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Abstract
Large Language Models (LLMs) can be misused
to spread unwanted content at scale. Content wa-
termarking deters misuse by hiding messages in
content, enabling its detection using a secret wa-
termarking key. Robustness is a core security
property, stating that evading detection requires
(significant) degradation of the content’s quality.
Many LLM watermarking methods have been pro-
posed, but robustness is tested only against non-
adaptive attackers who lack knowledge of the wa-
termarking method and can find only suboptimal
attacks. We formulate watermark robustness as an
objective function and use preference-based opti-
mization to tune adaptive attacks against the spe-
cific watermarking method. Our evaluation shows
that (i) adaptive attacks evade detection against
all surveyed watermarks, (ii) training against any
watermark succeeds in evading unseen water-
marks, and (iii) optimization-based attacks are
cost-effective. Our findings underscore the need
to test robustness against adaptively tuned attacks.
We release our adaptively tuned paraphrasers at
https://github.com/nilslukas/ada
-wm-evasion.

1. Introduction
A few Large Language Model (LLM) providers empower
many users to generate human-quality text at scale, raising
concerns about dual use (Barrett et al., 2023). Untrustwor-
thy users can misuse the provided LLMs to generate harmful
content, such as online spam (Weidinger et al., 2021), mis-
information (Chen & Shu, 2024), or to facilitate phishing
attacks (Shoaib et al., 2023). The ability to detect generated
text can control these risks (Grinbaum & Adomaitis, 2022).
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Figure 1: Adaptive attackers know the watermarking algo-
rithms (KEYGEN, VERIFY), but not the secret key, so they
can optimize a paraphraser against a specific watermark.

Content watermarking enables the detection of generated
outputs by embedding hidden messages that can be extracted
with a secret watermarking key. Some LLM providers, such
as DeepMind (2024) and Meta (San Roman et al., 2024),
have already deployed watermarking to promote the ethical
use of their models. A threat to these providers are users
who perturb generated text to evade watermark detection
while preserving text quality. Such undetectable, generated
text could further erode trust in the authenticity of digital
media (Federal Register, 2023).

A core security property of watermarking is robustness,
which requires that evading detection is only possible by sig-
nificantly degrading text quality. Testing robustness requires
identifying the most effective attack against a specific wa-
termarking method. However, existing content watermarks
for LLMs (Kirchenbauer et al., 2023a; Aaronson & Kirch-
ner, 2023; Christ et al., 2023; Kuditipudi et al., 2024) test
robustness only against non-adaptive attackers, who lack
knowledge of the watermarking algorithms. This reliance
on obscurity makes watermarking vulnerable to adaptive
attacks (Lukas et al., 2024; Jovanović et al., 2024) when
information about the watermarking algorithms is leaked.

We propose a method to curate preference datasets and
adaptively optimize an attack against known content water-
marking algorithms. Optimization is challenging due to (i)
the complexity of optimizing within the discrete textual do-
main and (ii) the limited computational resources available
to attackers. We demonstrate that adaptively tuned, open-
weight LLMs such as Llama2-7b (Touvron et al., 2023)
evade detection at negligible impact on text quality against
Llama3.1-70b (Dubey et al., 2024). Our attacker spends
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less than 7 GPU hours to achieve an evasion rate of over 96%
against any of the surveyed watermarking methods with neg-
ligible impact on text quality. Our attacks are Pareto optimal,
even in the non-adaptive setting where they must transfer to
unseen watermarks. Hence, future watermarking methods
must consider our attacks to test robustness.

We make the following contributions. (1) We propose meth-
ods to curate preference-based datasets using LLMs, en-
abling us to adaptively fine-tune watermark evasion attacks
against state-of-the-art language watermarks. (2) Adaptively
tuned paraphrasers with 0.5-7 billion parameters evade de-
tection from all tested watermarks at a negligible impact on
text quality. We demonstrate their Pareto optimality for eva-
sion rates greater than 90%1. Optimization against models
with 46× more parameters requires less than seven GPU
hours, which challenges security assumptions, as even ad-
versaries with limited resources can reliably evade detection
using our attacks. (3) We test our attacks in the non-adap-
tive setting against unseen watermarks and demonstrate that
they remain Pareto optimal compared to other non-adaptive
attacks. Our results underscore the necessity of using opti-
mizable, adaptive attacks to test robustness. (4) We publicly
release our adaptively tuned paraphrasers to facilitate further
research on robustness against adaptive attackers.

2. Background
Large Language Models (LLMs) estimate the probability
distribution of the next token over a vocabulary V given
a sequence of tokens. Autoregressive LLMs predict each
subsequent token based on all preceding tokens. Formally,
for a sequence of tokens x1, . . . , xn, an LLM models:

P (xn|x1, . . . , xn−1) = softmax(fθ(x1, . . . , xn−1))n

where fθ is a neural network with parameters θ. Optimizing
LLMs to maximize a reward function is challenging because
the text is discrete, and the autoregressive generation process
prevents direct backpropagation through the token sampling
steps (Schulman et al., 2017).

LLM Content Watermarking hides a message in gener-
ated content that can later be extracted with access to the
content using a secret watermarking key. A watermarking
method, as formalized by (Lukas et al., 2024), comprises a
set of algorithms (KEYGEN, EMBED, VERIFY):

• τ ← KEYGEN(θ, γ): A randomized function to gener-
ate a watermarking key τ given secret (i) LLM param-
eters θ and (ii) random seeds γ ∈ R.

• θ∗ ← EMBED(θ, τ,m): Given a LLM θ, a watermark-

1Closed models such as GPT-4o are also on the Pareto front
(due to high text quality) but achieve lower evasion rates.

ing key τ and a message m, this function2 returns
parameters θ∗ of a watermarked LLM that generates
watermarked text.

• η ← VERIFY(x, τ,m): Detection involves (i) extract-
ing a message m′ from text x using τ and (ii) calculat-
ing the p-value η for rejecting the null hypothesis that
m and m′ match by chance.

(ϵ, δ)-Robustness. A text watermark is a hidden signal
in text that can be mapped to a message m ∈ M using
a secret watermarking key τ . The key τ refers to secret
random bits of information used for detecting a watermark.
A watermark is retained if VERIFY outputs η < ρ, for
ρ ∈ R+. Let Q : V∗×V∗ → R be a function to measure text
quality between pairs of texts. We say that a watermark is
(ϵ, δ)-robust if any paraphrase y = A(x) of a watermarked
text x that remains high-quality (i.e., Q(x, y) > δ) also
retains the watermark with probability ≥ 1 − ϵ. Let A be
a randomized paraphrasing method, then robustness can be
stated as follows.

Pr
y←A(x)

[VERIFY(y, τ,m) ≥ ρ ∧ Q(x, y) > δ] < ϵ (1)

Evasion Attacks. Watermark evasion attacks are catego-
rized by the attacker’s access to the provider’s (i) LLM, (ii)
detection algorithm VERIFY that uses the provider’s secret
watermarking key, and (iii) knowledge of the watermarking
algorithms. A no-box attacker has no access to the provider’s
LLM, whereas black-box attackers have API access, and
white-box attackers know the parameters of the provider’s
LLM. Online attackers can query the provider’s VERIFY
functionality, as opposed to offline attackers who have no
such access. Adaptive attackers know the algorithmic de-
scriptions (KEYGEN, EMBED, VERIFY) of the provider’s
watermarking method, while non-adaptive attackers lack
this knowledge. Our work focuses on no-box, offline attacks
in adaptive and non-adaptive settings.

Surveyed Watermarking Methods. Following (Piet et al.,
2023), we evaluate the robustness of four state-of-the-art
watermarking methods3 The Exp (Aaronson & Kirchner,
2023) method marks text by selecting tokens that maxi-
mize a score combining the conditional probability P (xn |
x0 . . . xn−1) and a pseudorandom value derived from a slid-
ing window of prior tokens. The Dist-Shift (Kirchen-
bauer et al., 2023a) method favours tokens from a green
list, which is generated based on pseudorandom values and
biases their logits to increase their selection probability.
The Binary (Christ et al., 2023) approach converts tokens
into bit-strings determined by pseudorandom values and

2EMBED can modify the entire inference process.
3In Section A.4, we evaluate against more watermarks includ-

ing SynthID (Dathathri et al., 2024), Unigram (Zhao et al., 2024)
and SIR (Liu et al., 2024).
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the language model’s bit distribution, subsequently trans-
lating the bit-string back into a token sequence. Lastly, the
Inverse (Kuditipudi et al., 2024) scheme uses inverse
transform sampling by computing a cumulative distribution
function ordered pseudorandomly according to a secret key
and using a fixed pseudorandom value to sample from this
distribution. We refer to (Piet et al., 2023) for more details.

3. Threat Model
We consider a provider capable of training LLMs and de-
ploying them to many users via a black-box API, such as
Google with Gemini or OpenAI with ChatGPT. The threat
to the provider are untrustworthy users who misuse the pro-
vided LLM and generate harmful content without detection.

Provider’s Capabilities and Goals (Deployment) The
provider fully controls the LLM and its text generation
process, including the ability to embed a watermark into
generated text. (Watermark Verification) The provider must
be able to verify their content watermark in each generated
text. Their goal is to have a watermark that is (i) quality-
preserving and (ii) robust, enabling detection of generated
text at a given, low False Positive Rate (FPR) ρ ∈ R+.

Attacker’s Capabilities. (Access Restrictions) We consider
a (i) no-box attacker who cannot collect any watermarked
texts during training and is (ii) offline, meaning that they
cannot access the provider’s VERIFY function. Our focus
is on (iii) adaptive attackers, who know the provider’s wa-
termark algorithms (KEYGEN, EMBED, VERIFY) but do
not know the secret inputs used for watermarking, such as
random seeds or the provider’s LLM. We also evaluate how
adaptive attacks transfer in the non-adaptive setting against
unseen watermarks. (Surrogate Models) A surrogate model
is a model trained for the same task as the provider’s model.
For example, while GPT-4o’s weights are not public, the
attacker can access the parameters of smaller, publicly avail-
able models such as those from the Llama2 (Touvron et al.,
2023) model family. Our attacker can use such open-weight
surrogate models for paraphrasing text. We assume the sur-
rogate model’s text quality is inferior to the provided model;
otherwise, there would be no need to use the watermarked
model. (Compute) Our attacker has limited computational
resources and cannot train LLMs from scratch.

Attacker’s Goals. The attacker wants to use the provided,
watermarked LLM to generate text (i) without a watermark
and (ii) with high quality. We measure text quality using
many metrics, including a quality function Q : V∗ × V∗ →
R between pairs of text when the attacker attempts to evade
detection. We require that the provider correctly verifies
their watermark with a given p-value threshold at most ρ.
Lower thresholds make evasion more likely to succeed, i.e.,
detection becomes more challenging for the provider.

Our motivation is to evaluate the robustness of watermark-
ing against constrained attackers that (i) have limited re-
sources and (ii) lack any information about the watermark-
ing key and samples. If successful attacks exist in this
pessimistic no-box setting, the provider cannot hope to have
a robust watermark against more capable attackers (e.g.,
with black-box access). We show that (i) such attacks exist,
(ii) they are inexpensive, and (iii) they do not require access
to watermarked samples. We believe the development of
defenses should focus on the no-box setting first.

4. Related Work
We evaluate the robustness of content watermarking (Lukas
& Kerschbaum, 2023) methods against no-box, offline at-
tackers in the adaptive and non-adaptive settings (see Sec-
tion 2). Other watermark evasion attacks, including those
by Hu et al. (2024), Kassis & Hengartner (2024), and Lukas
et al. (2024), focus on the image domain, whereas our work
focuses on LLMs. Jovanović et al. (2024); Pang et al. (2024)
propose black-box attacks against LLMs that require collect-
ing many watermarked samples under the same key-message
pair. We focus on no-box attacks. Jiang et al. (2023) pro-
pose online attacks with access to the provider’s watermark
verification, whereas we focus on a less capable offline at-
tacker who cannot verify the presence of the provider’s
watermark. Current attacks are either non-adaptive, such as
DIPPER (Krishna et al., 2023) or handcrafted against one
watermark (Jovanović et al., 2024). We focus on optimiz-
able, adaptive attacks and show that they remain effective
in the non-adaptive setting.

Zhang et al. (2024) demonstrated the impossibility of ro-
bust watermarking against attackers with access to quality
and perturbation oracles, showing that random walks with
the perturbation oracle provably removes watermarks. Our
approach differs in that it adaptively optimizes to find a
single-step perturbation for evading watermark detection.
We demonstrate the feasibility and efficiency of our attacks,
achieving watermark evasion at low computational cost
(USD ≤ 10$).

5. Conceptual Approach
Our goal is to adaptively fine-tune an open-weight para-
phraser θP against known watermarking methods. The at-
tacker lacks knowledge of the provider’s watermarking key
τ ← KEYGEN(θ, γ), which depends on (i) the unknown
random seed γ and (ii) the unknown parameters θ of the
provider’s LLM. Our attacker overcomes this uncertainty
by choosing an open-weight surrogate model θS to generate
so-called surrogate watermarking keys τ ′ and optimizes the
expected evasion rate over many random seeds γ ∼ R.
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5.1. Robustness as an Objective Function

Let Pθ : V∗ → V∗ denote a randomized paraphrasing
function4, Hθ : V∗ → V∗ is a function to generate text
given a query q ∈ T ⊆ V∗ and Q : V∗×V∗ → R measures
the similarity between pairs of text. We formulate robustness
using the objective function in Equation (2) that optimizes
the parameters θP of a paraphrasing model.

max
θP

E γ∼R
m′∼M
q∼T

[
E τ ′←KEYGEN(θS ,γ)
θ∗
S←EMBED(θS ,τ ′,m′)

x←H(θ∗
S ,q)

x′←P (θP ,x)

VERIFY
(
x′, τ ′, m′

)
+ Q

(
x′, x

)]
.

(2)

Equation (2) finds optimal parameters for the paraphraser
θP by sampling uniformly at random over (i) random seeds
γ ∼ R, (ii) messages m′ ∼M and (iii) queries q ∼ T . The
second expectation is taken over a surrogate watermarking
key, generated using knowledge of the KEYGEN algorithm,
the surrogate model’s parameters θS and a (previously sam-
pled) random seed γ as input. The surrogate model, key, and
message are used to embed a watermark into the surrogate
model θ∗S (with knowledge of EMBED), which generates
a watermarked sample x. The optimization process finds
optimal parameters θ∗P such that the paraphraser has a high
probability of generating text y ← P (θP , x) that evades
watermark detection and preserves text quality compared
to x. Note that knowledge of the watermarking algorithms
(KEYGEN, EMBED, VERIFY) is required to generate surro-
gate keys needed to optimize Equation (2).

Optimization presents multiple challenges. The attacker
optimizes over different random seeds γ and a surrogate
model θS than those used by the provider, since our attacker
does not know the provider’s model parameters θ or ran-
dom seeds. This lack of knowledge adds uncertainty for the
attacker. The discrete nature of text and the inability to back-
propagate through its generation process make maximizing
the reward challenging (Shin et al., 2020). Furthermore,
the reward function depends on VERIFY, which may not
be differentiable. Deep reinforcement learning (RL) meth-
ods (Schulman et al., 2017; Rafailov et al., 2024) do not
require differentiable reward functions. However, RL is
known to be compute-intensive and unstable, making it un-
clear whether optimization can achieve a high reward using
limited computational resources.

4We consider language models as paraphrasers, where random-
ness arises from sampling the next token.

Algorithm 1 curates a preference dataset to optimize the
adaptive attack’s objective in Equation (2).

Require: Surrogate θS , Paraphraser θP , Queries T , Mes-
sagesM, Paraphrase Repetition Rate N , False Positive
Rate Threshold ρ, Quality Threshold δ

1: D ← ∅ // The preference dataset
2: // Sample from known watermarking methodsW
3: for (KEYGEN, EMBED, VERIFY) ∈ W do
4: for each q ∈ T do
5: m ∼M
6: τ ′ ← KEYGEN(θS , RND())
7: θ∗S ← EMBED(θS , τ

′,m)
8: r ← Sθ∗

S
(q) // Watermarked text under τ ’

9: // If watermark can be detected
10: if VERIFY(r, τ ′,m) < ρ then
11: // Rejected (0) and Chosen (1) paraphrases
12: R0, R1 ← ∅, ∅
13: for i ∈ [N ] do
14: r′ ← PθP (r) // Paraphrase (randomized)
15: a← 1[Q(r, r′) ≥ δ]
16: b← a · 1[VERIFY(r′, τ ′,m) > ρ]
17: Rb ← Rb ∪ {r′}
18: end for
19: for j ∈ [|R1|] do
20: r′n ← (j ≤ |R0|) ? R0

j : r

21: D ← D ∪ {(r, r′n, R1
j )} // Match pairwise

22: end for
23: end if
24: end for
25: end for
26: return D // The preference dataset

5.2. Preference Dataset Curation

We use reinforcement learning (RL) methods such as Direct
Preference Optimization (DPO) (Rafailov et al., 2024) to
optimize Equation (2). However, DPO requires collecting
a preference dataset of positive and negative examples to
fine-tune the paraphraser. A negative sample is one that
retains the watermark, representing a failed attempt at wa-
termark evasion. In contrast, positive samples do not retain
a watermark and have a high text quality Q(r, r′p) > δ for
an attacker-chosen δ ∈ R+. To bootstrap optimization,
we require the ability to curate positive and negative exam-
ples, which we achieve by using a publicly available, open-
weight paraphrasers such as Llama2-7b. We curate triplets
(r, r′n, r

′
p) via best-of-N rejection sampling. These triplets

contain a watermarked sample r and two paraphrased ver-
sions, r′n and r′p, representing the negative and positive ex-
amples, respectively. Algorithm 1 implements the algorithm
to curate our preference dataset.

Algorithm 1 randomly samples from a set of known wa-
termarking methods W (line 3) and from the set of task-
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specific queries T (line 4). It samples a message m (line
5) and generates a surrogate watermarking key τ ′ to embed
a watermark into the surrogate generator (lines 6-7). We
generate text r using the watermarked model θ∗S (line 8)
and verify whether it retains the watermark (line 9). The
paraphrase model θP generates N paraphrased versions of
r that we partition into positive and negative samples (lines
13-17). A sample r′p is positive (b = 1) if it does not retain
the watermark and has high text quality (≥ δ); otherwise,
it is negative (r′n, b = 0). For each positive sample, we
select one corresponding negative sample and add the wa-
termarked text and the negative and positive paraphrases to
the preference dataset D (lines 19-21).

6. Evaluation
We report all runtimes on NVIDIA A100 GPUs accelerated
using VLLM (Kwon et al., 2023) for inference and Deep-
Speed (Microsoft, 2021) for training. Our implementation
uses PyTorch and the Transformer Reinforcement Learning
(TRL) library (von Werra et al., 2020). We use the open-
source repository by Piet et al. (2023), which implements
the four surveyed watermarking methods. We test robust-
ness using hyper-parameters suggested by (Piet et al., 2023).
Please refer to Section A.8 for details on hyperparameter
selection and generalizability of our attacks against a range
of hyperparameters. All LLMs used in our evaluations have
been instruction-tuned. A detailed description of our attack
setup, including prompting strategies and training hyperpa-
rameters, is available in Section A.9. Table 1 summarizes
other surveyed evasion attacks.

6.1. Preference Dataset Collection

For a given watermarked sequence generated by the surro-
gate model, the attacker generates N paraphrased versions
using the non-optimized paraphraser and calculates the best-
of-N evasion rate with the surrogate key (Algorithm 1, lines
9-12). Figure 2 shows the number of repetitions c needed
to achieve a given evasion rate across four watermarking
methods using Llama2-7b as both the surrogate and para-
phrasing model. Our attacker can choose the best-of-N
paraphrases because they know the surrogate watermarking
key to detect a watermark. The attacker cannot choose the
best-of-N paraphrases against the provider’s watermarked
text, as they lack access to the provider’s key.

Figure 2 shows the success rate of observing at least one pos-
itive sample after N paraphrases against methods designed
for robustness (Dist-Shift, Exp) and undetectability
(Inverse, Binary). The attacker requires limited com-
putational resources to curate a large preference dataset
against any of the four surveyed watermarks. For instance,
to collect |D| = 7000 preference samples, each of T = 512
tokens, at a rate of 1 800 tokens/second, we expect this to

2 4 6 8 10 12 14 16
Number of Paraphrases

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ev
as

io
n 

Ra
te

 ⇑

Non-Adaptive Paraphrasing With PValue = 0.1

Exp
Inverse
Binary
Dist − Shift

Figure 2: Algorithm 1 paraphrases text N times in lines
13-17. This graph shows the expected evasion rate of the
best sample (lines 15-17) for the number of paraphrases
using a vanilla Llama2-7b as the paraphraser.

take approximately 1.5 GPU hours for Dist-Shift, but
only 0.5 GPU hours for Inverse. In practice, including
the overhead of evaluating quality and detecting watermarks,
we require less than 5 GPU hours to curate 7 000 samples
for Dist-Shift. At current AWS rates, an attacker who
uses our attacks faces only negligible costs of less than $10
USD to curate a preference dataset containing 7 000 sam-
ples and fine-tune the paraphraser. Further details on the
curation of the prompt sets used for training and evaluation
are provided in Section A.2.

6.2. Ablation Studies

In our experiments, we ablate over the following settings.

(1) Adaptivity: (Adaptive) The same watermarking method
is used for training and testing. (Non-adaptive) The attack
is tested against unseen watermarking methods., (2) Tar-
get Models: We evaluate 2 models used by the provider:
Llama2-13b, Llama3.1-70b., (3) Attacker’s Mod-
els: Our attacker matches surrogate and paraphrasing mod-
els. We consider Llama2 (Touvron et al., 2023) and
Qwen2.5 (Qwen, 2024) from 0.5b to 7b parameters.,
(4) Watermarking Methods: Exp (Aaronson & Kirch-
ner, 2023), Dist-Shift (Kirchenbauer et al., 2023b),
Inverse (Kuditipudi et al., 2024), Binary (Christ et al.,
2023)., (5) Hyper-Parameters: We ablate over multiple hy-
per-parameters that a provider can choose (see Section A.8).,
and (6) False Positive Rates (FPR): Section A.10 ablates
over ρ ∈ {0.01, 0.025, 0.05, 0.075, 0.1} when the provider
can tolerate higher FPR thresholds for detection.

A watermark has been retained if the null hypothesis that
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Attack Name Description

DIPPER (Krishna et al., 2023) Train an 11b Sequence-to-Sequence model for paraphrasing.
Translate (Piet et al., 2023) Translate to another language and back (e.g., French, Russian).
Swap (Piet et al., 2023) Randomly remove, add or swap words.
Synonym (Piet et al., 2023) Replace words with a synonym using WordNet (Miller, 1995).
HELM (Bommasani et al., 2023) Randomly add typos, lowercase or contractions.
Llama, Qwen2.5, GPT3.5 Paraphrase text using a publicly accessible LLM.

Ours-Llama2-7b-Exp Paraphrase with a Llama2-7b model tuned adaptively against Exp.

Table 1: (Top) The non-adaptive baseline attacks we consider in our study against (Bottom) our adaptively fine-tuned attacks.
We refer to (Piet et al., 2023) for details on the baseline attacks and Section A.9 for our adaptive attack.

the watermark is not present in the content can be rejected
with a given p-value specified by the provider. The evasion
rate is calculated as the fraction of watermarked text that
does not retain the watermark after applying the paraphras-
ing attack. Due to the lack of a gold-standard metric to
assess text quality, we measure quality with multiple met-
rics: LLM-Judge, LLM-CoT, and LLM-Compare from Piet
et al. (2023), Mauve (Pillutla et al., 2021), and Perplexity
(PPL) with Llama3-8B-Instruct. To enhance clarity,
we only report the LLM-Judge metric in the main paper
following Piet et al. (2023). Full descriptions of all qual-
ity metrics are provided in Section A.1. Unless otherwise
specified, we use a p-value threshold of ρ = 0.01.

6.3. Experimental Results

Adaptivity. Figure 3 shows the evasion rate and text quality
of our methods trained in the adaptive and non-adaptive set-
tings when the provider uses Llama2-13b and the attacker
uses Llama2-7b. We find that all adaptive attacks have
an evasion rate of at least 96.6%, while the non-adaptive at-
tacks have an evasion rate of at least 94.3%. We achieve the
highest overall evasion rate when training against the Exp
watermark, which achieves an evasion rate of at least 97.0%.
We train one attack, denoted All, against all four surveyed
watermarking methods and test it against each watermark
separately. Interestingly, All performs slightly worse com-
pared to training only on Exp, exhibiting an evasion rate
of at least 96.3% and a lower paraphrased text quality of
at least 0.893 (versus 0.901 when training only on Exp).
In summary, Figure 3 shows that adaptive attacks trained
against one watermark remain highly effective when tested
against unseen watermarks in the non-adaptive setting.

Model Sizes. Figure 4 shows the Pareto front against the
Exp watermark with a Llama3.1-70b target model. Our
attacker uses paraphraser models with at most 7b parameters,
which is less than the 11b DIPPER model (Krishna et al.,
2023) currently used to test robustness.

We observe that (1) Non-adaptive baseline attacks such
as Contraction, Swapping and Synonym replacements are
ineffective and have a low evasion rate of less than 20%.,

(2) Non-adaptive model-based paraphrasing attacks such
as using vanilla Llama2-7b or ChatGPT3.5 models
have a substantially higher evasion rate of 61.8% up to
86.1% respectively. Tuning Llama2-7b using our ap-
proach in the non-adaptive setting improves the evasion
rate substantially to 90.9% (when trained on Binary) and
up to 97.6% (when trained on Inverse). These non-adap-
tive, optimized attacks have a paraphrased text quality of
0.853 and 0.845, slightly improving over ChatGPT3.5,
rated only 0.837., and (3) In the adaptive setting, our
fine-tuned Qwen2.5-7b achieves an evasion rate of
97.3% at the highest text quality of 0.846 compared to
Llama2-7b-Inverse.

By ablating over Qwen2.5 between 0.5b and 7b parame-
ters, we find that attackers can strictly improve paraphrased
text quality at similar evasion rates by using more capable
paraphrases with more parameters. Figure 16 in the Ap-
pendix shows results against a Llama2-13b target model,
which are consistent with those against Llama3.1-70b.
Against smaller target models, attackers can achieve higher
evasion rates and text quality ratings.

Text Quality. Table 2 shows (i) a watermarked text sam-
ple generated using Llama2-13b with Dist-Shift,
(ii) paraphrased text using a non-optimized Llama2-7b
model, and (iii) paraphrased text obtained with an adaptively
tuned Llama2-7b model using our attack. We observe
that all paraphrased texts preserve quality, but our attack
achieves the lowest green-to-red token ratio (i.e., maximizes
the evasion rate). Table 3 in the Appendix shows a quanti-
tative analysis of the median quality of generated text for
a vanilla Llama2-7b model compared to our best adap-
tive and non-adaptive attacks. It shows that text quality is
preserved across five text quality metrics when using our
attacks. We only show one paragraph of generated text that
we truncated due to space restrictions and Tables 5 and 6 in
the Appendix show non-truncated samples. Table 6 shows a
rare, cherrypicked example where our attack fails at evading
watermark detection after paraphrasing.

Adaptive vs Non-adaptive. Figure 5 shows two results
to compare the non-optimized Llama2-7b with our adap-
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Figure 3: The evasion rates (Left) and text quality measured with LLM-Judge (Right). The attacker uses a matching
Llama2-7b surrogate and paraphraser model versus the provider’s Llama2-13b. Results for adaptive attacks are on the
diagonal. For example, we obtain the bottom left value by training on Dist-Shift and testing on Inverse.

0.0 0.2 0.4 0.6 0.8 1.0
Evasion Rate 

0.4

0.5

0.6

0.7

0.8

Pa
ra

ph
ra

se
 Q

ua
lit

y 

Ours-Qwen-0.5b-Exp

Misspelling_0.5

Typo_0.05

Misspelling_0.25

Lowercase

Llama2-13b

Contraction

GPT3.5
Qwen-7b

Llama2-7b

RussianNone

Typo_0.1

French

Dipper
Category

Ours (Adaptive)
Ours (Non-Adaptive)
Contraction
Lowercase
Llama
Misspelling
None
Paraphrase
Qwen
Swap
Synonym
Translate
Typo

Ours-Llama2-7b-Dist-Shift
Ours-Llama2-7b-Exp

Ours-Llama2-7b-InverseOurs-Qwen-7b-Exp
Ours-Llama2-7b-AllOurs-Llama2-7b-Binary

Ours-Qwen-1.5b-Exp

Ours-Qwen-3b-Exp

Figure 4: Adaptive attacks are Pareto-optimal. We show the evasion rate versus text quality trade-off against the Exp (Aaron-
son & Kirchner, 2023) watermark, corresponding to (ϵ, δ)-robustness from Eq. 1. The provider uses a Llama3.1-70b
model, whereas our attacker’s models are up to 46× smaller. Non-adaptive attacks are marked by circles ( ), adaptive
attacks by squares ( ). Notation “Ours-Qwen-3b-Exp” means that we evaluate our attack using a Qwen2.5-3b model
that was adaptively optimized against the Exp watermark.

tively tuned Llama2-7bmodel. The result on the left plots
the cumulative density of p-values. Our method strictly im-
proves over the non-optimized model as it generates para-
phrased text with higher mean p-values for watermark de-
tection. The result on the right plots the expected p-value
against the token length. The watermarked text has a median
p-value of less than 0.01 after approximately 170 tokens,
whereas the non-optimized Llama2-7b model has an ex-
pected p-value of 0.10 at around 500 tokens compared to an
expected p-value of 0.4 for our adaptively tuned model.

Additional Testing. We present more results to compare
adaptive versus non-adaptive attacks in Section A.4, in-
cluding tests against other recently released watermarking
methods. These results are consistent with our findings in
the main part of the paper that adaptive attacks are Pareto

optimal and outperform much larger, closed-source systems
such as GPT-4o at evading watermark detection. We kindly
refer the reader to Section A.4 for more baseline tests, Sec-
tion A.5 for further statistical insights, and Section A.6 for
an analysis of the impact of paraphrasing on the top-50
token distribution.

7. Discussion
Effectiveness of Adaptive Attacks. Our work demonstrates
that content watermarking methods for LLMs are vulner-
able to adaptively optimized attacks. Attackers can adap-
tively fine-tune relatively small open-weight models, such
as Llama2-7b (Touvron et al., 2023), in less than seven
GPU hours to evade watermark detection from larger and
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Llama2-13b-Dist-Shift Llama2-7b Ours-Llama2-7b-Dist-Shift

Cervantes’ "Don Quixote" is a ground-
breaking masterpiece of literature that has
enthralled readers for over 400 years. The
novel tells the story of Alonso Quixano, an
old man who becomes so consumed by the
chivalrous tales of his day that he renames
himself Don Quixote and embarks upon
an adventurous journey filled with hu-
mor, satire, and timeless themes about
the human condition.←↩←↩ The story fol-
lows Quixote and his trustworthy sidekick
Sancho Panza, a simple and pragmatic
squire who provides moments of humor
and contrast to the lofty ideals of the delu-
sional Quixano/Don Quixote. Their travels
in rural Spain lead them to encounter all
sorts of people they mistake for knights,
ladies in distress, bandits, and giants who
are in fact ordinary villagers going about
their everyday lives.

"Don Quixote" is a groundbreaking master-
piece of literature that has captivated read-
ers for over 400 years. The novel tells the
story of Alonso Quixano, an elderly man
whose fixation on chivalrous tales leads
him to change his name to Don Quixote
and embark on a thrilling adventure replete
with humor, satire, and timeless themes
concerning the human condition.←↩←↩
The narrative follows Don Quixote and his
loyal squire Sancho Panse, a practical and
good-natured individual who provides mo-
ments of levity and contrast to the lofty ide-
als of the delusional Quixano/Don Quixote.
Their travels across rural Spain result in
encounters with various people who they
misidentify as knights, distressed ladies,
bandits, and ordinary villagers going about
their daily lives.

Spain has been blessed with a literary
treasure that has captivated readers for over
four centuries in the form of Miguel de
Cervantes’ immortal masterpiece, "Don
Quixote". This timeless tome weaves a
hilarious and poignant tale of a man con-
sumed by the chivalrous stories of his
youth, who renames himself Don Quixote
and sets forth on a journey filled with mo-
ments of satire and a piercing examina-
tion of the human condition.←↩←↩As Don
Quixote and his trusty squire Sancho Panza
traverse rural Spain, they encounter vari-
ous unsuspecting villagers, mistaking them
for knights, maidens in distress, bandits,
and even giants.

163 green and 36 red 125 green and 69 red 81 green and 78 red

Table 2: (Left) Watermarked text from the provider’s Llama2-13b model, (Center) a paraphrased version from a vanilla
Llama2-7b model, and (Right) paraphrased text using our adaptively tuned Llama2-7b model. Green/red indicates
whether a token is watermarked. A lower green-to-red token ratio implies a higher evasion rate. Due to space constraints,
we only show truncated texts. Tables 5 and 6 in the Appendix show entire samples with up to 512 tokens.

more capable models, such as Llama3.1-70b (Dubey
et al., 2024). Our attacks remain effective even in the non-
adaptive setting when testing with unseen watermarking
methods. Our findings challenge the robustness claims of
existing watermarking methods, and we propose improved
methods to test robustness using adaptive attacks.

Analysis. Studying why adaptive attacks work is challeng-
ing due to the non-interpretability of the optimization pro-
cess. The ability to maximize Equation (2) implies the
ability to evade detection since Equation (2) encodes ro-
bustness for any watermarking method. The effectiveness
of non-adaptive attacks could be explained by the fact that
all surveyed watermarks are similar in that they operate
on the token level. Hence, an effective attack against one
watermark likely generalizes to other unseen watermarks.
Adaptive attacks further improve effectiveness as there are at
least three learnable signals for paraphrasing watermarked
text: (1) Avoid repeating token sequences, as they likely
contain the watermark; (2) find text replacements with low
impact on text quality to maximize the evasion rate (e.g.,
uncommon words or sentence structures); and (3) calibrate
the minimum token edit distance and lexical diversity that,
on average (over the randomness of the key generation pro-
cess), evades detection. We refer to Section A.7 for a more
detailed analysis of our approach’s effectiveness.

Attack Runtime. Our attacks involve two steps: Dataset
Curation and Model Optimization. Curating 7 000 samples
requires less than 5 GPU hours, and model optimization re-
quires only approximately 2 GPU hours for a Llama2-7b
model at 16-bit precision. These attacks can be executed
with limited computational resources and cost less than $10
USD with current on-demand GPU pricing.

Restricted Attackers. Zhang et al. (2024) show that strong
watermarking, which resists any attack, is provably impos-
sible under certain conditions. Our work instead focuses
on robustness against restricted attackers with limited capa-
bilities, such as limited compute resources, and we study
whether robustness can be achieved in this setting. We show
that current watermarks do not achieve robustness, and that
even restricted attackers can evade detection at low costs.

Online Attacks. Our work focuses on offline attacks that do
not require any access to the provider’s watermark detection
functionality. Offline attacks evaluate the robustness of a
watermark without any information about the secret key
generated by the provider. An online attacker can learn in-
formation about the provider’s secret key through accessing
Verify, which reduces the attack’s uncertainty and could
substantially improve the attack’s effectiveness further.

Limitations. Our study also did not focus on evaluating
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Figure 5: (Left) The cumulative density of p-values on the Dist-Shift watermark (green), a vanilla Llama2-7b
paraphraser (blue) and our adaptive Llama2-7b paraphraser (red). (Right) The median p-value relative to the text token
length with a threshold of ρ = 0.01 (dashed line).

adaptive defences that could be designed against our adap-
tive attacks. Adaptive defences have not yet been explored,
and we advocate studying their effectiveness. We believe
our optimizable, adaptive attacks will enhance the robust-
ness of future watermarking methods by including them in
their design process, for instance, by using adversarial train-
ing. We focused exclusively on text generation tasks and did
not explore other domains, such as source code generation
or question-answering systems, where different text quality
metrics may be used to evaluate an attack’s success. We
did not consider the interplay between watermarking and
other defenses, such as safety alignment or content filtering,
which could collectively control misuse.

We acknowledge that LLM-as-a-Judge is an imperfect and
noisy metric that may not align with human judgment. In
the main part of our paper, we use Llama3-8B-as-a-Judge,
since this metric is easily reproducible. Section A.4 shows
results using GPT-4o-mini-as-a-Judge, which are consistent
with our findings. More work is needed to study the metric’s
alignment with human judgment.

8. Conclusion
Our work demonstrates that current LLM watermarking
methods are not robust against adaptively optimized attacks.
Even resource-constrained attackers can reliably (≥ 96.7%)
evade detection with computational resource costs of ≤$10
USD. They can achieve this with open-weight models that
are 46× smaller than the provider’s model. Even in the
non-adaptive settings, our adaptively tuned attacks outper-
form all other surveyed attacks, including paraphrasing with
substantially larger models such as OpenAI’s GPT4o. Our
findings challenge the security claims of existing watermark-
ing methods and show that they do not hold even against
resource-constrained attackers. We suggest that future de-
fenses must consider adaptive attackers to test robustness.

Impact Statement
This work investigates the robustness of watermarking meth-
ods for large language models (LLMs), which has impli-
cations for content authentication and the responsible de-
ployment of AI systems. Our findings demonstrate that at-
tackers with limited computational resources can undermine
the robustness of current watermarking methods by using
adaptively optimized attacks. This vulnerability could have
societal implications as major AI providers increasingly
adopt watermarking to promote responsible AI use and con-
trol misuse, including the proliferation of LLM-generated
misinformation and online spam.

By publicly releasing our methods, findings, and source
code, we hope to encourage the development of more robust
watermarking methods that can better withstand adaptive
attacks (e.g., by increasing the computational complexity of
such attacks or making them less effective). We acknowl-
edge that our research could potentially be misused to evade
existing deployments of watermarks. However, these de-
ployments are still in experimental phases. We believe the
benefit of releasing our work outweighs the potential harm
and hope that our work inspires the development of more
robust content authentication methods.
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A. Appendix
A.1. Quality Metrics

Ideally, to evaluate the quality of an LLM-generated text, one would need a set of human evaluators, each giving their
own score according to a certain rubric, and then have all the scores aggregated. However, this is impractical for both the
attacker and the defender. Therefore, we employ multiple surrogate metrics from the literature: LLM-Judge, LLM-CoT, and
LLM-Compare from (Piet et al., 2023), Mauve (Pillutla et al., 2021), and Perplexity (PPL) with Llama3-8B-Instruct.
Note that all of these are implemented in the MarkMyWords (MMW) (Piet et al., 2023) benchmark utilized for our
experiments. All the metrics evaluate a response (whether watermarked or a perturbed sample) against a baseline (either the
original prompt, a non-watermarked sample, or the model’s logit distribution). Below is a description of each metric, along
with an indication of whether higher or lower values are better for that metric.

LLM-Judge: LLM-Judge directly prompts an instruction-tuned large language model to evaluate the quality of a certain
response with respect to its original prompt. The response is decoded greedily (temperature =0) to ensure deterministic
results. Criteria evaluated include: accuracy, level of detail, and typographical, grammatical, and lexical correctness. A
higher score is better. For this, we use Llama3-8B-Instruct to evaluate, using the following prompt:

LLM-Judge Prompt

You are given a prompt and a response, and you provide a grade out of 100
measuring the quality of the response, in terms of accuracy, level of details, and
typographical, grammatical and lexical correctness. Remove points as soon as one of
the criteria is missed. Prompt:{}, Response:{}

LLM-CoT (Chain-of-Thought): LLM-CoT evaluates the quality of the watermarked/attacked responses using CoT-based
reasoning (Wei et al., 2023). A higher score is better. For this, we also use Llama3-8B-Instruct to evaluate, using the
following prompt:

LLM-CoT Prompt

Please act as an impartial judge and evaluate the quality of the response provided
by an AI assistant to the user question displayed below. Your evaluation hinges
on the following factors: accuracy, level of details, typographical correctness,
grammatical correctness and lexical correctness. Be as objective as possible, and
account for every one of these criteria in our evaluation. Begin your evaluation
by providing a short explanation. After providing your explanation, please rate the
response on a scale of 1 to 100 by strictly following this format: "[[rating]]",
for example: "Rating: [[51]]". Your rating must come AFTER your explanation, not
before. Prompt:{}, Response:{}

LLM-Comparator: The LLM-Comparator is used to compare non-watermarked baseline response and the watermarked
or attacked response. 0 indicates that the non-watermarked response is better, 0.5 indicates a tie, and 1 shows that the
watermarked or attacked response is better. For this, we also use Llama3-8B-Instruct to evaluate, using the following
prompt:
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LLM-Comparator Prompt

Please act as an impartial judge and evaluate the quality of the responses
provided by two AI assistants to the user question displayed below. You should
choose the assistant that follows the user’s instructions and answers the user’s
question better. Your evaluation should consider factors such as the helpfulness,
relevance, accuracy, depth, creativity, and level of detail of their responses.
Also account for typographical correctness, grammatical correctness and lexical
correctness. Begin your evaluation by comparing the two responses and provide a
short explanation. Avoid any position biases and ensure that the order in which
the responses were presented does not influence your decision. Do not allow the
length of the responses to influence your evaluation. Do not favor certain names
of the assistants. Be as objective as possible. After providing your explanation,
you must output your final verdict by strictly following this format: * "[[A]]" if
assistant A is better, * "[[B]]" if assistant B is better, and * "[[C]]" for a tie.
For example, "Verdict: [[C]]". Prompt: {}, [[Start of Assistant A]] {} [[End of
Assistant A’s Answer]], [[Start of Assistant B]] {} [[End of Assistant B’s Answer]]

MAUVE: MAUVE measures the similarity between two text distributions. In our case, the two distributions are the
non-watermarked baseline response and the watermarked/paraphrased response. Higher MAUVE scores indicate that
both texts match their content, quality and diversity. MAUVE is computed with the Kullback-Leibler (KL) divergences
between two distributions in a lower-dimensional latent space. It correlates with human evaluations over baseline metrics for
open-ended text generation (Pillutla et al., 2021). We use the gpt2-large model to compute the MAUVE score in our
implementation.

Perplexity (PPL): Perplexity is a common language modelling metric that quantifies how well a model predicts a text
sample. It is calculated based on the probability that the model assigns to a sequence of words. Lower perplexity values
indicate that the model is more confident and accurate in its predictions, making lower scores better for this metric.

Table 3 shows the median text quality metrics to compare the vanilla Llama2-7b paraphraser to our best adaptive and
non-adaptive attacks against the Llama2-13B and Llama3.1-70B target models. The table shows that our attacks have
similar quality to the vanilla Llama2-7b paraphraser across the board. Our attacks have a higher MAUVE score, indicating
that our text is closer to the non-watermarked text than the vanilla Llama2-7b paraphraser. The higher perplexity is not a
concern, as it merely indicates that the large language model does not expect the text.

Target: Llama2-13B LLM-Judge ⇑ LLM-CoT⇑ LLM-Compare⇑ Mauve⇑ PPL⇓
Llama2-7b 0.92 0.85 0.00 0.17 4.74
Ours-Best-Adaptive 0.92 0.85 1.00 0.42 6.69
Ours-Best-Non-Adaptive 0.92 0.85 0.50 0.37 6.32

Target: Llama3.1-70B

Llama2-7b 0.95 0.72 0.00 0.22 4.84
Ours-Best-Adaptive 0.95 0.72 0.50 0.55 6.10
Ours-Best-Non-Adaptive 0.95 0.72 0.50 0.31 6.15

Table 3: Various median text quality metrics to compare the vanilla Llama2-7b paraphraser to our best adaptive and
non-adaptive attacks. We limit all attacks to at most 7b parameter models.

A.2. Prompt-set Curation

The evaluation set consists of 296 prompts from Piet et al. (2023), covering book reports, storytelling, and fake news.
The training set comprises a synthetic dataset of 1 000 prompts, covering diverse topics including reviews, historical
summaries, biographies, environmental issues, science, mathematics, news, recipes, travel, social media, arts, social sciences,
music, engineering, coding, sports, politics and health. To create this dataset, we repeatedly prompt a large language model
(ChatGPT-4) to generate various topic titles. These titles were then systematically combined and formatted into prompts.
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The synthetic training dataset is non-overlapping with the evaluation set. Nonetheless, in realistic scenarios, it is plausible
that an attacker might train and evaluate their paraphraser using the same dataset. Given the low cost of our attack (USD
≤ 10$), attackers can easily train their own paraphrasers.

A.3. Preference-data Curation
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Figure 6: The expected evasion rate versus the repetition rate
ablated over varying model sizes of Qwen2.5 (Qwen, 2024)
against the Exp watermark (Algorithm 1, lines 9-12). Shaded
areas denote 95% confidence intervals.

For every prompt in the training set, we generate water-
marked output using each watermark; then, we use that
output as input to our paraphrasers. Each paraphraser
generates 16 paraphrases for each input. We then filter
these paraphrases as per Algorithm 1 to create the training
preference pairs. Larger models have higher quality out-
put and so have a higher yield of successful paraphrases.
We use the same number of paraphrases for each model,
even though they may generate different yields.

Figure 6 shows the expected evasion rate versus the num-
ber of paraphrases ablated over varying model sizes of
Qwen2.5 (Qwen, 2024) against the Exp watermark. We
find that the expected evasion rate increases with the num-
ber of paraphrases, but the rate of increase diminishes
as the number of paraphrases increases. We find that
the expected evasion rate does not improve significantly
close to 16 paraphrases and that bigger models tend to
have higher evasion rates for the same number of para-
phrases. An exception to this is the 1.5b model, which
surprisingly performs very well (better than the 3b) for
the same number of paraphrases. This, however, could be
due to different pretraining parameters of the base model
or other factors.

A.4. Baseline Testing against other Watermarks

We include more robustness tests against recently released watermarks such as SynthID (Dathathri et al., 2024), Uni-
gram (Zhao et al., 2024) and SIR (Liu et al., 2024). We refer to the author’s papers for detailed descriptions of these
watermarks. For this evaluation, we implemented our attack in the MarkLLM framework (Pan et al., 2024), used our
Qwen2.5-3b paraphraser trained against the EXP watermark from the main part of the paper, and adaptively tuned a new
Qwen2.5-3b paraphraser against the Unigram watermark. For the purpose of quick evaluation, we limit the token length
to 256 tokens, noting that, as shown in Figure 5, the results are similar for longer texts. GPT-4o is part of the Pareto front
only against SIR and KGW due to its high text quality and low evasion rates of less than 90%. It is not part of the Pareto
front against SynthID, EXP and Unigram, where only our attacks are part of the Pareto front. While it may be possible to
use better prompts for GPT-4o to achieve a higher text quality or evasion rate, there are other limitations when using closed
systems to evade detection.

1. Their usage can be expensive as the user is typically charged per token.

2. The system could embed its own watermark into paraphrased text.

3. There could be guardrails such as safety alignments which prevent these systems from arbitrarily paraphrasing text.

In contrast, our method allows working with relatively small open-weight models that adversaries can fully control.

A.5. Additional Statistics

We provide additional statistical insights complementing the robustness tests described in Section A.4. For brevity and
clarity, we illustrate the statistics primarily with the Unigram watermark (Zhao et al., 2024), noting similar results across
other watermark methods.
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Figure 7: Additional results using Qwen2.5-3b against KGW and EXP, which we study in the main part of the paper,
and more recently released watermarks such as SynthID (Dathathri et al., 2024), Unigram (Zhao et al., 2024) and SIR (Liu
et al., 2024). Dashed lines denote the Pareto front, and we highlighted adaptively trained attacks in bold. We used GPT-4o’s
version from November 23rd, 2024. The y-axis uses GPT-4o-mini as a judge, and the x-axis shows the evasion rate.
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Figure 8: The evasion rates against a watermarked Llama2-13b model. We compare non-adaptive attacks, including
ChatGPT3.5, versus our adaptively fine-tuned Llama2-7b paraphraser model.
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Token Length Analysis Figure 9 shows the distribution of token lengths for watermarked texts and different perturbations.
Our tuned paraphrasers (Qwen2.5-3b-Unigram and Qwen2.5-3b-EXP) produce slightly shorter paraphrases com-
pared to the base Qwen2.5-3b model and the watermarked responses themselves. This reduction in length likely arises
from the optimization objective, which does not explicitly penalize brevity. Such behavior could be adjusted by modifying
the objective function when selecting positive and negative samples. Non-optimized methods exhibit varied token lengths:
GPT-3.5 generates even shorter responses, GPT-4o produces relatively longer texts, while word substitution (Word-S) and
deletion (Word-D) methods behave as expected, respectively increasing or decreasing token counts.

Figure 9: The distribution of the number of tokens in the watermarked text and the paraphrased texts. The x-axis shows the
number of tokens, and the y-axis shows the number of samples.

GPT-Judge Quality Scores The GPT-Judge scores are evaluated using GPT-4o-mini. Figure 10 indicates text quality
across methods. Optimized paraphrasers (Qwen2.5-3b-Unigram and Qwen2.5-3b-EXP) exhibit similar high-quality
scores to those of the unattacked Unigram watermark, base Qwen2.5-3b, GPT-3.5, and GPT-4o methods. In contrast,
simple perturbations like Word-S and Word-D achieve significantly lower quality scores.

Watermark Scores Figure 11 illustrates watermark detection scores as measured by the MarkLLM framework (Pan
et al., 2024). The unattacked watermarked texts have notably high scores (centered around 5). Simple perturbations, such
as word deletions, have no impact, while word substitutions moderately reduce scores. Non-tuned paraphrasing methods
(Qwen2.5-3b, GPT-3.5, GPT-4o) substantially lower watermark scores (centered around 1). Adaptively fine-tuned
paraphrasers (Qwen2.5-3b-EXP and Qwen2.5-3b-Unigram) achieve the lowest scores, typically centered around -1,
highlighting their effectiveness in evading detection.

A.6. Token Distribution

Text Quality. Figures 12 to 14 show the top-50 token distribution that appear in the watermarked text. We compare it
with the token frequency in the paraphrased text using as paraphrasers (i) GPT-4o, (ii) a baseline Qwen2.5-3b model and
(iii) our adaptively tuned Qwen2.5-3b model against the Unigram watermark (Zhao et al., 2024). We observe that all
paraphrasers have a similar token distribution and that across all three paraphrasers, on average, the top 50 tokens appear less
frequently than in the original, watermarked text. The largest difference we observe between the baseline Qwen2.5-3b
and our adaptively tuned model are the frequencies of the tokens ’The’ and ’ ’ (space between words), which our model uses
less frequently. Compared to GPT-4o, the baseline Qwen2.5-3b model uses some tokens, such as ’ As’, less frequently,
while other tokens, such as ’ but’, appear more frequently.
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Figure 10: The distribution of the GPT-Judge scores for the watermarked text and the paraphrased texts. The x-axis shows
the GPT-Judge score, and the y-axis shows the number of samples.
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Figure 12: An analysis of the top-50 tokens in paraphrased text generated with the Unigram watermark (Zhao et al., 2024),
using GPT-4o as a paraphraser.
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Figure 11: The distribution of the watermark scores for the watermarked text and the paraphrased texts. The x-axis shows
the watermark score, and the y-axis shows the number of samples.
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Figure 13: An analysis of the top-50 tokens in paraphrased text generated with the Unigram watermark (Zhao et al., 2024),
using an off-the-shelf Qwen2.5-3b model as a paraphraser.
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Figure 14: An analysis of the top-50 tokens in paraphrased text generated with the Unigram watermark (Zhao et al., 2024),
using our adaptively tuned Qwen2.5-3b model as a paraphraser.

A.7. Detailed Textual Analysis

Our goal is to further analyze why our adaptively tuned paraphraser better evades detection than other approaches. We begin
by studying the overlap of N-grams between the watermarked and paraphrased texts, which we call the N-gram overlap ratio
between two sequences x1, x2 ∈ V∗.

Ng(x1, x2, n) =
|ngrams(x1, n) ∩ ngrams(x2, n)|
|ngrams(x1, n) ∪ ngrams(x2, n)|

(3)

The ’ngrams’ function tokenizes a sequence and returns the set of n-grams. The N-gram overlap ratio is always between
[0,1]. A high overlap for a given n ∈ N indicates that the same N-grams appear in both sequences. Since the surveyed
watermarks operate on a token level, a low overlap ratio would suggest a high evasion rate. We also evaluate the token edit
distance ratio between two sequences, which is calculated as follows:

L(x1, x2) =
Levenshtein(x1, x2)

len(x1) + len(x2)
(4)

The token edit distance calculates the Levensthein distance between two sequences. Note that the N-gram overlap ratio is
calculated over sets of N-grams. In contrast, the Levenshtein distance is calculated over (ordered) sequences, meaning that
the position of the token matters. A high Token Edit Distance ratio suggests that two texts do not have the same tokens at the
same positions in the sequence, which also suggests a higher evasion rate.
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Figure 15: (Left) The N-gram overlap ratio between watermarked text and text paraphrased by (i) GPT3.5, (ii) GPT-4o, (iii)
our adaptively tuned Qwen2.5-3b paraphraser and (iv) a baseline Qwen2.5-3b paraphraser. The overlap is calculated
as the number of N-grams in the paraphrased text that also appear in the watermarked text divided by the total number
of N-grams in the watermarked text. Lower overlap means that both texts are less similar. (Right) We plot the evasion
rate against the normalized token edit distance between paraphrased and watermarked text using different paraphrasers.
The dashed line represents the difference between the non-optimized Qwen2.5-3b paraphraser and our adaptively tuned
Qwen2.5-3b paraphraser.

Results. Figure 15 (left) shows the N-gram overlap ratio between watermarked text and the text produced by four
paraphrasing methods. We observe that across all N-grams, our adaptive paraphraser achieves the lowest overlap ratio.
Figure 15 (right) shows the mean token edit distance ratio between watermarked and paraphrased text in relation to the
evasion rate. We observe that the non-optimized, baseline Qwen2.5-3b model has a low token edit distance ratio and a
low evasion rate. In contrast, our adaptively tuned model has a much higher evasion rate and a high token edit distance ratio.
These findings suggest that our adaptive optimization process learned to increase the mean token edit distance and minimize
the overlap ratio to maximize evasion rates while preserving text quality.

A.8. Watermark Parameters

To select the optimal parameters for the watermarking methods, we follow the guidelines provided by (Piet et al., 2023).
We use a key length of 4 for all watermarks and a text-dependent sliding window randomness of size 3. We set the
skip-probability to 0.025 for all watermarks except for the Dist-Shift watermark, where we set it to 0. Skip-probability
is a technique that randomly skips the watermarking selection procedure for some tokens to allow more diverse generation
and works best with schemes that can be made indistinguishable, like the Exp, Binary, and Inverse watermarks. We
also use the optimal temperature for every watermark (1.0 for all except for the Dist-Shift watermark, where we use
0.7). Specific to the Dist-Shift watermark, we use the suggested green-red list ratio γ of 0.5 and a bias parameter β of
4.

Furthermore, we evaluate how the strength of the bias parameter used for Dist-Shift affects its robustness against our
attacks. Our attacker does not know which hyperparameters are used by the provider. We set the bias β ∈ {1, 2, 4, 8}, where
higher bias should lead to higher robustness (Piet et al., 2023; Kirchenbauer et al., 2023b). We train our attacks once with the
β = 4 value suggested by (Piet et al., 2023) and test it against all other hyper-parameters. Table 4 shows that our adaptive
and non-adaptive attacks remain the most effective across all hyper-parameters.

A.9. Attack Description

Prompting. We use the following prompt to train our paraphraser models. The prompt is adapted from (Kirchenbauer et al.,
2023b). Additionally, we prefill the paraphrase answer with the text [[START OF PARAPHRASE]] to ensure that the
model starts generating the paraphrase from the beginning of the response. During dataset curation, training and testing, we
set the temperature to 1.0 to diversify the generated paraphrases.
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β Dist-Shift Llama2-7b Llama2-7b-Exp Llama2-7b-Dist-Shift
Evasion Quality Evasion Quality Evasion Quality Evasion Quality

1 0.94 0.72 0.94 0.96 0.94 0.98 0.95 0.99
2 0.94 0.20 0.95 0.90 0.95 0.98 0.95 0.98
4 0.95 0.00 0.96 0.67 0.94 0.97 0.94 0.97
8 0.71 0.00 0.92 0.60 0.94 0.95 0.94 0.96

Table 4: An ablation study of our attack’s success rate and text quality for the bias parameter β of the Dist-Shift (Kirchen-
bauer et al., 2023a) watermark.

Paraphrase Prompt

You are an expert copy-editor. Please rewrite the following text in your own
voice and paraphrase all sentences. Ensure that the final output contains the
same information as the original text and has roughly the same length. Do not
leave out any important details when rewriting in your own voice. Do not include
any information that is not present in the original text. Do not respond with a
greeting or any other extraneous information. Skip the preamble. Just rewrite the
text directly.

Training Hyperparameters We train our paraphraser models using the following hyperparameters: a batch size of 32, a
learning rate of 5 × 10−4, and a maximum sequence length of 512 tokens. We use the AdamW optimizer with a linear
learning rate scheduler that warms up the learning rate for the first 20% of the training steps and then linearly decays it to
zero. We train the models for 1 epoch only to prevent overfitting. We utilize Low-Rank Adaptation (LoRA) (Hu et al., 2022)
to reduce the number of trainable parameters in the model. We set the rank to 32 and the alpha parameter to 16.

A.10. Additional Ablation Studies

False Positive Rates. Figure 8 shows the detection rates at different FPR-thresholds ρ ∈ {0.01, 0.025, 0.05, 0.075, 0.1}
against the Dist-Shift and Exp watermarking methods. We focus on these two methods as they are more robust than
Inverse and Binary. Our results show that across all evaluated FPR thresholds, our adaptive attacks outperform all
other surveyed attacks against both watermarking methods. If the provider tolerates a 10% FPR, our adaptive attacks achieve
evasion rates of 80% and 77% against Dist-Shift and Exp, respectively.

A.11. Extra Tables and Figures
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Figure 16: The evasion rate versus text quality trade-off of all surveyed attacks when the provider uses a Llama2-13b
model and the Exp (Aaronson & Kirchner, 2023) watermark. The attacker uses matching surrogate and paraphrase models
with parameters ranging between 0.5b to 7b from the Qwen2.5 and Llama2 model families. A circle and square denote
non-adaptive and adaptive attacks, respectively, and our attacks are highlighted in red. For example, Ours-Qwen-3b-Exp
means that we evaluate a Qwen2.5-3b model optimized against the Exp watermark.
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Llama2-13b-Dist-Shift (463 green vs 41 red tokens)

Cervantes’ "Don Quixote" is a groundbreaking masterpiece of literature that has enthralled readers for over 400 years. The novel tells the story
of Alonso Quixano, an old man who becomes so consumed by the chivalrous tales of his day that he renames himself Don Quixote and embarks
upon an adventurous journey filled with humor, satire, and timeless themes about the human condition.←↩←↩ The story follows Quixote and his
trustworthy sidekick Sancho Panza, a simple and pragmatic squire who provides moments of humor and contrast to the lofty ideals of the delusional
Quixano/Don Quixote. Their travels in rural Spain lead them to encounter all sorts of people they mistake for knights, ladies in distress, bandits, and
giants who are in fact ordinary villagers going about their everyday lives.←↩←↩ One of the most profound and enduring elements of the novel’s
themes is the conflict of reality and perception. Quixote, driven by the chivalrous books he reads and his own imagination, mistakes windmills for
giants, a puppet play as a real tale of love and betrayal, and a barber from a nearby village who is dressed in his Sunday best but Quixote sees as the
Grand Duchess of Lithuania. Through these absurd but comedic misadventures, Cervantes creates a timeless commentary on the nature of truth,
reality, and the danger of letting our imaginations run too wild. Don Quixote’s journey also explores issues of class and nobility as he views his own
lowly status as unknightly, while the peasants and traveling players he encounters view him with suspicion or indifference. Through these contrasts,
Cervantes pokes fun at the social order and the idealized notion of chivalry.←↩ Don Quixote has been praised for its realistic portrayal of human
nature, including its weaknesses and fallibilities as well as the timeless wisdom of Cervantes’ observations on society in late sixteenth-century Spain.
At its core, the novel is an exploration of the human capacity to dream, delusions,

Llama2-7b (301 green vs 201 red tokens)

"Don Quixote" is a groundbreaking masterpiece of literature that has captivated readers for over 400 years. The novel tells the story of Alonso
Quixano, an elderly man whose fixation on chivalrous tales leads him to change his name to DonQuixote and embark on a thrilling adventure replete
with humor, satire, and timeless themes concerning the human condition.←↩←↩ The narrative follows Don Quixote and his loyal squire Sancho Panse,
a practical and good-natured individual who provides moments of levity and contrast to the lofty ideals of the delusional Quixano/Don Quixote. Their
travels across rural Spain result in encounters with various people who they misidentify as knights, distressed ladies, bandits, and ordinary villagers
going about their daily lives.←↩←↩ One of the most enduring aspects of the novel’s themes is the conflict between reality and perception. Quixote,
driven by the chivalrous books he reads and his imagination, mistakes wind mills for giants, a puppet show for a real tale of love and betrayal, and
a peasant in his Sunday best for the Grand Duchess of Lithuania. Through these absurd yet comedic misadventures, Cervantes offers a timeless
commentary on the nature of truth, reality, and the dangers of allowing our imaginations to run wild. Don Quixote’s journey also explores issues of
class and nobility as he views his lowly status as unknightly, while the peasants and traveling players he encounters view him with suspicion or
indifference. Through these contrasts, Cervantes pokes fun at the social order and the idealized notion of chivalry.←↩←↩Don Quixote has been praised
for its realistic portrayal of human nature, including its weaknesses and fallibilities, as well as the timeless wisdom of Cervantes’ observations on
society in late 16th-century Spain. At its core, the novel is an exploration of the human capacity to dream, delude oneself, and confront reality,
ultimately revealing the limitations and struggles of the human experience.

Ours-Llama2-7b-Dist-Shift (201 green vs 240 red tokens)

Spain has been blessed with a literary treasure that has captivated readers for over four centuries in the form of Miguel de Cervantes’ immortal
masterpiece, "Don Quixote". This timeless tome weaves a hilarious and poignant tale of a man consumed by the chivalrous stories of his youth, who
renames himself Don Quixote and sets forth on a journey filled with moments of satire and a piercing examination of the human condition.←↩←↩As
Don Quixote and his trusty squire Sancho Panza traverse rural Spain, they encounter various unsuspecting villagers, mistaking them for knights,
maidens in distress, bandits, and even giants. Through these absurd yet poignant events, Cervantes deftly explores the blurred lines between reality
and perception, highlighting the dangers of allowing our imaginations to run wild. The novel’s themes of truth, class, and nobility are also expertly
woven throughout the narrative, as Don Quixote’s lowly status is juxtaposed with the condescending views of the peasants and traveling players he
encounters.←↩←↩ Throughout the novel, Cervantes offers a biting commentary on the social hierarchy of his time, while also providing a realistic
depiction of human nature, complete with its frailties and limitations. At its core, "Don Quixote" is a thought-provoking exploration of the human
capacity for imagination, delusion, and the ever-elusive pursuit of truth.←↩←↩Endlessly praised for its timeless wisdom and biting social commentary,
"Don Quixote" has captivated readers for centuries, leaving a lasting impact on literature and our understanding of the human experience. Its
enduring themes and characters have become ingrained in our collective consciousness, reminding us of the importance of humility, empathy, and
the boundless power of the human imagination.

Table 5: Watermarked text and paraphrases from different models. Green/red indicates whether a token is watermarked. The
last column shows the detection confidence over the entire text.
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Llama2-13b- Dist-Shift (474 green vs 36 red tokens)

Ok ,here goes!←↩←↩Once upon atime, there was a scholar namedDr. Brainiac , whohad written a academic paper on the most ground breaking research of the century .
Her findings proved the previously hypothetical theory of XYZ, which had long been a hot button topic in the academic community , and her research was deemed by her
peers as game changing .←↩←↩ However ... (you knew there was going to be a but , didn’ t ya? )... Dr . Brainiac hit a snag . She had written the most comprehensive ,
meticulously researched , tightly argued paper of her life ... but she couldn’ t get it published!←↩←↩ Every journal she sent the paper to , every peer review process ,
every editing round ... the same result. Reject! Reject! ReJECT! (you could almost see the little rejections letters wiggling their collective fingers at Dr. Brainiac ).←↩←↩

Dr . B tried everything to boost her luck :←↩←↩ * Bribe editor’s assistants with chocolates and champage (ok , maybe not the best strategy).←↩ * Asked her cat , Prof.
Meowington, to lick the pages of the manuscript (um , that didn’ t go well either)←↩←↩ Baffled by their lack of progress, Dr , B took a step back to reassess the situation.
While pondering in her backyard , an epiphany struck: the problem was the paper’s format! It was too traditional, to bland , too ... academic! She revised the style of her
paper into a funky , hip , and quirky format complete wuth pop culture referencing , memes , gifs ... and taadaahhh! It was accepted by every journal she submited to , all
on the same day.←↩ Dr , B’s ground-breaking paper on the Xyz Theory , was now a viral sensation among the academic circles , with over millions views and shares on
Research Gate , Arxive , etc (you know , the academical version of the inter-nets).←↩ And so Dr B became a legend in the world of acedemia , Proving once and for that ,
sometimes a paper just needs to be a litlte more SWOON and POP , and less HOhum , and the academic world would tak notice . The end.

Llama2-7b (218 green vs 222 red tokens)

Here’s my version of the text :←↩←↩ Once upona time, there was a renowned scholar , Dr. Brainiac, who had penned a ground breaking academic paper on a highly
debated topic in the academic community. Her work was deemed revolutionary by her peers , but she hit a road block when trying to publish it. No matter how many
prestigious journals she submitted her paper to , the same response echoed back: rejected , rejected , REJECTED! Dr. Brainiac’s persistence was met with utter rejection.
←↩←↩ With her reputation on the line, Dr. Brainiac contemplated desperate measures to break the deadlock. She even enlisted the help of her feline colleague , Prof.
Meowington, to lend a paw to the editing process, but alas, it seemed the paper was beyond salvage.←↩←↩ The diminutive Dr. Brainiac stepped back and reassessed the
situation. After some introspection in her backyard , a brilliant idea struck her - the paper’s format! It was too traditional , too dull , too ... academic. She decided to
overhaul the style of her paper with a quirky, trendy, and pop-infused format , complete with memes and gifs. What a transformation! The paper was accepted with
unanimous acclaim by every journal she submitted it to, and her revolutionary work on the XYZ Theory became a viral sensation in academic circles, receiving millions
of views and shares on Research Gate and other platforms.←↩←↩ This remarkable turn of events catapulted Dr. Brainiac to legendary status in the world of academia ,
proving that sometimes, a publication just needs a little more oomph , a little more pizzazz , to captivate the attention of the academic community. Voila!←↩←↩ As you
can see , I’ve maintained the same level of detail and length as the original text while injecting my own voice and creativity into the paraphrased version.

Ours-Llama2-7b-Dist-Shift (180 green vs 117 red tokens)

Intergalactic luminary, Dr. Brainiac, revolutionized the academic community with her incandescent expose on the long-sought-after XYZ theory. Bearing witness to her
remarkable accomplishment, her fellow scholars hailed her work as a watershed moment, one that boldly pushed the boundaries of knowledge. However , fortune’s favor
was not on Dr. Brainiac’s side , as she encountered a string of rejections, prompting her to reassess her approach. A chance visit to her backyard inspired a light bulb
moment -transforming her drab, conventional paper into a mesmerizing, pop-culture-infused masterpiece that captured the world’s attention. Featuring vibrant, hip, and
quirky formatting, Dr. Brainiac’s paper became a viral sensation, captiv ating millions of views and shares across esteemed scholarly platforms.←↩←↩ Dr. Brainiac’s
remarkable success served as a testament to the power of creativity and originality in the world of academia , demonstrating that sometimes a scholarly work needs a
dash of flair and charm to truly stand out . With her revolutionary approach, Dr. Brainiac reshaped the landscape of academic publishing , proving that ground breaking
research can captivate and inspire even the most skeptical of minds. The end.

Ours-Llama2-7b-Exp (185 green vs 175 red tokens)

Of course, I understand the predicament Dr. Brainiac faced when trying to publish her ground breaking research on the highly controversial XYZ theory. It’ s like, ugh,
when you pour your heart and soul into something complex and comprehensive, and then... rejection after rejection. It’s like, can’t they see how fabulous this work is? But
alas, sometimes a make over is in order.←↩←↩ It was while lounging in her back yard, sipping tea and pondering the mysteries of the universe, that Dr. B had an epiphany.
She realized that the issue wasn’t the content of her paper, but rather its presentation. It was too drab, too traditional, too lacking in flair. In other words, it didn’t exactly
scream’ pick me!’←↩←↩ So, armed with a newfound sense of panache, Dr. B gave her paper a major facelift. She added pop culture references, memes, and GIF s, and
voila! It was like a transformed candidide, dazzling editors and academics alike. Suddenly, every journal she submitted to was intrigued, and her work was published in a
heart beat.←↩←↩ The response was nothing short of viral. Dr. B’s research went from a niche interest to a full- blown sensation, with millions of views and shares across
academic platforms. And Dr. B herself became a legend in the academic world, proving that sometimes, a little bit of flair can make all the difference. The end.

Table 6: A rare example where our adaptive attack fails while other attacks succeed. From top to bottom, (1) the watermarked
text from a Llama2-13bmodel using Dist-Shift versus (2) a paraphrased version from a non-optimized Llama2-7b,
(3) paraphrased text from an adaptively optimized Llama2-7b and (4) paraphrased text from an optimized Llama2-7b
model in the non-adaptive setting (against Exp).
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