
Under review as a conference paper at ICLR 2022

BACK TO BASICS:
EFFICIENT NETWORK COMPRESSION VIA IMP

Anonymous authors
Paper under double-blind review

ABSTRACT

Network pruning is a widely used technique for effectively compressing Deep
Neural Networks with little to no degradation in performance during inference.
Iterative Magnitude Pruning (IMP) (Han et al., 2015) is one of the most estab-
lished approaches for network pruning, consisting of several iterative training and
pruning steps, where a significant amount of the network’s performance is lost
after pruning and then recovered in the subsequent retraining phase. While com-
monly used as a benchmark reference, it is often argued that a) its iterative nature
makes it slow and non-competitive, b) it reaches suboptimal states, in particular
because it does not incorporate sparsification into the training phase, and c) its
global selection criterion fails to properly determine optimal layer-wise pruning
rates. In light of recently proposed retraining techniques, we investigate these
claims through rigorous and consistent experiments. We find IMP to be surpris-
ingly efficient, achieving its full potential with significantly less than the extensive
amount of retraining usually considered necessary (Renda et al., 2020). When
paired with the compressed learning rate scheme suggested by Le & Hua (2021),
we find that it can not only perform on par with more complex or heavily pa-
rameterized state-of-the-art approaches, but it does so without or with only little
computational overhead even when using its original global magnitude selection
criterion. This casts doubt on the commonly claimed advantages of imposing an
implicit bias during training to avoid retraining.

1 INTRODUCTION

Modern Neural Network architectures are commonly highly over-parameterized (Zhang et al.,
2016), containing millions or even billions of parameters, resulting in both high memory require-
ments as well as computationally intensive and long training and inference times. It has been shown
however (LeCun et al., 1989; Hassibi & Stork, 1993; Han et al., 2015; Gale et al., 2019; Lin et al.,
2020; Blalock et al., 2020) that modern architectures can be compressed dramatically by pruning,
i.e., removing redundant structures such as individual weights, entire neurons or convolutional fil-
ters. The resulting sparse models require only a fraction of storage and floating-point operations
(FLOPs) for inference, while experiencing little to no degradation in predictive power compared
to the dense model. There is of course an inherent tradeoff between sparsity and model perfor-
mance; a very heavily pruned model will normally be less performant than its dense (or moderately
pruned) counterpart, though it has been observed that pruning might have a regularizing effect and
be beneficial to the generalization capacities (Blalock et al., 2020; Hoefler et al., 2021).

One approach to pruning consists of removing part of a network’s weights after a standard training
process, seemingly losing most of its predictive performance, and then retraining to compensate
for that pruning-induced loss. This can be done either once (One Shot), or the process of pruning
and retraining can be repeated iteratively until the desired level of sparsity is reached. Although
dating back to the early work of Janowsky (1989), this approach was most notably proposed by Han
et al. (2015) in the form of ITERATIVE MAGNITUDE PRUNING (IMP). Because it is arguably one
of the simplest pruning algorithms, IMP has been widely applied as a baseline comparison for other
approaches (Carreira-Perpiñán & Idelbayev, 2018; Ding et al., 2019; Savarese et al., 2020; Siegel
et al., 2020; Hoefler et al., 2021). As such, it is often subject to criticism, with the most commonly
made claims arguing against the efficacy of IMP being the following:

1



Under review as a conference paper at ICLR 2022

1.) Inherent to the justification of many proposed alternatives is the claim, that sparsification should
be part of the training. Methods of this type reach a sparse model at the end of training, ideally
eliminating the need for further training. One desired benefit of doing so, is to improve the spar-
sity vs. performance tradeoff by reducing the impact of the actual ‘hard’ pruning, which results in
a “failure to properly recover the pruned weights” (Liu et al., 2020). It is argued that IMP achieves
sub-optimal states since learning the pruning set throughout training “helps find a better subset and
hence prune more weights with no or little loss degradation” (Carreira-Perpiñán & Idelbayev, 2018).
Another frequently claimed advantage is that incorporating the sparsification into the training cuts
down on computational cost by not requiring additional retraining epochs. Ding et al. (2019) for
example advertise that there is “no need for a time consuming re-training” and Hoefler et al. (2021)
argue that "the sparsify-during-training schedule (...) is usually cheaper than the train-then-sparsify
schedule”.

2.) IMP determines a single numerical threshold for pruning and applies it globally to every pa-
rameter, potentially resulting in very different levels of sparsity among the layers of the network.
This behavior is often considered to be sub-optimal and it is argued that pruning should be layer-
dependent (Liu et al., 2020), so more complex saliency criteria have been proposed (Gale et al.,
2019; Lee et al., 2020). Kusupati et al. (2020) for example claim that “uniform or heuristic non-
uniform sparsity budgets (...) have sub-optimal layer-wise parameter allocation resulting in a) lower
prediction accuracy or b) higher inference cost (FLOPs)”.

3.) While only the iterative approach, that is repeatedly removing only a small fraction of the pa-
rameters followed by extensive retraining, is said to achieve results on the Pareto frontier (Renda
et al., 2020), its iterative nature is also considered to be computationally tedious, if not impractical:
“iterative pruning is computationally intensive, requiring training a network 15 or more times con-
secutively for multiple trials” (Frankle & Carbin, 2018), leading Liu et al. (2020) to trying to “avoid
the expensive pruning and fine-tuning iterations”.

Our interest lies in exploring these claimed disadvantages of IMP through rigorous and consis-
tent computational experimentation with a focus on recent advancements concerning the retraining
phase, see the results of Renda et al. (2020) and Le & Hua (2021). This comparative study is in
fact intended to complement both of these works, which focused on improving the sparsity-vs.-
performance tradeoff of IMP through improved learning rate schemes during training, by putting an
additional spotlight on the total computational cost of IMP in a direct comparison with methods that
are commonly assumed to outperform IMP in that aspect by avoiding retraining.

Contributions. We empirically find that, using an appropriate learning rate scheme, only few
retraining epochs are needed in practice to achieve most of the sparsity vs. performance tradeoff of
IMP. We also find that the global selection criterion not only finds sparsity distributions on par with
but, somewhat surprisingly, often better than those of more sophisticated layer-dependent pruning
criteria. Finally, we conclude that, using an appropriate learning rate scheme, IMP performs well
even when compared to state-of-the-art approaches that incorporate sparsification into the training
without or with only little computational overhead. That is, not only can IMP find some of the best
performing architectures at any given sparsity level, but due to the compressed retraining time it
does so without needing to leverage a longer running time even when compared to methods typically
considered to be superior to IMP in that particular aspect.

Outline. Section 2 contains a complete overview over related works, including a brief summary
of all pruning methods and approaches considered here. In Section 3 we provide the computational
results and their interpretation by first addressing how IMP can develop its full potential within a
restricted computational envelope in Subsection 3.1 and Subsection 3.2. We then use the resulting
lessons in order to draw up a fair comparison to methods that incorporate pruning into their training
in Subsection 3.3. We conclude with some discussion in Section 4.

2 OVERVIEW OF PRUNING METHODS AND METHODOLOGY

While the sparsification of Neural Networks includes a wide variety of approaches, we will focus on
Model Pruning, i.e., the removal of redundant structures in a Neural Network. More specifically, our
results will be limited to unstructured pruning, that is the removal of individual weights, as opposed

2



Under review as a conference paper at ICLR 2022

to its structured counterpart, where entire groups of elements, such as neurons or convolutional
filters, are removed. We will also focus on approaches that start with a dense network and then
either prune the network during training or after training as already discussed in the introduction.
Following Bartoldson et al. (2020), we will also refer to methods of the former category as pruning
stable, since the final pruning should result in a negligible decrease in performance, where methods
of the latter category are referred to as unstable. For a full and detailed survey of Pruning algorithms
we refer the reader to Hoefler et al. (2021).

Pruning unstable methods are exemplified by ITERATIVE MAGNITUDE PRUNING (IMP) (Han et al.,
2015). In its original form, it first employs standard network training, adding a common `2-
regularization term on the objective, and then removes all weights from the network whose absolute
values are below a certain threshold. The network at this point commonly loses some or even all of
its learned predictive power, so it is then retrained for a fixed number of epochs. This prune-retrain
cycle is usually repeated a number of times; the threshold at every pruning step is determined as the
appropriate percentile such that, at the end of given number of iterations, a desired target sparsity is
met.1 In the following we will first discuss two particular details of IMP that have been the focus
of recent research: the questions of (a) how to select the parameters to be pruned and (b) how to
retrain. We will then conclude this section by briefly outlining the pruning stable methods we have
selected for this comparison and establish how to fairly compare them to IMP.

2.1 RETRAINING APPROACHES

Let us first consider the learning rate scheme used during retraining. The original approach by
Han et al. (2015) is commonly referred to as FINE TUNING (FT): suppose we train for T epochs
using the learning rate schedule (ηt)t≤T and retrain for Trt epochs per prune-retrain-cycle, then FT
retrains the pruned network for Trt epochs using a fixed constant learning rate, most commonly ηT .
It was first noticed by Renda et al. (2020) that the precise learning rate schedule during retraining
can have a dramatic impact on the predictive performance of the pruned network. Motivated by
WEIGHT REWINDING (WR) (Frankle et al., 2019), they proposed LEARNING RATE REWINDING
(LRW), where one retrains the pruned network for Trt epochs using the last T − Trt learning rates
ηT−Trt+1, . . . , ηT . Le & Hua (2021) argued that the reason behind the success of LRW is the usage of
large learning rates and proposed SCALED LEARNING RATE RESTARTING (SLR), where the pruned
network is retrained using a proportionally identical learning schedule, i.e., by compressing (ηt)t≤T

into the retraining time frame of Trt epochs with a short warm-up phase. They also introduced
CYCLIC LEARNING RATE RESTARTING (CLR) based on the the 1-cycle learning rate schedule of
Smith & Topin (2017).

We think that the nature of the proposed retraining methods indicates that the retraining phase is,
at its core, similar to the usual training phase. Following this rationale, the success of LRW, SLR
and CLR over FT should be attributed to the existence of both a large- and small-step retraining
regime. In fact, a large initial and exponentially decaying learning rate has become the standard
practice for regular training (Leclerc & Madry, 2020). Note that such a scheme is employed not
just by SLR and CLR, but also by LRW if Trt is sufficiently large to model the decaying learning
rate schedule of the original training phase. The conventional approach to explaining the success
of decaying learning rate schedules comes from an optimization perspective, i.e., an initially large
learning rate accelerates training and avoids local minima, while the gradual decay helps to converge
to an optimum without oscillation around it. However, an active line of research has theoretically
supported the usage of large learning rates and separating training into a large- and small-step regime
from a generalization perspective (Jastrzębski et al., 2017; Li et al., 2019; You et al., 2019; Leclerc
& Madry, 2020). Put more succinctly: retraining is training and therefore requires that some effort is
put into tuning the learning rate scheme. LRW, SLR and CLR provide some good heuristic guidance
for how to effectively do so without an insurmountable amount of hyperparameter tuning.

While One Shot IMP, that is IMP with a single prune-retrain cycle, is a viable approach to model
pruning, only the iterative approach (with multiple prune-retrain cycles) has been shown to achieve

1There is another way to view this relation: one can fix a given percentile to be pruned in every iteration and
then simply repeat the prune-retrain cycle until either a desired level of sparsity is reached or the performance
degradation exceeds a given threshold. This is in fact how it appears to be used by Han et al. (2015) and how it
is for example presented by Renda et al. (2020). While this reframing may appear trivial, it in fact highlights a
strength of IMP that we will further emphasize when contrasting it with pruning stable approaches.

3



Under review as a conference paper at ICLR 2022

state-of-the-art accuracy-vs.-sparsity tradeoffs (Han et al., 2015; Renda et al., 2020). This iterative
approach however commonly consists of a significant amount of prune-retrain cycles, each needing
the full original training time, that is T = Trt, resulting in several thousand epochs worth of total
training time. Renda et al. (2020) for example suggested the following approach: train a network
for T epochs and then iteratively prune 20% percent of the weights and retrain for Trt = T epochs
using LRW, i.e., use the same learning rate scheme as during training, until the desired sparsity is
reached. We note that for T = Trt the learning rate scheme of SLR becomes essentially identical to
that of LRW. For a goal sparsity of 98% and T = 200 original training epochs, the algorithm would
therefore require 18 prune-retrain-cycles for a massive 3800 total retrain epochs. In Subsection 3.1
we will study the effect of the number of prune-retrain cycles, the number of retraining epochs and
the learning rate scheme on the performance of the pruned network to establish whether IMP truly
requires this massive amount of computational investment to develop its full potential.

2.2 PRUNING SELECTION CRITERIA

IMP in its original form treats all trainable parameters as a single vector and computes a global
threshold below which parameters are removed, independent of the layer they belong to. This simple
approach, which we will refer to as GLOBAL, has been subject to criticism for not determining
optimal layer-dependent pruning rates and for being inconsistent (Liu et al., 2020). Fully-connected
layers for example have many more parameters than convolutional layers and are therefore much
less sensitive to weight removal (Han et al., 2015; Carreira-Perpiñán & Idelbayev, 2018). Further,
it has been observed that the position of a layer can play a role in whether that layer is amenable
to pruning: often first and last layers are claimed to be especially relevant for the classification
performance (Gale et al., 2019). On the other hand, in which layers pruning takes place significantly
impacts the sparsity-induced theoretical speedup (Blalock et al., 2020). Lastly, the non-negative
homogeneity of modern ReLU-based neural network architectures (Neyshabur et al., 2015) would
also seem to indicate a certain amount of arbitrariness to this heuristic selection rule, or at least a
strong dependence on the network initialization rule and optimizer used, as weights can be rescaled
to force it to fully remove all parameters of a layer, destroying the pruned network without having
affected the output of the unpruned network.

Determining which weights to remove is hence crucial for successful pruning and several methods
have been designed to address this fact. Zhu & Gupta (2017) introduced the UNIFORM allocation,
in which a global sparsity level is enforced by pruning each layer to exactly this sparsity. Gale et al.
(2019) extend this approach in the form of UNIFORM+ by (a) keeping the first convolutional layer
dense and (b) pruning at most 80% of the connections in the last fully-connected layer. Evci et al.
(2020) propose a reformulation of the ERDŐS-RÉNYI KERNEL (ERK) (Mocanu et al., 2018) to take
the layer and kernel dimensions into account when determining the layerwise sparsity distribution.
In particular, ERK allocates higher sparsity to layers with more parameters. Finally, Lee et al. (2020)
propose LAYER-ADAPTIVE MAGNITUDE-BASED PRUNING (LAMP), an approach which takes an
`2-distortion perspective by relaxing the problem of minimizing the output distortion at time of
pruning with respect to the worst-case input. We note that we follow the advice of Evci et al. (2020)
and Dettmers & Zettlemoyer (2019) and do not prune biases and batch-normalization parameters,
since they only amount to a negligible fraction of the total weights, however keeping them has a
very positive impact on the performance of the learned model.

We will compare these approaches in Subsection 3.2 with a focus on the impact of the retraining
phase. Since Le & Hua (2021) found that SLR can be used to obtain strong results even when
pruning convolutional filters randomly, i.e., by assigning random importance scores to the filters
instead of using the magnitude criterion or others, we are interested in understanding the importance
of the retraining technique when considering different sparsity distributions.

2.3 A FAIR COMPARISON TO PRUNING STABLE METHODS

Pruning stable algorithms are defined by their ability to find a well-performing pruned model during
the training procedure. They do so by inducing a strong implicit bias during training, either by
gradual pruning, i.e., extending the pruning mask dynamically, or by employing regularization- and
constraint-optimization techniques to learn an almost sparse structure throughout training. LC by
Carreira-Perpiñán & Idelbayev (2018) and GSM by Ding et al. (2019) both employ a modification

4



Under review as a conference paper at ICLR 2022

of weight decay and force the k weights with the smallest score more rapidly towards zero, where k
is the number of parameters that will eventually be pruned and the score is the parameter magnitude
or its product with the loss gradient. Similarly, DNW by Wortsman et al. (2019) zeroes out the
smallest k weights in the forward pass while still using a dense gradient. CS by Savarese et al.
(2020), STR by Kusupati et al. (2020) and DST (Liu et al., 2020) all rely on the creation of additional
trainable threshold parameters, which are applied to sparsify the model while being regularly trained
alongside the usual weights. Here, the training objectives are modified via penalty terms to control
the sparsification. GMP (Zhu & Gupta, 2017) follows a tunable pruning schedule which sparsifies
the network throughout training by dynamically extending and updating a pruning mask. Based on
this idea, DPF by Lin et al. (2020) maintains a pruning mask which is extended using the pruning
schedule of Zhu & Gupta (2017), but allows for error compensation by modifying the update rule to
use the (stochastic) gradient of the pruned model while updating the dense parameters.

The first claimed advantage of pruning stable methods is the lack of a need for retraining, as they
produce a sparse and well-performing model at the end of regular training. This however comes
at a price: the implicit biases in pruning stable algorithms result in computational overhead when
compared to the usual network training, i.e., to find a sparse solution throughout training through ex-
tensive regularization, masking or other methods, the per-iteration computational cost is increased.
An overview of the computational overhead of the previously introduced methods can be found in
Table 3 in the appendix. Neither training epochs nor iterations are therefore an appropriate measure
when comparing algorithms, since what matters is the total time required to obtain a sparse network.
Gale et al. (2019), Evci et al. (2020) and Lin et al. (2020) consider this when presenting their re-
sults. The second claimed advantage of pruning stable methods is that they find a better pruning set
than unstable methods that cannot recover mistakenly pruned weights (Liu et al., 2020) and whose
heuristic selection mechanism is disadvantaged compared to methods that learn the pruning thresh-
olds (Kusupati et al., 2020). While it seems reasonable to believe that the less performance lost at
pruning, the better, Bartoldson et al. (2020) showed that this rationale might not be entirely sound:
pruning seems to behave similar to noise injection and there exists a generalization-stability-tradeoff
indicating that less stability can actually be beneficial to generalization.

Especially given the previously discussed recent advancements in better recovering pruning-induced
losses during retraining, both the narrative that the need for retraining is a clear computational dis-
advantage and that pruning stable methods find better pruning sets stand to be reevaluated. We will
do so in Subsection 3.3.

3 EXPERIMENTAL RESULTS

Let us outline the general methodological approach to computational experiments in this section, in-
cluding datasets, architectures, metrics and optimization strategies used. Experiment-specific details
are found in the respective subsections. We note that, given the surge of interest in pruning, Blalock
et al. (2020) proposed experimental guidelines in the hope of standardizing the experimental setup.
We aim to follow these guidelines whenever possible and encourage others to do so as well. All
experiments performed throughout this computational study are based on the PyTorch framework
(Paszke et al., 2019), using the original code of the methods whenever possible. All results and
metrics were logged and analyzed using Weights & Biases (Biewald, 2020). We plan on publicly
releasing our implementations and general setup for the sake of reproducibility.

We restrict ourselves to the task of image recognition on the publicly available CIFAR-10 and
CIFAR-100 (Krizhevsky et al., 2009) datasets as well as ImageNet (Russakovsky et al., 2015). All
experiments are performed using deep convolutional neural network architectures, in particular on
Residual Networks (He et al., 2015), Wide Residual Networks (WRN) (Zagoruyko & Komodakis,
2016) and VGG-16 (Simonyan & Zisserman, 2014). We use Stochastic Gradient Descent (SGD)
with momentum as an optimizer throughout the experiments and exclusively use stepped learning
rate schedules. We therefore also decided to forego CLR in favor of SLR despite the recommen-
dations of Le & Hua (2021), though we have included results using CLR in the appendix. Exact
parameters can be found in Table 2 in the appendix.

The focus of our analysis will be the tradeoff between the model sparsity and the final test accuracy.
As a secondary measure, we will also consider the theoretical speedup (Blalock et al., 2020) induced
by the sparsity, which is defined as the ratio of the FLOPs needed to evaluate the sparse over the

5



Under review as a conference paper at ICLR 2022

dense model assuming a theoretical matrix multiplication algorithm capable of taking full advantage
of unstructured sparsity, see Subsection A.1 for full details. We decided to include it since it can
help to give a more differentiated picture of the inherent tradeoffs.

0 50 100 150 200 250 300 350

total retraining epochs

0.910

0.915

0.920

0.925

0.930

0.935

te
st

ac
cu

ra
cy

90.0% of weights pruned

0 50 100 150 200 250 300 350

total retraining epochs

0.825

0.850

0.875

0.900

0.925

te
st

ac
cu

ra
cy

98.0% of weights pruned

SLRSLR FT

SLR

FT

Renda et al.

Dense

Renda et al. (FT)

SLR

FT

Renda et al.

Dense

Renda et al. (FT)

ResNet-56 on CIFAR-10

Figure 1: Test accuracy achieved by IMP in relation to the total number of epochs required for
retraining using either FT or SLR. For each point on the x-axis, we show the highest mean accuracy
achieved by any configuration of a grid search using up to this many total retraining epochs.

3.1 THE COMPUTATIONAL COST OF IMP

In this part we will treat the number of retrain epochs per prune-retrain cycle Trt as well as the
total amount of such cycles J as tunable hyperparameters for IMP and try to determine the tradeoff
between the predictive performance of the final pruned network and the total number of retrained
epochs J · Trt. As a baseline performance for a pruned network, we will use the approach suggested
by Renda et al. (2020) as it serves as a good benchmark for the current potential of IMP. We also
include a variant of this approach using FT during retraining. We will use the original global pruning
criterion of Han et al. (2015) throughout this part.

In Figure 1 we present the results of our computations for ResNet-56 trained on CIFAR-10 with
a moderate and high target sparsity of respectively 90% and 98%. The parameters for the retrain
phase were optimized using a grid search over Trt ∈ {10, 15, 20, ..., 60} and J ∈ {1, 2, . . . , 6}
and we consider both FT and SLR as learning rate schemes during retraining. The weight decay
values, including those used for the pruned and unpruned baselines, were individually tuned for
each datapoint using a grid search over 1e-4, 2e-4 and 5e-4. All of our results are averaged over 2
seeds with max-min-bands indicated.

Summarizing the results, we find that SLR significantly outperforms FT at both levels of sparsity.
While the general efficacy of tuning the learning rate scheme of IMP during retraining has previ-
ously been sufficiently demonstrated by Renda et al. (2020) and Le & Hua (2021), the fact that IMP
achieves its respective potential with significantly less than the total number of retraining epochs
usually budgeted for its full iterative form has to our knowledge not been previously formally estab-
lished: SLR comes within half a percentage point of the pruned baseline within a mere 100 retraining
epochs. This stands in stark contrast to the full 2000 and 3600 retraining epochs required to establish
the respective baseline. Considering the pruned baseline using FT during retraining, this fact largely
also does not seem to be a particular consequence of the learning rate scheme used during retrain-
ing. Unlike commonly assumed, IMP with the right learning rate scheme during retraining therefore
seems at least competitive with other methods not just with respect to the predictive power of the
pruned network it obtains but also with respect to its total computational cost. We also note that we
found IMP with SLR and a shortened retrain phase to benefit from significantly larger weight decay
values than the baseline method, see extended results in Subsection B.1 in the appendix.

3.2 THE IMPORTANCE OF THE SPARSITY DISTRIBUTION

We compare the original global pruning criterion of IMP to the previously introduced proposed
alternatives. Figure 2 reports the test accuracy in relation to the level of sparsity in the One Shot
setting for CIFAR-100, where the network is retrained for 30 epochs, and ImageNet, where it is

6



Under review as a conference paper at ICLR 2022

90% 92% 94% 96% 98%

amount of weights pruned

0%

20%

40%

60%
te

st
a
cc

u
ra

cy

Fine Tuning (FT)

90% 92% 94% 96% 98%

amount of weights pruned

30%

40%

50%

60%

70%

te
st

a
cc

u
ra

cy

Scaled Learning Rate Restarting (SLR)

Global

Uniform (Zhu & Gupta, 2017)

Uniform+ (Gale et al., 2019)

ERK (Evci et al., 2019)

LAMP (Lee et al., 2020)

WideResNet on CIFAR-100

70% 75% 80% 85% 90% 95%

amount of weights pruned

40%

50%

60%

70%

te
st

ac
cu

ra
cy

Fine Tuning (FT)

70% 75% 80% 85% 90% 95%

amount of weights pruned

64%

66%

68%

70%

72%

74%

te
st

ac
cu

ra
cy

Scaled Learning Rate Restarting (SLR)

Global

Uniform (Zhu & Gupta, 2017)

Uniform+ (Gale et al., 2019)

ERK (Evci et al., 2019)

LAMP (Lee et al., 2020)

ResNet-50 on ImageNet

Figure 2: Performance-vs.-sparsity tradeoffs for the One Shot setting on CIFAR-100 (top) and Im-
ageNet (bottom). We compare the sparsity allocation methods w.r.t. the different retraining tech-
niques FT (left) and SLR (right).

retrained for 10 epochs. We tested both FT (Han et al., 2015) and SLR (Le & Hua, 2021) to see if the
learning rate scheme during retraining has any impact on the performance of the pruning selection
scheme. The CIFAR-100 results are averaged over three seeds and max-min-bands are indicated.
Extended plots including the CIFAR-10 dataset as well as the pruning-induced theoretical speedups
can be found in Subsection B.2 in the appendix. For ImageNet, the results are based on a single
seed.

Surprisingly the simple global selection criterion performs at least on par with the best out of all
tested methods at any sparsity level for every combination of dataset and architecture tested here
when considering the sparsity of the pruned network as the relevant measure. Using SLR during re-
training compresses the results by equalizing performance, but otherwise does not change the overall
picture. We note that the results on CIFAR-100 using FT largely track with those reported by Lee
et al. (2020), with the exception of the strong performance of the global selection criterion. Apart
from slightly different network architectures, we note that they used significantly more retraining
epochs, e.g., 100 instead of 30, and that they use AdamW (Loshchilov & Hutter, 2019) instead of
SGD. Comparing the impact different optimizers can have on the pruning selection schemes seems
like a potentially interesting direction for future research.

While the sparsity-vs.-performance tradeoff has certainly been an important part of the justification
of modifications to global selection criterion, let us also directly address two further points that are
commonly made in this context. First, the global selection criterion has previously been reported to
suffer from a pruning-induced collapse at very high levels of sparsity in certain network architectures
that is avoided by other approaches. This phenomenon has been studied in the pruning before
training literature and was coined layer-collapse by Tanaka et al. (2020), who hypothesize that it
can be avoided by using smaller pruning steps since gradient descent restabilizes the network after
pruning by following a layer-wise magnitude conservation law. To verify whether these observations
also hold in the pruning after training setting, we trained a VGG-16 network on CIFAR-10, as also
done by Lee et al. (2020), both in the One Shot and in the iterative setting. The results are reported
in Figure 8 in the appendix and show that layer collapse is clearly occurring for both FT and SLR
for the global selection criterion at sparsity levels above 99% in the One Shot setting, but disappears

7



Under review as a conference paper at ICLR 2022

entirely when pruning iteratively. This indicates that layer collapse, while a genuine potential issue,
can be avoided even using the global selection criterion. We also remark that SLR needs less prune-
retrain-cycles to avoid layer-collapse than FT, possibly indicating that the retraining strategy impacts
the speed of restabilization of the network in the hypothesis posed by Tanaka et al. (2020).

The second important aspect to consider is that layer-dependent selection criteria are also intended
to address the inherent tradeoff not just between the achieved sparsity of the pruned network and its
performance, but also the theoretical computational speedup. We have included plots highlighting
the achieved performance in relation to the theoretical speedup in Subsection B.2 in the appendix.
The key takeaway here is that for both the ResNet-56 and the WideResNet network architecture,
there is overall surprisingly little distinction between all five tested methods, with Uniform+ and
ERK taking the lead and the global selection criterion performing well to average. For the ResNet-
50 architecture however a much more drastic separation occurs, with Uniform performing the best,
followed by Uniform+ and then the global selection criterion. Overall, the picture is significantly
less clear. Our results however indicate that the global selection criterion at the very least seems to
offer a good balance in this inherent tradeoff.

Table 1: ResNet-56 on CIFAR-10: Comparison between IMP and pruning stable methods for goal
sparsity levels of 90%, 95% and 98%, denoted in the main columns. Each subcolumn denotes the
Top-1 accuracy, the theoretical speedup and the actual sparsity achieved by the method. Each row
corresponds to one method, where we denote the time needed when compared to regular training
next to the method’s name. All results include standard deviations where zero or near-zero values
are omitted. The two highest accuracy values are highlighted for each sparsity level.

90% 95% 98%
Method Time Accuracy Speedup Sparsity Accuracy Speedup Sparsity Accuracy Speedup Sparsity

IMP 1.15x 92.79 ±0.21 6 ±0.4 90.00 91.62 ±0.29 12 ±0.6 95.00 87.93 ±0.03 28 ±1.7 98.00
IMP+ 1.50x 93.25 ±0.14 6 ±0.4 90.00 92.57 ±0.18 13 ±0.6 95.00 89.86 ±0.14 29 ±1.6 98.00
GMP 1.05x 92.84 ±0.42 10 90.00 92.12 ±0.17 20 95.00 89.65 ±0.31 50 98.00
GSM 1.17x 90.83 ±0.24 5 90.24 88.91 ±0.15 11 ±0.1 95.24 85.35 ±0.24 23 ±0.9 98.24
DPF 1.03x 93.32 ±0.11 7 90.00 92.68 ±0.14 12 ±0.1 95.00 90.49 ±0.23 29 ±1.2 98.00
DNW 1.05x 91.81 ±1.83 6 ±0.8 90.00 91.95 ±0.06 7 ±0.3 95.09 34.87 ±43.08 26 ±2.8 98.10
LC 1.31x 90.51 ±0.16 5 ±0.1 90.00 89.16 ±0.60 8 ±0.5 95.00 85.11 ±0.51 16 98.00
STR 1.35x 89.25 ±1.23 8 ±0.8 90.15 ±0.76 89.77 ±1.75 31 ±10.3 95.11 ±0.28 89.15 ±0.26 66 ±4.9 98.00 ±0.04
CS 1.67x 91.87 ±0.30 13 ±0.3 90.52 ±0.76 91.36 ±0.23 21 ±2.9 95.38 ±0.19 90.04 ±0.36 50 ±7.2 98.12 ±0.06
DST 2.41x 92.41 ±0.28 10 ±0.7 89.55 ±0.41 89.17 18 94.42 88.22 ±0.36 53 ±3.6 98.04 ±0.21

3.3 COMPARING IMP TO PRUNING STABLE APPROACHES

Using the lessons from the previous two sections, we finally compare IMP to recent pruning stable
approaches. Given the high computational demand of tuning ten different methods, we limit our-
selves to ResNet-56 networks trained on CIFAR-10 as well as WideResNet for CIFAR-100. For
IMP we employ the global selection criterion and retrain using SLR, where the number of prune-
retrain-cycles J as well as the number of retraining epochs per cycle Trt were tuned using a grid
search over Trt ∈ {10, 15, 20, 25} and J ∈ {1, 2, 3, 4} for CIFAR-10 and over Trt ∈ {5, 10, 15} and
J ∈ {1, 2, 3} for CIFAR-100. We will also consider a restricted version of IMP, where we impose
the additional constraint J · Trt ≤ 30 for CIFAR-10 and J · Trt ≤ 20 for CIFAR-100 to obtain a
method that will be largely comparable to pruning stable methods w.r.t. its total runtime. In the
following, we denote the restricted version by IMP and the unrestricted version by IMP+.

The hyperparameters of each of the pruning stable methods were likewise tuned using manually de-
fined grid searches, resorting to the recommendations of the original publications whenever possible,
see Subsection A.2 for exact details. Whenever possible, that is for GMP, GSM, DNW, DPF, and
LC, we give the methods predetermined sparsity levels of 90%, 93%, 95%, 98%, 99% and 99.5%,
the same as given to IMP. Tuning the remaining methods in a way that allows for a fair comparison
however is significantly more difficult, since none of them allow to clearly specify a desired level of
sparsity but instead require one to tune additional hyperparameters as part of the grid search. Despite
our best efforts, we were only able to cover part of the desired sparsity range using STR and DST.
In addition, we noticed that each of these method can have some variance in the level of sparsity
achieved even for fixed hyperparameters, so we list the standard deviation of the final sparsity with

8



Under review as a conference paper at ICLR 2022

respect to the random seed initialization. All results are averaged over three seeds for CIFAR-10 and
over two seeds for CIFAR-100.

One of the main intentions behind pruning stability is to eliminate the need for computationally
expensive retraining. We start by verifying this assumption using the pruning stable approaches and
allowing them to be retrained for further 30 epochs using FT. Figure 9 and Figure 11 in the appendix
show the increase in accuracy of the pruned networks after retraining. We observe that LC and CS
are often unable to find an actually sparse model throughout training and hence greatly benefit from
retraining. The remaining methods however mostly stay true to their claimed pruning stability, but
nevertheless can profit from retraining. For the sake of a fair comparison, we will therefore use the
accuracy reached after retraining when it exceeds the original one for all pruning stable methods in
this section while only referring to the original train time when comparing runtimes for all methods
except LC, CS and of course IMP.

Table 1 now reports the computational cost, final test performance, theoretical speedup and actually
achieved sparsity of all ten methods for CIFAR-10. Full results for both CIFAR-10 and CIFAR-100
are reported in Subsection B.3 in the appendix. Regarding the computational costs, we see that
only few methods consistently outperform IMP. The results show that for CIFAR-10 only GMP,
DPF and DNW deliver a pruned network faster than the restricted form of IMP. While IMP+ is
about 30% slower than the restricted form, it still beats CS and DST with respect to its runtime.
The network architecture however seems to have a significant impact on the performance of the
individual methods, since for CIFAR-100 with a WideResNet architecture, GMP, DPF and STR
deliver a pruned network faster than the restricted form of IMP, while IMP+, here about 12% slower
than the restricted form, beats GSM, DNW and LC with respect its runtime.

Regarding the achieved accuracy-vs.-sparsity tradeoff, the results show that IMP with SLR and a
tuned retrain phase is able to perform on par with the best pruning stable methods considered here.
For CIFAR-10, only DPF is able to outperform IMP+ throughout all levels of sparsity, usually by
less than 0.3%. All other methods fail to compete at the highest level of sparsity and otherwise at best
about match the performance of IMP+. The restricted version of IMP does perform noticeably worse
than IMP+ but still compares favorable to most other methods in the comparison throughout all
levels of sparsity. For CIFAR-100 however, DPF does not exhibit the same strong behavior despite
receiving some additional attention during hyperparameter tuning, see appendix for details. No
method is able to consistently outperform even the restricted version of IMP. Somewhat surprisingly,
we note that IMP is also able to get favorable theoretical speedups compared to other methods for
both CIFAR-10 and CIFAR-100. We emphasize again that IMP manages to obtain these results
without a strong computational overhead as commonly assumed.

4 DISCUSSION

The goal of this work is to demonstrate that IMP is surprisingly efficient, achieving its full potential
with significantly less than the extensive amount of retraining usually considered necessary. We also
find that it can provide state-of-the-art pruning results when paired with an appropriate learning rate
scheme during retraining, further supporting the results of Renda et al. (2020) and Le & Hua (2021).
In our opinion, these results contradict the common narrative in the literature and imply that there is
currently insufficient empirical evidence to support the commonly claimed benefits of imposing an
implicit bias during training. We hope that our findings establish a more realistic yet easily realisable
baseline against which such claims can be compared in the future.

We would also like to acknowledge a clear limitation of the study: our experiments were limited
to image recognition tasks on particular network architectures. Likewise, we have limited our ex-
ploration to the case of unstructured pruning. Extending the results to include, e.g., NLP as well
as a wider variety of network architectures and structured pruning tasks would help paint a more
complete picture.

9



Under review as a conference paper at ICLR 2022

5 REPRODUCIBILITY

Reproducibility is of utmost importance for any comparative computational study such as this.
All experiments were based on the PyTorch framework and use publicly available datasets.
The implementation of the ResNet-56 network architecture is based on https://github.
com/JJGO/shrinkbench/blob/master/models/cifar_resnet.py, the implemen-
tation of the WideResNet network architecture is based on https://github.com/
meliketoy/wide-resnet.pytorch, the implementation of the VGG-16 network archi-
tecture is based on https://github.com/jaeho-lee/layer-adaptive-sparsity/
blob/main/tools/models/vgg.py and the implementation of the Resnet-50 network ar-
chitecture is taken from https://pytorch.org/vision/stable/index.html. Regard-
ing the pruning methods, the code was taken from the respective publications whenever pos-
sible. Regarding the different variants of magnitude pruning such as ERK or Uniform+, we
closely followed the implementation of Lee et al. (2020) available at https://github.com/
jaeho-lee/layer-adaptive-sparsity/. For metrics such as the theoretical speedup,
we relied on the implementation in the ShrinkBench-framework of Blalock et al. (2020), see
https://github.com/JJGO/shrinkbench. All parameters considered are specified in
Section 3 or in the Appendix. We also plan on publicly releasing the code used for our imple-
mentations and general setup for the sake of reproducibility and will make it available during any
submission of this work.

REFERENCES

Brian Bartoldson, Ari Morcos, Adrian Barbu, and Gordon Erlebacher. The generalization-stability
tradeoff in neural network pruning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Bal-
can, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
20852–20864. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/ef2ee09ea9551de88bc11fd7eeea93b0-Paper.pdf.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.
wandb.com/. Software available from wandb.com.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What
is the state of neural network pruning? In I. Dhillon, D. Papailiopoulos, and
V. Sze (eds.), Proceedings of Machine Learning and Systems, volume 2, pp. 129–
146, 2020. URL https://proceedings.mlsys.org/paper/2020/file/
d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf.

Miguel Á. Carreira-Perpiñán and Yerlan Idelbayev. Learning-compression algorithms for neural net
pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without losing
performance. arXiv preprint arXiv:1907.04840, July 2019.

Xiaohan Ding, Guiguang Ding, Xiangxin Zhou, Yuchen Guo, Jungong Han, and Ji Liu.
Global sparse momentum sgd for pruning very deep neural networks. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
f34185c4ca5d58e781d4f14173d41e5d-Paper.pdf.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pp. 2943–2952. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/evci20a.html.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2018.

10

https://github.com/JJGO/shrinkbench/blob/master/models/cifar_resnet.py
https://github.com/JJGO/shrinkbench/blob/master/models/cifar_resnet.py
https://github.com/meliketoy/wide-resnet.pytorch
https://github.com/meliketoy/wide-resnet.pytorch
https://github.com/jaeho-lee/layer-adaptive-sparsity/blob/main/tools/models/vgg.py
https://github.com/jaeho-lee/layer-adaptive-sparsity/blob/main/tools/models/vgg.py
https://pytorch.org/vision/stable/index.html
https://github.com/jaeho-lee/layer-adaptive-sparsity/
https://github.com/jaeho-lee/layer-adaptive-sparsity/
https://github.com/JJGO/shrinkbench
https://proceedings.neurips.cc/paper/2020/file/ef2ee09ea9551de88bc11fd7eeea93b0-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ef2ee09ea9551de88bc11fd7eeea93b0-Paper.pdf
https://www.wandb.com/
https://www.wandb.com/
https://proceedings.mlsys.org/paper/2020/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f34185c4ca5d58e781d4f14173d41e5d-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f34185c4ca5d58e781d4f14173d41e5d-Paper.pdf
https://proceedings.mlr.press/v119/evci20a.html
https://proceedings.mlr.press/v119/evci20a.html


Under review as a conference paper at ICLR 2022

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Stabilizing the
lottery ticket hypothesis. arXiv preprint arXiv:1903.01611, 2019.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
for efficient neural network. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 28. Curran Asso-
ciates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/
ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf.

Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In S. Hanson, J. Cowan, and C. Giles (eds.), Advances in Neural Information Processing
Systems, volume 5. Morgan-Kaufmann, 1993. URL https://proceedings.neurips.
cc/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), December 2015.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in
deep learning: Pruning and growth for efficient inference and training in neural networks. arXiv
preprint arXiv:2102.00554, January 2021.

Steven A. Janowsky. Pruning versus clipping in neural networks. Phys. Rev. A, 39:6600–6603, Jun
1989. doi: 10.1103/PhysRevA.39.6600.

Stanisław Jastrzębski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua
Bengio, and Amos Storkey. Three factors influencing minima in sgd. arXiv preprint
arXiv:1711.04623, November 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, 2009.

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham
Kakade, and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity.
In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Confer-
ence on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp.
5544–5555. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/
kusupati20a.html.

Duong Hoang Le and Binh-Son Hua. Network pruning that matters: A case study on retraining
variants. In International Conference on Learning Representations, 2021. URL https://
openreview.net/forum?id=Cb54AMqHQFP.

Guillaume Leclerc and Aleksander Madry. The two regimes of deep network training. arXiv preprint
arXiv:2002.10376, February 2020.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In David S. Touretzky (ed.),
Advances in Neural Information Processing Systems 2, [NIPS Conference, Denver, Colorado,
USA, November 27-30, 1989], pp. 598–605. Morgan Kaufmann, 1989. URL http://papers.
nips.cc/paper/250-optimal-brain-damage.

Jaeho Lee, Sejun Park, Sangwoo Mo, Sungsoo Ahn, and Jinwoo Shin. Layer-adaptive sparsity for
the magnitude-based pruning. In International Conference on Learning Representations, October
2020.

Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of initial
large learning rate in training neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Sys-
tems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.
cc/paper/2019/file/bce9abf229ffd7e570818476ee5d7dde-Paper.pdf.

11

https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf
https://proceedings.neurips.cc/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf
https://proceedings.mlr.press/v119/kusupati20a.html
https://proceedings.mlr.press/v119/kusupati20a.html
https://openreview.net/forum?id=Cb54AMqHQFP
https://openreview.net/forum?id=Cb54AMqHQFP
http://papers.nips.cc/paper/250-optimal-brain-damage
http://papers.nips.cc/paper/250-optimal-brain-damage
https://proceedings.neurips.cc/paper/2019/file/bce9abf229ffd7e570818476ee5d7dde-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bce9abf229ffd7e570818476ee5d7dde-Paper.pdf


Under review as a conference paper at ICLR 2022

Tao Lin, Sebastian U. Stich, Luis Barba, Daniil Dmitriev, and Martin Jaggi. Dynamic model pruning
with feedback. In International Conference on Learning Representations, 2020.

Junjie Liu, Zhe Xu, Runbin Shi, Ray C. C. Cheung, and Hayden K.H. So. Dynamic sparse training:
Find efficient sparse network from scratch with trainable masked layers. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
SJlbGJrtDB.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H. Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connec-
tivity inspired by network science. Nature Communications, 9(1), June 2018. doi: 10.1038/
s41467-018-04316-3.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural
networks. In Conference on Learning Theory, pp. 1376–1401, 2015.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural
network pruning. In International Conference on Learning Representations, 2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Pedro Savarese, Hugo Silva, and Michael Maire. Winning the lottery with continuous sparsi-
fication. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 11380–11390. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
83004190b1793d7aa15f8d0d49a13eba-Paper.pdf.

Jonathan W. Siegel, Jianhong Chen, and Jinchao Xu. Training sparse neural networks using com-
pressed sensing. arXiv preprint arXiv:2008.09661, August 2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, September 2014.

Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using
large learning rates. In Artificial Intelligence and Machine Learning for Multi-Domain Operations
Applications, volume 11006, pp. 1100612. International Society for Optics and Photonics, 2017.

Hidenori Tanaka, Daniel Kunin, Daniel L. K. Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. Advances in Neural Information Pro-
cessing Systems 2020, June 2020.

Mitchell Wortsman, Ali Farhadi, and Mohammad Rastegari. Discovering neural wirings.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
d010396ca8abf6ead8cacc2c2f2f26c7-Paper.pdf.

Kaichao You, Mingsheng Long, Jianmin Wang, and Michael I. Jordan. How does learning rate
decay help modern neural networks? arXiv preprint arXiv:1908.01878, August 2019.

12

https://openreview.net/forum?id=SJlbGJrtDB
https://openreview.net/forum?id=SJlbGJrtDB
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/83004190b1793d7aa15f8d0d49a13eba-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/83004190b1793d7aa15f8d0d49a13eba-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/d010396ca8abf6ead8cacc2c2f2f26c7-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/d010396ca8abf6ead8cacc2c2f2f26c7-Paper.pdf


Under review as a conference paper at ICLR 2022

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, May 2016.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, November
2016.

Michael Zhu and Suyog Gupta. To prune, or not to prune: Exploring the efficacy of pruning for
model compression. arXiv preprint arXiv:1710.01878, October 2017.

13



Under review as a conference paper at ICLR 2022

A TECHNICAL DETAILS AND TRAINING SETTINGS

A.1 TECHNICAL DETAILS

We define pruning stability as follows.
Definition A.1 (Bartoldson et al. (2020)). Let tpre and tpost be the test accuracy before pruning and
after pruning the trained model, respectively. We define the pruning stability of a method as

∆stability := 1−
tpre − tpost

tpre
∈ [0, 1].

Pruning stable methods are sparsification algorithms that learn a sparse solution throughout training
such that ∆stability ≈ 1. For example, methods that perform the forward-pass using an already
sparsified copy of the parameters (e.g. DNW by Wortsman et al., 2019), will have ∆stability = 1,
since the ‘hard’ pruning step only consists of an application of the present pruning mask, which has
no further effect. Methods that actively drive certain parameter groups towards zero more rapidly
(such as Carreira-Perpiñán & Idelbayev, 2018; Ding et al., 2019) will have a pruning stability close
to 1, since the projection of (magnitude) pruning at the end of training will perturb the parameters
only slightly.

Crucial to our analysis are the tradeoffs between the model sparsity, the final test accuracy and the
theoretical speedup induced by the sparsity (Blalock et al., 2020). Theoretical speedup is a metric
measuring the ratio in FLOPs needed for inference comparing the dense and sparse model. More
precisely, let Fd be the number of FLOPs the dense model needs for inference, and let similarly
be Fs the same number for the pruned model, given some sparsity s.2 The theoretical speedup is
defined as Fd/Fs and depends solely on the position of the zero weights within the network and
layers, not on the numerical values of non-zero parameters. While we focused on the model sparsity
in the main body of the text, we include plots regarding the theoretical speedup here in the appendix,
as suggested by Blalock et al. (2020).

A.2 TRAINING SETTINGS AND HYPERPARAMETERS

Table 2: Exact training configurations used throughout the experiments for IMP. For pruning sta-
ble methods we use the same settings, with the following exceptions: (1) since momentum plays
a crucial part in the justification of GSM, we tune it over 0.9, 0.99 and 0.995 and (2) any addi-
tional hyperparameters of the respective methods as well as weight decay were tuned as indicated
in Subsection A.2. We note that others have reported an accuracy of around 80% for WRN28x10
trained on CIFAR-100 that we were unable to replicate. The discrepancy is most likely due to an
inconsistency in PyTorch’s dropout implementation.

Dataset Network
(number of weights) Epochs Batch size Momentum Learning rate

(t = training epoch)
Unpruned

test accuracy

CIFAR-10 ResNet-56 (850 K)
VGG-16 (138 Mio) 200 128 0.9 ηt =


0.1 t ∈ [1, 90],

0.01 t ∈ [91, 180],

0.001 t ∈ [181, 200]

93.5% ±0.3%
93.8% ±0.2%

CIFAR-100 WRN28x10 (37 Mio) 200 128 0.9 ηt =


0.1 t ∈ [1, 60],

0.02 t ∈ [61, 120],

0.004 t ∈ [121, 160],

0.0008 t ∈ [161, 200]

76.7% ±0.2%

ImageNet ResNet-50 (26 Mio) 90 256 0.9 ηt =



0.1 t
5 t ∈ [1, 5],

0.1 t ∈ [5, 30],

0.01 t ∈ [31, 60],

0.001 t ∈ [61, 80],

0.0001 t ∈ [81, 90]

76.17% ±0.03%

We list the hyperparameter grids used for each pruning stable method taking part in the comparative
study.

2To compute the number of FLOPs, we sample a single batch from the test set. The code to compute the
theoretical speedup has been adapted from the repository of the ShrinkBench framework (Blalock et al., 2020).

14



Under review as a conference paper at ICLR 2022

Table 3: Overview of sparsification methods. CS, STR and DST control the sparsity implicitly
via additional hyperparameters. IMP is the only method that is pruning instable by design, i.e.,
it loses its performance right after the ultimate pruning. Further, IMP is the only method that is
sparsity agnostic throughout the regular training; the sparsity does not play a role while training to
convergence. All other methods require training an entire model when changing the goal sparsity.
The computational overhead refers to the per-iteration overhead during regular training. We denote
by n the number of trainable parameters, while k ≤ n is the number of parameters that remain after
pruning to the goal sparsity.

Sparsity specifiable Pruning stable Sparsity agnostic training Overhead during Training
IMP 3 7 3 N/A
GMP 3 3 7 O(n) +O(n log n) every time the mask is updated
GSM 3 3 7 O(n+ n ·min(k, n− k))
LC 3 3 7 O(n ·min(k, n− k))
DPF 3 3 7 O(n) +O(n log n) every 16 iterations
DNW 3 3 7 O(n ·min(k, n− k))
CS 7 3 7 O(n) + add. backprop
STR 7 3 7 O(n) + add. backprop
DST 7 3 7 O(n) + add. backprop

A.2.1 RESNET-56 ON CIFAR-10

For each method (including IMP) we tune weight decay over 1e-4, 5e-4, 1e-3 and 5e-3 and keep
momentum fixed at 0.9. Since momentum plays a crucial part in the justification of GSM, we tune
it over 0.9, 0.99 and 0.995. Since the learning rate schedule might need additional tuning, we vary
the initial learning rate between 0.05, 0.15, 0.1 and 0.2 for all methods except CS. The decay of the
schedule follows the same pattern as listed in Table 2. Since CS required the broadest grid, we fixed
the learning rate schedule to the one in Table 2. Otherwise, we used the following grids.

GMP
Equally distributed pruning steps: {20, 100}.

GSM
Momentum: {0.9, 0.95, 0.99}.

LC
We only tune the weight decay and, similar to the recommendation by Carreira-Perpiñán & Idel-
bayev (2018), increase it over time as λ0 · 1.1j , where j is increased over time and λ0 is the initial
weight decay. For the retraining phase we deactivate weight decay.

DPF
As for GMP, we tune the number of pruning steps, i.e., {20, 100}, and the weight decay.

DNW
We only tune the weight decay, since there are no additional hyperparameters.

CS
As recommended by Savarese et al. (2020), we fix the temperature β at 300. Oth-
erwise, we perform the following grid search. We set the mask initialization s0 ∈
{−0.3,−0.25,−0.2,−0.1,−0.05, 0, 0.05, 0.1, 0.2, 0.25, 0.3} and the `1 penalty λ to {1e-8, 1e-7}.

STR
We tune the initial threshold value sinit ∈ {−100,−50,−5,−2,−1, 0, 5, 50, 100}. In an extended
grid search, we also used weight decays in {5e-05, 1e-4} and varied sinit ∈ {−40,−30,−20,−10}.

DST
We tune the sparsity-controlling regularization parameter α ∈ {5e-6, 1e-5, 5e-5, 1e-4, 5e-4}. In an
extended grid search, we used weight decays in {0, 1e-4} and tuned α over {1e-7, 5e-7, 1e-6}.

15



Under review as a conference paper at ICLR 2022

A.2.2 WIDERESNET ON CIFAR-100

For each method (including IMP) we tune weight decay over 1e-4, 2e-4 and 5e-4 and keep momen-
tum fixed at 0.9. Since momentum plays a crucial part in the justification of GSM, we tune it over
0.9 and 0.95. For CIFAR-10, we noticed that especially DPF, DST and GMP benefited from an
additional tuning of the learning rate schedule. We hence vary the initial learning rate between 0.05,
0.15 and 0.1 for these three methods and also for CS to broaden the grid which resulted in inferior
performance compared to CS on CIFAR-10. The decay of the schedule follows the same pattern as
listed in Table 2. Otherwise, we used the following grids.

GMP
Equally distributed pruning steps: {20, 100}.

GSM
Momentum: {0.9, 0.95, 0.99}.

LC
We only tune the weight decay and, similar to the recommendation by Carreira-Perpiñán & Idel-
bayev (2018), increase it over time as λ0 · 1.1j , where j is increased over time and λ0 is the initial
weight decay. For the retraining phase we deactivate weight decay.

DPF
As for GMP, we tune the number of pruning steps, i.e., {20, 100}, and the weight decay.

DNW
We only tune the weight decay, since there are no additional hyperparameters.

CS
As recommended by Savarese et al. (2020), we fixed the temperature β at 300, but in-
creased it to 500 upon noticing the pruning instability of CS on this dataset. Oth-
erwise, we perform the following grid search. We set the mask initialization s0 ∈
{−0.3,−0.25,−0.2,−0.1,−0.05,−0.03,−0.01,−0.005,−0.003,−0.001, 0} and the `1 penalty λ
to {1e-9, 1e-8, 1e-7}.

STR
We tune the initial threshold value sinit ∈ {−5000,−3000,−2000,−1000,−500}. In an extended
grid search, we also varied sinit ∈ {−200,−150,−100,−80,−50,−40,−25,−10, 0}.

DST
We tune the sparsity-controlling regularization parameter α ∈
{5e-6, 1e-5, 5e-5, 1e-4, 5e-4}. In an extended grid search, we tuned α over
{1e-6, 3e-6, 8e-6, 3e-5, 8e-5, 2e-4, 3e-4, 4e-4, 5e-4, 6e-4, 7e-4, 8e-4, 9e-4, 1e-3}.

16



Under review as a conference paper at ICLR 2022

B ADDITIONAL PLOTS

B.1 THE COMPUTATIONAL COST OF IMP

0 50 100 150 200 250 300 350

total retraining epochs

0.90

0.91

0.92

0.93

0.94

te
st

ac
cu

ra
cy

90.0% of weights pruned

0 50 100 150 200 250 300 350

total retraining epochs

0.800

0.825

0.850

0.875

0.900

0.925

te
st

ac
cu

ra
cy

98.0% of weights pruned

ResNet-56 on CIFAR-10 (weight decay 0.0001)

0 50 100 150 200 250 300 350

total retraining epochs

0.90

0.91

0.92

0.93

0.94

te
st

ac
cu

ra
cy

90.0% of weights pruned

0 50 100 150 200 250 300 350

total retraining epochs

0.800

0.825

0.850

0.875

0.900

0.925

te
st

ac
cu

ra
cy

98.0% of weights pruned

ResNet-56 on CIFAR-10 (weight decay 0.0002)

0 50 100 150 200 250 300 350

total retraining epochs

0.90

0.91

0.92

0.93

0.94

te
st

ac
cu

ra
cy

90.0% of weights pruned

0 50 100 150 200 250 300 350

total retraining epochs

0.800

0.825

0.850

0.875

0.900

0.925

te
st

ac
cu

ra
cy

98.0% of weights pruned

SLR

SLR

Renda et al.

Dense

Renda et al. (FT)

SLR

Renda et al.

Dense

Renda et al. (FT)

FT

SLR

Renda et al.

Dense

Renda et al. (FT)

FT

ResNet-56 on CIFAR-10 (weight decay 0.0005)

Figure 3: Test accuracy achieved by IMP in relation to the total number of epochs required for
retraining using either FT or SLR. Each row of the plots shows a different weight decay as indicated
in the title. The pruned baselines were established by using the approach of Renda et al. (2020)
using the respective weight decay and either in its original form, using LRW, or with a modified
version using FT..

The plots of Figure 3 show the results of Figure 1 for each of the three weight decay factors 1e-4,
2e-4 and 5e-4 independently. Clearly, the choice of the weight decay affects both the accuracy of
the dense model as well as the accuracy of the pruned model when using the approach by Renda
et al. (2020), both with LRW and FT. For the dense models with weight decays 1e-4, 2e-4 and 5e-
4 we obtain respective average performances of 92.01% (±0.41%), 92.86% (±0.49%) and 93.53%
(±0.26%). For the respective results of the algorithm by Renda et al. (2020) we observe test accu-
racies of 92.91% (±0.39%), 93.08% (±0.54%) and 91.94% (±0.16%) in the case of a goal sparsity
of 90%, while the results at a goal sparsity of 98% are 89.95% (±0.23%), 90.18% (±0.89%) and
89.63% (±0.16%). Similarly, for the algorithm by Renda et al. (2020) with FT instead of LRW, we
observe test accuracies of 90.74% (±0.43%), 91.86% (±0.54%) and 92.28% (±0.02%) in the case
of a goal sparsity of 90%, while the results at a goal sparsity of 98% are 87.75% (±0.4%), 87.85%
(±0.58%) and 89.03% (±0.09%).

17



Under review as a conference paper at ICLR 2022

Clearly, we see that SLR benefits from a larger weight decay, while the approach by Renda et al.
(2020) is suffering from an increased penalty on the weights. Although SLR is not able to reach the
pruned baseline in the case of a 1e-4 weight decay within the given retraining time frame, we note
that SLR easily outperforms the LRW-based proposal by Renda et al. (2020) when considering the
weight decays that also lead to the best performing dense model, which is a strong indicator that it
is preferable to use SLR and a shortened retraining timeframe.

B.2 THE IMPORTANCE OF THE SPARSITY DISTRIBUTION

In the case of ResNet-56 on CIFAR-10 and VGG-16 on CIFAR-10, we report the weight decay con-
fig with highest accuracy, where we optimized over the values 1e-4, 5e-4 and 1e-3. For WideResNet
on CIFAR-100 and ResNet-50 on ImageNet we relied on a weight decay value of 1e-4 for both
architectures.

Figure 4, Figure 5 and Figure 6 compare the different sparsity allocation methods with respect to
the retraining strategy for ResNet-56 on CIFAR-10, WideResNet on CIFAR-100 and ResNet-50 on
ImageNet. Similarly, Figure 7 shows the accuracy vs. theoretical speedup tradeoffs on a logarithmic
scale. These plots also show that some methods sparsify convolutional layers more aggressively
than the global approach, resulting in higher theoretical speedups. However, despite its simplicity,
the global approach performs on par with respect to managing the accuracy vs. speedup tradeoff,
where we observe that for ResNet-50 on ImageNet it even outperforms methods such as LAMP and
ERK regarding both objectives, performance and speedup.

90% 92% 94% 96% 98%

amount of weights pruned

40%

60%

80%

te
st

ac
cu

ra
cy

Fine Tuning (FT)

90% 92% 94% 96% 98%

amount of weights pruned

40%

60%

80%

te
st

ac
cu

ra
cy

Scaled Learning Rate Restarting (SLR)

Global

Uniform (Zhu & Gupta, 2017)

Uniform+ (Gale et al., 2019)

ERK (Evci et al., 2019)

LAMP (Lee et al., 2020)

ResNet-56 on CIFAR-10

Figure 4: Sparsity-vs.-performance tradeoffs for ResNet-56 on CIFAR-10 for IMP in the One Shot
setting for FT (left) and SLR (right) as retraining methods. The plot includes max-min confidence
intervals.

90% 92% 94% 96% 98%

amount of weights pruned

0%

20%

40%

60%

te
st

ac
cu

ra
cy

Fine Tuning (FT)

90% 92% 94% 96% 98%

amount of weights pruned

30%

40%

50%

60%

70%

te
st

ac
cu

ra
cy

Scaled Learning Rate Restarting (SLR)

Global

Uniform (Zhu & Gupta, 2017)

Uniform+ (Gale et al., 2019)

ERK (Evci et al., 2019)

LAMP (Lee et al., 2020)

WideResNet on CIFAR-100

Figure 5: Sparsity-vs.-performance tradeoffs for WideResNet on CIFAR-100 for IMP in the One
Shot setting for FT (left) and SLR (right) as retraining methods. The plot includes max-min confi-
dence intervals.

18



Under review as a conference paper at ICLR 2022

70% 75% 80% 85% 90% 95%

amount of weights pruned

40%

50%

60%

70%
te

st
a
cc

u
ra

cy

Fine Tuning (FT)

70% 75% 80% 85% 90% 95%

amount of weights pruned

64%

66%

68%

70%

72%

74%

te
st

a
cc

u
ra

cy

Scaled Learning Rate Restarting (SLR)

Global

Uniform (Zhu & Gupta, 2017)

Uniform+ (Gale et al., 2019)

ERK (Evci et al., 2019)

LAMP (Lee et al., 2020)

ResNet-50 on ImageNet

Figure 6: Sparsity-vs.-performance tradeoffs for ResNet-50 on ImageNet for IMP in the One Shot
setting for FT (left) and SLR (right) as retraining methods.

101 102

theoretical speedup

40%

60%

80%

te
st

ac
cu

ra
cy

Fine Tuning (FT)

Global

Uniform (Zhu & Gupta, 2017)

Uniform+ (Gale et al., 2019)

ERK (Evci et al., 2019)

LAMP (Lee et al., 2020)

101 102

theoretical speedup

40%

60%

80%

te
st

ac
cu

ra
cy

Scaled Learning Rate Restarting (SLR)

ResNet-56 on CIFAR-10

101 102

theoretical speedup

0%

20%

40%

60%

te
st

a
cc

u
ra

cy

Fine Tuning (FT)

101 102

theoretical speedup

30%

40%

50%

60%

70%

te
st

a
cc

u
ra

cy

Scaled Learning Rate Restarting (SLR)

WideResNet on CIFAR-100

101

theoretical speedup

40%

50%

60%

70%

te
st

ac
cu

ra
cy

Fine Tuning (FT)

101

theoretical speedup

64%

66%

68%

70%

72%

74%

te
st

ac
cu

ra
cy

Scaled Learning Rate Restarting (SLR)

ResNet-50 on ImageNet

Figure 7: Performance-vs.-theoretical speedup tradeoffs for ResNet-56, WideResNet and ResNet-50
on the respective datasets. All plots depict the one shot setting.

19



Under review as a conference paper at ICLR 2022

90% 92% 94% 96% 98%

amount of weights pruned

60%

70%

80%

90%
te

st
a
cc

u
ra

cy

Fine Tuning (FT)

90% 92% 94% 96% 98%

amount of weights pruned

60%

70%

80%

90%

te
st

a
cc

u
ra

cy

Scaled Learning Rate Restarting (SLR)

Global

Uniform (Zhu & Gupta, 2017)

Uniform+ (Gale et al., 2019)

ERK (Evci et al., 2019)

LAMP (Lee et al., 2020)

VGG-16 on CIFAR-10 (One Shot)

101 102

theoretical speedup

60%

70%

80%

90%

te
st

ac
cu

ra
cy

Fine Tuning (FT)

101 102

theoretical speedup

60%

70%

80%

90%

te
st

ac
cu

ra
cy

Scaled Learning Rate Restarting (SLR)

VGG-16 on CIFAR-10 (One Shot)

90% 92% 94% 96% 98%

amount of weights pruned

70%

75%

80%

85%

90%

95%

te
st

ac
cu

ra
cy

Fine Tuning (FT)

90% 92% 94% 96% 98%

amount of weights pruned

80%

85%

90%

te
st

ac
cu

ra
cy

Scaled Learning Rate Restarting (SLR)

Global

Uniform (Zhu & Gupta, 2017)

Uniform+ (Gale et al., 2019)

ERK (Evci et al., 2019)

LAMP (Lee et al., 2020)

VGG-16 on CIFAR-10 (Iterative)

101 102

theoretical speedup

70%

75%

80%

85%

90%

95%

te
st

ac
cu

ra
cy

Fine Tuning (FT)

Global

Uniform (Zhu & Gupta, 2017)

Uniform+ (Gale et al., 2019)

ERK (Evci et al., 2019)

LAMP (Lee et al., 2020)

101 102

theoretical speedup

80%

85%

90%

te
st

ac
cu

ra
cy

Scaled Learning Rate Restarting (SLR)

VGG-16 on CIFAR-10 (Iterative)

Figure 8: Performance-vs.-sparsity and performance-vs.-theoretical-speedup tradeoffs for VGG-16
on CIFAR-10 for IMP in the One Shot (above) and Iterative (below) setting for FT (left) and SLR
(right) as retraining methods. In the One Shot setting the model is retrained for 30 epochs after
pruning and the iterative setting consists of 3 prune-retrain cycles with 10 epochs each. For One
Shot we observe layer-collapse while the iterative splitting into less severe pruning steps avoids the
problem. Note that the total amount of retraining epochs between the two settings is identical here.

20



Under review as a conference paper at ICLR 2022

B.3 COMPARING IMP TO PRUNING STABLE APPROACHES

Table 4 extends Table 1 by showing the results of the full sparsity range between 90% and 99.5%.
The same results can be seen visualized in Figure 10. As described in the main section, Figure 9
shows the actual pruning stability and increase in accuracy after retraining with FT. Apart from LC,
all methods can be considered pruning stable with a pruning stability close to 100%. However, we
note that some methods can benefit from retraining. To allow a fair comparison, we hence always
considered the maximum of the performances before and after retraining, while measuring the com-
putational time needed only for the regular training time, ignoring the time needed for retraining.

88% 90% 92% 94% 96% 98% 100%

amount of weights pruned

-1%

0%

1%

2%

3%

4%

5%

in
cr

ea
se

in
ac

cu
ra

cy

Accuracy increase by retraining

GSM

GMP

DPF

STR

DST

DNW

LC

CS

ResNet-56 on CIFAR-10

88% 90% 92% 94% 96% 98% 100%

amount of weights pruned

20%

40%

60%

80%

100%

p
ru

n
in

g
st

ab
il

it
y

Pruning stability

GSM

GMP

DPF

STR

DST

DNW

LC

CS

Figure 9: Increase in accuracy after retraining (above) as well as pruning stability (below) for
ResNet-56 trained on CIFAR-10 using different pruning stable methods. Each method was retrained
for 30 epochs using FT. Each datapoint corresponds to the hyperparameter config with highest ac-
curacy directly after pruning when considering .5% sparsity intervals between 88% and 100%. The
confidence bands indicate the min-max-deviation around the mean with respect to different initial-
ization seeds.

21



Under review as a conference paper at ICLR 2022

Table 4: ResNet-56 on CIFAR-10: Results of the comparison between IMP and pruning stable
methods for the sparsity range between 90% and 99.5%. The columns are structured as follows:
First the method is stated, where IMP+ denotes the unrestricted version of IMP. Secondly, we denote
the time needed when compared to regular training of a dense model, e.g. LC needs 1.14 times as
much runtime as regular training. The following columns are substructured as follows: Each column
corresponds to one goal sparsity and each subcolumn denotes the Top-1 accuracy, the theoretical
speedup and the actual sparsity reached. All results include standard deviations, where we omit zero
or close to zero results. Missing values (indicated by —) correspond to cases where we were unable
to obtain results in the desired sparsity range, i.e., there did not exist a training configuration with
average final sparsity within a .25% interval around the goal sparsity and the closest one is too far
away or belongs to another column.

90% 93%
Method Time Accuracy Speedup Sparsity Accuracy Speedup Sparsity

IMP 1.15x 92.79 ±0.21 6 ±0.4 90.00 92.18 ±0.15 9 ±0.5 93.00
IMP+ 1.50x 93.25 ±0.14 6 ±0.4 90.00 92.89 ±0.13 9 ±0.5 93.00
GMP 1.05x 92.84 ±0.42 10 90.00 92.50 ±0.10 14 93.00
GSM 1.17x 90.83 ±0.24 5 90.24 89.92 ±0.14 8 ±0.2 93.24
DPF 1.03x 93.32 ±0.11 7 90.00 93.23 ±0.05 9 ±0.5 93.00
DNW 1.05x 91.81 ±1.83 6 ±0.8 90.00 91.97 ±0.20 5 ±0.2 93.09
LC 1.31x 90.51 ±0.16 5 ±0.1 90.00 89.67 ±0.55 7 ±0.6 93.00
STR 1.35x 89.25 ±1.23 8 ±0.8 90.15 ±0.76 90.27 ±0.86 20 ±4.0 93.01 ±0.58
CS 1.67x 91.87 ±0.30 13 ±0.3 90.52 ±0.76 89.64 ±1.43 16 ±2.9 92.78 ±0.18
DST 2.41x 92.41 ±0.28 10 ±0.7 89.55 ±0.41 — — —

95% 98%
Method Time Accuracy Speedup Sparsity Accuracy Speedup Sparsity

IMP 1.15x 91.62 ±0.29 12 ±0.6 95.00 87.93 ±0.03 28 ±1.7 98.00
IMP+ 1.50x 92.57 ±0.18 13 ±0.6 95.00 89.86 ±0.14 29 ±1.6 98.00
GMP 1.05x 92.12 ±0.17 20 95.00 89.65 ±0.31 50 98.00
GSM 1.17x 88.91 ±0.15 11 ±0.1 95.24 85.35 ±0.24 23 ±0.9 98.24
DPF 1.03x 92.68 ±0.14 12 ±0.1 95.00 90.49 ±0.23 29 ±1.2 98.00
DNW 1.05x 91.95 ±0.06 7 ±0.3 95.09 34.87 ±43.08 26 ±2.8 98.10
LC 1.31x 89.16 ±0.60 8 ±0.5 95.00 85.11 ±0.51 16 98.00
STR 1.35x 89.77 ±1.75 31 ±10.3 95.11 ±0.28 89.15 ±0.26 66 ±4.9 98.00 ±0.04
CS 1.67x 91.36 ±0.23 21 ±2.9 95.38 ±0.19 90.04 ±0.36 50 ±7.2 98.12 ±0.06
DST 2.41x 89.17 18 94.42 88.22 ±0.36 53 ±3.6 98.04 ±0.21

99% 99.5%
Method Time Accuracy Speedup Sparsity Accuracy Speedup Sparsity

IMP 1.15x 83.47 ±0.22 51 ±2.4 99.00 76.09 ±0.20 94 ±5.3 99.50
IMP+ 1.50x 86.03 ±0.31 52 ±2.7 99.00 79.81 ±0.68 87 ±5.8 99.50
GMP 1.05x 62.80 ±1.11 100 99.00 36.95 ±0.32 197 99.50
GSM 1.17x 81.09 ±0.04 36 ±2.2 99.24 74.54 ±1.01 65 ±4.3 99.74
DPF 1.03x 86.76 ±0.33 63 ±3.7 99.00 80.03 ±0.64 146 ±34.3 99.50
DNW 1.05x 83.67 ±0.24 15 ±0.1 99.17 34.71 ±24.17 34 ±4.4 99.67
LC 1.31x 81.63 ±0.74 30 ±1.5 99.00 74.44 ±2.03 64 ±4.5 99.50
STR 1.35x 83.68 ±0.94 159 ±31.9 99.13 ±0.02 77.34 ±2.68 420 ±167.4 99.66 ±0.09
CS 1.67x 86.55 ±0.92 69 ±7.1 98.90 ±0.02 — — —
DST 2.41x 86.99 63 98.36 — — —

B.4 RESULTS USING CLR

Although our focus lies on analyzing SLR, as explained in Section 3, we include results using CLR
in this section: Figure 13 complements Figure 3 and Figure 14 as well as Figure 14 show the effect
of CLR onto the pruning selection criteria of interest throughout this work. We do not observe
significant differences between SLR and CLR.

22



Under review as a conference paper at ICLR 2022

Table 5: WideResNet on CIFAR-100: Results of the comparison between IMP and pruning stable
methods for the sparsity range between 90% and 99.5%. The columns are structured as follows: First
the method is stated, where IMP+ denotes the unrestricted version of IMP. Secondly, we denote the
time needed when compared to regular training of a dense model, e.g. LC needs 1.14 times as much
runtime as regular training. The following columns are substructured as follows: Each column
corresponds to one goal sparsity and each subcolumn denotes the Top-1 accuracy, the theoretical
speedup and the actual sparsity reached. All results include standard deviations, where we omit zero
or close to zero results. Missing values (indicated by —) correspond to cases where we were unable
to obtain results in the desired sparsity range, i.e., there did not exist a training configuration with
average final sparsity within a .25% interval around the goal sparsity and the closest one is too far
away or belongs to another column.

90% 93%
Method Time Accuracy Speedup Sparsity Accuracy Speedup Sparsity

IMP 1.10x 77.75 ±0.37 8 90.00 77.61 ±0.07 11 ±0.2 93.00
IMP+ 1.23x 77.72 ±0.47 8 90.00 77.85 ±0.37 11 ±0.2 93.00
GMP 1.00x 75.84 ±0.25 10 90.00 75.09 ±0.47 14 93.00
GSM 2.08x 74.46 ±0.35 6 90.02 74.34 ±0.39 9 93.02
DPF 1.08x 76.74 ±0.22 7 ±0.1 90.00 76.45 ±0.22 10 ±0.2 93.00
DNW 1.94x 77.73 ±0.29 7 90.00 76.74 ±0.05 7 93.00
LC 2.17x 74.45 ±0.30 4 90.00 73.23 ±0.67 6 ±0.1 93.00
STR 1.05x 73.06 ±1.22 15 90.97 74.11 ±0.21 13 ±0.2 92.36 ±0.17
CS 1.21x 73.50 ±0.47 7 89.82 ±0.09 73.52 ±0.21 10 92.96 ±0.03
DST 1.14x 18.81 ±2.05 20 ±0.4 90.31 ±0.08 66.62 ±1.68 23 ±1.4 92.89 ±0.11

95% 98%
Method Time Accuracy Speedup Sparsity Accuracy Speedup Sparsity

IMP 1.10x 77.56 ±0.22 15 ±0.2 95.00 75.93 ±0.33 34 ±0.3 98.00
IMP+ 1.23x 77.59 ±0.34 15 ±0.3 95.00 76.27 ±0.23 35 ±0.5 98.00
GMP 1.00x 74.52 ±0.19 19 95.00 66.25 ±1.31 49 98.00
GSM 2.08x 73.47 ±0.25 15 95.02 70.28 ±0.95 23 ±0.1 98.02
DPF 1.08x 75.73 ±0.28 16 ±0.4 95.00 73.05 29 98.00
DNW 1.94x 75.69 ±0.21 8 95.00 72.65 ±0.28 17 98.01
LC 2.17x 72.41 ±0.54 8 ±0.2 95.00 70.06 ±0.06 17 ±0.5 98.00
STR 1.05x 70.66 ±0.52 24 94.40 ±0.02 62.24 ±2.50 61 ±0.5 97.85
CS 1.21x 72.81 ±0.13 12 95.22 72.29 ±0.34 28 ±0.5 97.99
DST 1.14x 69.33 ±0.28 25 ±9.8 95.22 ±1.12 68.46 40 97.96

99% 99.5%
Method Time Accuracy Speedup Sparsity Accuracy Speedup Sparsity

IMP 1.10x 72.03 ±0.52 65 ±1.3 99.00 65.29 ±0.87 130 ±2.3 99.50
IMP+ 1.23x 73.72 ±0.15 71 ±0.9 99.00 67.61 ±1.38 140 ±1.4 99.50
GMP 1.00x 36.33 ±9.76 100 99.00 16.19 ±7.59 200 99.50
GSM 2.08x 66.14 ±0.32 32 99.02 59.64 ±1.35 62 ±1.3 99.52
DPF 1.08x 70.82 ±0.64 59 ±0.4 99.00 60.23 ±1.61 143 ±3.8 99.50
DNW 1.94x 67.42 ±0.84 21 ±0.8 99.02 62.10 ±1.16 42 99.52
LC 2.17x 65.58 ±0.69 33 ±0.3 99.00 59.60 ±0.32 74 ±0.8 99.50
STR 1.05x 17.32 ±5.67 142 ±2.9 98.79 10.04 ±0.88 271 ±8.5 99.33 ±0.01
CS 1.21x 70.61 ±0.14 41 ±0.3 98.75 68.27 ±0.62 82 ±2.6 99.40
DST 1.14x 48.75 61 98.42 — — —

23



Under review as a conference paper at ICLR 2022

88% 90% 92% 94% 96% 98% 100%

amount of weights pruned

70%

75%

80%

85%

90%

95%

T
es

t
a
cc

u
ra

cy

Test accuracy

GSM

GMP

DPF

STR

DST

DNW

LC

CS

IMP+

IMP

ResNet-56 on CIFAR-10

88% 90% 92% 94% 96% 98% 100%

amount of weights pruned

10x

20x

30x

40x

50x

60x

70x

80x

T
h

eo
re

ti
ca

l
sp

ee
d

u
p

Theoretical speedup

GSM

GMP

DPF

STR

DST

DNW

LC

CS

IMP+

IMP

Figure 10: Test accuracy (above) and theoretical speedup (below) of IMP in comparison to different
pruning stable methods when training a ResNet-56 network on CIFAR-10. All methods were trained
to achieve sparsity levels of 90%, 93%, 95%, 98%, 99% and 99.5% with the exception of CS, STR
and DST, where additional hyperparameter searches were necessary to obtain the curves shown here.
Each datapoint corresponds to the hyperparameter config with highest accuracy when considering
.5% sparsity intervals between 88% and 100%. This holds similarly for the theoretical speedup,
where points are selected by highest accuracy as well. The confidence bands indicate the min-max-
deviation around the mean with respect to different initialization seeds.

24



Under review as a conference paper at ICLR 2022

88% 90% 92% 94% 96% 98% 100%

amount of weights pruned

0%

10%

20%

30%

40%

50%

60%

in
cr

ea
se

in
ac

cu
ra

cy

Accuracy increase by retraining

GMP

GSM

DPF

STR

DST

DNW

CS

LC

WideResNet on CIFAR-100

88% 90% 92% 94% 96% 98% 100%

amount of weights pruned

0%

20%

40%

60%

80%

100%

p
ru

n
in

g
st

ab
il

it
y

Pruning stability

GMP

GSM

DPF

STR

DST

DNW

CS

LC

Figure 11: Increase in accuracy after retraining (above) as well as pruning stability (below) for
WideResNet trained on CIFAR-100 using different pruning stable methods. Each method was re-
trained for 30 epochs using FT. Each datapoint corresponds to the hyperparameter config with high-
est accuracy directly after pruning when considering .5% sparsity intervals between 88% and 100%.
The confidence bands indicate the min-max-deviation around the mean with respect to different
initialization seeds.

25



Under review as a conference paper at ICLR 2022

88% 90% 92% 94% 96% 98% 100%

amount of weights pruned

40%

45%

50%

55%

60%

65%

70%

75%

80%

T
es

t
a
cc

u
ra

cy

Test accuracy

GMP

GSM

DPF

STR

DST

DNW

CS

LC

IMP+

IMP

WideResNet on CIFAR-100

88% 90% 92% 94% 96% 98% 100%

amount of weights pruned

10x

20x

30x

40x

50x

60x

70x

80x

T
h

eo
re

ti
ca

l
sp

ee
d

u
p

Theoretical speedup

GMP

GSM

DPF

STR

DST

DNW

CS

LC

IMP+

IMP

Figure 12: Test accuracy (above) and theoretical speedup (below) of IMP in comparison to different
pruning stable methods when training a WideResNet network on CIFAR-100. All methods were
trained to achieve sparsity levels of 90%, 93%, 95%, 98%, 99% and 99.5% with the exception of
CS, STR and DST, where additional hyperparameter searches were necessary to obtain the curves
shown here. Each datapoint corresponds to the hyperparameter config with highest accuracy when
considering .5% sparsity intervals between 88% and 100%. This holds similarly for the theoretical
speedup, where points are selected by highest accuracy as well. The confidence bands indicate the
min-max-deviation around the mean with respect to different initialization seeds.

26



Under review as a conference paper at ICLR 2022

0 50 100 150 200 250 300 350

total retraining epochs

0.90

0.91

0.92

0.93

0.94

te
st

a
cc

u
ra

cy

90.0% of weights pruned

0 50 100 150 200 250 300 350

total retraining epochs

0.800

0.825

0.850

0.875

0.900

0.925

te
st

a
cc

u
ra

cy

98.0% of weights pruned

ResNet-56 on CIFAR-10 (weight decay 0.0001)

0 50 100 150 200 250 300 350

total retraining epochs

0.90

0.91

0.92

0.93

0.94

te
st

ac
cu

ra
cy

90.0% of weights pruned

0 50 100 150 200 250 300 350

total retraining epochs

0.800

0.825

0.850

0.875

0.900

0.925

te
st

ac
cu

ra
cy

98.0% of weights pruned

ResNet-56 on CIFAR-10 (weight decay 0.0002)

0 50 100 150 200 250 300 350

total retraining epochs

0.90

0.91

0.92

0.93

0.94

te
st

ac
cu

ra
cy

90.0% of weights pruned

0 50 100 150 200 250 300 350

total retraining epochs

0.800

0.825

0.850

0.875

0.900

0.925

te
st

ac
cu

ra
cy

98.0% of weights pruned

SLR

SLR

Renda et al.

Dense

Renda et al. (FT)

SLR

Renda et al.

Dense

Renda et al. (FT)

CLR

SLR

Renda et al.

Dense

Renda et al. (FT)

CLR

ResNet-56 on CIFAR-10 (weight decay 0.0005)

Figure 13: Test accuracy achieved by IMP in relation to the total number of epochs required for re-
training using either CLR or SLR. Each row of the plots shows a different weight decay as indicated
in the title. The pruned baselines were established by using the approach of Renda et al. (2020)
using the respective weight decay and either in its original form, using LRW, or with a modified
version using FT.

27



Under review as a conference paper at ICLR 2022

90% 92% 94% 96% 98%

amount of weights pruned

30%

40%

50%

60%

70%

80%

90%

te
st

ac
cu

ra
cy

Cyclic Learning Rate Restarting (CLR)

Global

Uniform (Zhu & Gupta, 2017)

Uniform+ (Gale et al., 2019)

ERK (Evci et al., 2019)

LAMP (Lee et al., 2020)

ResNet-56 on CIFAR-10

101 102

theoretical speedup

30%

40%

50%

60%

70%

80%

90%

te
st

ac
cu

ra
cy

Cyclic Learning Rate Restarting (CLR)

Figure 14: Performance-vs.-sparsity (above) and performance-vs.-theoretical-speedup (below)
tradeoffs for ResNet-56 on CIFAR-10 for IMP in the One Shot setting with CLR as the retrain-
ing method. Each line corresponds to one pruning selection approach of interest. The model is
retrained for 30 epochs after pruning.

28



Under review as a conference paper at ICLR 2022

90% 92% 94% 96% 98%

amount of weights pruned

30%

40%

50%

60%

70%

te
st

ac
cu

ra
cy

Cyclic Learning Rate Restarting (CLR)

Global

Uniform (Zhu & Gupta, 2017)

Uniform+ (Gale et al., 2019)

ERK (Evci et al., 2019)

LAMP (Lee et al., 2020)

WideResNet on CIFAR-100

101 102

theoretical speedup

30%

40%

50%

60%

70%

te
st

ac
cu

ra
cy

Cyclic Learning Rate Restarting (CLR)

Figure 15: Performance-vs.-sparsity (above) and performance-vs.-theoretical-speedup (below)
tradeoffs for WideResNet on CIFAR-100 for IMP in the One Shot setting with CLR as the retraining
method.E ach line corresponds to one pruning selection approach of interest. The model is retrained
for 30 epochs after pruning.

29


	Introduction
	Overview of Pruning methods and Methodology
	Retraining approaches
	Pruning selection criteria
	A fair comparison to pruning stable methods

	Experimental results
	The Computational Cost of IMP
	The importance of the Sparsity Distribution
	Comparing IMP to Pruning Stable Approaches

	Discussion
	Reproducibility
	Technical details and Training Settings
	Technical details
	Training settings and hyperparameters
	ResNet-56 on CIFAR-10
	WideResNet on CIFAR-100


	Additional plots
	The Computational Cost of IMP
	The Importance of the Sparsity Distribution
	Comparing IMP to Pruning Stable Approaches
	Results using CLR


