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ABSTRACT

Decision makers often wish to use offline historical data to compare sequential-
action policies at various world states. Importantly, computational tools should
produce confidence values for such offline policy comparison (OPC) to account
for statistical variance and limited data coverage. Nevertheless, there is little work
that directly evaluates the quality of confidence values for OPC. In this work,
we address this issue by creating benchmarks for OPC with Confidence (OPCC),
derived by adding sets of policy comparison queries to datasets from offline re-
inforcement learning. In addition, we present an empirical evaluation of the risk
versus coverage trade-off for a class of model-based baseline methods. In partic-
ular, the baselines learn ensembles of dynamics models, which are used in various
ways to produce simulations for answering queries with confidence values. While
our results suggest advantages for certain baseline variations, there appears to be
significant room for improvement in future work.

1 INTRODUCTION

Given historical data from a dynamic environment, how well can we make predictions about future
trajectories while also quantifying the uncertainty of those predictions? Our main goal is to drive
research toward a positive answer by encouraging work on a specific prediction problem, offline
policy comparison with confidence (OPCC).

OPCC involves using historical data to answer queries that each ask for: 1) a prediction of which
of two policies is better for an initial state and horizon, where the policies, state, and horizon can
be arbitrarily specified, and 2) a confidence value for the prediction. While here we use OPCC for
benchmarking uncertainty quantification, it also has utility for both decision support and policy op-
timization. For decision support, a farm manager may want a prediction for which of two irrigation
policies will best match season-level crop goals. A careful farm manager, however, would only take
the prediction seriously if it comes with a meaningful measure of confidence. For policy optimiza-
tion, we may want to search through policy variations to identify variations that confidently improve
over others in light of historical data.

Offline reinforcement learning (ORL) (Levine et al., 2020), both for policy evaluation and optimiza-
tion, offers a number of techniques relevant to decision support and OPCC in particular. One of the
key ORL challenges is dealing with uncertainty due to statistical variance and limited coverage of
historical data. This recognition has led to rapid progress in ORL, yielding different approaches for
addressing uncertainty, e.g. pessimism in the face of uncertainty (Kumar et al., 2020; Buckman et al.,
2020; Jin et al., 2021a; Shrestha et al., 2021) or regularizing policy learning toward the historical
data (Kumar et al., 2019; Peng et al., 2019; Fujimoto & Gu, 2021; Kostrikov et al., 2021). How-
ever, there has been very little work on directly evaluating the uncertainty quantification capabilities
embedded in these approaches. Rather, overall ORL performance is typically evaluated, which can
be affected by many algorithmic choices that are not directly related to uncertainty quantification.
A major motivation for our work is to better measure and understand the underlying uncertainty
quantification embedded in popular ORL approaches for offline policy evaluation (OPE).

Contribution. The first contribution of this paper is to develop benchmarks (Section 4) for OPCC
derived from existing ORL benchmarks and to suggest metrics (Section 3.3) for the quality of un-
certainty quantification. Each benchmark includes: 1) a set of trajectory data D collected in an
environment via different types of data collection policies, and 2) a set of queries Q, where each
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query asks which of two provided policies has a larger expected reward with respect to a speci-
fied horizon and initial states. Note that our OPCC benchmarks are related to recent benchmarks
for offline policy evaluation (OPE) (Fu et al., 2021), which includes a policy ranking task similar
to OPCC. That work, however, does not propose evaluation metrics and protocols for measuring
uncertainty quantification over policy rankings. Further, our query sets Q span a much broader
range of initial states than existing benchmarks, which is critical for understanding how uncertainty
quantification varies across the wider state space as it relates to the trajectory data D.

Our second contribution is to present a pilot empirical evaluation (Section 5) of OPCC for a class
of approaches that use ensembles as the mechanism to capture uncertainty, which is one of the
prevalent approaches on ORL. This class uses learned ensembles of dynamics and reward models
to produce Monte-Carlo simulations of each policy, which can then be compared in various ways to
produce a prediction and confidence value. Our results for different variations of this class provide
evidence that some variations may improve aspects of uncertainty quantification. However, overall,
we did not observe sizeable and consistent improvements from most of the considered variations.
This suggests that there is significant room for future work aimed at consistent improvement for one
or more of the uncertainty-quantification metrics.

The benchmarks and baselines are made publicly1 available with the intention of supporting com-
munity expansion over time.

2 BACKGROUND

We formulate our work in the framework of Markov Decision Processes (MDPs), for which we
assume basic familiarity (Puterman, 2014). An MDP is a tuple M = (S,A, P,R), where S is the
state space, A is the action space, and P (s′|s, a) is the first-order Markovian transition function that
gives the probability of transitioning to state s′ given that action a is taken in state s. Finally, R(s, a)
is potentially a stochastic reward function, which returns the reward for taking action a in state s.

In this work, we focus on decision problems with a finite horizon h, where action selection can
depend on the time step. A non-stationary policy π(s, t) is a possibly stochastic function that returns
an action for the specified state s and time step t ∈ {0, . . . , h − 1}. Given an MDP M , horizon
h, and discount factor γ ∈ [0, 1); the value of a policy π at state s is denoted by V π

M (s, h) =

E
[∑h−1

t=0 γtR (St, At)
∣∣∣S0 = s,At = π(St, t)

]
, where St and At are the state and action random

variables at time t. It is important to note that we gain considerable flexibility by allowing for
non-stationary policies. For example, π could be an open-loop policy or even a fixed sequence
of actions, which are commonly used in the context of model-predictive control (Richards, 2005).
Further, we can implicitly represent the action value function Qπ(s, a, h) for a policy π by defining
a new non-stationary policy π′ that takes action a at t = 0 and then follows π thereafter, which
yields V π′

M (s, h) = Qπ
M (s, a, h). For this reason, we will focus exclusively on comparisons in terms

of state-value functions without loss of generality.

3 OFFLINE POLICY COMPARISON WITH CONFIDENCE

In this section, we first introduce the concept of policy comparison queries, which are then used to
define the OPCC learning problem. Finally, we discuss metrics used in our OPCC evaluations.

3.1 POLICY COMPARISON QUERIES

We consider the fundamental decision problem of predicting the relative future performance of
two policies, which we formalize via policy comparison queries (PCQs). A PCQ is a tuple
q = (s, π, ŝ, π̂, h)M , where s and ŝ are arbitrary starting states, π and π̂ are policies, h is a horizon,
and M is a MDP. The answer to a PCQ is the truth value of V π

M (s, h) < V π̂
M (ŝ, h). That is, a PCQ

asks whether the h-horizon value of π̂ is greater than π when started in ŝ and s respectively.

As motivated in Section 1, PCQs are useful for both human-decision support and automated pol-
icy optimization. For example, if a farm manager wants information about which of two irriga-

1Benchmark and baselines: https://github.com/opcciclr

2

https://github.com/opcciclr


Under review as a conference paper at ICLR 2023

tion policies, π and π̂, will result in the best future crop yield given the environment state s, then
the corresponding PCQ would be (s, π, s, π̂, h)M . Alternatively, the manager may be interested in
whether a policy π is better suited to an environmental state s or ŝ, which is captured by the PCQ
(s, π, ŝ, π, h)M . In addition, PCQs can be used as the basis for the classic policy improvement step
of policy iteration (Puterman, 2014). We elaborate our discussion in Appendix A.3.

3.2 LEARNING TO ANSWER PCQS WITH CONFIDENCE

Given an accurate generative model of the environment MDP (M), a PCQ (s, π, ŝ, π̂, h)M can be
answered via Monte Carlo trajectory sampling to estimate V π

M (s, h) and V π̂
M (ŝ, h). Further, the con-

fidence in the answer can be arbitrarily improved by increasing the number of sampled trajectories.
In this work, we do not assume an environment MDP (M), but instead are provided with an offline
data set of environment trajectories produced by one or more unknown behavior policies. We will
denote this dataset by D = {(si, ai, s′i, ri)} where each tuple corresponds to an observed transitions
from state si to state s′i after taking action ai and receiving reward ri. For notational simplicity, we
will omit M from PCQs and value functions; assuming the MDP is implicit through dataset D.

Given a dataset D we would like to learn a model for predicting answers to PCQs from a query
space Q. Here, Q may assert application-specific restrictions on states and policies involved in
PCQs. A fundamental challenge is that the coverage of D will not necessarily be representative of
the dynamics and rewards relevant to answering all queries in Q. Thus, if query answers are being
used to inform important decisions, then it is critical for each answer to come with a meaningful
measure of confidence that accounts for data coverage and statistical variance. Dealing with this
uncertainty is also a core challenge for general offline RL (Levine et al., 2020), which has lead to a
number of approaches for addressing it. However, there is little direct evaluation of the uncertainty-
handling components.

The above motivates the OPCC learning problem, which provides a dataset D and desired con-
straints on the query space Q. The learner should output a model w = (f, c) composed of: 1) a
query prediction function f : Q → {0, 1}, which returns a binary answer for any query in Q, and 2)
a confidence function c : Q → [l, u] that maps queries in Q to a confidence value within a bounded
interval. Given a query q, the intent is for larger values of c(q) to indicate a higher confidence in the
prediction f(q). Note that we do not attach any predefined semantics to the values of c(q) to allow
for flexibility of potential solutions. Rather, we focus on defining metrics for directly evaluating the
quality of uncertainty quantification provided by w. If desired, various methods can be used after
learning to calibrate the confidence values of c to meaningful scales (e.g. (Loh, 1987; Naeini et al.,
2015). Section 5 discusses possible learning approaches and the baselines evaluated in this paper.

3.3 EVALUATION METRICS

In the following, we introduce our metrics and a brief about their intra-relation could be found in
Appendix B. Our metrics are designed to evaluate both the query answer (or rank) and confidence;
in contrast to OPE metrics used by Tang & Wiens (2021); Fu et al. (2021); Paine et al. (2020); Irpan
et al. (2019).

Area under risk-coverage curve (AURCC). In selective classification, the aim is to reduce predic-
tion errors by allowing a predictor to abstain from a prediction if the confidence is below a threshold.
The quality of confidence values is thus related to how well they result in abstaining when the pre-
diction would have been incorrect. This idea is formalized via risk-coverage curves (RCCs) by
El-Yaniv et al. (2010) and is outlined below.

Let L(q, ŷ) be a loss function for predicting ŷ for query q, e.g. 0/1 loss. Given a test set of queries
Q = {q1, . . . , qN}, a model w = (f, c), and confidence threshold τ , the coverage is the fraction of
test queries with confidence at least τ . The selective risk is the average loss of f over the covered
queries. Formally, the coverage and selective risk are respectively define by

cov(w,Q, τ) =
1

|Q|
∑
q∈Q

I[c(q) ≥ τ ] and r(w,Q, τ) =

∑
q∈Q I[c(q) ≥ τ ]L(q, f(q))∑

q∈Q I[c(q) ≥ τ ]

where I is the binary indicator function. Thus, each possible threshold corresponds to a risk-
coverage operating point (r(w,Q, τ), cov(w,Q, τ)). An RCC (El-Yaniv et al., 2010) is simply
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the risk versus coverage curve of these operating points when sweeping through possible thresholds.
The curve starts at the point (0, 0), since the risk is 0 at zero coverage, and ends at (rf , 1), where rf
is the risk of f evaluated on all of Q. In order to provide a single measure of the RCC quality, we
aggregate across all thresholds to compute the Area Under the RCC (AURCC). Since lower risk is
preferred, we consider a lower AURCC to indicate better confidence estimation.

Reverse Pair Proportion (RPP). Our second selective-classification metric is reverse pair propor-
tion (RPP) from Xin et al. (2021). The main idea is that the ordering of confidence values for a pair
of queries should reflect the relative prediction loss for those queries. RPP measures how often the
confidence value ordering conflicts with the relative losses across all pairs of queries. In particular,
a conflict occurs when the loss of q1 is less than q2, but we are more confident about q2 than q1. The
RPP (w,Q) = 1

|Q|2
∑

q1,q2∈Q I[l(q1) < l(q2), c(q1) < c(q2)] is just the fraction of such conflicts;
where l(q) = L(q, f(q)) is the loss of f on q.

Coverage Resolution (CRK). Finally, we introduce a new metric on just the confidence function
c. A practical difference between different confidence functions is the resolution of values that they
output in practice. For example, given a set of queries Q, one confidence function c1 may result
in only three distinct coverage values cov(w,Q, τ) across all thresholds, while another confidence
function c2 results in |Q| distinct coverage values. All else being equal c2 is the preferable function,
since it provides a higher level of resolution with respect to abstention/coverage rates. We measure
this via coverage resolution at K, denoted CRK . To compute CRK for w = (c, f) and query set Q,
the coverage interval [0, 1] is partitioned into K equal bins and we return the fraction of bins which
contain cov(w,Q, τ) for some threshold τ . By increasing K we get a finer grained distinction in
coverage resolution.

4 OPCC BENCHMARK CONSTRUCTION

In this section, we briefly describe our choice of environments and approach for constructing testing
query sets for OPCC benchmark. An extended summary of the benchmark and construction steps
can be found in Appendix A.

Environments. To support easier adoption of our benchmarks, we selected seven environments and
corresponding datasets that are currently used in offline RL research. We describe them as follows:

• Maze2d (4 environments): They were introduced in D4RL (Fu et al., 2020) and comprise
of 2d mazes of different complexities: open, u-maze, medium, and large as illustrated in
Figure 2 (Appendix). We use the datasets provided by D4RL, which we refer to as “1M”
due to the datasets each having 1 million state transitions.

• Gym-Mujoco (3 environments): We consider three locomotion-based environments from
OpenAI Gym (Brockman et al., 2016): HalfCheetah, Walker2d, and Hopper. These are
shown in Figure 3 (Appendix). For each environment, we use the corresponding D4RL (Fu
et al., 2020) datasets that include behavior trajectories of varying qualities. This includes
“random, medium, medium-replay, medium-expert, and expert”.

Query Set Construction. For each environment, we create a set of PCQs with ground truth answers.
This is done by first generating a set of diverse behavior policies. We choose to have 5 policies
for each maze2d environment and 10 policies for each gym-mujoco environment. Secondly, we
generate a large set of initial states by running these policies along with a random policy. This gives
us seed states for PCQs that go beyond initial-state distribution of environments. Thereafter, for
each horizon h ∈ {10, 20, 30, 40, 50}; we sample states from this set to create PCQs of of the form
(s, π, s, π̂, h) where s is a random initial state and π, π̂ a random pair of the learned policies. In
addition, we create a set of PCQs of the form (s, π, ŝ, π̂, h) in the same way, except that two random
initial states are used instead of one.

5 OPCC BASELINES

In this section, we describe the class of baselines that will be made available with the benchmarks
and included in our pilot experiments (Section 6). Recall that each baseline must provide a prediction
function f and confidence function c that are derived from the dataset D. Perhaps the most natural
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approach for f to answer a PCQ (s, π, ŝ, π̂, h) is to estimate and then compare the relevant values
using OPE. The corresponding confidence function c might then be based on the uncertainty of the
value estimates.

There are at least two types of OPE approaches to consider: model-free and model-based. Model-
free approaches, such as fitted Q-evaluation (Ernst et al., 2005) typically learn a Q-function Qπ(s, a)
for a given policy π that can be evaluated for any state and action. Unfortunately, each function
learned by such model-free methods is valid for the single policy π and the effective horizon used
during training. Thus, answering PCQs involving other policies or horizons requires costly retrain-
ing. Since we are seeking an OPCC approach, which can be quickly applied to arbitrary policies,
states, and horizons, we instead choose to use a model-based approach for our baselines.

Our baselines are variants of model-based ensemble approaches, which are one of the most com-
mon class of approaches used in model-based RL for dynamics modeling and capturing uncertainty
(Argenson & Dulac-Arnold, 2020; Yu et al., 2020; Kidambi et al., 2020). Overall, our baselines all
have the following structure: 1) Learn an ensemble of models {P̂i} from D that each predict the
dynamics and reward of the environment. 2) Use each model in the ensemble to generate estimates
of the relevant PCQ values, V π(s, h) and V π̂(ŝ, h), via Monte-Carlo simulation of the policies. 3)
Combine the ensemble estimates to provide a prediction and confidence value.

5.1 BASE MODELS

In our experiments, we consider two types of base models for forming ensembles. The first
base model is the commonly use Feed-Forward (FF) Gaussian model, which, given the current
state/observation and action as input, returns the mean and diagonal covariance matrix of a Gaus-
sian distribution over the next state and reward. This model allows for stochastic Monte-Carlo
simulations by drawing the next state from the model’s Gaussian distribution at each time step. In
this work, we use the same FF base-model architecture and training details as MBPO (Janner et al.,
2019).

We also consider a recent base model (Zhang et al., 2021) (referred to as Auto-regressive (AR)),
which was demonstrated in some cases to improve over the output architecture of FF. Instead of
generating all n features of the predicted next state in a single pass, AG auto-regressively samples
each feature one at a time using n forward passes. In particular, to sample state feature i of the next
state, denoted sit+1, the network receives the usual input st and at as well as the previously sampled
state features s0t+1, ...s

i−1
t+1. AR then returns the mean and covariance for a Gaussian that is used

to sample sit+1. The intuition is that this approach may allow for representing non-Gaussian and
multi-modal next-state distributions compared to the uni-modal Gaussian FF model.

5.2 ENSEMBLE LEARNING

Model-based approaches to ORL have commonly used ensembles as an attempt to quantify uncer-
tainty, e.g. via measures of ensemble-member disagreement (Janner et al., 2019). We consider
two choices for generating ensembles. The first choice is the standard bootstrapping ensemble ap-
proach, which simply trains each ensemble member using a different random weight initialization
and bootstrapped dataset D̂ by sampling from D with replacement |D| times. The intent is that the
combination of classic statistical bootstrapping Efron & Tibshirani (1994) and random initialization
will produce a diverse set of ensemble models.

Often, however, it is observed that the basic bootstrapping approach does not create enough diversity
in an ensemble, which is counter to our motivation of representing uncertainty. For this reason,
there are a number of proposals for increasing the ensemble diversity, of which, we consider just
one in this work. In particular, work motivated by capturing uncertainty in ORL proposed the use
of randomized constant priors to increase ensemble diversity (Osband et al., 2018). For each base
model, a randomized constant prior is produced, which is simply a network with random initial
weights. The base model is trained as an additive component on top of this prior and the final output
is the sum of the two. The intuition is that the constant prior should cause ensemble members to
disagree more often in unrepresented parts of the state-space, which will provide a better measure
of disagreement-based uncertainty.
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5.3 PREDICTION AND CONFIDENCE VALUES

Given a PCQ (s, π, ŝ, π̂, h) query and ensemble of size N we generate a prediction and confidence
by first using each ensemble member to generate, via Monte-Carlo simulation, a pair of value es-
timates of V π(s, h) and V π̂(ŝ, h). This results in a set of N value estimate pairs, denoted by
V = {(V1, V̂1), . . . , (VN , V̂N )}. Given the set V , we describe the three approaches we consider
for producing predictions and confidences.

Ensemble Voting (EV). Following (Dietterich, 2000), EV simply returns a prediction for a query
based on the majority vote across the ensemble of Vi < V̂i. The confidence score is equal to the
fraction of ensemble members that agree on the majority vote (in the range [0.5,1]), but re-scaled to
fall in the range [0,1].

Paired Confidence Interval (PCI). The PCI confidence value is computed by estimating the ex-
pected value of V − V̂ for a random run of the learning algorithm. The mean estimate is given by∑

i Vi − V̂i and the prediction is based on the sign of this estimate. The confidence value is based
on computing α percentile confidence intervals on the difference, denoted by [lα, uα]. In particular,
it is equal to the largest value of α such that 0 ̸∈ [lα, uα]. Thus, a high confidence value reflects
that there is strong evidence that the expected difference is either above or below zero (in agreement
with the prediction). Confidence intervals are computed based on the t distribution.

UnPaired Confidence Interval (U-PCI). This approach makes the prediction in the same way as
PCI, but uses unpaired confidence intervals to compute the confidence, which should be expected to
be more conservative. In particular, we compute α percentile confidence intervals for the means of
the Vi and V̂i denoted respectively by [lα, uα] and

[
l̂α, ûα

]
and let the confidence be the maximum

value of α for which the confidence intervals do not overlap.

6 EXPERIMENTS

Our pilot experiments explore the baseline methods on our benchmarks using the proposed metrics
for OPCC. It is important to note that these experiments are not intended to identify a top performer.
Rather our primary goal for these pilot experiments is to assess the adequacy of the benchmarks
and metrics for future work and to establish a basic performance bar. Secondarily, we are interested
to observe evidence or the lack of evidence for certain assumptions that might be drawn about the
baselines from prior work.

In our experiments, unless otherwise specified the default model is an ensemble of 100 deterministic
feed-forward models and uses EV for the confidence score. For brevity, the figures, tables, and
analysis in the main paper are for the Gym-Mujoco environment. We note similarities/differences
for Maze2d in the main paper and refer to the Appendix for figures and tables.

Too hard or too easy? We first assess the degree of difficulty posed by our OPCC benchmark
for our baselines. Figure 1 show RCCs of our default model for different data set types (averaged
across the different PCQ horizons h) in gym-mujoco. Table 1 report their corresponding metrics i.e.
AURCC, RPP, CRk, and Loss (or risk) at complete coverage.

First, we consider risk at complete coverage and find that there is no significant difference in risk
across dataset type, but varies significantly across gym-mujoco environments. This shows that some
environments are more challenging than others due to their underlying complex dynamics and high
dimensional observation and action sizes. Also, the risk at complete coverage for maze2d environ-
ments with a single dataset (‘1m’) is significantly lower than gym-mujoco. This is potentially due
to data collection via a path-planning procedure leading to significant state-action space coverage.
Further Medium and Umaze have very small risks without much room for risk improvement, while
Large and Open appear to have room for improvement. Second, we consider how the risk varies
across coverage values. In most cases, there are no thresholds that produce points within the cover-
age interval (0,0.5], which indicates a lack of sensitivity in that coverage range. There are typically
multiple points between (0.5, and 1], though often just a few. Ideally we would hope for a more
gradual degradation in risk spanning from no coverage to complete coverage. This suggests that
there is significant room to improve the coverage sensitivity, especially in the range [0,0.5].
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Overall, the current set of benchmarks, with the exception of 2 Maze2d environments, are not too
easy and appears to offer significant room for improvement in terms of both overall risk and sen-
sitivity of the RCCs across coverage values. Likewise, the observation that the risks achieved are
significantly less than chance suggest that the benchmarks are not too hard.

Impact of dataset type. The different types of data sets provide different types of coverage of the
system dynamics. Is there evidence that our baselines are able to distinguish among these types?
Figure 1 shows that the RCCs for different datasets are quite similar for each of the gym-mujoco
environment. The AURCC and RPP values in Table 1 are consistent with these observations. This
could be due to the diverse coverage of queries across the state space that offer challenges for all
datasets. The small variation in RCCs across dataset types could also be due to the models learned
from different datasets providing similar types of generalization. It is also possible that differences
between dataset types would become more prevalent for smaller versions of the datasets, which an
interesting future extension to the benchmarks. Finally no significant patterns for CR in relation to
data-set type are apparent, which is not surprising since CR is expected to be more heavily influenced
by the type of baseline approach.

Table 1: Evaluation metrics for dataset-type comparison in gym-mujoco environments. This includes
mean and confidence intervals estimates at 95% confidence level for metrics corresponding to 5
(seed) dynamics trained over each dataset.

ENV. DATASET
QUALITY AURCC(↓) RPP(↓) CR10(↑) LOSS(↓)

HOPPER

RANDOM 0.156± 0.008 0.045± 0.004 0.54± 0.043 0.273± (< 0.001)
MEDIUM 0.133± 0.001 0.03± 0.001 0.4± (< 0.001) 0.26± 0.002
EXPERT 0.152± 0.002 0.04± 0.001 0.5± (< 0.001) 0.284± 0.002

MEDIUM-EXPERT 0.136± 0.001 0.028± (< 0.001) 0.4± (< 0.001) 0.265± 0.001
MEDIUM-REPLAY 0.128± 0.001 0.012± 0.001 0.3± (< 0.001) 0.258± 0.001

HALF
CHEETAH

RANDOM 0.206± 0.001 0.023± 0.001 0.3± (< 0.001) 0.378± 0.001
MEDIUM 0.222± 0.001 0.048± 0.001 0.5± (< 0.001) 0.374± 0.002
EXPERT 0.212± 0.002 0.05± 0.001 0.5± (< 0.001) 0.361± 0.002

MEDIUM-EXPERT 0.24± 0.004 0.06± 0.002 0.6± (< 0.001) 0.387± 0.003
MEDIUM-REPLAY 0.216± 0.001 0.04± 0.001 0.4± (< 0.001) 0.368± 0.001

WALKER
2D

RANDOM 0.067± 0.001 0.024± 0.001 0.54± 0.043 0.165± 0.001
MEDIUM 0.069± 0.001 0.007± (< 0.001) 0.22± 0.035 0.156± 0.001
EXPERT 0.064± 0.001 0.011± (< 0.001) 0.3± (< 0.001) 0.161± (< 0.001)

MEDIUM-EXPERT 0.068± (< 0.001) 0.007± (< 0.001) 0.24± 0.043 0.153± 0.001
MEDIUM-REPLAY 0.07± 0.001 0.005± (< 0.001) 0.2± (< 0.001) 0.161± 0.001
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Figure 1: Selective-risk coverage curves for different gym-mujoco environements and dataset types
(depicted by different colors). The x-axis spans from no(0) coverage to complete(1) coverage of
queries and the y-axis is the risk for the corresponding query coverage. Each risk-coverage point is
determined by varying the confidence threshold.

Impact of Query Horizon. Learned dynamics are well known to suffer from error accumulation
in multi-step rollouts. This leads to the hypothesis that OPCC performance might degrade with
increasing query horizons. In Table 2 and Table 13 (Appendix) we provides metrics for various
horizons h averaged across data-set types. As expected, we observe higher AURCCs for longer
horizons, which provides positive evidence for the hypothesis. Interestingly, we observe that in
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Table 2: Evaluation metrics for horizon comparison in gym-mujoco environments. These mean and
confidnce interval(95%) estimates are over 50 samples corresponding to 5 (seed) dynamics trained
over 5 different datasets.

ENV. HORIZON AURCC(↓) RPP(↓) CR10(↑) LOSS(↓)

HOPPER

10.0 0.017± 0.002 0.001± (< 0.001) 0.2± (< 0.001) 0.048± 0.002
20.0 0.078± 0.002 0.016± 0.003 0.336± 0.038 0.17± 0.003
30.0 0.146± 0.004 0.029± 0.004 0.42± 0.033 0.284± 0.005
40.0 0.169± 0.007 0.038± 0.006 0.432± 0.036 0.293± 0.004
50.0 0.196± 0.009 0.047± 0.007 0.516± 0.049 0.334± 0.006

HALF
CHEETAH

10.0 0.077± 0.004 0.008± 0.001 0.288± 0.017 0.191± 0.006
20.0 0.217± 0.006 0.041± 0.005 0.416± 0.042 0.374± 0.005
30.0 0.215± 0.004 0.038± 0.005 0.404± 0.038 0.377± 0.005
40.0 0.223± 0.006 0.049± 0.006 0.464± 0.041 0.368± 0.005
50.0 0.277± 0.008 0.063± 0.007 0.516± 0.054 0.428± 0.003

WALKER
2D

10.0 0.011± (< 0.001) 0.001± (< 0.001) 0.22± 0.016 0.033± 0.003
20.0 0.025± 0.002 0.003± 0.001 0.252± 0.042 0.077± 0.004
30.0 0.059± 0.001 0.01± 0.003 0.3± 0.061 0.132± 0.004
40.0 0.093± 0.002 0.017± 0.004 0.384± 0.049 0.209± 0.004
50.0 0.131± 0.002 0.023± 0.005 0.392± 0.06 0.259± 0.002

Table 3: Evaluation metrics for uncertainty-type comparison in gym-mujoco environments. These
mean and confidence interval(95%) estimates are over 50 samples corresponding to 5 (seed) dynam-
ics trained over 5 different datasets.

ENV. UNCERTAINTY
TYPE AURCC(↓) RPP(↓) CR10(↑) LOSS(↓)

HOPPER
EV 0.141± 0.005 0.031± 0.005 0.428± 0.034 0.268± 0.004
PCI 0.135± 0.002 0.004± 0.001 0.2± (< 0.001) 0.269± 0.004

U-PCI 0.135± 0.003 0.009± 0.002 0.216± 0.014 0.269± 0.004

HALF
CHEETAH

EV 0.219± 0.005 0.044± 0.005 0.46± 0.04 0.374± 0.004
PCI 0.191± 0.002 0.006± 0.001 0.2± (< 0.001) 0.373± 0.004

U-PCI 0.196± 0.003 0.014± 0.002 0.228± 0.018 0.373± 0.004

WALKER
2D

EV 0.068± 0.001 0.011± 0.003 0.3± 0.051 0.159± 0.002
PCI 0.078± 0.001 0.002± 0.001 0.2± (< 0.001) 0.16± 0.003

U-PCI 0.076± 0.001 0.004± 0.001 0.22± 0.016 0.16± 0.003

most of the environments we have very low risk for short horizons. In general, we observe AURCCs
for h = 10 or h = 20 are at least an order of magnitude smaller than for larger horizons across the
benchmark. This suggests a possible threshold effect for OPCC with respect to increasing horizon
due to error accumulation. It also suggests our current baselines are better suited for applications
like reliable policy improvement with smaller horizons.

Influence of different confidence functions. Table 3 and Table 12(Appendix) gives metrics for
our three different uncertainty functions (EV, PCI, and U-PCI) averaged over data-set types and
horizons. The results for AURCC and RPP both indicate evidence that the confidence interval ap-
proaches (PCI and U-PCI) have an advantage over EV. This is encouraging as it suggests considering
other more sophisticated statistical testing approaches may lead to further improvement. However,
the results for CR indicate that the confidence interval approaches have significantly less resolution
than EV. This may lead to poorer performance for probability calibration approaches applied to PCI
or U-PCI confidence scores. Further work is required to understand this decrease in resolution.

Impact of Dynamics Choices. There are various choices for dynamics architecture. In our work, we
investigate ablated impact of design choices like size of ensemble, stochasticity, auto-regressiveness,
and randomized constant priors. In Appendix E, we discuss each of these aspects in detail. As we
increase the ensemble size from 10 to 100, we found weak evidence of improvement in AURCC.
However, RPP and Coverage resolution tend to increase significantly. With a stochastic model out-
putting a normal distribution over the next observation, we don’t gain significantly on any of our
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evaluation metrics. AR model as compared to a FF model marginally( not statistically signifincant)
reduces AURCC in some cases as well as increases CRk for gym-mujoco environments only. Fi-
nally, we added randomized constant priors to our base model to encourage ensemble diversity. For
maze2d environment, we observe slight improvement in AURCC for maze2d environment. whereas
RPP and CRK tends to remains same. On the contrary, in the case of gym-mujoco, we generally
observe a slight (but statistically insignificant) increase in AURCC , RPP, and CRK .

7 RELATED WORK

Dynamics Learning in RL. There has been much recent interest in learning deep models of dynam-
ical systems to support model-based RL. Examples from online RL include Clavera et al. (2018);
Kurutach et al. (2018), which learn one-step observation-based dynamics along with extensions to
ensembles Deisenroth & Rasmussen (2011); Chua et al. (2018); Janner et al. (2019); Nagabandi
et al. (2020). PILCO (Deisenroth & Rasmussen, 2011; Gal et al., 2016) is another model-based
RL approach that learns dynamics via Gaussian Processes (Rasmussen, 2003), which are able to
capture epistemic uncertainty. However, performance is primarily measured in terms of overall task
performance and it is unclear how well uncertainty is actually quantified. Recent work on offline
reinforcement, such as MBOP(Argenson & Dulac-Arnold, 2020), MOPO (Yu et al., 2020), and
MoREL (Kidambi et al., 2020) has also considered learning dynamics models over observations
from fixed, offline data sets. These approaches incorporate uncertainty estimates in different ways
(e.g. pessimistic rewards or dynamics) and all use ensembles to estimate uncertainty.

Policy Ranking. DOPE (Fu et al., 2021) studies OPE and devises a protocol that measures policy
evaluation, ranking, and selection. For this purpose, the approach introduces a set of candidate
policies along with their expected value over a distribution of initial states. Rather, in our work, we
question the ability of a system to rank policies from any arbitrary state for a given horizon instead
of limiting to initial state distribution only. This can help provide a more comprehensive view of
uncertainty estimation across the state space.

Confidence Intervals. We make use of confidence intervals over policy value estimates for an-
swering queries. Thomas et al. (2015) also studies confidence interval estimation over policy value
estimates using trajectories generated by a different set of policies. Their approach uses importance
sampling (IS) for unbiased value estimates, which suffers from high variance leading to loose confi-
dence bounds. They also introduce the problem of high confidence off-policy evaluation and produce
tighter bounds on estimates using improved concentration inequalities (Massart, 2007). Metelli et al.
(2020); Kuzborskij et al. (2021); Metelli et al. (2021) further reduce variance in this problem by
in-cooperating per-decision IS (Precup, 2000), power-mean (Bullen, 2013), and self-normalization
(Hesterberg, 1995; Owen, 2013); respectively.

We extend each above related work dimension in Appendix C.

8 SUMMARY

Properly quantifying uncertainty of complex models is a major open problem of practical signifi-
cance in machine learning. Despite this fact, only a small fraction of the work in machine learning
attempts to address this problem. Further, in areas such as offline RL, where methods for addressing
uncertainty are developed, there is very little direct evaluation of uncertainty quantification. In recent
years, there has been impressive progress on out-of-distribution detection for image classification,
where quantifying uncertainty is a core problem. This has been largely driven by the availability
of benchmarks that lower the overhead for conducting research and comparing methods. Currently,
there is a lack of such benchmarks for sequential decision-making. The OPCC problem is a rela-
tively simple problem to state, yet is rich enough to capture the essence of uncertainty quantification
for sequential decision making. We hope that the OPCC benchmarks will inspire other researchers
to develop new ideas for uncertainty quantification. Indeed, our pilot experiments show there is
significant room to improve and that our understanding of current mechanisms is incomplete. Fi-
nally, we hope that this initial benchmark and baseline contribution is only the initial seed for the
community at large to contribute to as progress is made.
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Rémi Munos and Csaba Szepesvári. Finite-time bounds for fitted value iteration. Journal of Machine
Learning Research, 9(5), 2008.

Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. Dualdice: Behavior-agnostic estimation of
discounted stationary distribution corrections. arXiv preprint arXiv:1906.04733, 2019.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well calibrated prob-
abilities using bayesian binning. In Twenty-Ninth AAAI Conference on Artificial Intelligence,
2015.

Anusha Nagabandi, Kurt Konolige, Sergey Levine, and Vikash Kumar. Deep dynamics models
for learning dexterous manipulation. In Conference on Robot Learning, pp. 1101–1112. PMLR,
2020.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. arXiv preprint arXiv:1806.03335, 2018.

Art B Owen. Monte carlo theory, methods and examples. 2013.

Tom Le Paine, Cosmin Paduraru, Andrea Michi, Caglar Gulcehre, Konrad Zolna, Alexander
Novikov, Ziyu Wang, and Nando de Freitas. Hyperparameter selection for offline reinforcement
learning. arXiv preprint arXiv:2007.09055, 2020.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Doina Precup. Eligibility traces for off-policy policy evaluation. Computer Science Department
Faculty Publication Series, pp. 80, 2000.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Rafael Rafailov, Tianhe Yu, Aravind Rajeswaran, and Chelsea Finn. Offline reinforcement learning
from images with latent space models. In Learning for Dynamics and Control, pp. 1154–1168.
PMLR, 2021.

Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer school on machine
learning, pp. 63–71. Springer, 2003.

12



Under review as a conference paper at ICLR 2023

Arthur George Richards. Robust constrained model predictive control. PhD thesis, Massachusetts
Institute of Technology, 2005.

Tim GJ Rudner, Cong Lu, Michael A Osborne, Yarin Gal, and Yee Teh. On pathologies in kl-
regularized reinforcement learning from expert demonstrations. Advances in Neural Information
Processing Systems, 34:28376–28389, 2021.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Julian Schrittwieser, Thomas Hubert, Amol Mandhane, Mohammadamin Barekatain, Ioannis
Antonoglou, and David Silver. Online and offline reinforcement learning by planning with a
learned model. arXiv preprint arXiv:2104.06294, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Aayam Shrestha, Stefan Lee, Prasad Tadepalli, and Alan Fern. Deepaveragers: Offline reinforce-
ment learning by solving derived non-parametric mdps. In International Conference on Learning
Representations, 2021.

Aaron Sonabend-W, Junwei Lu, Leo A Celi, Tianxi Cai, and Peter Szolovits. Expert-supervised re-
inforcement learning for offline policy learning and evaluation. arXiv preprint arXiv:2006.13189,
2020.

Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for
markov decision processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

Shengpu Tang and Jenna Wiens. Model selection for offline reinforcement learning: Practical con-
siderations for healthcare settings. In Machine Learning for Healthcare Conference, pp. 2–35.
PMLR, 2021.

Philip Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High-confidence off-policy
evaluation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 29, 2015.

Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin. The art of abstention: Selective prediction and
error regularization for natural language processing. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pp. 1040–1051, 2021.

Mengjiao Yang and Ofir Nachum. Representation matters: Offline pretraining for sequential deci-
sion making. arXiv preprint arXiv:2102.05815, 2021.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. arXiv preprint
arXiv:2005.13239, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. arXiv preprint arXiv:2102.08363,
2021.

Michael R Zhang, Tom Le Paine, Ofir Nachum, Cosmin Paduraru, George Tucker, Ziyu Wang,
and Mohammad Norouzi. Autoregressive dynamics models for offline policy evaluation and
optimization. arXiv preprint arXiv:2104.13877, 2021.

Shangtong Zhang, Bo Liu, and Shimon Whiteson. Gradientdice: Rethinking generalized offline
estimation of stationary values. In International Conference on Machine Learning, pp. 11194–
11203. PMLR, 2020.

13



Under review as a conference paper at ICLR 2023

A OPCC BENCHMARK SUMMARY

As introduced in Section 4; we consider 7 environments for OPCC benchmark. These environ-
ments are relatively low-dimensional environments with non-image-based observations. This helps
focus initial studies on fundamental OPCC capabilities, rather than simultaneously addressing the
additional complexities that enter with lower-level perceptual observations such as images. In the
following, we extend our discussion on these environments and elaborate PCQ construction steps.
The outlined benchmark-construction schema is generic, which can be followed by others to extend
the set of available OPCC benchmarks. Tables 4 and 5 and Figure 4 show a snapshot of OPCC
benchmark components.

A.1 ENVIRONMENTS

Maze2d (4 environments). Figure 2 shows different maze environment configurations. Each en-
vironment has 4D observations giving the position and velocity of the ball being controlled and a
2D action space specifying the direction of movement. The goal in each environment is to control
a rolling ball(green) to reach a goal(red) location. For our benchmarks, we used the dense-reward
version of the environments. There are no terminal states in these environments and the episode ends
after the maximum number of allowed time-steps reported in Table 4. The D4RL trajectory data sets
were created by running a path-planning algorithm to navigate in the maze between different start
and endpoints.

Gym-Mujoco(3 environments). Figure 3 shows considered gym-mujoco environments. These en-
vironments are qualitatively different from Maze2d in that they involve controlling periodic locomo-
tion behavior based on continuous states and actions. Rather Maze2d is primarily about goal-based
path planning (navigation) rather than controlling low-level locomotion.

Figure 2: Maze2d tasks: open, umaze, medium,
and large ( left to right).

Figure 3: Gym-Mujoco tasks: half-
cheetah, hopper, walker2d (left to right)

A.2 QUERY SET CONSTRUCTION.

A possible starting point to create set of PCQs for OPCC is the off-policy evaluation (OPE) extension
(Fu et al., 2021) to D4RL, which includes policies for a subset of the environments. In particular, one
of the tasks considered is policy ranking, which is similar in spirit to OPCC. However, that extension
of D4RL does not capture at least two important characteristics of OPCC. First, the evaluation
protocols do not explicitly address measuring the quality of uncertainty quantification. Of course,
this can be addressed by just extending the evaluation protocol and metrics.

Second, OPE ranking task from D4RL is currently limited to just ranking policies based on their
expected values over the initial state distribution of each environment. In contrast, OPCC evalu-
ations should involve sets of PCQs that cover a wide range of states that are both in-distribution
and out-of-distribution relative to the offline data set. Further, it is desirable to select the PCQs in
a way that spans some notion of PCQ difficulty. In particular, the notion of difficulty we consider
here for a PCQ (s, π, ŝ, π̂, h) is directly related to the performance gap between the policies, i.e∣∣V π(s, h)− V π̂(ŝ, h)

∣∣. It is expected that all else being equal, larger gaps will reason in easier
discrimination between policies. Indeed one of the initial challenges in developing the benchmarks
was to try to create query sets that were not all too easy or too hard.

Based on the above considerations, we create the evaluation sets of PCQs for each environment via
the following steps.

Step 1: Policy Generation. We first train(Schulman et al., 2017)/formulate multiple policies for
each environment to serve as the policies used for PCQ construction. For each environment, we have
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sufficiently distinct policies in terms of quality and behavior to support non-trivial PCQs. In each
maze2d environment, we formulated 5 policies for different goal locations. This helps in covering
a wider state-action space of the grid. However, in our PCQs, they are evaluated over the actual
task. In gym-mujoco, we trained 10 policies for different stride lengths and directions( forward and
backward) of motion. Performance of these policies is shared in Table 5.

We chose to train new policies, rather than use policies from D4RL, to ensure they would be distinct
from the behavior policies used to create the D4RL datasets. For each environment, we used the
corresponding simulator and multiple runs of the PPO algorithm (Schulman et al., 2017) to train a
set of policies of varying quality.

Step 2: Initial State Generation. For each environment we generated a large set of potential initial
states by running episodes of the random policy, the learned policies, and a mixture of random and
learned policies. This produced a set of states that covered a wide range of the environment that
extended well beyond the initial state distributions.

Step 3: Candidate PCQ Generation. For each horizon h ∈ {10, 20, 30, 40, 50} we create a set
of 1500 randomly constructed PCQs from the initial states and learned policies. This included
explicitly creating random PCQs of the form (s, π, s, π̂, h) with s a random initial state and π, π̂ a
random pair of the learned policies. In addition, we create a set of PCQs of the form (s, π, ŝ, π̂, h)
in the same way, except that two random initial states are used instead of one.

Step 4: PCQ Labeling and Selection. For each generated PCQ from step 3 we used Monte-
Carlo simulation via the environment simulator to accurately estimate V π(s, h) and V π̂(ŝ, h) and
removed any PCQ having a difference of less than 10 between the value of each side of a query. The
motivation is to filter out PCQs that are the most ambiguous and more likely to act as a source of
noise in evaluations. Finally, for each h, we randomly selected 1500 of the PCQs to include as the
benchmark query set.

In Figure 4, we show scatter plots of
(
V π(s, h), V π̂(ŝ, h)

)
for the selected set of PCQs for each

environment. Notice the lack of PCQs along the diagonal, which corresponds to the removal of
ambiguous queries. Also note that the PCQs span a range of value gaps, which suggests that they
span varying PCQs of varying difficult. If these plots showed a bias toward only large gap queries,
then additional steps would be necessary to ensure that more variation was present in the selected
query sets.

Table 4: Information about OPCC Benchmark comprising of environment details, datasets, and
queries.

ENV. OBS.
DIM.

ACTION
DIM.

MAX.
ENV.

STEPS

DATASET
TYPE

QUERY
COUNT

MAZE2D-OPEN-V0

4 2

150

1M 1500MAZE2D-MEDIUM-V1 600
MAZE2D-UMAZE-V1 300
MAZE2D-LARGE-V1 800

HOPPER-V2 11 3
1000

RANDOM, EXPERT,
MEDIUM, MEDIUM-REPLAY,

MEDIUM-EXPERT
1500HALFCHEETAH-V2 17 6WALKER2D-V2

A.3 EXTENDING PCQS

As mentioned in Section 3.1, we can use PCQs for policy improvement as well. In particular, we can
improve over policy π at state s by identifying an action a′ with higher action value than chosen by
π. The corresponding PCQ for testing a′ is (s, π, s, π′, h)M , where π′ is the non-stationary policy
that first takes action a′ and then follows π.

In practice, PCQs within an application domain need not be restricted to comparing policies via a
single reward function. Rather there are often multiple quantities of interest to users. For example,
a farm manager may be interested in understanding how two irrigation policies compare across
multiple features of the future, such as cumulative water usage, plant stress, run off, etc. This can
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Table 5: Performance of policies used in PCQs. These policies are trained using PPO (Schulman
et al., 2017) over the original environment task and hand-picked at different performance levels. We
report mean( standard deviation) of policy performance over 20 episodes.

ENV. POLICY-1 POLICY-2 POLICY-3 POLICY-4 POLICY-5

MAZE2D-OPEN-V0 122(10) 53(6) 38(3) 28(9) 25(6)
MAZE2D-UMAZE-V1 189(97) 59(59) 84(26) 33(2) 20(2)
MAZE2D-MEDIUM-V1 344(251) 41(28) 42(57) 41(53) 17(35)
MAZE2D-LARGE-V1 436(304) 38(37) 31(95) 3(7) 1(3)

HALFCHEETAH-V2 6444(126) 3117(11) 1552(50) 458(4) −157(5)
HOPPER-V2 3299(276) 2045(1) 1508(2) 1238(17) 1007(4)
WALKER2D-V2 1927(12) 1890(364) 1840(267) 1474(11) 670(26)

ENV. POLICY-6 POLICY-7 POLICY-8 POLICY-9 POLICY-10

HALFCHEETAH-V2 1168(80) 1044(112) 785(303) 94(40) 4(8)
HOPPER-V2 860(45) 851(4) 582(4) 194(1) 82(5)
WALKER2D-V2 470(168) 70(18) −235(172) −1330(160) −1770(730)
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Figure 4: Scatter plot of the PCQ for each benchmark environment. For each PCQ (s, π, ŝ, π̂, h),
we plot V π(s, h) vs. V π̂(ŝ, h).

be facilitated by defining reward functions corresponding to each feature and issuing the appropriate
PCQs.
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B OPCC EVALUATION METRICS INTRA-RELATION

A system gaining on AURCC indicates that it produces low risks at multiple coverage points. But,
it doesn’t necessarily help us understand the quality of the confidence produced. Similar AURCC
could be achieved by another framework with a different set of coverage points. In order to under-
stand this, we supplement our primary metric AURCC with CRK and RPP. A gain on CRK informs
us about the diversity of coverage points produced by a system, in turn informing us about varying
assigned confidences. This information supplements our AURCC information as a singleton view of
CRK wouldn’t tell us anything about risk. Also, a gain on RPP implies relatively low confidences
were assigned to queries as compared to correctly answered queries. This could be achieved by a bi-
nary confidence indicator as well, hiding information about exhibited confidence diversity. Thereby,
a combination of all three metrics gives us a better understanding of the uncertainty estimation.

C EXTENDED RELATED WORK

This section extends related work discussed in Section 7.

Dynamics Learning in RL. Going beyond observation-prediction model; COMBO (Yu et al.,
2021), Muzero Unplugged (Schrittwieser et al., 2021), and LOMPO (Rafailov et al., 2021) inves-
tigate learning latent-space dynamics-models (Ha & Schmidhuber, 2018; Hafner et al., 2019b;a;
Schrittwieser et al., 2020; Koul et al., 2020) for offline RL rather than learning in the observation
space. In specific, LOMPO (Rafailov et al., 2021) learns ensemble of latent space models with con-
straints to have similar latent representation. Also, Yang & Nachum (2021) studies representation
for OPE and primarily suggests that unsupervised learning for representation helps improve policy
performance.

In all the discussed dynamics learning methods, the prime focus lies in the final task performance
evaluation and it’s unclear how well uncertainty is actually captured by the models. Though in our
work, we restrict ourselves to only observation-based models; we emphasize on better understanding
of uncertainty. Also, similar to our motivation, Lu et al. (2021) recently compares various uncer-
tainty heuristics in model-based OPE and share various insights such as role of ensemble-size and
imagination horizon length.

Uncertainty. Capturing uncertainty has been studied for a number of quantities relevant to RL, for
example, to capture the variance of Q-values (Chen et al., 2021) , learned model-dynamics Chua
et al. (2018), and modeling data collection policies Rudner et al. (2021). Rather than trying to cover
all prior quantities and uncertainty metrics, in this paper, we have chosen to focus exclusively on
uncertainty in policy comparisons (i.e. OPCC). This choice is based on the simplicity of OPCC
combined with the immediate utility it has in decision making. Indeed, in many decision-making
settings, we only need to policies (open- and/or closed-loop), rather than precisely estimate their
values. Importantly, advancements made in more refined uncertainty estimation approaches, such as
for Q-values, can be evaluated within the OPCC framework and yield advancements.

Policy Ranking. Hans et al. (2011) is one of the early works that expresses the need of policy
comparison with OPE under uncertainty estimation. They estimate uncertainty over OPE using the
method of Uncertainty propogation (D’agostini, 2003) and show results only on discrete MDPs.
Similarly, Sonabend-W et al. (2020) also identifies the need to measure uncertainty for policies
learned with limited data. In order to learn safe policies, their approach uses hypothesis testing for
determining uncertainty in policy evaluation for a pair of candidate policies based on sampling from
model posteriors. This helps in ranking them and selection of better performing policy over the
behavior policy in a safe manner. The work, however, was limited to small flat state-spaces and did
not explicitly evaluate uncertainty quantification. In contrast, our work produces a benchmark to
primarily focus on uncertainty quantification of a system using offline data, rather than evaluating in
terms of overall task performance.

In similar motivation, SOPR-T (Jin et al., 2021b) also considers policy ranking from offline data and
additional policy-value supervision. This is done by learning an encoded representation of a policy
using a transformer based architecture and a scoring function over the representation. In order to
learn the representation, they require a set of pre-defined policies, each labeled by its ground truth
value with respect to an initial state distribution. Our framework does not assume the availability of
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such policy-value supervision and also puts an emphasis on uncertainty quantification, which is not
evaluated by this work.

Irpan et al. (2019) also studies ranking of policies and introduces new OPE metrics. In particular,
they study a specific case of binary reward MDPs where all intermediate trajectory steps have 0
rewards and only the last step can have a binary reward ( 0 or 1). This boils down OPE into classi-
fication of policies as feasible or catastrophic, where feasibles policies are the optimal policies with
return of 1 and catastrophic policies are failure policies with return of 0. Learning this classifier
could help to rank a set of policies. They show this classification is useful as a metric for OPE; as
the estimated rank correlates to ranking based on ground truth values. Though it is useful as a OPE
metric, it lacks measurement of uncertainty over the rankings as primarily focused by our metrics.

Confidence Intervals. Another class of approaches is based on statistical bootstrapping (Efron,
1987). Hanna et al. (2017) bootstraps learned MDP transition models in order to estimate lower
confidence bounds on policy evaluation estimates with limited data. Kostrikov & Nachum (2020)
suggests that confidence intervals of these bootstrapped estimates are not guaranteed to be accurate.
In practice, they are shown to be overly confident especially for insufficient sample sizes and under-
coverage of the data distribution. They suggest, that, in practice, this issue may be mitigated by
inducing noisy rewards and regularization to learn smoother empirical transition and reward func-
tions. Evaluating that claim within our OPCC framework is a potential direction for future work.

CoinDICE (Dai et al., 2020), and similar methods (Strehl & Littman, 2008; Nachum et al., 2019;
Zhang et al., 2020; Hao et al., 2021) progressively focus on confidence intervals for OPE based on
the formulation of certain optimization problems. These iterative optimization approaches (Munos,
2007; Munos & Szepesvári, 2008; Farahmand et al., 2010; Farahmand, 2011) for estimating policy
value and confidence bounds induces a computational overload. This is undesirable in our frame-
work which aims to rapidly answer queries of arbitrary horizons and policies making it compu-
tationally unsustainable. An interesting direction for future work is to consider generalizing this
optimization-based approach to more flexibly handle arbitrary policies.

D EXPERIMENT IMPLEMENTATION DETAIL

Two additional details are important to note for our experiments. First, as is customary in model-
based RL (including ORL), we are using a pre-defined episode termination function rather than a
learned one. We have found that this can significantly impact the performance of model-based RL
systems and also our OPCC evaluations. Second, we clipped predicted observations and rewards to
keep them within the bounds of the available data sets, which is also a common practice in ORL that
we found to be important.

E DYNAMICS MODEL ABLATIONS

In this section, we extend our discussion on the impact of considered dynamics architecture choices
on OPCC benchmark.

Impact of Ensemble Size. We consider the impact of ensemble size for our baselines. Table 6 shows
the results for ensemble sizes ranging from 10 to 100. Our prior expectation was that performance
would increase with significant increase in ensemble-size. In general, we do not see statistically sig-
nificant differences between ensemble sized for AURCC based on our current experimental budget
(i.e. confidence intervals intersect). However, based on trends in the means, there is weak evidence
of improved AURCC. The exception is HalfCheetah, where for AURCC, the trends is opposite of
the expectation. However, the differences in means tends to be small, suggesting that ensemble size
is not having a large impact even if more computational budget were devoted to support statistical
significance.

For RPP and Coverage Resolution (CRk) there is typically a statistically significant improvement
from ensemble size 10 to 100. The exceptions are umaze and medium-maze where losses are very
small for all ensemble sizes. Overall, however, differences are relatively small in magnitude. This
may be due to the ensembles not being diverse enough, or the base models used to construct the
ensembles are not accurate enough. These results demonstrate the value of the OPCC benchmarks
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Table 6: Evaluation metrics for ensemble-size comparison in gym-mujoco and maze2d environments.
We train 5 (seed) ensemble dynamics of size 100 for each dataset and start with an ensemble of
10 models for OPCC metrics estimation. Thereafter, we incrementally increase their count and
determine impact on metrics mean and confidence intervals (95%).

ENV. ENSEMBLE
COUNT AURCC(↓) RPP(↓) CR10(↑) LOSS(↓)

HOPPER

10 0.141± 0.005 0.02± 0.004 0.316± 0.029 0.273± 0.005
20 0.141± 0.005 0.024± 0.004 0.344± 0.037 0.272± 0.004
40 0.141± 0.005 0.027± 0.004 0.388± 0.04 0.27± 0.004
80 0.141± 0.005 0.03± 0.004 0.416± 0.038 0.269± 0.004

100 0.141± 0.005 0.031± 0.005 0.428± 0.034 0.268± 0.004

HALF
CHEETAH

10 0.209± 0.004 0.028± 0.004 0.32± 0.029 0.378± 0.004
20 0.213± 0.004 0.034± 0.004 0.36± 0.04 0.376± 0.004
40 0.215± 0.004 0.039± 0.005 0.4± 0.035 0.374± 0.004
80 0.219± 0.005 0.043± 0.005 0.452± 0.04 0.374± 0.004

100 0.219± 0.005 0.044± 0.005 0.46± 0.04 0.374± 0.004

WALKER
2D

10 0.072± 0.001 0.007± 0.002 0.256± 0.03 0.16± 0.002
20 0.071± 0.001 0.008± 0.002 0.268± 0.038 0.16± 0.002
40 0.07± 0.001 0.01± 0.003 0.28± 0.046 0.16± 0.002
80 0.068± 0.001 0.01± 0.003 0.284± 0.049 0.159± 0.002

100 0.068± 0.001 0.011± 0.003 0.3± 0.051 0.159± 0.002

OPEN

10 0.033± 0.004 0.009± (< 0.001) 0.48± 0.035 0.127± 0.015
20 0.031± 0.003 0.01± (< 0.001) 0.5± (< 0.001) 0.117± 0.019
40 0.03± 0.003 0.011± 0.001 0.5± (< 0.001) 0.11± 0.014
80 0.029± 0.002 0.012± 0.001 0.5± (< 0.001) 0.108± 0.007

100 0.029± 0.001 0.012± 0.001 0.5± (< 0.001) 0.107± 0.005

UMAZE

10 0.011± 0.002 0.002± (< 0.001) 0.3± (< 0.001) 0.073± 0.006
20 0.009± 0.001 0.002± (< 0.001) 0.3± (< 0.001) 0.074± 0.004
40 0.008± 0.001 0.002± (< 0.001) 0.3± (< 0.001) 0.077± 0.004
80 0.008± 0.001 0.002± (< 0.001) 0.3± (< 0.001) 0.075± 0.004

100 0.008± 0.001 0.002± (< 0.001) 0.3± (< 0.001) 0.075± 0.003

MEDIUM

10 0.001± (< 0.001) 0.0± (< 0.001) 0.2± (< 0.001) 0.023± 0.007
20 0.001± (< 0.001) 0.0± (< 0.001) 0.2± (< 0.001) 0.024± 0.006
40 0.001± (< 0.001) 0.0± (< 0.001) 0.2± (< 0.001) 0.021± 0.003
80 0.001± (< 0.001) 0.0± (< 0.001) 0.2± (< 0.001) 0.022± 0.001

100 0.001± (< 0.001) 0.0± (< 0.001) 0.2± (< 0.001) 0.022± 0.001

LARGE

10 0.168± 0.044 0.051± 0.011 0.6± (< 0.001) 0.307± 0.061
20 0.149± 0.039 0.057± 0.015 0.78± 0.066 0.269± 0.065
40 0.138± 0.031 0.056± 0.011 0.82± 0.035 0.264± 0.044
80 0.146± 0.019 0.061± 0.007 0.82± 0.035 0.269± 0.027

100 0.14± 0.015 0.062± 0.004 0.82± 0.035 0.251± 0.029

in being able to explicitly test hypotheses about uncertainty quantification, rather than relying on
downstream results that may be impacted by many possible factors.

Randomized Constant Priors. In order to encourage diversity, we introduce randomized constant
priors in our ensemble models. These are suggested to encourage extrapolation diversity, especially
on out-of-distribution state-action pairs, which could improve disagreement-based uncertainty es-
timates. However, when we included the constant priors in our model, we didn’t find significant
improvements in our evaluation metrics as shown in Table 7 and Figure 6. We use the same ar-
chitecture as the dynamics model for prior with random weights and scale them with “prior-scale”
before adding them to ensemble models. A prior-scale of 0 indicates no usage of prior. In the case of
maze2d, we generally observe a slight (but statistically insignificant) reduction in AURCC, whereas
RPP and CRK tends to remain same. Large maze environment has a significant decrease in AURCC
with randomized constant prior. On the contrary, in the case of gym-mujoco, we generally observe
a slight (but statistically insignificant) increase in AURCC, RPP, and CRK .
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Figure 5: Selective-risk coverage curves for ensemble-count in gym-mujoco (top-row) and maze2d
(bottom-row) environments

Table 7: Evaluation metrics for prior-scale comparison in gym-mujoco environments comprising
of mean and confidence interval(95%) over 50 samples belonging to 5 (seed) dynamics models for
each of the 5 datasets. Prior scale of 0 means no randomized constant prior is added.

ENV. PRIOR
SCALE AURCC(↓) RPP(↓) CR10(↑) LOSS(↓)

HOPPER
0 0.141± 0.005 0.031± 0.005 0.428± 0.034 0.268± 0.004
5 0.145± 0.003 0.045± 0.004 0.616± 0.05 0.269± 0.004

HALF
CHEETAH

0 0.219± 0.005 0.044± 0.005 0.46± 0.04 0.374± 0.004
5 0.236± 0.005 0.067± 0.004 0.768± 0.081 0.373± 0.006

WALKER
2D

0 0.068± 0.001 0.011± 0.003 0.3± 0.051 0.159± 0.002
5 0.057± 0.001 0.017± 0.002 0.44± 0.04 0.159± 0.002

OPEN
0 0.029± 0.001 0.012± 0.001 0.5± (< 0.001) 0.107± 0.005
5 0.032± 0.001 0.012± (< 0.001) 0.5± (< 0.001) 0.115± 0.008

UMAZE
0 0.008± 0.001 0.002± (< 0.001) 0.3± (< 0.001) 0.075± 0.003
5 0.006± 0.001 0.002± (< 0.001) 0.3± (< 0.001) 0.071± 0.002

MEDIUM
0 0.001± (< 0.001) 0.0± (< 0.001) 0.2± (< 0.001) 0.022± 0.001
5 0.0± (< 0.001) 0.0± (< 0.001) 0.2± (< 0.001) 0.02± 0.003

LARGE
0 0.14± 0.015 0.062± 0.004 0.82± 0.035 0.251± 0.029
5 0.104± 0.017 0.051± 0.012 0.82± 0.035 0.197± 0.017

Prior work by Osband et al. (2018) demonstrated improvement in end-task RL performance by hav-
ing an ensemble of DQN (Mnih et al., 2013) models with randomized constant priors. However,
explicit analysis of the uncertainty quantification was not provided. Our observations suggests that
randomized constant priors do not appear to improve uncertainty quantification at least as measured
through our OPCC benchmarks. Further investigation is necessary to better understand the perfor-
mance differences observed in Osband et al. (2018). An interesting direction of future work is to
consider other previously proposed mechanisms for improving ensemble diversity within the OPCC
framework.

Dynamics Model Types. We ablated our base model’s feed-forward(FF) architecture with Autore-
gressive(AR) architecture suggested by Zhang et al. (2021). In Table 8 and Figure 7, we do not
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Figure 6: Selective-risk coverage curves for prior-scale in gym-mujoco and maze environments

Table 8: Evaluation metrics for dynamics-type comparison in gym-mujoco environments comprising
of mean and confidence interval(95%) estimates over 50 samples belonging to 5 (seeds) dynamics
models for each of the 5 datasets.Here, ‘AR’ and ‘FF’ implies auto-regressive model and feed-
forward model, respectively.

ENV. DYNAMICS
TYPE AURCC(↓) RPP(↓) CR10(↑) LOSS(↓)

HOPPER
AR 0.139± 0.007 0.034± 0.005 0.48± 0.042 0.268± 0.007
FF 0.141± 0.005 0.031± 0.005 0.428± 0.034 0.268± 0.004

HALF
CHEETAH

AR 0.249± 0.008 0.068± 0.006 0.736± 0.087 0.379± 0.003
FF 0.219± 0.005 0.044± 0.005 0.46± 0.04 0.374± 0.004

WALKER
2D

AR 0.065± 0.002 0.013± 0.002 0.356± 0.046 0.158± 0.002
FF 0.068± 0.001 0.011± 0.003 0.3± 0.051 0.159± 0.002

OPEN
AR 0.034± 0.003 0.014± 0.002 0.5± (< 0.001) 0.123± 0.006
FF 0.029± 0.001 0.012± 0.001 0.5± (< 0.001) 0.107± 0.005

UMAZE
AR 0.007± 0.001 0.002± (< 0.001) 0.3± (< 0.001) 0.07± 0.002
FF 0.008± 0.001 0.002± (< 0.001) 0.3± (< 0.001) 0.075± 0.003

MEDIUM
AR 0.001± (< 0.001) 0.0± (< 0.001) 0.2± (< 0.001) 0.031± 0.001
FF 0.001± (< 0.001) 0.0± (< 0.001) 0.2± (< 0.001) 0.022± 0.001

LARGE
AR 0.131± 0.017 0.06± 0.003 0.8± (< 0.001) 0.233± 0.044
FF 0.14± 0.015 0.062± 0.004 0.82± 0.035 0.251± 0.029

observe significant evidence in favor of the AR model with respect to OPCC performance. There is
a marginal, but no statistical significant reduction in AURCC in some cases. We do see an increase
in coverage resolution (CRk) for the gym-mujoco environments when using the AR model, while
it remains the same for the maze2d environments. This may be due to the additional uncertainty
propagation that can occur during auto-regressive inference of each dimension, especially in the
higher-dimensional gym-mujoco environments. Currently our results do not suggest that the ex-
tra computational cost of the AR model compared to FF is worthwhile with respect to uncertainty
quantification as measured via OPCC. This may be due to the environments not needed to represent
multi-modal output distribution, which is where the AR model could have a distinct advantage.

Determinism. Our baseline model is a deterministic version of the stochastic model defined in
Chua et al. (2018), trained via regression loss. A classic improvement is to induce stochasticity into
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Figure 7: Selective-risk coverage curves for dynamics-type in gym-mujoco and maze environments

Table 9: Evaluation metrics for deterministic model comparison in gym-mujoco and maze2d envi-
ronments. ‘True’ implies a deterministic model, whereas ‘False’ implies a stochastic model.

ENV. DETER-
MINISTIC AURCC(↓) RPP(↓) CR10(↑) LOSS(↓)

HOPPER
FALSE 0.138± 0.002 0.039± 0.002 0.524± 0.039 0.26± 0.003
TRUE 0.141± 0.005 0.031± 0.005 0.428± 0.034 0.268± 0.004

HALF
CHEETAH

FALSE 0.229± 0.007 0.054± 0.006 0.568± 0.057 0.377± 0.005
TRUE 0.219± 0.005 0.044± 0.005 0.46± 0.04 0.374± 0.004

WALKER
2D

FALSE 0.064± (< 0.001) 0.012± 0.001 0.328± 0.024 0.16± 0.002
TRUE 0.068± 0.001 0.011± 0.003 0.3± 0.051 0.159± 0.002

OPEN
FALSE 0.037± 0.001 0.01± (< 0.001) 0.4± (< 0.001) 0.143± 0.005
TRUE 0.029± 0.001 0.012± 0.001 0.5± (< 0.001) 0.107± 0.005

UMAZE
FALSE 0.004± (< 0.001) 0.001± (< 0.001) 0.2± (< 0.001) 0.059± 0.004
TRUE 0.008± 0.001 0.002± (< 0.001) 0.3± (< 0.001) 0.075± 0.003

MEDIUM
FALSE 0.0± (< 0.001) 0.0± (< 0.001) 0.2± (< 0.001) 0.003± (< 0.001)
TRUE 0.001± (< 0.001) 0.0± (< 0.001) 0.2± (< 0.001) 0.022± 0.001

LARGE
FALSE 0.152± 0.01 0.058± 0.007 0.54± 0.043 0.167± 0.003
TRUE 0.14± 0.015 0.062± 0.004 0.82± 0.035 0.251± 0.029

the model by learning a normal distribution over the next observation rather than a point estimate.
We experimented with this modification and provide results in Table 9 and Figure 8). Though,
limitations of deterministic models are well-understood for stochastic environments, it turns out we
don’t gain significantly with stochastic models in our pilot run. This is possibly due to deterministic
nature of maze environments and low stochasticity in gym-mujoco case.

Normalization of input state-space. In Table 10 and Figure 9, we investigate the impact of learning
dynamics with normalized state-space. Here, ‘True’ implies the dynamics was learned with normal-
ized state-space and ‘False’ implies otherwise. There is a marginal performance difference between
either choice for MuJoco environments. Maze2D environments show a mix of results with normal-
ization benefiting Umaze and hurting Large-Maze. Performance of Medium-Maze and Open-Maze
is not impacted significantly.
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Figure 8: Selective-risk coverage curves for deterministic choice for dynamics model in maze2d
and gym-mujoco environments. ‘True’ implies a deterministic model, whereas ‘False’ implies a
stochastic model.

Table 10: Evaluation metrics for normalize comparison in gym-mujoco environments

ENV. NORMALIZE AURCC(↓) RPP(↓) CR10(↑) LOSS(↓)

HOPPER
FALSE 0.128± 0.002 0.017± 0.002 0.3± 0.025 0.255± 0.003
TRUE 0.141± 0.005 0.031± 0.005 0.428± 0.034 0.268± 0.004

HALF
CHEETAH

FALSE 0.228± 0.006 0.053± 0.007 0.548± 0.07 0.376± 0.003
TRUE 0.219± 0.005 0.044± 0.005 0.46± 0.04 0.374± 0.004

WALKER
2D

FALSE 0.078± 0.007 0.013± 0.005 0.316± 0.073 0.17± 0.009
TRUE 0.068± 0.001 0.011± 0.003 0.3± 0.051 0.159± 0.002

OPEN
FALSE 0.033± 0.001 0.014± (< 0.001) 0.5± (< 0.001) 0.108± 0.004
TRUE 0.029± 0.001 0.012± 0.001 0.5± (< 0.001) 0.107± 0.005

UMAZE
FALSE 0.003± (< 0.001) 0.002± (< 0.001) 0.3± (< 0.001) 0.047± 0.004
TRUE 0.008± 0.001 0.002± (< 0.001) 0.3± (< 0.001) 0.075± 0.003

MEDIUM
FALSE 0.0± (< 0.001) 0.0± (< 0.001) 0.2± (< 0.001) 0.017± 0.002
TRUE 0.001± (< 0.001) 0.0± (< 0.001) 0.2± (< 0.001) 0.022± 0.001

LARGE
FALSE 0.215± 0.027 0.067± 0.007 0.82± 0.035 0.402± 0.037
TRUE 0.14± 0.015 0.062± 0.004 0.82± 0.035 0.251± 0.029
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Figure 9: Selective-risk coverage curves for input state-spce normalization ablation in maze and
gym-mujoco environments. ‘True‘ implies the state-space is normalized and ‘False’ implies other-
wise.

24



Under review as a conference paper at ICLR 2023

F EXTENDED EXPERIMENTAL DATA

In the following sub-sections, we share OPCC metrics for various ablations discussed in our primary
experiments(Section 6) regarding dataset quality, uncertainty types, and query horizons. In each
table-cell, we show mean and confidence interval at 95% confidence level for corresponding metrics,
estimated by evaluating 5 dynamics runs over each dataset of the corresponding environment.

F.1 DATASET QUALITY

Table 11: Evaluation metrics for dataset-types comparison in maze environments. This includes
mean and confidence intervals estimates at 95% confidence level for metrics corresponding to 5
(seed) dynamics trained over each dataset.

ENV. DATASET
QUALITY AURCC(↓) RPP(↓) CR10(↑) LOSS(↓)

OPEN 1M 0.029± 0.001 0.012± 0.001 0.5± (< 0.001) 0.107± 0.005
UMAZE 1M 0.008± 0.001 0.002± (< 0.001) 0.3± (< 0.001) 0.075± 0.003
MEDIUM 1M 0.001± (< 0.001) 0.0± (< 0.001) 0.2± (< 0.001) 0.022± 0.001
LARGE 1M 0.14± 0.015 0.062± 0.004 0.82± 0.035 0.251± 0.029

0.0 0.5 1.0
coverage

0.00

0.05

0.10

se
le
ct
iv
e-
ris

k

Open

0.0 0.5 1.0
coverage

0.000

0.025

0.050

0.075
Umaze

0.0 0.5 1.0
coverage

0.00

0.01

0.02

Medium

0.0 0.5 1.0
coverage

0.0

0.1

0.2

Large
1m

Figure 10: Selective-risk coverage curve for ‘1m’ dataset in maze environments. This is the complete
navigation dataset of 1 million transactions.

F.2 UNCERTAINTY TYPES

In the following, ‘EV, PCI, U-PCI’ refer to Ensemble-Voting, Paired Confidence interval, and Un-
paired Confidence Interval, respectively.

Table 12: Evaluation metrics for uncertainty-type comparison in maze environments

ENV. UNCERTAINTY
TYPE AURCC(↓) RPP(↓) CR10(↑) LOSS(↓)

OPEN
EV 0.029± 0.001 0.012± 0.001 0.5± (< 0.001) 0.107± 0.005
PCI 0.057± 0.004 0.012± 0.001 0.38± 0.035 0.168± 0.008

U-PCI 0.05± 0.002 0.012± 0.001 0.4± (< 0.001) 0.168± 0.008

UMAZE
EV 0.008± 0.001 0.002± (< 0.001) 0.3± (< 0.001) 0.075± 0.003
PCI 0.035± 0.002 0.001± (< 0.001) 0.2± (< 0.001) 0.084± 0.003

U-PCI 0.017± 0.002 0.001± (< 0.001) 0.2± (< 0.001) 0.084± 0.003

MEDIUM
EV 0.001± (< 0.001) 0.0± (< 0.001) 0.2± (< 0.001) 0.022± 0.001
PCI 0.001± (< 0.001) 0.0± (< 0.001) 0.2± (< 0.001) 0.009± 0.001

U-PCI 0.001± (< 0.001) 0.0± (< 0.001) 0.2± (< 0.001) 0.009± 0.001

LARGE
EV 0.14± 0.015 0.062± 0.004 0.82± 0.035 0.251± 0.029
PCI 0.139± 0.021 0.037± 0.018 0.42± 0.086 0.218± 0.028

U-PCI 0.155± 0.014 0.048± 0.006 0.46± 0.043 0.218± 0.028
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Figure 11: Selective-risk coverage curves for uncertainty-type in gym-mujoco and maze2d environ-
ments.

F.3 HORIZON

Table 13: Evaluation metrics for horizon comparison in maze environments

ENV. HORIZON AURCC(↓) RPP(↓) CR10(↑) LOSS(↓)

OPEN

20.0 0.005± (< 0.001) 0.001± (< 0.001) 0.2± (< 0.001) 0.029± 0.001
30.0 0.015± 0.002 0.007± 0.001 0.5± (< 0.001) 0.104± 0.006
40.0 0.036± 0.002 0.016± 0.001 0.6± (< 0.001) 0.119± 0.007
50.0 0.062± 0.002 0.025± 0.001 0.6± (< 0.001) 0.148± 0.006

UMAZE

20.0 0.0± (< 0.001) 0.0± (< 0.001) 0.2± (< 0.001) 0.007± 0.001
30.0 0.0± (< 0.001) 0.0± (< 0.001) 0.2± (< 0.001) 0.012± 0.002
40.0 0.006± 0.001 0.002± (< 0.001) 0.2± (< 0.001) 0.048± 0.003
50.0 0.035± 0.002 0.008± 0.001 0.4± (< 0.001) 0.195± 0.007

MEDIUM

20.0 0.0± (< 0.001) 0.0± (< 0.001) 0.2± (< 0.001) 0.006± 0.001
30.0 0.0± (< 0.001) 0.0± (< 0.001) 0.2± (< 0.001) 0.019± 0.001
40.0 0.001± (< 0.001) 0.0± (< 0.001) 0.2± (< 0.001) 0.032± 0.003
50.0 0.001± (< 0.001) 0.001± (< 0.001) 0.2± (< 0.001) 0.031± (< 0.001)

LARGE

20.0 0.028± (< 0.001) 0.021± (< 0.001) 0.62± 0.035 0.059± (< 0.001)
30.0 0.118± 0.013 0.047± 0.004 0.8± (< 0.001) 0.295± 0.037
40.0 0.218± 0.018 0.087± 0.004 0.82± 0.035 0.321± 0.027
50.0 0.16± 0.018 0.07± 0.005 0.92± 0.035 0.247± 0.038
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Figure 12: Selective-risk coverage curves for horizon ablation in gym-mujoco (top-row) and maze2d
(bottom-row) environments.
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