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Abstract

Poisoning-based backdoor attacks are serious threat for training deep models on
data from untrustworthy sources. Given a backdoored model, we observe that
the feature representations of poisoned samples with trigger are more sensitive
to transformations than those of clean samples. It inspires us to design a simple
sensitivity metric, called feature consistency towards transformations (FCT), to
distinguish poisoned samples from clean samples in the untrustworthy training
set. Moreover, we propose two effective backdoor defense methods. Built upon a
sample-distinguishment module utilizing the FCT metric, the first method trains
a secure model from scratch using a two-stage secure training module. And the
second method removes backdoor from a backdoored model with a backdoor
removal module which alternatively unlearns the distinguished poisoned samples
and relearns the distinguished clean samples. Extensive results on three benchmark
datasets demonstrate the superior defense performance against eight types of
backdoor attacks, to state-of-the-art backdoor defenses. Codes are available at:
https://github.com/SCLBD/Effective_backdoor_defense.

1 Introduction

Training deep neural networks (DNNs) often requires a large amount of training data, which is
sometimes obtained from a third-party untrustworthy source. However, the untrustworthy data may
bring serious security threats. One of the typical threats is the poisoning-based backdoor attack [1],
which could inject undesired backdoor—the correlation between trigger(s) and target class(es)—into
the model through maliciously poisoning a few training samples. Specifically, as shown in the top
left of Fig. 1, each poisoned sample is attached with a trigger (see a small grid patch) at the bottom
right corner, and relabelled as a target class. Consequently, the trained backdoored model will predict
clean samples very well, but is likely to predict any sample with the trigger to be the target class.

It has been observed in [2] that poisoned samples with triggers are likely to gather together in
the feature space of a backdoored model, as shown in the top right of Fig. 1. Note that these
poisoned samples contain diverse objects (may be from different source classes), but the informa-
tion from these objects seems to be ignored by the backdoor model. In other words, the feature
representations of poisoned samples are dominated by the triggers, rather than the objects. We
conjecture that such a domination is mainly due to the overfitting to the triggers by the backdoor
model, since triggers across different poisoned samples are much less diverse than objects. To
verify this conjecture, we propose to slightly perturb both poisoned and clean samples, such as
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rotation transformation. As shown in the bottom right of Fig. 1, there is no longer gathering of
poisoned samples in the feature space, and they are located close to samples of their source classes,
i.e., the dominance of triggers over other objects disappears, which verifies the triggers overfitting.
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Figure 1: Poisoned and clean samples from CIFAR-10 [3], and the t-SNE
[4] visualization of their feature representations with a backdoored model.
As shown in the Union figure, the changes of poisoned samples (from ·
to +) are much larger than those of clean samples (from · to + in other
colors). Note that we present only three classes for clear illustration.

Besides, although the feature
representations of clean samples
are also affected by transforma-
tions, their changes are much
smaller than those of poisoned
samples. In other words, poi-
soned samples are more sen-
sitive to transformations than
clean samples. It inspires that
poisoned samples could be dis-
tinguished from clean samples
according to the sensitivity to
transformations, which is mea-
sured by a simple sensitivity
metric, called feature consis-
tency towards transformations
(FCT). In our experiments, the
precision of the distinguished
clean and poisoned samples is
nearly 100% in most cases, re-
spectively.

In this work, we aim to obtain a secure model (i.e., high-performance and without backdoor) based on
an untrustworthy training set. To this end, we consider two defense paradigms: one is training a secure
model from scratch, while the other is firstly training a backdoored model using standard supervised
learning, and then removing backdoor from the backdoored model. Under paradigm 1, we propose
an innovative secure training method, called Distinguishment and Secure Training (D-ST), which
consists of two consecutive modules. The first sample-distinguishment (SD) module splits the whole
training set into clean, poisoned and uncertain samples, according to the FCT metric. The second two-
stage secure training (ST) module firstly learns the feature extractor via semi-supervised contrastive
learning, and then learns the classifier via minimizing a mixed cross-entropy loss. Under paradigm 2,
we propose an innovative backdoor removal method, called Distinguishment and Backdoor Removal
(D-BR), which consists of the SD module and a backdoor removal (BR) module. BR module
alternatively unlearns the distinguished poisoned samples and learns the distinguished clean samples.
Extensive experiments are conducted to verify the superior defense performance of the above two
proposed methods, as well as effectiveness of each individual module.

The main contributions of this work are three-folds. (1) We demonstrate the sensitivity of poisoned
samples to transformations, which is mainly due to the overfitting to trigger, and propose a simple
sensitivity metric to distinguish poisoned samples from clean samples. (2) We propose two effective
backdoor defense methods for training a secure model from scratch and removing backdoor from
the backdoored model, respectively. (3) Extensive experiments on 3 benchmark datasets show the
superior performance of the proposed defense methods against 8 widely used backdoor attacks, to 6
state-of-the-art defense methods.

2 Related work

Backdoor attack. In poisoning-based backdoor attacks, the attacker attaches a few training samples
with trigger(s), and relabel them as target class(es). Existing attacks can be categorized according to a
variety of criteria as follows. (1) Size of trigger: Patch-based attacks [1, 5, 6] craft patch-like triggers
while in blend-based attacks [7, 8], triggers capture the whole image. (2) Visibility of trigger: Visible
attacks [1, 6] design visible but not suspicious triggers while invisible attacks [8, 9, 10] propose
invisible and still effective ones. (3) Variability of trigger: Triggers are invariant in sample-agnostic
attacks [1, 7, 11] while vary with samples in sample-specific attacks [9, 12]. (4) Label-consistency: If
poisoned samples are chosen from samples with target class, then we call these attacks as clean-label
attacks [11, 13, 12, 14]. Otherwise, we name them as dirty-label attacks [1, 6, 7, 8]. (5) Number of
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Figure 2: Framework of two proposed backdoor defense methods for secure training from scratch
(paradigm1) and backdoor removal (paradigm2), respectively.

target classes: All2one attacks [1, 6, 7, 8] designate one class as the target class while in all2all attacks
[1], poisoned samples are relabelled as the next class. There are also other attacks [15, 16, 17, 18, 19]
that require the attacker to control the training process, which are out of scope of this paper. The
attack performance of the methods above can be referred to the Backdoorbench [20].

Backdoor defense. In general, there are two types of defense paradigms against poisoning-based
backdoor attacks—secure training and backdoor removal. Mainstream defense methods belong to
the latter one, which leverage the model properties [21, 22, 23] or the feature space characteristics
[24, 5, 25, 26, 27, 28, 29] of a backdoored model, to remove the hidden backdoor. For instance, FP
[21] observes that some neurons are activated by poisoned samples while others are by clean samples.
AC [24] notices the difference in size between the cluster of clean target samples and that of poisoned
samples. So far, there is still few works for the former defense. Secure training attempts to train
a secure model from scratch, preventing backdoor inserted during training. The core point lies in
how to distinguish poisoned samples from clean samples. The first method DBD [2] uses the loss
values, the symmetric cross-entropy loss particularly, to distinguish samples during training while our
proposed secure training method, i.e., D-ST, leverages the property that the feature representations of
poisoned samples in a backdoored model are more sensitive to transformations than those of clean
samples, to distinguish samples in advance of the training.

3 Proposed method

3.1 Problem formulation

Threat model. In this paper, we consider the threat model of poisoning-based backdoor attacks,
where the attacker can manipulate a few samples in the original clean training set Dtrain = Dc ∪
{(xi, yi)}

mp

i=1, with Dc = {(xi, yi)}mc
i=1 indicating the unmanipulated subset. For the remaining mp

samples, each sample xi ∈ X is fused with a trigger δ to form a poisoned sample x̄i = xi ⊕ δ with
⊕ being the fusion operator. Meanwhile, its label yi ∈ Y is also changed to a target class t. Then, a
poisoned training set is constructed, denoted as D̄train ≡ Dc∪Dp, with Dp = {(x̄i, t)}

mp

i=1. When a
user downloads D̄train and trains a DNN classifier gθ : X → Y based on D̄train using the standard
supervised learning algorithm, it may learn a undesired backdoor, i.e., a stable mapping from the
trigger δ to the target class t. Consequently, for any new sample with the trigger δ, it is likely to be
predicted as the target class t. Note that the user does not know which sample is poisoned or clean.

Defense goal. Given the poisoned training set D̄train, the defender aims to obtain a high-performance
model gθ without backdoor, i.e., a secure model. In this work, we consider two different paradigms:

• Paradigm 1: a secure model is directly trained from scratch, as described in Section 3.3.
• Paradigm 2: a backdoored model is firstly trained using the standard supervised learning, then the

backdoor is removed from the backdoored model, as described in Section 3.4.
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3.2 Sensitivity of poisoned samples

Sensitivity metric. As illustrated in Section 1 and Fig. 1, we have found that the poisoned samples are
much more sensitive to transformations than the clean samples in a backdoored model. To accurately
measure such a difference, we propose a simple metric, feature consistency towards transformations
(FCT). Specifically, given a backdoored model gθ trained on D̄train with fθe

(·) indicating its feature
extractor, and a set of transformations τ (e.g., rotation, scaling, will be specified in experiments), for
any sample x (poisoned or clean), the FCT metric is formulated as follows:

∆trans(x; τ, fθe) = ∥fθe(x)− fθe(τ(x))∥22. (1)

It measures the change of the feature representation due to the transformations τ . If ∆trans(x; τ, f) is
large, then it means that x is sensitive to τ , otherwise stable. For clarity, we use ∆trans(x) hereafter.

(a) BadNets (b) Blend

Figure 3: Distribution of clean and poisoned samples
with respect to the FCT metric on CIFAR-10.

Sample-distinguishment module. Utilizing
FCT, we develop a sample-distinguishment (SD)
module. Specifically, we firstly train a back-
doored model gθ based on D̄train using the stan-
dard supervised learning algorithm with a few
epochs (explained in Appendix A.1). Then, we
calculate ∆trans(xi),∀xi ∈ D̄train, and plot
the histogram. As shown in Fig. 3, where two
representative backdoor attacks are evaluated,
there is remarkable difference on the distribu-
tion between the poisoned and the clean samples
in both histograms. It demonstrates that ∆trans

is a good metric to distinguish the poisoned sam-
ples from the clean samples in D̄train. Based
on the sensitivity histogram, we set two proportion values αc, αp ∈ [0, 1]. The samples with the
bottom-αc ∆trans values are separated to a subset of clean samples D̂c, while those with the top-αp

∆trans values are separated into a subset of poisoned samples D̂p, while the remaining samples are
partitioned as an uncertain subset denoted as D̂u. We have D̄train = D̂c ∪ D̂p ∪ D̂u. More details
are in Algorithm 1 in Appendix A.1

3.3 Method for paradigm 1: secure training from scratch

Here, we consider the backdoor defense under paradigm 1. We propose an innovative secure training
method, called Distinguishment and Secure Training (D-ST) method. As illustrated in Fig. 2, D-ST
consists of the SD module (see above) and a two-stage secure training (ST) module, which is
described as follows. Details of the D-ST method are summarized in Algorithm 3 in Appendix A.2..

Stage 1: learning feature extractor via semi-supervised contrastive learning (SS-CTL). Our
method is inspired by a recent backdoor defense method called DBD [2], which proposed to learn a
good feature extractor fθe based on D̄train using a self-supervised learning algorithm, i.e., contrastive
learning (CTL). Consequently, the feature representations of samples with similar appearances will
be similar, and poisoned samples with triggers cannot gather together to form the backdoor. Note
that all labels have been abandoned in DBD before the extractor learning since there is no way to
identify poisoned samples in advance of the learning, leading to the waste of the valuable information
contained in clean samples. Fortunately, the proposed SD module could identify some clean samples.
Thus, inspired by the supervised contrastive learning (S-CTL) [30], which has shown to learn a feature
extractor with better performance than CTL, we propose a novel learning called semi-supervised
contrastive learning (SS-CTL), to learn fθe

by minimizing the following loss function:

LSS−CTL(θe; D̄train) =
∑

(xi,yi)∈D̂p∪D̂u

ℓCTL

(
fθe

(x̃
(1)
i ), fθe

(x̃
(2)
i )

)
(2)

+
∑

{(xi,yi),(xj ,yj)}⊂D̂c

ℓS−CTL

(
fθe

(x̃
(1)
i ), fθe

(x̃
(2)
i ), fθe

(x̃
(1)
j ), fθe

(x̃
(2)
j ); yi, yj

)
,

where the contrastive loss ℓCTL encourages the two augmented versions x̃(1)
i , x̃(2)

i (e.g., cropping,
details are introduced in Appendix C) of a sample xi to be close in the feature space, while the
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supervised contrastive loss ℓS−CTL additionally encourages the feature representations of two clean
augmented samples from the same class to be close. In this work, we instantiate ℓCTL as the
contrastive loss defined in [31] and ℓS−CTL as the SupCon loss defined in [30].

Stage 2: learning classifier via minimizing the mixed cross-entropy loss. Given the feature
extractor fθe

learned in stage 1, we then learn the classifier hθc
by minimizing the following mixed

cross-entropy (MCE) loss:

LMCE(θc; D̂c, D̂p) =
−1
|D̂c|

∑
(x,y)∈D̂c

log[hθc
(fθe

(x))]y +
λp

|D̂p|
·

∑
(x,y)∈D̂p

log[hθc
(fθe

(x))]y, (3)

where the first term is the standard cross-entropy loss defined based on the distinguished clean samples
D̂c, while the second term is the negative cross-entropy loss defined based on the distinguished
poisoned samples D̂p, which is used to eliminate the effect of poisoned samples. λp ∈ R+ is a
trade-off parameter between two losses.

3.4 Method for paradigm 2: backdoor removal

Here we consider the backdoor defense under paradigm 2. We propose an innovative backdoor
removal method, called Distinguishment and Backdoor Removal (D-BR) method. As illustrated in
Fig. 2, D-BR consists of the SD module (see Section 3.2) and a backdoor removal (BR) module.
The BR module aims to remove the backdoor from the backdoored model, i.e., the backdoor is no
longer activated by the trigger, while keeping the high performance on clean samples. To this end,
the BR module implements an iterative learning algorithm, which consists of two alternating steps,
i.e., unlearning and relearning. The D-BR method is summarized in Algorithm 4 in Appendix A.3.

Unlearning. This step aims to eliminate the effect of the trigger, through unlearning [32] the poisoned
samples in D̂p distinguished by the SD module, as follows:

Lunlearn(θ; D̂p) =
1

|D̂p|

∑
(x,y)∈D̂p

log[gθ(x)]y. (4)

Relearning. After conducting the above unlearning step for one epoch, although the effect of
poisoned samples is somewhat eliminated, in experiments we find that the performance on clean
samples is also degraded to some extent. Thus, we want to relearn the mapping from the clean objects
to the ground-truth classes based on clean samples in D̂c distinguished by the SD module, as follows:

Lrelearn(θ; D̂c) =
1

|D̂c|

∑
(x,y)∈D̂c

− log[gθ(x)]y. (5)

Note that both unlearning and relearning are run for one epoch in each round.

4 Experiments

4.1 Experimental settings

Attack configurations. According to the taxonomy described in Section 2, we consider 8 typical
poisoning-based backdoor attacks by choosing at least one method from each category, including:
BadNets [1] using two attack types (BadNets-all2one, BadNets-all2all), Trojan backdoor attack [6]
(Trojan), Blend backdoor attack using two different patterns (Blend-Signal, Blend-Kitty) 2 [7], Clean-
label backdoor (CL) [13], Sinusoidal signal backdoor attack (SIG) [11], Sample-specific backdoor
attack (SSBA) [9]. We evaluate all attacks on 3 benchmark datasets, CIFAR-10 [3], CIFAR-100 [3]
and an ImageNet subset [33, 9], with ResNet-18 [34] as the base model. Poisoning rate is set to 10%
in all attacks. Due to the space limit, more implementations details about attacks can be found in
Appendix C.3.

Defense configurations. We first compare the proposed D-ST method with DBD [2]. Since studies
with this secure-training paradigm are limited, we additionally add 2 baselines for comparison which

2If not specified, ‘BadNets/Blend’ generally stands for the BadNets-all2one/Blend-signal attack.
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are detailed in Section 4.2. We then compare the proposed D-BR method with 5 state-of-the-art
methods with the same backdoor-removal paradigm: the standard fine-tuning FT, ANP [22], NAD
[35], MCR [36] and ABL [37]. For methods requiring extra clean data, 1% of the clean training
samples are provided. Other configurations are set as clarified in the original papers. In summary,
we consider 6 state-of-the-art defense methods and 2 additional baselines. More implementations
details can be found in Appendix C.4. For our proposed methods, we use αc = 20%, αp = 5% and
τ =rotate+affine in all experiments. Other details can be seen in Appendix C.5.

Evaluation metrics. We evaluate the defense performance adopting two commonly used metrics:
accuracy on clean samples (ACC) and attack success rate (ASR), i.e., accuracy of predicting poisoned
samples as the target label.

4.2 Experimental results

Effectiveness of D-ST method. We first consider paradigm 1—secure training from scratch. Per-
formance of different defense methods against various attacks on CIFAR-10 and CIFAR-100 is
demonstrated in Table 1. An ideal defense method is supposed to increase ACC while keep ASR
as low as possible. Thus, a larger ACC-ASR indicates a better method. We mark the best result in
boldface. Note that we only report results on successful attacks where ASR is higher than 85%.

Table 1: Comparisons of the D-ST method with 3 secure-training defense methods (%).

Dataset ↓
Defense→ Baseline1 Baseline2 DBD D-ST
Attack ↓ ACC ASR ACC ASR ACC ASR ACC ASR

CIFAR-10

BN-all2one 83.54 2.60 91.32 99.91 92.75 100.00 92.77 0.03
BN-all2all 83.95 2.72 91.59 57.39 92.95 75.21 89.22 2.05
Trojan 83.77 5.24 93.63 99.98 92.81 100.00 93.72 0.00
Blend-Strip 85.36 99.93 94.19 100.00 94.21 99.98 93.59 0.00
Blend-Kitty 85.03 99.99 94.31 100.00 93.32 100.00 91.82 0.00
SIG 85.14 99.02 94.37 99.93 94.37 99.71 90.07 0.00
CL 85.79 10.76 94.58 98.87 94.32 99.87 90.46 6.40
Avg 84.65 45.75 93.43 93.73 93.53 96.40 91.66 1.21

CIFAR-100

BN-all2one 54.48 10.41 67.62 100.00 69.08 100.00 68.43 0.12
Trojan 56.17 12.76 71.01 100.00 72.18 99.99 68.04 0.08
Blend-Strip 58.01 99.91 72.47 99.99 71.29 99.99 67.63 0.00
Blend-Kitty 57.21 99.99 73.36 99.99 72.43 100.00 67.06 0.00
Avg 56.47 55.77 71.12 100.00 71.24 99.99 67.79 0.05

DBD fails in most attacks on CIFAR-10 and CIFAR-100, probably due to the failure of the symmetric
cross-entropy to distinguish samples. By comparison, the good performance reached by D-ST
illustrates the accurate distinguishment from the FCT-based SD module. We additionally introduce
two feasible baselines without requiring special knowledge. Baseline1 first uses SimCLR [31] to train
the feature extractor and then trains the classifier on the poisoned dataset with standard supervised
learning. By comparison, Baseline2 leverages S-CTL [30] to train the feature extractor. We focus
on discussing the effect of different extractor-training algorithms on defense performance. More
discussions are in the later experiments. Baseline 1 reveals that training extractor without labels may
result in low ASR (<5% / <20% in some cases on CIFAR-10 / CIFAR-100), but will sacrifice ACC
definitely (84.65% / 56.47% on average). While Baseline 2 demonstrates that training extractor with
all labels guarantees high ACC (93.43% / 71.12% on average), but also brings high ASR (93.73% /
100% on average). By contrast, results of D-ST illustrate the effectiveness of ST module in training
the feature extractor in a secure way since ACC is high (91.66% / 67.79% on average) and ASR
(1.21% / 0.05% on average) is extremely low.

Effectiveness of D-BR method. Then, we consider paradigm 2—backdoor removal. Defense
performance of different defense methods against various attacks on CIFAR-10 and CIFAR-100 is
demonstrated in Table 2. Results on ImageNet is shown in Table 5 in Appendix D.

Results on CIFAR-10. We discover that except for FT and MCR, other selected methods generally
reduce ACC markedly. Additionally, they have two common disadvantages. (1) They can not take
effect on all attacks. For example, ANP can defend against Trojan and Blend attacks (ASR < 1%)
while fails in clean-label attacks, i.e. SIG and CL (ASR > 10%). (2) There exists at least one attack
that can disable the methods (ASR > 50%). By contrast, the proposed D-BR method overcomes these
drawbacks. It not only maintains ACC as large as that of backdoored model, but also reduces ASR to
less than 1% on all attacks, verifying the effectiveness of the BR module and the high precision of
the distinguishment conducted by the SD module.
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Table 2: Comparisons of the D-BR method with 5 backdoor-removal defense methods on CIFAR-10
and CIFAR-100 (%). ‘Backdoored’ refers to the backdoored model. * denotes methods which require
a few (1%) clean training samples.

Dataset ↓
Defense→ Backdoored FT* ANP* NAD* MCR* ABL D-BR
Attack ↓ ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

CIFAR-10

BN-all2one 91.64 100.00 88.99 66.79 90.03 10.54 84.46 2.13 94.21 8.29 89.36 0.19 92.83 0.40
BN-all2all 92.79 88.01 90.31 4.96 86.04 1.47 84.97 1.71 92.17 2.96 79.91 78.16 92.61 0.56
Trojan 91.91 100.00 89.86 100.00 90.89 0.81 83.29 5.04 93.90 2.58 90.18 0.23 92.21 0.76
Blend-Strip 92.09 99.97 89.91 93.50 88.33 0.04 83.09 13.30 91.77 17.96 58.46 0.22 92.40 0.06
Blend-Kitty 92.69 99.99 90.47 99.31 84.07 0.01 84.54 28.96 94.42 7.49 79.20 2.27 92.11 0.14
SIG 92.88 99.69 90.81 99.87 82.43 76.32 81.00 64.72 91.82 99.04 79.94 98.84 92.73 0.24
CL 93.20 93.34 90.03 77.44 72.57 10.90 84.46 2.66 92.13 72.01 84.39 0.31 92.08 0.00
Avg 92.46 97.29 90.05 77.41 84.91 14.30 83.69 16.93 92.92 30.05 80.21 25.75 92.42 0.31

CIFAR-100

BN-all2one 71.23 99.13 70.81 66.28 65.42 0.00 69.03 11.41 73.38 0.27 66.47 0.02 72.58 0.25
Trojan 75.75 100.00 74.21 99.94 64.52 0.03 72.11 92.21 74.51 0.12 68.12 0.00 74.52 0.00
Blend-Strip 75.54 99.99 73.36 99.65 67.38 0.00 71.18 95.78 73.37 0.07 49.13 0.00 74.35 0.00
Blend-Kitty 75.18 99.97 72.93 99.96 69.03 0.00 71.73 99.93 73.93 20.60 47.05 0.00 72.00 0.01
Avg 74.43 99.77 72.83 91.46 66.59 0.01 71.01 74.83 73.80 5.27 57.69 0.01 73.36 0.07

Results on CIFAR-100. Although FT and NAD have a relatively high ACC (> 68%), they fail to
reduce ASR (91.46% and 74.83% on average). While ANP and ABL can decrease ASR to less than
0.1%, they sacrifice too much ACC (66.59% and 57.69% on average). Among the selected methods,
MCR performs the best (ACC = 73.80% on average, ASR < 0.5% in three cases), but it still fails to
defend against the Blend-Kitty attack (ASR = 20.60%). Note that MCR requires extra clean data. In
contrast, D-BR keeps ACC higher than 72%, while reduces ASR to almost 0% without any extra
clean data.

4.3 Ablation studies

Effectiveness of the SD module. Here, we aim to study the effectiveness of the SD module.
Specifically, we will show how our proposed FCT metric, performs better than other metrics, under
the backdoor-removal paradigm for illustration. To this end, we select three existing metrics for
comparison. Spectral signatures [5] specifies the metric as the correlation with the top singular vector
of the covariance matrix of feature representations. DBD [2] assigns symmetric cross-entropy loss as
the metric. The metric used in ABL [37] is loss value applied with local gradient ascent. The metric
values of clean samples are smaller than those of poisoned samples according to the former two
metrics, while larger for the third metric. For fair comparison, we uniformly set αc = 20%, αp = 5%.
We first apply the metric-replaced SD module on the poisoned training set, and then conduct the BR
module based on the distinguished samples. Results are shown in Fig. 4.

(a) BadNets (b) Blend (c) SIG (d) CL

Figure 4: Test ACC and Test ASR of four metric-replaced D-BR methods on the poisoned CIFAR-10.

The height of the blue bar above the orange bar suggests how well the metric could distinguish. As
shown in Fig. 4 (a,b,d), orange bars are all higher than blue bars for Spectral signatures and DBD,
indicating metrics of which fail to distinguish in BadNets, Blend and CL attacks. In contrast, the
metric of ABL is reliable since ABL performs well in most cases except for Blend attack where ASR
is 24.72%. By comparison, our proposed FCT metric could distinguish samples stably well, resulting
in extremely low ASR (< 0.5%) on all attacks. We attribute the success to that FCT exploits the
sensitivity of poisoned samples, which is mainly due to the overfitting to trigger by the backdoored
model that exists in all backdoor attacks we have evaluated in this paper.

Effectiveness of the BR module. Here, we focus on studying the effectiveness of the BR module.
Specifically, we aim to show how the iterative learning algorithm consisting of unlearning and
relearning performs better than the pure unlearning adopted by [37] or pure relearning. To this

7



end, we first conduct the SD module, and then apply different learning algorithms. For the three
algorithms, we run 20 epochs on CIFAR-10 and record the variations of Test ACC and Test ASR
which are illustrated as Fig. 5.

(a) BadNets (b) Blend (c) SIG (d) CL

Figure 5: Test ACC(top) and Test ASR(bottom) of three learning algorithms on poisoned CIFAR-10.

Although pure unlearning (red lines) effectively decreases ASR, it could hardy maintain ACC,
showing a downward trend. The results indicate a strict requirement for choosing the number of
unlearning epochs. On the contrary, pure relearning (green lines) can keep ACC stably high, but it
takes tiny effect in reducing ASR. By contrast, unlearning+relearning (blue lines) combines their
advantages and successfully diminishes ASR while maintains ACC. ACC and ASR steadily converge
to high and low values, respectively, validating the effectiveness and the stability of the BR module.

Effectiveness of the ST module. Here, we aim to study the effectiveness of the ST Module. Backdoor
can be injected during training the feature extractor fθe

and the classifier hθc
. The final defense

performance of gθ depends on how well fθe and hθc inhibit backdoor.

Firstly, we want to show how SS-CTL performs better than CTL or S-CTL in training a secure feature
extractor fθe

. To this end, we train fθe
with different learning algorithms and then uniformly leverage

LMCE to train hθc
. Training fθe

with CTL, as shown in the first row in Table 3, guarantees low ASR,
but the low ACC turns into a tradeoff. Note that the low ASR is the joint effort of CTL and LMCE .
And the usage of CTL does not indicate low ASR definitely, but it indeed reduces the possibility
of backdoor injection in fθe The second row illustrates that S-CTL could bring high ACC and the
potentially high ASR, as seen in the SIG and CL attacks. Since all labels (including poisoned) are
used in this scenario, ACC is reasonably high. Besides, backdoor is already injected into fθe . But due
to the inhibition effect of LMCE , the ASR of gθ may not be high. For example, in dirty-label attacks,
i.e. BadNets, Trojan and Blend attacks, ASR is almost 0%. While in clean-label attacks, i.e. SIG
and CL attacks, LMCE can not withstand the backdoor injected in fθe

, so the ASR is almost 100%.
Hence, in order to establish a reliable defense module, fθe

should be trained in a more secure way. In
comparison, the third row demonstrates the superior defense performance of SS-CTL, illustrating that
the ST module securely bridges genuinely clean intra-class samples together which are distinguished
by the SD module.

Table 3: Performance with fθe
trained with three learning algorithms on the poisoned CIFAR-10.

Attack→ BN-all2one BN-all2all Trojan Blend-Signal Blend-Kitty SIG CL
fθe ↓ ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

CTL 85.63 1.52 83.02 1.65 85.03 1.32 85.12 0.00 83.49 0.00 83.10 0.00 83.77 4.88
S-CTL 92.98 0.00 93.73 0.73 93.80 0.00 94.09 0.00 94.18 0.00 94.51 99.77 94.67 98.34
SS-CTL 92.77 0.03 89.22 2.05 93.72 0.00 93.59 0.00 91.82 0.00 90.07 0.00 90.46 6.40

Secondly, we explore how LMCE affects the defense performance of hθc
. For clarity, we denote

L1 ≡ −1
|D̂c|

∑
(x,y)∈D̂c

log[hθc
(fθe

(x))]y and L2 ≡ 1
|D̂p|
·
∑

(x,y)∈D̂p
log[hθc

(fθe
(x))]y. We have

LMCE = L1 + λpL2. Generally, if knowing clean samples, the defender will train hθc with L1. So
here, we aim to show how our proposed L2 and the trade-off parameter λp affect hθc . To this end,
we first fix fθe

learned by SS-CTL and then apply LMCE with λp = 0, 0.001, 0.01, 0.1, 1 on hθc
.

Results are shown in Fig. 6. In the previous experiments, we adopt λp = 0.001.
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Figure 6: Test ACC (left) and Test ASR (right) under various λp

on the poisoned CIFAR-10.

The comparison between λp = 0 and
λp ̸= 0 in the right figure illustrates
that L2 can effectively reduce ASR.
When comparing different λp ̸= 0 in
the left figure, we discover that as λp

increases, there is a trend of decrease
in ACC. We infer that since L2 drops
faster than L1, namely unlearning is
faster than relearning, adding weights
to L2 makes hθc

focus on unlearn-
ing instead of relearning, leading to
the low ACC. Therefore, we conclude
that L2 helps to inhibit backdoor in
hθc , but its weight should not be too large. λp = 0.001 is considered to be an appropriate choice.

In summary, we have empirically validated the effectiveness of each individual module, and shown
the flexibility of our method to combine with other existing modules.

Appendix. Due to the space limit, more results and analysis will be presented in Appendix. The
overall structure of the Appendix is listed as follows.

• Appendix A: more algorithmic details and analysis on the proposed method.
• Appendix B: more details on semi-supervised contrastive learning (SS-CTL).
• Appendix C: more implementation details.
• Appendix D: results on ImageNet.
• Appendix E: performance with different data transformations τ .
• Appendix F: performance with different proportion values αc, αp.
• Appendix G: performance with different poisoning rates.
• Appendix H: performance with different model architectures and feature dimensionalities.
• Appendix I: complexities of two proposed methods.

5 Conclusions

In this paper, we reveal the sensitivity of poisoned samples to transformations and propose a sensitivity
metric, called FCT. Besides, we propose three modules—the SD module to distinguish between clean
and poisoned samples, the ST module to train a secure model from scratch and the BR module to
remove backdoor—which constitute two defense methods, i.e.D-ST and D-BR, to defend under two
different defense paradigms. Extensive experiments have demonstrated the effectiveness of each
individual module and also the proposed defense methods.

6 Broader impact

Poisoning-based backdoor attacks are severe threats to the learning paradigm of learning a DNN
model based on the training set from some untrustworthy sources. This work reveals the sensitivity
of poisoned samples in the backdoored model, which will help people to better understand the
inner mechanism of backdoor attacks. The proposed two effective defense methods can not only
significantly mitigate the threat of existing poisoning based backdoor attacks, but also serve as the
new baseline for developing more advanced attack methods in future.
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