and |Γ(x)| = 2 means the prediction is uncertain. The intuition of our method is
that using samples with uncertain predictions makes it challenging for the foundation model to infer and rely
on the sensitive attributes to make predictions on the target.
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We therefore include a training example x in the context set if |Γ(x)| = 2 and filter it out otherwise. ϵ helps to
control the fairness-utility tradeoff since a smaller ϵ corresponds to filtering out more demonstration examples
with higher confidence sensitive attributes prediction, which can better improve fairness while impacting
accuracy as the size of the in-context set is reduced.

C Runtime Comparison of Fairness Interventions

In addition to fairness–utility tradeoffs, we provide a detailed comparison of the computational cost of the
fairness interventions across tabular foundation models. While prior sections focused on predictive performance,
practical deployment also requires understanding efficiency, particularly in large-scale or resource-constrained
settings.

Setup. We measured wall-clock running time on an NVIDIA A100 GPU (20 GB memory). Each run
includes preprocessing, fairness intervention, and in-context learning inference using the full training set and
test set. Results are averaged over three seeds, with standard deviations reported. The largest dataset in
our experiments, CelebA, was used to provide representative estimates of runtime under high load. Table 5
summarizes runtimes across methods and models. We make the following observations: (i) TabPFN is the
most efficient (8–47s), benefiting from its compact architecture. The uncertainty-based variant with LR is
fastest, while using TabPFN itself for uncertainty estimation adds moderate overhead. (ii) TabICL shows
moderate cost (57–97s), with relatively small variance across interventions. (iii) TabDPT is substantially
slower ( 595s), reflecting the higher computational demands of its transformer-based architecture.

Across models, uncertainty-based with Logistic Regression is consistently the fastest intervention, while
correlation removal and group balancing introduce negligible overhead compared to vanilla inference. Recall
TabPFN uses at most 10K samples, which reduces the context size compared to other models, thereby
explaining the faster inference. Likewise, the uncertainty-based intervention reduces the context size compared
to other interventions. Running time on the ACSIncome dataset (Table 6) confirms that fairness interventions
themselves are computationally inexpensive; the runtime is dominated by the choice of tabular foundation
model. For practitioners, TabPFN with uncertainty-based sampling (LR) offers the best balance of fairness
gains and efficiency, while TabDPT provides stronger model capacity at substantially higher cost.

Model Vanilla Group Balanced Correlation Remover Uncertain+LR Uncertain+TabPFN
TabDPT 596.04 ± 69.12 594.98 ± 68.35 596.83 ± 70.10 595.58 ± 65.73 316.86 ± 50.17
TabICL 69.50 ± 0.75 67.84 ± 0.85 70.11 ± 1.26 57.05 ± 1.24 96.65 ± 1.06
TabPFN 10.71 ± 1.27 10.84 ± 1.16 13.94 ± 1.35 8.45 ± 0.82 47.18 ± 0.65

Table 5: Average running time (s) ± standard deviation on CelebA dataset across fairness interventions and
tabular foundation models.

Model Vanilla Group Balanced Correlation Remover Uncertain+LR Uncertain+TabPFN
TabDPT 154.35 ± 53.13 153.23 ± 53.06 151.75 ± 52.88 155.09 ± 53.41 303.63 ± 52.21
TabICL 45.05 ± 0.62 45.23 ± 0.04 44.63 ± 0.62 45.09 ± 0.29 45.43 ± 1.40
TabPFN 1.85 ± 0.87 1.96 ± 1.07 3.22 ± 0.32 1.87 ± 0.91 3.65 ± 0.76

Table 6: Average inference time (s) ± standard deviation on ACSIncome dataset across fairness interventions
and tabular foundation models.

D Supplementary resutls

The results in Figure 4.2 and Table 7 show that improving fairness in the ACSPublicCoverage and Diabetes
datasets is particularly challenging. We observe that unfairness is already pretty small, and the fairness
methods alter the training data, either by transforming the features (correlation removal) or reducing its size
(group-balanced and Uncertain methods), which reduces accuracy, without necessarily improving on fairness.
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For Table 1, we used a fixed value for the hyperparameter controlling the fairness accuracy tradeoff, ϵ = 0.05
for the uncertain method and α = 1 for correlation removal. Figure 6b and 6c show that for different values
of ϵ, there are Pareto-optimality points of the uncertain method that significantly reduce unfairness compared
to random demonstration selection baselines. These points correspond to values of ϵ < 0.05. In sum, for
some tasks, in a low unfairness regime such as PublicCoverage and Diabetes, smaller values of ϵ are needed
to reduce unfairness, which means more data points with a confident prediction of the sensitive attribute
must be removed from the demonstration set. The value ϵ used in practice can be defined by stakeholders,
decision-makers or business needs, considering that smaller ϵ means increased fairness and a drop in accuracy,
and higher ϵ means a decrease in fairness and higher accuracy.
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Dataset ICL Method Accuracy ↑ ∆ DP ↓ ∆ EOP ↓ ∆ EOD ↓

ACSIncome

Vanilla 80.76±0.5 14.21±1.3 5.46±2.9 5.89±2.4
Group Balanced 80.99±0.4 14.08±1.8 5.36±3.6 5.79±3.3
Correlation R. 81.44±0.5 26.81±2.0 27.35±6.4 27.35±6.4
Uncertain+LR 80.94±0.4 13.13±1.6 3.91±2.4 4.17±2.1
Uncertain+TabPFN 80.13±0.8 8.90±1.7 3.33±3.9 3.56±3.7

ACSEmployment

Vanilla 82.18±0.3 1.11±0.7 1.01±1.1 8.17±0.8
Group Balanced 82.13±0.4 1.09±0.8 1.10±1.2 8.20±0.7
Correlation R. 82.41±0.4 3.90±1.0 5.05±1.2 5.49±1.0
Uncertain+LR 81.98±0.4 0.86±0.4 0.99±0.8 7.56±0.8
Uncertain+TabPFN 81.69±0.7 0.80±0.4 0.91±0.6 6.99±0.8

ACSPublicCoverage

Vanilla 84.71±0.5 1.75±1.2 5.13±3.5 5.23±3.4
Group Balanced 84.49±0.5 1.75±1.4 5.80±2.8 5.80±2.8
Correlation R. 84.57±0.6 1.64±1.2 4.89±3.7 4.94±3.6
Uncertain+LR 80.15±2.0 3.08±3.2 4.61±4.1 5.28±3.4
Uncertain+TabPFN 81.58±1.4 2.14±1.4 7.78±4.3 7.78±4.3

ACSTravelTime

Vanilla 70.52±0.6 9.79±0.9 8.09±2.4 8.79±1.9
Group Balanced 70.85±0.6 10.14±1.7 8.46±3.5 9.32±2.6
Correlation R. 70.42±0.5 9.82±1.8 8.43±3.0 8.70±2.5
Uncertain+LR 70.48±0.5 10.16±0.7 8.42±2.4 9.07±1.8
Uncertain+TabPFN 70.00±0.6 8.30±0.9 6.69±2.1 7.49±1.6

ACSMobility

Vanilla 76.86±0.8 2.25±1.3 1.91±0.6 6.49±2.8
Group Balanced 77.11±1.1 2.86±1.6 0.97±0.9 8.38±4.9
Correlation R. 76.86±0.6 6.27±1.6 3.33±1.7 12.28±3.3
Uncertain+LR 76.59±0.8 1.86±1.7 2.27±1.0 4.31±2.4
Uncertain+TabPFN 76.58±0.9 2.05±2.0 1.95±1.2 4.34±4.4

Diabetes

Vanilla 64.59±0.3 1.74±1.0 1.78±1.3 2.74±1.6
Group Balanced 64.70±0.5 1.62±1.2 2.37±1.3 3.08±1.4
Correlation R. 64.69±0.3 1.33±1.1 2.13±1.5 2.68±1.2
Uncertain+LR 64.39±0.6 0.77±0.5 2.52±1.1 2.52±1.1
Uncertain+TabPFN 64.24±0.6 1.20±0.9 3.21±2.1 3.59±2.0

German Credit

Vanilla 74.80±4.6 5.14±3.5 5.88±4.3 12.20±6.6
Group Balanced 74.43±3.0 5.92±5.5 5.47±5.0 15.85±10.3
Correlation R. 75.25±3.5 11.78±6.3 9.30±3.8 16.72±9.3
Uncertain+LR 74.36±3.4 7.72±3.8 6.01±4.1 11.98±5.9
Uncertain+TabPFN 73.98±4.0 4.65±3.0 5.21±4.3 11.91±9.6

CelebA

Vanilla 80.55±0.4 14.54±1.0 12.03±2.8 12.03±2.8
Group Balanced 80.45±0.5 15.06±0.8 13.18±1.7 13.18±1.7
Correlation R. 80.47±0.4 13.23±1.3 9.04±2.2 9.14±2.2
Uncertain+LR 80.16±0.5 8.92±0.9 2.28±2.0 4.42±1.3
Uncertain+TabPFN 79.86±0.7 10.01±1.4 3.54±1.9 5.46±1.1

Table 7: Accuracy and fairness performance of ICL predictions with TabPFN as foundation model under
different preprocessing methods. The color range highlights the best ( ) to the worst-performing
method ( ) for fairness accuracy. ↑ indicates higher is better (accuracy) and ↓ lower is better (unfairness).
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Figure 5: TabPFN vs. TabICL vs. TabDPT. Comparing the fairness-accuracy tradeoffs of tabular foundation
models under uncertainty-based fairness interventions. TabPFN generally provides better fairness accuracy
tradeoffs.
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Figure 6: Fairness-accuracy Pareto-front of different fairness interventions with TabPFN.
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Figure 7: Fairness-accuracy tradeoffs on the ACS datasets with TabICL as foundation model
.
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Figure 8: Fairness-accuracy tradeoffs on the ACS datasets with TabDPT as foundation model
.

28



Under review as submission to TMLR

0 5 10 15
Fairness Violation (%)

56

58

60

62

64

66

Ac
cu

ra
cy

 (%
)

Demographic Parity

0 10 20
Fairness Violation (%)

56

58

60

62

64

66
Equal Opportunity

0 10 20
Fairness Violation (%)

56

58

60

62

64

66
Equalized Odds

Vanilla Group Balanced Correlation R. Uncertain+LR Uncertain+TabPFN

(a) Diabetes

5 10 15
Fairness Violation (%)

74

75

76

77

78

79

80

81

Ac
cu

ra
cy

 (%
)

Demographic Parity

5 10 15
Fairness Violation (%)

74

75

76

77

78

79

80

81

Equal Opportunity

5 10 15
Fairness Violation (%)

74

75

76

77

78

79

80

81

Equalized Odds

(b) CelebA

Figure 9: Fairness-accuracy tradeoffs on the Diabetes and CelebA using TabICL as foundation model
.
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Figure 10: Fairness-accuracy tradeoffs on the Diabetes and CelebA using TabDPT as foundation model
.
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Figure 11: Fairness-utility tradeoff on the ACSIncome with utility measured by ROC-AUC.
.

31



Under review as submission to TMLR

5 10 15
Fairness Violation (%)

65

70

75

80

85

R
O

C
 A

U
C

 (%
)

Demographic Parity

0 5 10 15
Fairness Violation (%)

65

70

75

80

85

Equal Opportunity

5 10 15
Fairness Violation (%)

65

70

75

80

85

Equalized Odds

Vanilla TabICL
Vanilla TabPFN
Vanilla TabDPT
Fair TabICL
Fair TabPFN
Fair TabDPT

(a) ACSIncome

0 2 4 6 8 10
Fairness Violation (%)

55

60

65

70

75

R
O

C
 A

U
C

 (%
)

Demographic Parity

0.0 2.5 5.0 7.5 10.0
Fairness Violation (%)

50

55

60

65

70

75
Equal Opportunity

0.0 2.5 5.0 7.5 10.0
Fairness Violation (%)

50

55

60

65

70

75
Equalized Odds

Vanilla TabICL
Vanilla TabPFN
Vanilla TabDPT
Fair TabICL
Fair TabPFN
Fair TabDPT

(b) ACSTravelTime

0 2 4 6 8
Fairness Violation (%)

70

75

80

85

R
O

C
 A

U
C

 (%
)

Demographic Parity

0 5 10
Fairness Violation (%)

70

75

80

85

Equal Opportunity

0 5 10 15
Fairness Violation (%)

70

75

80

85

Equalized Odds

Vanilla TabICL
Vanilla TabPFN
Vanilla TabDPT
Fair TabICL
Fair TabPFN
Fair TabDPT

(c) ACSPublicCoverage

0 1 2 3 4 5
Fairness Violation (%)

60

65

70

75

R
O

C
 A

U
C

 (%
)

Demographic Parity

0 1 2 3 4
Fairness Violation (%)

60

65

70

75

Equal Opportunity

2 4 6 8
Fairness Violation (%)

60

65

70

75

Equalized Odds

Vanilla TabICL
Vanilla TabPFN
Vanilla TabDPT
Fair TabICL
Fair TabPFN
Fair TabDPT

(d) ACSMobility

Figure 12: Comparing the fairness-utility (ROC AUC) tradeoff of different foundation models under
Uncertain+TabPFN fairness intervention. Measuring the utility with the ROC AUC score shows a sim-
ilar trend with accuracy.
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Figure 13: Ablation on the in-context example set size with TabICL.
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