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Abstract

Recent hardware advancements in AI Accelerators and GPUs allow to efficiently compute
sparse matrix multiplications, especially when 2 out of 4 consecutive weights are set to zero.
However, this so-called 2:4 sparsity usually comes at a decreased accuracy of the model. We
derive a regularizer that exploits the local correlation of features to find better sparsity masks
in trained models. We minimize the regularizer jointly with a local squared loss by deriving
the proximal operator for which we show that it has an efficient solution in the 2:4-sparse
case. After optimizing the mask, we introduce masked-gradient updates to further minimize
the local squared loss. We illustrate our method on toy problems and apply it to pruning
entire large language models up to 70B parameters. On models up to 13B we improve over
previous state of the art algorithms, whilst on 70B models we match their performance.

1 Introduction

The extensive adoption of large language models has sparked renewed interest in post-training model
compression to reduce inference cost and latency (Chitty-Venkata et al., 2023; Park et al., 2024). The most
notable techniques are quantization of model weights and activations (Frantar et al., 2023; Dettmers et al.,
2022; Frantar et al., 2024) as well as model pruning, i.e., the removal of weights or structures (Frantar &
Alistarh, 2023; Sun et al., 2024; Ashkboos et al., 2024). However, pruning entire network structures like
columns and rows of weight matrices leads to nonnegligible accuracy drops. Hence, the surge for more flexible
sparsity patterns that allow to prune individual weights has sparked. This is accompanied by hardware and
software support for efficient sparse matrix multiplications (Pool et al., 2021). In this work we consider
structured sparsity, that is we attempt to prune weights of linear models (or linear layers in a neural network)
into a structure where out of each consecutive M ∈ N weights N ∈ N weights are set to zero. Modern GPUs
and AI Accelerators can efficiently represent structured sparsity patterns to compress the memory footprint
of the model and accelerate the matrix multiplications. 2 : 4-sparsity is the most promising candidate for
realizing actual speedups and thus the main focus of this work.

Recent work is generally designed for pruning to unstructured sparsity and has then been applied to structured
patterns. In this work, instead, we design a family of regularizers that directly induce structured sparsity.
The resulting regularized pruning problems are then solved using the celebrated proximal gradient method.
Unlike existing pruning methods, our method induces sparsity gradually over the iterations, which can lead
to better masks. The proximal gradient method requires solving a proximal operator in each iteration, which
itself is a nonconvex problem.

The key theoretical contribution of this paper is to show that this non-convex proximal operator can be
efficiently solved by solving three convex subproblems. We empirically show that these regularizers tend
to identify more efficient sparsity masks, reduce the squared loss and can lead to better performance when
applied to pruning entire large language models. Our approach natively applies gradient descent on the layer
level while finding the mask and after freezing. Our key empirical contribution is that we apply such local
gradient descent after masking to previous state-of-the-art methods (Wanda and SparseGPT) and find that
we can improve those out of the box. Since Wanda and SparseGPT methods are extensively adopted, we
expect that the masked gradient updates will have significant impact.

We defer proofs to Appendix B.
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Figure 1: Illustration of the regularization path, e.g., optimal solution (w1, w2, w3, w4) as a function of λ in
Equation (7). From left to right, we are showing the result with (a) easy input z = [1.6, 1.1, 0.8, 0.5] (b)
nearly-tied z2:4 with z = [1.6, 1.11, 1.1, 1.09] (c) nearly-tied z1:3 with z = [1.6, 1.59, 1.58, 1.09] (d) All nearly
tied with z = [1.6, 1.59, 1.58, 1.57]. The two dashed lines in all figures indicates the two critical thresholds
λ∗

1 and λ∗
2 when the 3-sparse solution (and 2-sparse solution) become a critical point of Equation (7), thus

λ ≥ λ∗
1 (or λ ≥ λ∗

2) are necessary conditions for the solution to be 3-sparse (or 2-sparse), see Lemma 10 in
Appendix B. Observe that in the “easy input” case, as we increase λ, the sparsification is gradual, rather
than abrupt. In the “hard input” cases, decisions about those that are nearly tied are not made prematurely
at smaller λ, the transition to exact structured sparsity happened at a much larger λ.

2 Problem and related work

Large Language Models (LLMs) based on the transformer architecture (Vaswani et al., 2017) have become
the workhorse of language modelling. Recent architectures like Llama (Touvron et al., 2023) use decoder
only models. Innovations on the attention calculation (Dao, 2023) or its design as grouped-query attention
(Ainslie et al., 2023) have in few years already led to notable efficiency improvements. This shifts the focus
toward the classic matrix multiplication in linear layers. The idea here is to find an efficient approximation of
the weight matrix such that the multiplication can be executed more efficiently as well as that the matrix
can be stored efficiently in order to reduce the memory footprint of the matrix multiplication.

2.1 Matrix Compression

Traditional approaches involve low-rank approximations and sparsity. Modern hardware accelerators, which
are used to run LLMs, cannot make use of sparsity if the 0s do not follow a regular structure. On the other
hand, if a lot of structure is imposed, for example entire rows or columns are zeroed out, the accuracy drop is
often too large.

A method aiming to strike a balance is so-called structured sparsity or N :M sparsity. Here, out of M
consecutive weights N are set to zero (Pool et al., 2021). For the case of 2:4 sparsity, one stores only two
weights as well as a two-bit index per weight. Thus, for example, if the weights are kept in bfloat16 the
memory footprint reduces from 4 · 16 = 64 bits to 2 · (16 + 2) = 36 bits, i.e., a compression to 56%. Also since
those patterns are efficiently supported in hardware, it can reduce the FLOPs in matrix multiplications by
a factor of up to 2x, which is mostly relevant during prompt encoding (aka prefill). LLM inference during
decoding is on the other hand memory-bound rather than compute bound (Park et al., 2024). There the
speedup comes from the memory compression. We note here that this speedup reduces when sparsity is
combined with quantization (Jacob et al., 2018; Dettmers et al., 2022; Frantar et al., 2023), as the relative
overhead of the position indices grows. With 2:4 sparsity the memory compression and decoding speedup for
16/8/4 bit datatype is 1.77x/1.6x/1.33x.

2.2 Pruning

Many recent works propose new algorithms and heuristics to prune the linear layers in LLMs. Whilst some
focus on sparsity (Frantar & Alistarh, 2023; Sun et al., 2024; Dong et al., 2024; Wei et al., 2023) others also
remove entire structures, like heads, channels or layers resolving the need for special hardware support (Xia
et al., 2024; Ma et al., 2023; Muralidharan et al., 2024). All of these methods have a non-negligible drop
in performance metrics, requiring a delicate trade-off between latency/cost and performance degradation
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of the models. It is known that fine tuning after compression recovers some of the performance drop (Sun
et al., 2024; Frantar & Alistarh, 2023; Dong et al., 2024) and recent work have also studied more extensive
distillation with a small percentage of pretraining tokens, for example Minitron (Muralidharan et al., 2024)
or Llama-3.2.1

2.3 One-shot pruning with squared loss

In this work we focus on a local one-shot setting (Frantar & Alistarh, 2023), which we introduce in the
following. We consider linear layers in a deep neural network. Let N, M ∈ N, N < M and di, do ∈ N be the
feature input and output dimension, where we assume that di is divisible by M . We call a weight matrix
W ∈ Rdo×di to be N :M sparse if each cell of M consecutive weights contains maximally N non-zero entries∑M

i=1 |Wr,(k−1)·M+i|0 ≤ N for all k ∈ [d/M ] and for each row r ∈ [do]. We will denote the set of N :M sparse
matrices as SN :M , leaving the dependency on di, do implicit.

We assume that the network has been trained to convergence resulting in dense weights W ∗. Assuming that
we have inputs to the liner layer X ∈ Rdi×n our goal is to find N :M sparse weights that maintain the output
of the layer as good as possible in terms of a squared loss (LeCun et al., 1989; Hubara et al., 2021; Frantar &
Alistarh, 2023; Sun et al., 2024):

arg min
W ∈SN:M

1
n
∥WX −W ∗X∥2

F . (1)

This problem can be solved for each row independently, because N :M sparsity imposes the same level of
sparsity across all rows and the Frobenius norm decomposes over the rows. Nonetheless, even for a single row,
the problem becomes combinatorially hard. Whilst given a sparsity pattern, solving for the optimal weights
is a convex problem, the number of masks that need to be searched is

(
M
N

)di/M . Since N, M are determined
by the hardware and fixed, the complexity grows exponentially with the matrix dimension and in practice we
inevitably need to resort to heuristics.

We rewrite the loss in terms of the Hessian H := XX⊤

n and using ∥A∥2
F = Tr(AA⊤) as

L(W ) : = 1
n
∥WX −W ∗X∥2

F

= Tr
(
(W −W ∗)H(W −W ∗)⊤)

.
(2)

We will also refer to this as local squared loss to emphasize that it is on a per-matrix level. Notice that on
the diagonal of H we simply have the mean squared activations of the corresponding input channels.

The N :M sparse optimization problem simplifies significantly if the Hessian H is diagonal, meaning that
the input features are uncorrelated. In this case the weights cannot compensate for each other, that is each
weight is either pruned to zero or kept at its original value. Given a pruning mask M ∈ {0, 1}do×di the loss is
simply ∑

i,j

(1−Mi,j)W ∗
i,jHj,jW ∗

i,j =:
∑
i,j

(1−Mi,j)S2
i,j , (3)

and we can solve the minimization problem efficiently and optimally by simply pruning those weights with
smallest scores Si,j := |W ∗

i,jH
1/2
j,j |. Although not derived in the way presented here, this is precisely the

criterion that Wanda (Weights and Activations) (Sun et al., 2024) proposes for pruning Large Language
Models (LLMs) and use it as heuristic even when the Hessian is not diagonal.
Theorem 1 (Wanda is locally optimal for diagonal Hessians). Let the Hessian H be diagonal, W ∗ arbitrary
and define M∗ ∈ {0, 1}do×di such that for each M cell it has zeros for the N values with smallest score Si,j.
Then, M∗ ⊙W ∗ is a minimizer of problem Equation (1).

SparseGPT (Frantar & Alistarh, 2023) introduce an iterative heuristic that prunes the weight matrix in
column blocks from left to right and takes off-diagonal elements of the Hessian into account. To determine
which weights to prune, they use the criterion introduced by Hassibi & Stork (1992) and update the weights

1https://huggingface.co/meta-llama/Llama-3.2-1B#training-data
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in the remaining right blocks, by using the inverse Hessian of the remaining sub-matrix. SparseGPT allows
to efficiently prune multiple rows at once, without costly recomputations of the inverse Hessians.

Notice that both SparseGPT and Wanda only require forward passes through the full model to populate the
Hessian matrix or mean squared activations for each linear layer, which we dub one-shot setting (Frantar
& Alistarh, 2023). Both algorithms run in a matter of minutes / hours on a single GPU on large language
models up to scales of 100B parameters. We focus on aforementioned one-shot setting, where we only allow
local updates, but no end-to-end tuning of the entire model. Further recent works one-shot pruning works
include DSnoT (Zhang et al., 2024), which provides small improvements in some cases over Wanda and
SparseGPT, and ALPS (Meng et al., 2024), which is particularly suited for high sparsity. Dong et al. (2024)
investigated other criteria beyond one-shot pruning.

2.3.1 Applicability to arbitrary models with linear layers

While our empirical experiments and investigations focus on large language models, we emphasize that our
methodology applies to any pretrained neural network having linear layers. The required information for our
algorithm is solely the weight matrices as well as the local Hessians H, which are computed by aggregating
input activations over forward passes on calibration data.

2.4 Proximal gradient

The proximal gradient (PG) method is a well-known optimization algorithm designed for solving composite
minimization problems, where the objective function can be decomposed into two parts: a smooth differentiable
function and a nonsmooth. Such problems arise frequently in many modern applications. In this setting, the
objective function typically has the form:

min
w
{f(w) + h(w)},

where f : Rn → R is smooth and differentiable, while h : Rn → (−∞,∞] is a possibly nonsmooth structure-
inducing regularization term. To account for this nonsmooth component, the Proximal Gradient (PG) method
incorporates a proximal operator alongside the standard gradient step for the smooth part, f(w). The
proximal operator, designed to mainly tackle nonsmooth functions, is defined as follows:

proxh(z) = arg min
w

{
1
2∥w − z∥2 + h(w)

}
.

Therefore, to sum-up, starting with an arbitrary w0, PG method with step-size t > 0 generates iteratively a
sequence {wk}k∈N via the following iterative step:

wk+1 = proxth(wk − t∇f(wk)).

The PG method is particularly efficient when the smooth part f has a Lipschitz-continuous gradient and when
the proximal operator for h has a closed-form solution (e.g., the hard-thresholding operator for ℓ0-regularized
problems). However, if the proximal operator has no closed-form solution it might require an additional
tailored optimization algorithm to solve the corresponding problem. Below, we will propose a new function
to promote N :M sparsity and discuss in detail its 2:4 proximal operator.

Proximal gradient methods have been extensively studied, particularly in the context of convex optimization
problems. For a thorough overview of their theoretical guarantees and extensions, refer to (Beck, 2017) and
references therein.

3 Proximal operator for N:M sparsity

Wanda (Sun et al., 2024) and SparseGPT (Frantar & Alistarh, 2023) were both designed primarily for
unstructured sparsity and then simply applied to the N :M sparse case by adding these additional constraints.
Inspired by PG methods we propose regularizers that are explicitly designed for N :M sparsity and iterate
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gradient updates on the squared loss (done on the matrix level) with the solution of the proximal operator
(which decomposes into the M cells). This leads to a gradual emergence of the pruning mask, where the
emerging pattern of one cell can in fact influence the pruning pattern of other cells and avoids committing to
a sparsity pattern to early. Wanda and SparseGPT do not have this possibility. Our approach will consume
more compute and time, but this is well invested. Compared against the cost of training the models and the
inference cost, the additional cost to find a better mask and model is well invested.

3.1 Gradient descent

Each step of PG requires a gradient step on the unregularized loss Equation (2), which has a simple closed-form,
see Appendix A:

W ←W − η · 2(WH −W ∗H), (4)

where we can use the largest eigenvalue of the Hessian to set the stepsize η = 1
2γmax(H) , guaranteeing

convergence. While each gradient step has complexity O(d2
i do), it allows us to efficiently use the full

parallelization of modern GPUs.

We will use gradient descent during PG, but we also propose it as a method to improve any local pruning
method. Once the pruning mask M is fixed, we can partially compensate for the pruning loss, by masked
gradient updates:

WM ←WM − η · 2M ⊙ (WM H −W ∗H). (5)

Our first contribution is to show that Wanda and SparseGPT do benefit from such gradient updates after
they completed the pruning.

3.2 Regularization and proximal operator

To induce N :M sparsity, we define the following family of regularizers2:

rN :M (w) :=
∑

S⊂[M ]
|S|=N+1

∏
j∈S
|wj |. (6)

Fact 2 (The null space of the regularizer). For all w ∈ RM we have

rN :M (w) = 0 if and only if ∥w∥0 ≤ N.

The corresponding proximal operator is

proxλrN:M
(z) := arg min

w∈RM

{
1
2∥w − z∥2 + λrN :M (w)

}
.

The regularizer rN :M promotes N :M sparsity in that N sparse solutions are in the null space of this regularizer.
Moreover, as λ→∞, there always exists λ∗ (as a function of input z) such that when λ ≥ λ∗, the solution of
the proximal operator becomes exactly N -sparse (see Figure 1 for an illustration).

For 2:4 sparsity, the proximal operator of interest is

arg min
w∈R4

{
1
2∥w − z∥2 + λ(|w1||w2||w3|+ |w2||w3||w4|

+ |w3||w4||w1|+ |w4||w1||w2|)
}

. (7)

2In Appendix C we propose a few more, less elaborate, regularizers for 2:4 sparsity.
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The proximal operator can be used to induce 2:4 sparsity in all settings including: layerwise pruning, finetuning
and pretraining using proximal gradient methods or straight-through gradient methods. We focus on layerwise
pruning via the squared loss Equation (2). The combined loss function for the 2:4 sparse case is then

Lλ(W ) := L(W ) + λ
∑

w∈W

r2:4(w), (8)

where w ∈ W runs over all 2:4 cells of W . Following Fact 2 the matrix W is 2:4 sparse if and only if the
regularizer is zero. Importantly the proximal operator corresponding to the regularizer of multiple cells
decomposes into multiple 2:4 proximal operators and hence the complexity of solving the proximal operator
at each iteration of PG only grows linearly with the dimensionality of the matrix.

3.3 Solution of the 2:4-proximal operator

Solving the 2:4 proximal operator problem is tricky. It is non-convex, non-smooth and appears to require an
exhaustive search-style approach. Nonetheless, we have identified interesting mathematical structure of this
problem which led to a discovery of very efficient solutions to this problem with provable guarantees.

We first prove that we can always reduce the proximal operator to the case where z is non-negative and
sorted z1 ≥ z2 ≥ z3 ≥ z4 ≥ 0.
Lemma 3. To solve problem Equation (7), it suffices to solve

arg min
w∈R4

+

f(w), with (9)

f(w) :=
{1

2∥w − z∥2 + λ(w1w2w3 + w2w3w4

+ w3w4w1 + w4w1w2)
}

, (10)

where z1 ≥ z2 ≥ z3 ≥ z4 ≥ 0. Moreover, any optimal solution w∗ of problem Equation (9) satisfies that
w∗

1 ≥ w∗
2 ≥ w∗

3 ≥ w∗
4 ≥ 0.

Observe that f(w) is smoothly differentiable, but now we have a constrained optimization problem. The
same result can generally be stated for N :M -sparsity.

Let us define the restricted version of problem Equation (9) when w4 is set to 0.

arg min
w∈R3

+

g(w), with (11)

g(w) :=1
2

3∑
i=1

(wi − zi)2 + λw1w2w3. (12)

As a side remark, the proximal operator for r2:3 can be reduced to solving Equation (11).
Lemma 4 (Optimality conditions). Assume z1 ≥ z2 ≥ z3 ≥ z4 > 0. The solution w∗ is one of the following
three cases.

• 2-sparse: in which case w∗ = [z1, z2, 0, 0].
• 3-sparse: in which case w∗

4 = 0 and w∗
1:3 satisfies

0 < w∗
1 = z1 − λw∗

2w∗
3 ,

0 < w∗
2 = z2 − λw∗

1w∗
3 ,

0 < w∗
3 = z3 − λw∗

1w∗
2 .

• Dense: in which case w∗ = [w∗
1 , w∗

2 , w∗
3 , w∗

4 ] > 0 satisfies that

w∗
i = zi − λ ·

∑
{j1,j2}⊂{j∈[4],j ̸=i}

w∗
j1

w∗
j2

.
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In Appendix B.4 we also include necessary conditions on λ for the solutions to be 2-/3-sparse. Whilst the
2-sparse solution is trivial, optimizing for the 3-sparse and dense solution requires more care. We next turn
to the Hessians of f and g, see Equation (23) and Equation (24) for their explicit forms.
Lemma 5 (Properties of the Hessians).

• The set C3 := {w ∈ R3 | ∇2g(w) ⪰ 0} is convex.
• The set C4 := {w ∈ R4 | ∇2f(w) ⪰ 0} is convex.

This property of the Hessian is crucial, as it allows us to focus on finding a single minimum.
Corollary 6 (No spurious local minima.). The set of all local minima of f(w) is convex. Moreover, if there
exists w∗ ∈ arg minw∈R4

+
f(w) such that w∗

i > 0 for all i ∈ [4] (i.e., in the “Dense” case from Lemma 4), then
all local minima of f(w) are global minima.

The set of all local minima of g(w) is convex. Moreover, if there exists w∗ ∈ arg minw∈R3
+

g(w) such that
w∗

i > 0 for all i ∈ [3], then all local minima of g(w) are global minima.

To solve the proximal operator we can thus solve the following constrained optimization problems

min
{

g(w)
∣∣ w ∈ R3, w ≥ 0,∇2g(w) ⪰ 0

}
, (13)

min
{

f(w)
∣∣ w ∈ R4, w ≥ 0,∇2f(w) ⪰ 0

}
. (14)

The optimal solutions to Equation (13) and Equation (14) are local minima to Equation (11) and Equation (9)
respectively if the solutions have gradient = 0. In general, the set of local minima for a non-convex problem
can be scattered all over the place, but with Corollary 6 we have shown that for these special functions f and
g, the local minima (if they exist at all) form a convex set and have the same objective values.

Problems Equation (13) and Equation (14) are convex optimization problems due to Lemma 5. They can be
solved using interior point methods with self-concordant barrier functions. As barrier functions, we can use
− log det∇2f(w) and − log det∇2g(w) respectively, as well as − log(wi) to encode the positivity constraints
(Boyd & Vandenberghe, 2004, Chapter 11.2).

We have now reduced our initial non-convex problem to three convex subproblems, out of which one has a
trivial solution. We can then solve those three problems and select the minimizer among the three cases.3

Theorem 7. Algorithm 1 returns an optimal solution to Equation (9).

Algorithm 1 Solve Prox with decreasing non-negative input
Require: z1 ≥ z2 ≥ z3 ≥ z4 ≥ 0

1: procedure ProxEnumerate(z, λ)
2: w(2) ← [z1, z2, 0, 0]
3: w(3) ← [solution to Equation (13), 0].
4: w(4) ← solution to Equation (14).
5: return arg minw∈{w(2),w(3),w(4)} f(w)
6: end procedure

3.4 Generalization to N :M sparsity.

2:4 sparsity is currently the most relevant sparsity pattern. It is plausible that general N :M sparsity patterns
also benefit from a more gradual pruning algorithm. For 1:M sparsity, the proximal operator becomes very
simple as it is just a quadratic function and it can be solved in closed form. However, for more general
patterns when N > 2 solving the proximal operator becomes more challenging. Lemma 4 still holds and it is
enough to consider the non-negative sorted case. However, finding the minimizers is harder. In particular it

3If w(4) in Algorithm 2 is a local minimum of f , by Corollary 6 this suffices to know it is the global optimum and there is no
need to compute w(2), w(3). For ease of notation and to parallelize when solving multiple cells, we nonetheless always compute
the three cases.

7
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is not obvious how one could replace Lemma 5, i.e., the convexity of the space where the Hessian is convex.
There we used that the Hessian in the 2:4 sparse case is linear in w, which will no longer hold for N > 3.
There might be different arguments to show that those cases can be handled efficiently as well.

3.5 Parallelized Prox by gradient descent

We showed that Equations (13) and (14) are convex optimization problems that can be solved with guarantees
for example with interior point methods with self-concordant barrier functions. However, in order to apply
this algorithm at scale we need to optimize it further. For example when pruning the MLP down projection
of a Llama 70B model (Dubey et al., 2024), the matrix has dimensions 28672 and 8192, meaning that it
has around 59 million cells of four weights. Thus at each iteration of Proximal Gradient, we have to solve
Algorithm 1 59 million times, which is infeasible if not done in a parallelized fashion using modern GPUs.

In all our experiments, we will thus resort to a gradient descent solver of which we conjecture that it always
correctly solves the problem. We will focus on the case of Equation (14), and the case for Equation (13) follows
similarly. The constraints w ≥ 0 is easily enforced by projected gradient descent. The second constraint
∇2f(w) ⪰ 0 is more computationally expensive and we do not want to compute it at every iteration. Luckily,
empirically we find that we actually do not need to enforce this constraint at all. First note two facts
Fact 8. a) w = [0, 0, 0, 0] is always a feasible point of Equation (14). b) Let γmax denote the largest eigenvalue
of a matrix. For all w ∈ R4

+ we have ∇2f(w) ⪰ 0⇒ γmax
[
∇2f(w)

]
≤ 4.

Thus, whilst we are in the convex region of the loss, the gradients are Lipschitz with constant 4. Using 1/4
as step size, we are guaranteed to never cross a local minimum as long as we stay in the convex region. In
our extensive evaluations we observe that indeed gradient descent does never exit the region of convexity if
the global minimum is dense. This implies that we can run gradient descent without the need of a barrier
function. Whilst we could not find any counterexamples we have not been able to formally prove this and
hence state is explicitly as a conjecture.
Conjecture 9. Let w∗ be the minimizer of Equation (14), and suppose that w∗

i > 0 for all i. Consider the
iterative scheme

w0 = 0, wk+1 =
(
wk − ηk∇f(wk)

)
+ ,

where the projection (·)+ is applied elementwise and denotes projection onto R4
+, and ηk = 1

4 . Then the
sequence {wk} converges to w∗.

Furthermore, each iterate wk lies in the feasible set of Equation (14).

The same considerations and empirical insights apply to the 3-sparse case. Hence, in practice when computing
w(3) and w(4) in Algorithm 1 we run the gradient descent based optimization without enforcing to remain
in the region of convexity. As soon as we witness that we moved out of the convex region, we can stop the
optimization as by Conjecture 9 and Corollary 6 the respective case can not be the optimal one. In practice,
we stop when witnessing that the gradient norm increases, as this cannot happen whilst being in the convex
region with our choice of step size. Therefore, we slightly deviate from Algorithm 1 in that in line 3 and
4 we do not compute the exact minima if we witness its not the minimum of the three cases anyways. If
Conjecture 9 is true, then Theorem 7 holds even with this modification.

In our implementation, the GD-based Algorithm 1 is more than 10x faster than our implementation of the
interior point method-based Algorithm 1, and they always obtain numerically the same solution.

3.6 Full algorithm

We can now put together the full matrix pruning algorithm, see Algorithm 2. We define two functions:
PosSort(W ) that returns the weights such that each 2:4 is sorted and without sign as well as s, p that
indicate the sign and original position of the weights. InvPosSort(W, s, p) which undoes above operation.
Furthermore, we use a schedule {λk}k for the regularization such that λk →∞. In this work we consider
exponential schedules λk = λ0βk, for λ0 > 0 and β > 1. Having an exponential schedule guarantees that
the regularizer eventually is large enough such that the solution to the proximal operator will be exactly

8
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Algorithm 2 Matrix Prox Pruner 2:4
1: procedure PruneProx(W ∗, H, {λk}k)
2: W ←W ∗, η ← 1

2γmax(H) , k ← 0
3: while W /∈ S2:4 do
4: W ←W − η · 2(HW −HW ∗)
5: W, s, p← PosSort(W )
6: W ← ProxEnumerate(W, λk)
7: W ← InvPosSort(W, s, p)
8: k ← k + 1
9: end while

10: return W
11: end procedure

2:4 sparse, c.f. Section 3.2, which we need to ensure finite runtime of Algorithm 2. In other words: without
making assumptions about the problem space, the regularizer eventually needs to be scheduled towards
infinity.

4 Experiments

For our experiments unless otherwise stated we use λk = λ0βk with λ0 = 0.01 and β = 1.01. Furthermore, we
always use the solver Algorithm 2 relying on Conjecture 9. After ending Proximal Gradient, we do 1000 steps
of masked gradients according to equation 5 to minimize the local squared loss. Furthermore, we initialize all
methods Wanda style by transforming W ∗

i,j 7→W ∗
i,jH

1/2
j,j , Hi,j 7→ Hi,jH

−1/2
j,j H

−1/2
i,i . This helps the proximal

pruning to not commit to weights that seem important solely in terms of magnitude, but takes the respective
mean squared activations into account (Sun et al., 2019). After pruning this transformation is reversed. All
experiments can run on a single NVIDIA A100 GPU with 40GB of memory, but we used multiple GPUs in
parallel to speed up the experimentation.

4.1 Toy experiments

We start with a simple experiment to illustrate the inner workings of our algorithm and the shortcoming
of Wanda and SparseGPT. We consider the 2:4 sparse case of a single row with dense weights w∗ =
(0, 5, 3, 2, 0, 5, 5, 2). We further assume that the Hessian has ones on the diagonal and zero elsewhere except
that the fourth and eighth weight are perfectly correlated (value 1 on the respective off-diagonal elements).
In this case the optimal 2:4 sparse solution is w = (0, 5, 0, 4, 0, 5, 5, 0). The difficulty here is that the fourth
and eighth weight if looked at individually within their 2:4 cell, would be pruned, but instead we can merge
them into one weight and prune another weight incurring a smaller loss.

Since Wanda (Sun et al., 2024) completely ignores the correlations, it prunes to w = (0, 5, 3, 0, 0, 5, 5, 0),
which is suboptimal. SparseGPT (Frantar & Alistarh, 2023) would in a first step prune the first ′2′ because it
can completely absorb it into the last weight due to their correlation w 7→ w = (0, 5, 3, 0, 0, 5, 5, 4). However
then in the second step, when pruning the second cell, it drops the combined ′4′ because it incurs lower loss
than pruning one of the ′5′s w 7→ w = (0, 5, 3, 0, 0, 5, 5, 0). Therefore, the SparseGPT heuristic can lead to
deferred loss.

Our proximal optimizer in turn adapts to the situation. In the second cell, the ′2′ is quickly pushed to 0.
This in turn increases the gradient magnitude of the first ′2′, pushing it eventually over the value of the ′3′ in
the first cell. To simplify the understanding, we animated the evolution of the weights with a gif → LINK.

Next we consider the effect of correlation between input features more structurally. Therefore we generate
synthetic Hessians and random weights:
d=1024
diag = torch.diag(torch.rand(d))
Z = torch.randn(d, d) / float(d)**(1/2)

9
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Figure 2: Toy experiment with generated weights and Hessians. Without correlation (α = 1) all considered
pruning methods result in the same mask and loss. As we increase the correlations, our proximal approach
leads to the best mask as shown by the smallest loss.

Z = Z @ Z.T
hessian = alpha * diag + (1 - alpha) * Z
weights = torch.randn(1, d)

We then prune with all the considered methods and after masking optimize the weights with gradient descent.
Results are discussed and shown in Figure 2.

Table 1: Validation Perplexity of OpenLlama (3B/7B/13B) and Llama3.1 (8B/70B) (Pretrained/Instruct). .
All the methods with +GD are an innovation of the present work.

3b_v2 7b_v2 13b 8B 8B Inst 70B 70B Inst
Method C4 Wiki C4 Wiki C4 Wiki C4 Wiki C4 Wiki C4 Wiki C4 Wiki
dense 9.68 14.15 8.84 12.15 8.11 11.52 9.68 7.93 11.28 7.27 7.32 3.34 8.26 3.71
wanda 29.48 60.32 17.63 27.02 13.17 35.45 36.32 27.26 43.30 26.67 13.42 10.25 13.68 8.74
wanda+GD 18.23 33.05 14.35 21.85 11.73 18.17 22.19 20.46 28.45 20.71 12.32 10.38 13.08 8.91
sp.gpt 18.76 33.78 14.24 22.29 11.91 19.51 24.95 23.18 35.55 26.19 13.00 10.93 14.05 9.37
sp.gpt+GD 16.72 29.58 13.31 20.83 11.43 17.19 21.00 19.86 27.54 20.85 12.06 10.49 13.06 8.91
DSnoT 26.54 44.17 17.62 26.17 13.71 32.89 40.66 30.40 48.80 31.46 14.34 10.54 14.51 9.16
prox+GD 16.27 28.59 13.19 20.55 11.40 17.71 20.86 19.83 26.46 20.20 12.33 10.38 13.12 8.91

4.2 Scheduling λ

During the course of proximal gradient, we increase the regularizer λ with an exponential schedule to
guarantee, that no matter what input, eventually the weights will be 2:4 sparse. In this work we consider
exponential schedules λk = λ0βk, for λ0 > 0 and β > 1. Clearly, good choices of those hyperparameters
depend on each problem and are expensive to ablate when done for each problem separately. We show the
impact of different choices on the local loss and the runtime in the Appendix Figure 3. Notice that the
optimization problem equation 9 is not scale invariant when scaling z alone. However, if w∗ is the optimal
solution to the problem z, λ, then cw∗ is the optimal solution for the problem (cz, λ/c). Since it is too
expensive to extensively search the hyperparameters for each problem individually, we propose to consider

λk = λ̃0

Mean[|W ∗|]β
k. (15)

10
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4.3 Pruning large language models

To prune LLMs, we use 2 million tokens from the c4 dataset (Raffel et al., 2020), which we pack with
end-of-sequence tokens and chunk into 1024 sequences4 of lengths 2048. We estimate all Hessians from the
unpruned model, and do not propagate the pruning errors as we find that this has little impact (Appendix D.1).
As baselines we run Wanda (Sun et al., 2024) and SparseGPT (Frantar & Alistarh, 2023) both with their
original algorithms as well as with our innovative additional 1000 gradient descent steps after masking, see
Section 3.1, where we observed that the local loss has usually converged after 1000 steps as shown in Appendix
Figure 5. We also run DSnoT (Wanda) (Zhang et al., 2024). For the proximal, for small models we used our
default setting λk = λ0βk with λ0 = 0.01 and β = 1.01. For the 70B models, we observed that this would
require more than 2000 iterations of PQ. We thus used the heuristic from Equation (15) and the results of
Figure 3 and selected β = 1.005, λ̃0 = 1 · 10−3 to strike a good balance between performance and runtime.
Since, prox already uses gradient updates during pruning, we recommend to always use it together with
gradient updates after freezing the mask. For completeness though, in Appendix D.3 we also include a small
ablation on the effect of masked gradient steps for prox.

We prune models from the openLlama family (Geng & Liu, 2023) and the Llama-3.1 models (Dubey et al.,
2024), see Table 1. We evaluate the models both on in-distribution validation data from c4, as well as out of
distribution data from WikiText2 (Merity et al., 2016).

On models up to 13B parameters, we see that the proximal approach consistently outperforms the other
methods at least in-distribution (C4) and mostly also on wikitext data (wiki). In the appendix Figure 4 we
show that this is related to an improvement in local squared loss. Furthermore, Wanda and SparseGPT both
benefit clearly from our proposed masked gradient descent based updates after pruning with the respective
strategy.

Interestingly, whilst prox tends to give the best perplexity, it turns out that our innovation on using masked
gradient updates (Section 3.1) is empirically more relevant, as it consistently improves the perplexity on
C4. As a by-product of our work we thus identified a method that can be plugged on top of existing SOTA
one-shot pruning methods. In Table 3 we evaluate the pruned Llama-3.1 8B Instruct model on 6 Downstream
tasks and find that on average we improve the SOTA more than 3%.

On the 70B models, whilst the gradient updates continue to improve the in-distribution loss, it can harm the
wiki perplexity in case of Wanda, which can indicate a slight overfitting to the domain of the calibration
data. Furthermore, on the 70B models we see that the method to find the mask has a very minor impact
on the final perplexity. On the 70B model scale, we thus recommend to use wanda for pruning instead of
SparseGPT or prox and rather invest resources into having a more balanced and larger calibration sample to
estimate the Hessian from in order to mitigate domain speciliazation.

We can qualitatively define a hierarchy between the investigated methods by how much information of the
Hessian matrix is used whilst identifying the mask. Wanda uses only the diagonal entries (see also Theorem
1), SparseGPT uses already the full Hessian, and prox makes even heavier use of the Hessian (see our
toy experiment of Figure 2). We observe that on the smaller models, SparseGPT does quite consistently
outperform Wanda, hence it seems that the off-diagonal elements of the Hessian are relevant. It is those
cases, where doubling-down on using Hessian information (through prox or masked gradient updates) further
improves performance. On the other hand, on the 70B scale using plain Wanda seems close to optimal –
neither SparseGPT, prox, nor masked gradient updates improve there relevantly. This seems to indicate that
the behavior on this scale is largely determined by the diagonal entries of the Hessian matrix – in which case
wanda (by our Theorem 1) is optimal. However, the difficulty in analyzing and predicting the end-to-end
behavior from the properties of the matrices is that the weight matrix and the Hessian need to be considered
jointly. Existing methods to characterize matrices like Kruskal Rank (Kruskal & Wallis, 1952), Mutual
Coherence, or the restricted isometry property usually consider a single matrix in isolation.

Overall, we find that a 2:4 sparse model is consistently worse than the dense smaller model of the same class
which is consistent with the results on Llama 1 and 2 models found by Sun et al. (2024, Table 3). A potential

4We emphasize that all methods in our experiments use exactly the same number of calibration samples. In Appendix D.2 we
further ablate the effect using different number of calibration samples.

11



Under review as submission to TMLR

way to mitigate this large drops is to only partially prune the model, e.g., only certain modules or only a
fraction of the model’s layers. This can be considered for all pruning methods equally and is an orthogonal
direction for future work. Additionally, pruned models can be further fine-tuned to specific downstream tasks,
which can further mitigate the loss in quality.

5 Discussion

We have introduced a method to gradually induce structured sparsity in pretrained linear layers, for example
of large language models. The immediate objective is to minimize the linear squared loss at the matrix level.
We showed that a local improvement of the squared loss leads to an improvement in model perplexity. On
the theoretical side, we showed how to efficiently solve the complex proximal operator for 2:4 sparsity.

On the empirical side, we observe that the sparsity mask does not make a huge difference for recent LLMs, but
that our introduced local gradient based updates can also be used on top of existing local pruning methods
and improve their performance. In particular, our proposed masked-gradient updates can easily be used to
improve the widely adopted methods Wanda and SparseGPT. We believe that the masked gradient updates
will be widely adopted.

Whilst we thus improved the state of the art on one-shot pruning, the resulting pruned models clearly are not
good enough to be of direct practical relevance. Looking at Table 1, we see that the pruned 13B/7B models
fall clearly behind the dense 7B/3B model. However, for a 2x matrix compression this should be the lowest
bar a model has to take in order to be useful. This is even more because whilst the structured sparsity reduces
the latency and footprint of matrix multiplications, it does not decrease the sizes of in-/output activations or
the KV-cache.

One benefit of the proximal approach and the theoretical insight we provided is that they can also be applied
during pretraining together with a regular pretraining objective.5 Other pruning approaches discretely
interrupt the optimization, whilst the proximal operator is applied at every step, hence gradually pushing the
model to sparsity. This could pave the road for more powerful sparse models with less quality degradation.
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A Gradient and Hessian

We have the following loss function Equation (2):

L(W ) = Tr
(
(W −W ∗)H(W −W ∗)⊤)

.

The loss is simply the sum of the loss of each individual row and we e can minimize this on a per-row basis
(w ∈ Rdi)

L(w) = (w − w∗)⊤H(w − w∗). (16)

From here we can simply compute the gradients:

∇L(w) = 2H(w − w∗) = 2Hw − 2Hw∗. (17)

We can the stack this again for the whole matrix and obtain:

∇L(W ) = 2WH − 2W ∗H. (18)

Notice that the second term can be precomputed once, and does not need to be computed again at each
iteration. Computing the second order derivatives per row we find ∇2L(w) = 2H, hence also our naming
conventions (ignoring the factor of 2).
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B Proofs

B.1 Proof of Theorem 1

Proof. We first show that a diagonal Hessian implies that for any mask, the optimal values of the remaining
weights match their dense counterparts. Therefore, let M be an arbitrary binary mask and assume that the
Hessian is diagonal, i.e., Hij = 0 whenever i ̸= j. We use the formulation of Equation (2) where we explicitly
add the mask

L(W, M) = Tr
(
(M ⊙W −W ∗)H(M ⊙W −W ∗)⊤)

(19)

=
∑
i,j

(Mi,jWi,j −W ∗
i,j)2Hj,j (20)

=
∑

i,j|Mi,j=1

(Wi,j −W ∗
i,j)2Hj,j +

∑
i,j|Mi,j=0

(W ∗
i,j)2Hj,j . (21)

Notice that the second term solely depends on the mask and not on the weights of W . Furthermore, the first
term can be set to zero by matching the original weights. By definition WandA selects a mask that minimizes
the second term whilst keeping the other weights fixed, hence minimizing the overall squared loss.

B.2 Proof of Fact 2

Proof. The “if” part is trivial. If ∥w∥0 ≤ N , then for any index subset S ⊂ [M ] with |S| = N + 1, at least one
of the coordinate of wS is 0. To see the “only if” part, if suffices to prove the contra-positive. If ∥w∥0 > N ,
let S̃ to be the first N + 1 coordinates of w in S̃, thus rN :M (w) ≥

∏
i∈S̃ |wj | > 0.

B.3 Proof of Lemma 3

Proof. First observe that the objective function of problem Equation (7) is invariant to joint permutations
and signs of w and z. In other words, if w̃∗ is an optimal solution of problem Equation (7) for a given input
z̃ ∈ R4, then for any permutation Π and any diagonal matrix D with diagonal elements being −1 or 1, the
DΠw̃∗ is an optimal solution of problem Equation (7) when the input is DΠz̃ and having the same optimal
value. Therefore, without the loss of generalization, we can choose Π to be the permutation that sorts the
input into a descending order by the absolute value of |z|, and D = diag(sign(Πz)).

Next, we observe that for a non-negative input z, any optimal solution of problem Equation (7) is always
non-negative. To see this, if w∗

i is negative and zi > 0, replacing it with |w∗
i | retains the regularizer but

(|w∗
i | − zi)2 < (w∗

i − zi)2. If zi = 0, the corresponding optimal solution is w∗
i = 0, which is non-negative.

Thus, we can remove the absolute values and focus on solving problem Equation (9).

Moreover, we observe that a sorted (descent order) input z implies that any optimal solution is also sorted in
a descent order. Indeed, we take w∗ to be an optimal solution with w∗

i < w∗
j for some 1 ≤ i < j ≤ 4. Since

the regularizer is invariant to permutations, we focus on the quadratic part and show that in this case w̃,
which is defined by w̃i = w∗

j , w̃j = w∗
i and w̃k = w∗

k for all k ̸= i, j, we have that

∥w∗ − z∥2 − ∥w̃ − z∥2 = (w∗
i − zi)2 + (w∗

j − zj)2 − (w̃i − zi)2 − (w̃j − zj)2

= (w∗
i − zi)2 + (w∗

j − zj)2 − (w∗
j − zi)2 − (w∗

i − zj)2

= 2(w∗
j zi + w∗

i zj − w∗
i zi − w∗

j zj)
= 2(w∗

j − w∗
i )(zi − zj)

≥ 0,

where the last inequality follows from the facts that w∗
i < w∗

j and zi ≥ zj . This shows that w̃, which is a
sorted (descent order) vector, is also an optimal solution.

Combining these two observations means that problem Equation (7), which is formulated for any input z,
can be rewritten only for non-negative sorted inputs. Note that we can always invoke the above observations
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to recover a solution to the original problem by first solving problem Equation (9) to find w∗ and then
Π−1D−1w∗ is an optimal solution of problem Equation (7).

B.4 Proof of Lemma 4

We first state a slighlty extended version of Lemma 4
Lemma 10 (Optimality conditions – Extended). Let the objective function in Equation (9) be f(w). Assume
z1 ≥ z2 ≥ z3 ≥ z4 > 0. The solution w∗ must be in one of the following three cases.6

• 2-sparse: in which case w∗ = [z1, z2, 0, 0].

• 3-sparse: in which case w∗
4 = 0 and w∗

1:3 satisfies that

0 < w∗
1 = z1 − λw∗

2w∗
3 ,

0 < w∗
2 = z2 − λw∗

1w∗
3 ,

0 < w∗
3 = z3 − λw∗

1w∗
2 .

• Dense: in which case w∗ = [w∗
1 , w∗

2 , w∗
3 , w∗

4 ] > 0 satisfies that

w∗
i = zi − λ ·

∑
{j1,j2}⊂{j∈[4],j ̸=i}

w∗
j1

w∗
j2

.

Moreover if z1, z2 > 0,

1. λ ≥ z3/(z1z2) is a necessary condition for the solution to be in the 2-sparse regime.

2. λ ≥ z4/(w∗
1w∗

2 +w∗
2w∗

3 +w∗
1w∗

3) is a necessary condition for the solution to be in the 3-sparse regime, for
w∗

1:3 to be the solution to Equation (11). A weaker necessary condition is λ ≥ z4/(z1z2 + z2z3 + z1z3).

Proof. If an optimal solution w∗ of problem Equation (9) is 2-sparse, it means that r2:4(w∗) ≡ 0. Therefore,
w∗ is a minimizer of the quadratic term. Moreover, since w∗ is sorted in a descent order it means that
w∗

1 , w∗
2 > 0 and w∗

3 = w∗
4 = 0. Therefore, the desired result immediately follows.

If an optimal solution w∗ of problem Equation (9) is 3-sparse, it means that w∗
4 = 0. Therefore, w∗ is also an

optimal solution of problem Equation (11). Moreover, since w∗ is a non-negative 3-sparse vector it follows
that w∗

1 , w∗
2 , w∗

3 > 0. This implies that the non-negative constraint of problem Equation (11) is inactive and
therefore an optimal solution must be a stationary point of the objective function. The desired result follows
by zeroing the gradient of the objective function of problem Equation (11).

If an optimal solution w∗ of problem Equation (9) is dense, it follows that w∗ > 0. Then, the non-negative
constraint of problem Equation (9) is inactive at w∗. Therefore, w∗ must be a stationary point of the objective
function of problem Equation (9).

Since the optimization problem Equation (9) is a minimization of the (non-convex) differentiable objective
function f over the non-negative constraint, it is well known that the corresponding KKT conditions are
necessary for critical points w∗, which are compactly given by ∇f(w∗) ≥ 0 , w∗ ≥ 0 and ∇f(w∗)T w∗ = 0.
Therefore, from the third condition it follows that for any positive element of w∗ the corresponding partial
derivative of f must be zero. Moreover, by writing the gradient of the objective function of problem
Equation (9), we get that

∇f(w∗)T w∗ = (w∗ − z + λ∇r2:4(w∗))T w∗ = ∥w∗∥2 − zT w∗ + 3λr2:4(w∗),
6If we have equality in some of the inputs, i.e., zi = zj , permuting those two inputs also leads to valid solutions. We do not

give precedence to either of those solutions but simply chose the one that follows the order provided by the sorting algorithm.
For the proof we ignore this degeneracy to keep it simple.
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where the last equality follows from the fact that ∇r2:4(w)T w = 3r2:4(w) for any w ∈ R4. From here we
immediately see that z ≥ w∗ and if r2:4(w∗) ̸= 0 then λ = (zT w∗−∥w∗∥2)/3r2:4(w∗). From the first condition,
that is ∇f(w∗) ≥ 0, we get that λ ≥ (zi − w∗

i )/∇ir2:4(w∗) for all 1 ≤ i ≤ 4 that ∇ir2:4(w∗) ̸= 0.

Since the optimal solutions must be monotonically decreasing in i there are no other cases.

The two other necessary conditions about λ stem from the KKT conditions of a critical point (with active
constraints) for the constrained optimization problem. Specifically, the Lagrangian of f L(w, ν) = f(w)−νT w.

The conditions for critical points (including those at 0) are that there exists ν ∈ R4 such that

1. Stationarity: ∇wL(w, ν) = ∇f(w)− ν = 0

2. Complementary slackness: νiwi = 0 for i = 1, 2, 3, 4.

3. Primal feasibility: w ≥ 0

4. Dual feasibility: ν ≥ 0.

For any critical point to be 2-sparse i.e., w1 > 0, w2 > 0, w3 = w4 = 0, it needs to satisfy complementary
slackness which implies ν1 = ν2 = 0. Moreover, stationarity condition gives w1 = z1, w2 = z2,

ν3 = ∂

∂w3

f(w) = w3 − z3 + λw1w2 = −z3 + λz1z2

and
ν4 = ∂

∂w4

f(w) = −z4 + λz1z2

Now the dual feasiblity condition ν3, ν4 ≥ 0 gives the condition that λ ≥ z3/(z1z2).

Similarly, for any critical point to be 3-sparse, i.e., w1 > 0, w2 > 0, w3 > 0, w4 = 0, we have ν1 = ν2 = ν3 = 0,
and that there exists

ν4 = ∂

∂w4

f(w) = −z4 + λ(w1w2 + w2w3 + w3w1) ≥ 0.

w1, w2, w3 can be solved by the following non-linear system of equation
w1 + λw2w3 = z1,

w2 + λw1w3 = z2,

w3 + λw1w2 = z3.

(22)

For this reason, if we are able to first identify a solution to Equation (22) then verify that the ν4 ≥ 0, then we
certified that this solution is a critical point — a necessary condition for this sparse solution to be a global
optimal solution.

B.5 Proof of Lemma 5

Proof.

∇2g(w) =

 1 λw3 λw2
λw3 1 λw1
λw2 λw1 1

 and (23)

∇2f(w) =


1 λ(w3 + w4) λ(w2 + w4) λ(w2 + w3)

λ(w3 + w4) 1 λ(w1 + w4) λ(w1 + w3)
λ(w2 + w4) λ(w1 + w4) 1 λ(w1 + w2)
λ(w2 + w3) λ(w1 + w3) λ(w1 + w2) 1

 . (24)

Note that the conditions that ∇2g ⪰ 0 and ∇2f ⪰ 0 are Linear Matrix Inequalities, thus convex.
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B.6 Proof of Corollary 6

Proof. It suffices to check the definition of a convex set, i.e., for any pair of local minima, their convex
combination is also a local minimum.

Let C4 := {w ∈ R4 | ∇2f(w) ⪰ 0} as in Lemma 5, where we showed that it is convex. Let u∗, v∗ ∈ R4 be local
minima of f . Then, since u∗, v∗ ∈ C4 and C4 is convex, for any 0 ≤ t ≤ 1, f is convex at w(t) := tu∗ +(1− t)v∗.

By the definition of C4 when restricting to this set, f is a convex function. By the first order definition of
convex function

f(u∗) ≥ f(v∗) + (u∗ − v∗)T∇f(v∗) = f(v∗)

similarly

f(v∗) ≥ f(u∗) + (v∗ − u∗)T∇f(u∗) = f(u∗)

thus f(u∗) = f(v∗).

By convexity of f on the line segment, f(w(t)) ≤ tf(u∗) + (1− t)f(v∗) = f(u∗) for all t. On the other hand,
as t→ 0, we also have f(w(t)) ≥ f(u∗) due to that u∗ is a local minima. These two conditions imply that
f(w(t)) = f(u∗) for all t ∈ [0, 1], i.e., w(t) is also a local minimum.

To prove the second part we first show that the minimum of f over R4
+ exists. Therefore note that for any

w ∈ R4
+ if wi > zi, we have ∂if(w) > 0 for all i ∈ [4], implying that f is minimized within wi ≤ zi which is a

closed set. Hence there exists w∗ ∈ R4
+ such that w∗

i ≤ zi and f(w∗) = minw∈R4
+

f(w). Now assume w∗
i > 0

for all i ∈ [4], then w∗ necessarily is a local minimum and ∇2f(w∗) ⪰ 0. Conversely, since all local minima of
a convex function attain the same value, the statement follows.

The statements for g follow in analogy.

B.7 Proof of Theorem 7

Proof. The optimal solution to Equation (9) has three possibilities: dense, 3-sparse, 2-sparse.

If the solution to Equation (9) is 2-sparse, r2:4(w) = 0 then w(2) is the solution due to that it minimizes
1
2∥w − z∥2 subject to the 2-sparse constraint.

If the solution to Equation (9) is 3-sparse with w1:3 > 0, then w1:3 is also the solution to Equation (11),
moreover ∇2g(w1:3) ⪰ 0. Since the constraint is not active, and w1:3 is in the strict interior of the constraint,
thus ∇g(w1:3) = 0. Since w1:3 is feasible, it is also optimal for Equation (13). Any other solution w̃1:3 to
Equation (13) (if exists) must satisfy g(w̃1:3) = g(w1:3) thus is also an optimal solution to Equation (11) and
Equation (9).

Similarly, if the solution to Equation (9) is dense with w > 0 (for all coordinates), then ∇2f(w) ⪰ 0
and ∇f(w) = 0 (due to stationarity and complementary slackness). This checks the feasibility of w in
Equation (14) which implies that w is an optimal solution to Equation (14). Let w̃ ∈ R4 be any other optimal
solution to Equation (14), f(w̃) = f(w), thus w̃ is also an optimal solution to Equation (9).

To conclude, in each of the three cases, Line 2-4 of the algorithm returns the optimal solution.

B.8 Proof of Fact 8

Proof. a) At w = [0, 0, 0, 0] the Hessian Equation (24) is just the identity and hence positive.

b) First note that as soon as one off-diagonal entry of Equation (24) is larger than one, there is a 2 × 2
principal minor that becomes indefinite, thus the Hessian is not positive semidefinite anymore. Thus positivity
of the Hessian implies that all off-diagonal entries are less or equal to 1. We can then use Gershgorin disc
theorem and obtain that all eigenvalues are between [−2, 4], hence γmax ≤ 4.
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C Other Regularizers for 2:4 Sparsity

Our main theoretical contribution is to show that the non-convex proximal operator can be solved efficiently
by decomposing it into smaller subproblems. In principle, there also exist simpler regularizers that induce
2:4 sparsity and whose proximal operator can be solved more efficiently. Here we introduce three further
proximal operators of simpler regularizers. To be concise, we assume Lemma 3 has already been applied, i.e.,
w1 ≥ w2 ≥ w3 ≥ w4 ≥ 0 and we define the regularizers

R0(w1, w2, w3, w4) :=


0 if w4 = w3 = 0,

1 if w4 = 0, w3 > 0,

2 if w4 > 0.

(25)

R1(w1, w2, w3, w4) := w4 + w3, (26)

R2(w1, w2, w3, w4) := 1
2(w2

4 + w2
3). (27)

Each of those regularizers equals 0 if and only if the four weights have a 2:4 sparse pattern. So those regularizers
do also enforce 2:4 sparsity. Let’s look at their proximal operators – again assuming z1 ≥ z2 ≥ z3 ≥ z4 ≥ 0.

arg min
w∈R4

+

f(w), with (28)

f(w) :=1
2∥w − z∥2 + λRp(w1, w2, w3, w4). (29)

Note that the objective of those proximal operators can all be easily be decomposed for each of the
variables and trivially w∗

1 = z1 and w∗
2 = z2. The other optimizations are also simple. For R0 we have

w∗
3 = 0 if λ > 1

2 z2
3 else z3; for R1 we have w∗

3 = max (z3 − λ, 0); For R2 we have w∗
3 = z3/(1 + λ). For w∗

4 it
follows in analogy for all three cases.

Thus, depending on λ, R0 forces weights to be zero if they are below a threshold (hard thresholding), R1
does a soft-thresholding, and R2 leads to a shrinkage. For large but finite λ, R0 and R1 lead to exact 2 : 4
sparsity, whilst R2 does not lead to exact 2:4 sparsity for finite λ.

However, those regularizers commit very early to the sparsity pattern, and none of the behavior of Figure 1
are observed for them. Furthermore, on the toy problem in Section 4.1 they cannot find the optimal solution.
We hence focused the main part of this work on the more elaborate proximal operator. For completeness we
also report perplexity numbers for it in Table 2 as well as the runtime. Since the optimization problems are
trivial and have a close form solution, they are significantly faster, but lead to slightly worse perplexity.

D Experiment Details

In Figures 3, 4, and 5 we show further ablations and insights into our main experiments. Table 2 shows the
different runtime of the pruning methods and Table 3 shows results of the pruned models on downstream
tasks.

D.1 Using the Hessian of the unpruned Model

For our studies in the main paper we compute the Hessian matrix for each linear layer once before the pruning.
This allows us to prune layers in parallel and distribute the pruning on multiple GPUs, because the local
Hessians do not depend on each other. The alternative is to prune the matrices sequentially and propagate
the pruned inputs. In our ablation Table 4 we find however, that it’s effect is overall very minor, and it is not
structurally better than using the unpruned inputs.
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Figure 3: Ablation for the regularizer schedule Equation (15) on the down projection of layer 18 of Llama-3.1
8B.
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Figure 4: Layerwise local squared loss on an example
matrix of openLlama 3bv2. We show the loss relative
to the loss WandA (with masked gradient updates)
incurs. As intended by design, the proximal approach
of pruning leads to smaller local squared loss. In
Table 1 we see that this also translates to a better
end to end performance in terms of perplexity.
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Figure 5: Effect of number of GD steps Equation (5)
after masking with Wanda on the 13B model. The
perplexity converges quickly and the used 1000 steps
in the main paper suffice to drive the local optimiza-
tion to convergence. These results confirm that the
proximal operator identifies a more effective mask,
as prox achieves lower values of perplexity.

D.2 Dependence on the number of calibration samples

In this section, we provide an ablation on the calibration samples for the 3B model, where we consider the
same number of samples as in Sun et al. (2024, Table 17)). After pruning we again evaluate the perplexity
on the test sets of C4 and Wikitext2. We make three main observations: a/ Wanda (which uses only the
diagonal of the Hessian) converges quickly as known from prior work. b/ Methods that use masked gradient
updates can consistently improve their validation perplexity when using more calibration data. However,
with diminishing returns (note that the number of samples is increased exponentially here). c/ Except when
using only a single sample, our proposed prox+GD outperforms all other methods when using the same
amount of calibration data.
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Table 2: Wall clock runtime of different pruning approaches on Llama-3.1 8B Instruct. The proposed
regularizer leads to the best perplexity, however, also incurs the highest pruning cost. Since this is a once-off
effort, and negligibly small compared to pretraining costs, this can be disregarded in production settings.

Runtime [s] Runtime [min] C4 Perplexity Wiki Perplexity
proposed regularizer [Section 3.2] 11,170 186.17 26.44 20.15
L0 regularizer, Equation (25) 1,346 22.43 27.25 20.21
L1 regularizer, Equation (26) 1,242 20.70 28.46 20.70
L2 regularizer, Equation (27) 2,628 43.80 27.84 20.43
wanda 258 4.30 43.30 26.67
wanda+GD 1,000 16.67 28.45 20.71
sparsegpt 313 5.22 35.55 26.19
sparsegpt+GD 1,064 17.73 27.54 20.85

Table 3: Accuracy Evaluation of pruned versions of Llama-3.1 8B Instruct on 6 Downstream Tasks. The
methods (+GD) introduced in this work reduce the accuracy gap by around 3% to 5% against previous
methods. Note that on GSM8K we see an almost complete breakdown of accuracy. This is because GSM8K
is run in a generative fashion, where the model can generate many tokens and then provides the final answer
in a specific format. It is known that such generative tasks are much more susceptible to accuracy loss than
pure classification tasks, where the answer options are already provided (Dutta et al., 2024). All tasks other
than GSM8K are run as classification tasks, which explains that GSM8K is such an outlier.

model Mean MMLU GSM8K Winogrande Hellaswag TruthfulQA ai2_arc
original 64.28% 67.70% 75.36% 73.79% 59.19% 37.58% 72.04%
wanda 35.78% 37.02% 2.50% 62.75% 38.94% 26.19% 47.27%
wanda + GD 40.76% 40.65% 11.83% 65.27% 43.98% 27.42% 55.44%
sparsegpt 37.59% 34.97% 6.07% 64.56% 41.50% 24.60% 53.86%
sparsegpt + GD 40.98% 42.94% 8.95% 66.06% 44.74% 27.17% 56.00%
DSnoT 35.01% 36.98% 1.36% 59.75% 36.71% 26.32% 48.96%
prox + GD 40.81% 41.82% 10.01% 65.51% 44.82% 27.29% 55.41%

Table 4: The effect of propagating the pruning errors is negligible.
Model Method Hessian C4 Wiki

3b_v2
dense 9.68 14.15

wanda Original 29.49 60.35
wanda Pruned 28.65 55.98

7b_v2
dense 8.84 12.15

wanda Original 17.61 27.00
wanda Pruned 17.59 26.88

13b
dense 8.11 11.52

wanda Original 13.17 35.39
wanda Pruned 13.30 37.61

D.3 Prox without masked gradient steps

Since our proposed method intrinsically already uses gradient updates, we highly recommend always adding
additional masked gradient steps after freezing the mask. This is particularly advisable given its low
computational cost.

However, to understand the effect of it, in Table 7 we also include an ablation on the perplexity as we vary
the number of gradient steps after masking. Since prox already does gradient updates during the pruning,
even without additional updates after freezing the mask, the perplexity is already fairly low. Doing further
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Table 5: C4 perplexity after pruning with varying number of calibration samples
calibration samples 1 16 32 64 128 256 512 1024 2048
wanda 32.11 30.20 29.67 29.70 29.66 29.58 29.57 29.52 29.50
wanda + GD 35.72 21.01 19.51 18.99 18.70 18.50 18.36 18.23 18.16
sparsegpt 557.04 21.30 19.92 19.31 19.23 19.01 18.79 18.80 18.64
sparsegpt + GD 302.03 19.77 18.01 17.44 17.12 16.89 16.81 16.74 16.62
prox +GD 70.96 18.85 17.53 17.11 16.73 16.38 16.34 16.28 16.19

Table 6: Wiki perplexity after pruning with varying number of calibration samples
calibration samples 1 16 32 64 128 256 512 1024 2048
Pruning Methods Wiki Wiki Wiki Wiki Wiki Wiki Wiki Wiki Wiki
wanda 72.89 63.03 60.16 61.63 61.56 61.51 60.82 60.47 60.54
wanda + GD 100.41 40.92 36.43 34.86 33.96 33.71 33.55 33.05 32.88
sparsegpt 2,859.53 41.01 35.97 33.92 33.60 35.03 33.83 33.95 33.38
sparsegpt + GD 1,675.12 38.06 32.14 30.88 30.13 30.21 30.13 29.56 29.32
prox +GD 149.96 35.80 30.32 29.70 29.19 28.49 28.51 28.58 28.09

masked gradient updates monotonically decreases the perplexity (both in- and out- of distribution) until it
reaches convergence.

Table 7: Effect of masked gradient updates for prox on the OpenLlama 3B model.
steps after masking 0 50 100 200 400 800 1000 1600
c4 16.92 16.70 16.56 16.41 16.31 16.27 16.27 16.26
wiki 30.63 29.99 29.58 29.12 28.84 28.66 28.62 28.63
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