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Fig. 1: Our system’s input is a monocular video of outdoor sports, shot by a sin-
gle drone autonomously orbiting around the athlete. Color gradients represent time
changes. Video is available at:https://www.youtube.com/watch?v=JF-cQjc_sv4&t=3s

Abstract. We propose a novel drone application under real-world sce-
narios – free-viewpoint rendering of outdoor sports scenes, including the
dynamic athlete and the 360° background. Outdoor sports have long-
range human motions and large-scale scene structures which make the
task rather challenging. Existing methods either rely on dense camera
arrays which costs much, or a handheld moving camera which struggles
to handle real sports scenes. We build a novel drone-based system using
an RGB camera to reconstruct the 4D dynamic human along with the
3D unbounded scene, rendering free-viewpoint videos at any time. We
also propose submodules for calibration and human motion capture, as
a system-level design for improved robustness and efficiency. We collect
a dataset AerialRecon and conduct extensive experiments on real-world
scenarios. Compared with existing SOTA systems, our system demon-
strates superior performance and applicability to real-world.
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1 Introduction

Neural implicit reconstruction and rendering has been extensively investigated
these years. NeRF [29] and its follow-ups [28,34,48] have demonstrated promis-
ing performances in rendering both static scene and dynamic human. Some work
target on rendering dynamic scenes with a moving human subject in it. Some of
them take RGB images as input. However, most methods either rely on multi-
view fixed cameras [34, 35] or require the human to stay in a limited space in
front of cameras during data collection [9, 16, 25, 42]. The others adopt RGBD
images as inputs [10, 31, 46], but depth sensors normally work poorly in out-
door settings, which restrains their real-world applications. For large-scale out-
door sports scenes, human performs large-range motion in a very wide space
with unpredictable paths. It’s impractical to set up fixed camera arrays closely
surrounding the moving athlete, and is labor-intensive to use multiple hand-
held cameras, especially when the target human moves very fast. Therefore, it is
rather challenging for dynamic reconstruction under large-scale outdoor settings,
and existing fixed or handheld camera systems struggle to handle it.

A flying drone inherently possesses exceptional spatial freedom and rapid mo-
bility, offering a plausible solution. With the vision-tracking algorithm, a drone
camera can move quickly to track people in the wild without terrain constraints.
It is very beneficial for real-world outdoor sports.

Another challenge for outdoor sports is the limited views of observation. On
the one hand, for human reconstruction, existing backbones [9,13,16,25,33,34,42]
highly rely on full observations of humans (including the person’s back and side)
to render a human in high-fidelity and intricate details. Therefore, the human
subjects are asked to self-rotate in front of the camera to obtain full observations
of human bodies during data capture. However, it’s impossible to require a mov-
ing athlete to actively cooperate with the camera while performing real outdoor
sports. And for most real-world sports videos, limited viewing angles and incom-
plete observations could result in artifacts and degradation of human rendering
quality. Although [15, 35] set up multi-view fixed camera array surrounding the
scene to gather more viewing angles. However, all the athletes are confined to
act in a small area and a sized up scene necessitates much more cameras. On
the other hand, as we aim to synthesize 360° free viewpoint videos of the whole
scene, we also need to reconstruct the 3D large-scale background, which requires
dense views as input.

A fastly orbiting drone provides a plausible solution. Based on the built-in
navigation diagram, a drone can orbit around the target human, quickly switch-
ing the pose to capture multiple sides of the human body to get all-sides obser-
vation. Besides, while orbiting the human, a drone simultaneously captures 360°

images of the surrounding background with dense views. The scene reconstruc-
tion part of our pipeline will take advantage of these dense views to create 360°

realistic rendering of large-scale outdoor sports scenes.
Thanks to the virtues of an orbiting drone, we achieve promising improve-

ments over the traditional handheld systems in multiple challenging outdoor
sports scenes. Our contributions are as follows:
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– We propose a novel application of novel-view-rendering of the dynamic ath-
lete and a large-scale outdoor sports scene using only monocular video as
input, which existing systems like a fixed camera or a handheld camera
struggle to handle.

– We come up with a monocular RGB-only drone system under the challenging
setting. We proposed some crucial system-level design based on drone orbit-
ing diagram, including Drone Motion Constraint (DMC) and Drone-based
Sequential Mocap (DSM), for improved system accuracy and robustness.

– We collect a new dataset which consists of various real-world outdoor sports
scenes, where we perform extensive real-world experiments. The dataset will
be released upon acceptance to benefit future researches of the community.

2 Related Work

2.1 Existing Systems

Multi-view systems like [15, 23, 35, 43] have showcased outstanding results on
free-viewpoint rendering of dynamic scenes. Nevertheless, the requirement for
multi-camera setup makes those system hard to apply in monocular scenes. Al-
though there are some works under monocular settings [6,21,22,32,44,49], most
of them don’t target on render the 360° views but only limited views around
the input views. Moreover, they represent the dynamic human and static back-
ground with a single model which makes it hard to model the fast human motion
appropriately. [16,25] use two different models to represent the human and scene,
as well as incorporating human motion priors. However, they require the human
to self-rotate in front of the camera to ensure the rendering quality, which is not
always practical and largely limits their utility in real-world outdoor scenarios.
We are the first monocular system that targets on the reconstruction and 360°

rendering of challenging outdoor scenes like real-world sports.

2.2 Monocular RGB Human Reconstruction and Rendering

The rendering of human body with color and appearance using monocular RGB
inputs has been extensively investigated. Shading-based human body shape re-
finement is applied in [2] but a complicated procedure of first segmenting then
assembling is needed. PiFu-related algorithms [11, 37, 38] realize generalizable
human reconstruction among human with different appearances but the render-
ing quality is not ideal. Different from them, per-scene optimization methods
like [9, 13, 14, 33, 34, 42, 45] use the 3D human poses as input priors and en-
able novel-viewpoint rendering with higher fidelity. All these methods inevitably
suffer from quality degradation under the monocular setting, particularly when
certain parts of the human body, such as the back or sides, are not visible in the
input data. Therefore, most human rendering backbones have a strong restric-
tion during data capture: they ask the human subject to actively turn around
in a limited space in front of the camera, so as to ensure the input observations
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covers the whole human body. Therefore, we can see [16,25] use a data collection
method like that. However, in real-world outdoor sports, human athlete moves
unpredictably and fast where systems like could fail. Contrarily, we build a sys-
tem based on a fast moving camera that can actively orbit around the people,
during which various viewpoints are provided to facilitate human reconstruction.

2.3 Human Motion Capture and Drone-based Systems

Recent mainstream human rendering methods take precise 3D human poses as
input priors represented by SMPL [26], a parameterized human model. Recov-
ering 3D human poses from a monocular video remains challenging [40, 50, 52].
Firstly, monocular images have inherent depth ambiguity, and this could cause
inconsistency and inaccuracy of the poses estimation in 3D world. Pipelines
leverage depth sensors are able to tackle this problem but they do not work well
in outdoor settings [30, 51]. Following [50], we utilize temporal information of
video sequences during optimization to alleviate this problem. Secondly, in real-
world sport videos, human motions could contain severe self-occlusion, where
the 2D keypoints detection and SMPL-fitting could fail. GLAMR [52] uses gen-
erative models in helping recovering poses from occluded human parts. Similar
to [8], we adopt an occlusion-adaptive detector based on 2D transformer [20]
to alleviate this. For outdoor applications, drone-based systems have been pro-
posed. Zhou [54] utilize the drone’s fast moving characteristics to facilitate a
NRSFM algorithm and improve the accuracy of 3D human skeleton. ActiveMo-
Cap [18] further solves the Next-Best-View problem for optimal estimation. As
they proved, the fast-varying viewpoints of a drone camera could largely benefit
monocular human pose estimation. However, they target at 3D human skele-
ton recovery, while we aim to estimate human pose with shape, represented in
SMPL. In contrast to other drone-based systems [1, 12, 36, 41, 47] focusing on
recovering SMPL as the main goal, our aerial system pioneers the utilization of
estimated SMPL for rendering the human with appearance and color.

2.4 3D Scene Reconstruction and Rendering

Reconstruction and Rendering a static scene from multi-view posed images
have been widely explored. While conventional methods like structure-from-
motion [39] and Dense-MVS [7] struggle to achieve realistic rendering results,
NeRF [29] leverages neural representation for scene modeling. NeRF++ [53]
employs inverted sphere parameterization to enable NeRF to model unbounded
scenes. Mip-NeRF360 [4] enhances rendering results on unbounded 360-degree
scenes through optimized sampling strategies. [17] is a emerging technology of
high-quality rendering that necessitates a 3D scene point cloud as input. These
approaches rely on dense-view images for reconstructing large-scale outdoor
scenes. Fortunately, our system benefits from drone mobility to capture dense
views of larger-scale, intricate structures in real-world sports scenes.
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3 Methods

Fig. 2: Provided with a drone video, we reconstruct the human and background, en-
abling 360° rendering of the whole scene at any time. We generate novel viewpoint
rendering (top right), and 360° renderings of the kicking moment (bottom right).

3.1 Calibration

Our drone is equipped with a single uncalibrated onboard camera. Given a cap-
tured video {Ii} , i ∈ {1, . . . , n}, Our first step involves estimating camera pa-
rameters {Pi} , i ∈ {1, . . . , n}. The camera pose for each frame is defined as:

Pi = Ki [Ri | Ti] .

We modify COLMAP [39], a structure-from-motion method, into a sequential
version with drone motion constraints. Firstly, as the consecutive ordering of
the image sequences is known, we adopt sequential feature matching rather than
random matching to identify feature correspondences during the triangulation
phase of SfM. Subsequently, during bundle adjustment, we introduce the DMC
(Drone Motion Constraint) as a constraint to ensure smooth and continuous
camera trajectory. Specifically, as our setup involves an autonomously navigating
drone capturing video sequences, following predefined flying control diagrams, it
orbits around the human in an arc trajectory at a consistent linear speed scalar
and height. With recording at a fixed frame rate of 30fps, we impose constraints
on the camera trajectory between consecutive frames.

∣

∣||Ci+1 − Ci|| − ||Ci − Ci−1||
∣

∣ < ε (1)

where || · || is the euclidean distance of three-dimensional coordinates. Ci denotes
the 3D position of the camera center of the frame i under the world coordinate:

Ci = −R−1
i Ti (2)

Substituting Eq. 2 into Eq. 1, we can get

∣

∣|| −R−1
i+1Ti+1 +R−1

i Ti|| − || −R−1
i Ti +R−1

i−1Ti−1||
∣

∣ < ε (3)
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we set ε a very small value approximately equal to zero.
During the bundle adjustment, we optimize camera parameters by minimiz-

ing the sum-of-squared reprojection errors:

E = min
Ri,Ti,Xj

n
∑

i=1

n3D
∑

j=1

∥xji − g (Xj ,Ri,Ti,Ki)∥
2

(4)

g (Xj ,Ri,Ti,Ki) ∼ PiXji (5)

where n3D is the number of 3D points in the scene. Xj is the j-th 3D point in
the scene and observation xji is the 2D image coordinates of point Xj in camera
i. The mapping g(·) is a transformation that projects a 3D point Xj onto the
image plane of camera i.

We take Eq. 3 as an additional constraint for the optimization problem in Eq.
4. We utilize the camera characteristics during the drone’s automatic orbiting
process and improve the robustness of camera pose estimation.

Note that in the feature detection process [27], we mask out the dynamic
region in the scene (e.g. human) using [19] to avoid incorrect matches. We also
scale the camera parameters by γ to match the real-world scale, by placing a
calibration board with 0.1m grid size in the scene during data capture, with the
distance of two 3D points restored in COLMAP ι1:

γ =
ι1

0.1
(6)

3.2 Human Motion Capture (MoCap)

Recovering human appearance directly from drone videos is challenging due to
sparse observations and highly dynamic human movements. Therefore, we use
human motion capture (MoCap) as a prerequisite for training our human model
in 3.3. Here, we use a parameterized human model, SMPL, from [26]. This model
encodes the dynamic motions prior of humans in videos.

The SMPL model is a differentiable function M(θ,β) ∈ R
3×Nv where the

pose parameters θ ∈ R
72 and the shape parameters β ∈ R

10 are mapped to a
triangulated mesh with Nv = 6890 vertices. Rh ∈ SO(3) and T h ∈ R

3 denote
the global rotation and translation of human under the world coordinate, re-
spectively. The 3D body joints J(θ,β) of the model can be defined as a linear
combination of the mesh vertices. Therefore, for Nj joints, we defined the body
joints J(θ,β) ∈ R

3×Nj = J (M(θ,β)), where J is a pre-trained linear regressor
to convert SMPL vertices to OpenPose [5] keypoints.

Given a drone video {Ii} , i ∈ {1, . . . , n}, we aim to recover (θi,βi,R
h
i ,T

h
i ), i ∈

{1, . . . , n}. For each frame of the video, we first estimate the 25-point 2D hu-
man keypoints {W i} , i ∈ {1, . . . , n} defined in [5]using a 2D transformer-based
network in [20] which is more accurate compared to CNN-based model in sports
scenes where severe self-occlusion occurs, claimed in [8, 50]. Then we optimize
the per-frame SMPL model by utilizing temporal information by drone orbiting
diagrams, which we call the Drone-based Sequential MoCap (DSM).
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In monocular human pose estimation, it has been verified that the viewpoints
of the camera will largely affect the MoCap result [18, 54]. Here we utilize the
drone camera poses Pi derived from our DMC module to formulate a optimiza-
tion procedure by leveraging the fast varying viewpoints under our setting:

The optimization objective consists of two terms, the reprojection error term
L2d and the smoothness term Ltemp, ω is a weight factor:

min
θi,βi,R

h
i
,T h

i

f(θi,βi,R
h
i ,T

h
i ) = L2d + ωLtemp (7)

The projection term penalizes the 2D distance between the estimated 2D key-
points Wi and the corresponding projected SMPL joints:

L2d =

n
∑

i=1

∥W i −Π[Ri(R
h
i J(θ,β)i + T h

i ) + Ti]∥
2 (8)

where Π is the projection from 3D to 2D using camera intrinsics Ki. Unlike [16,
25] which estimates 3D human pose in the camera coordinate and requires a post-
processing stage to solve the scene-human alignment using an assumed ground
plane, we take advantage of decoupling the camera poses and human poses to
get 3D-consistent human registrations in the world coordinate directly.

As our drone camera shoots at a constant 30fps, we add a temporal smooth-
ness constraint to ensure that joint positions and human body shapes do not
vary too much between consecutive frames. λβ is a weight.

Ltemp =

n−1
∑

i=1

∥θi − θi+1∥
2

F + λβ

n−1
∑

i=1

∥

∥βi − βi+1

∥

∥

2
(9)

Since we control our drone in a constant rotation manner, which is one of
the optimal camera positioning diagrams evaluated by ActiveMoCap [18], we
are able to take advantages of the fast-varying viewpoints from drone mobility
under our settings.

3.3 Human Model Ψh

Neural Radiance Field Revisited A Neural Radiance Field (NeRF) is a
mapping from 3D location x = (x, y, z) and 2D viewing direction d to density σ

and RGB color value c = (r, g, b). The mapping function can be written as

FΘ : (x,d) → (c, σ), (10)

A camera ray can be denoted as r(t) = o+td, where the ray origin is represented
by o . Then classical volume rendering is applied. The pixel color for ray r is
computed by:

Ĉ(r) = R(r, c, σ) =
N
∑

i=1

Ti (1− exp (−σiδi)) ci;Ti = exp



−

i−1
∑

j=1

σjδj



 , (11)

where δi = ti+1 − ti is the distance between two neighboring sampling points,

and Ti = exp
(

−
∑i−1

j=1 σjδj

)

is the transmittance for each point along the ray.
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Human Deformation Inspired by [34,42], We learn to unwrap the performer’s
observed poses in the observation space to a canonical T-pose represented by
SMPL [26]. Therefore, sampling points can be queried in canonical space and
warpped back to the observation space as a deforming strategy guided by poses.

Assuming there is a 3D sampling point x in frame i, Initially, we identify the
SMPL mesh vertex closest to the target point by employing the Nearest Neighbor
algorithm. Subsequently, we transform this vertex into the canonical space by
applying the explicit rigid inverse transformation derived from the SMPL mesh:

T (M i,x) =

(

K
∑

k=1

wk,iGk(M i,Ji)

)−1

, (12)

where wk,i serves as a blending weight for k − th joint in the frame i’s blending
weight volume obtained from SMPL. The transformation of the k − th joint is
represented by Gk(M i,Ji) , and the 3D location of K is represented by joints
J ∈ R3K . Then we are able to calculate x in canonical coordinate

xc = T (θi,x) · x, (13)

Canonical Human Model Once the parameters are obtained, the remaining
task is to retrieve the corresponding points within a canonical volumetric repre-
sentation. The volume Fc is realized by a single MLP which can output color c
and density σ of a 3D point x in the canonical space

Fc(x) = MLPc(xc, Li). (14)

A set of latent code Li = {z1, z2, . . . , z6890} is also embedded on vertices of the
SMPL model for each frame (z has a dimenson of 16) that implicitly ensures
temporal consistency in the reconstructed human model. Eventually, we query
the color for a 3D point in observation space: Ψh:

ci(x) = MLPc(T (M i,x) · x, Li). (15)

Training the Human Model Leveraging our dynamic human model (Eq.
15), we can incorporate it with volume rendering (Eq. 11). For each frame i, we
can synthesize images from specific viewpoints, while constraining the sampling
point range within the 3D bounding boxes of the corresponding SMPL meshes.
Over the training procedure, MLPc and Li are jointly optimize by minimizing
difference between the true pixel color Ci(r) and the rendered pixel color Ĉi(r),

Lrgb =
∑

r∈S

∥

∥

∥Ĉi(r)−Ci(r)
∥

∥

∥

2

(16)

where S is the represented as a set of sampling rays which intersecting with
human’s 3D bounding box.
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3.4 Scene model Ψs

Mip-NeRF360 [4] is performed as the background scene backbone Ψs: Improved
from Mip-NeRF [3], each ray is split into intervals Ti = [ti, ti+1), and for each
conical frustum, the mean µ, as well as the covariance Σ are calculated. Follow-
ing [53], here is a contraction function.

ξ(x) =

{

x ∥x∥ f 1
(

2− 1
∥x∥

)(

x

∥x∥

)

∥x∥ > 1
(17)

Afterwards, we can calculate contracted Gaussian parameters (µ̂, Σ̂):

(µ̂, Σ̂) =
(

ξ(µ),Jξ(µ)ΣJξ(µ)
T
)

(18)

here the item Jξ(µ) is a Jacobian of ξ of µ. Hence, the whole model is:

Ψs(η̂(µ̂, Σ̂)) 7−→ (c, σ) (19)

Note that η(·) is integrated positional encoding introduced in [4].

3.5 Layered Representation in Training and Rendering

We adopted a neural layered representation similar to [15, 35] for joint training
and compositional volume rendering, so as to train the human model Ψh and the
background model Ψs jointly without 2D segmentation masks. Compared to [16],
we no longer need foreground human masks for training, and avoid artifacts due
to α-composition during rendering in [16].

Layered Ray Sampling Strategy During the human motion capture, we
obtain the per-frame SMPL meshes under the 3D world coordinate, along with
the corresponding 3D bounding boxes. We utilize this 3D bounding box as a
spatial clue for parsing the 3D scene. Then we adopt a layered ray sampling
strategy. For a camera ray that intersect with the human, we sample points
inside the bounding box for training our human model Ψh, and sample points
outside the bounding box for training our background model Ψs.

Compositional Volume Rendering. With the help of the layered Ray
Sampling Strategy, we query the Ψh and Ψs respectively and get the composited
rendering result. We annotate Ch(r) as the accumulated color of samples inside
the 3D bounding box, and Cs(r) as the accumulated color of samples outside
the 3D bounding box. The rendered color of a pixel Ĉ(r) can be computed by:

Ĉ(r) = Ch(r) +
(

1− αh(r)
)

Cs(r) (20)

Here the αh is the alpha values of the human layer

αh
i = 1− exp

(

−σh
i δ

h
i

)

(21)

Joint Training Without Segmentation Masks We uses L2-norm as a
loss function for supervised training:

L =
∑

r∈R

(

∥

∥

∥C(r)− Ĉ(r)
∥

∥

∥

2

2

)

(22)
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Fig. 3: Illustration of 4-drone dataset collection in AerialRecon.

4 Real World Experiment

AerialRecon Dataset: We conduct extensive real-world experiments on our
AerialRecon Dataset, which covers diverse types of real sports scenes, captured
by 2 or 4 synchronized drone cameras. It comprises 400 drone video clips and
more than 120K images. Each scene has multi-view images registered to the same
point cloud under the world coordinate system. Every clip from the 2 or 4 drone
cameras is manually synchronized using a movie clapperboard. With videos cap-
tured at 30FPS, the time synchronization error is less than 33 milliseconds.
Data Collection: As illustrated in Fig. 3, during the capture process, two col-
lection methods are applied, which is for ablation studies. We ensure all drones
are configured with the same photography parameters to maintain consistency.
1. Drone Drones No. 1 and No. 2 automatically orbit the athlete in an arc tra-
jectory under the same constant linear speed but different phases and heights.
We only utilize a single video from drone No. 1 for training purposes, while drone
No. 2 provides test views for quantitative evaluation. Consequently, we obtain
image pairs from two distinct viewpoints at any given time frame.
2. Handheld drones No. 3 and No. 4 are operated by two photographers mov-
ing along different sides of the athlete. Drone No. 3 is utilized for training the
handheld system, while drone No. 4 is exclusively used for testing.

4.1 Camera Trajectory

We select over 300 trajectories (each has 600 consecutive frames) in 25 real
sports scenes on AerialRecon for the ablation study of our module design in cal-
ibration. We define two failure cases: Registration failure: After calibration,
the number of registered cameras is less than the number of total frames (600).
Trajectory Failure: Obvious breaks in the visualization of camera trajectories.
Fig.4 demonstrates the case. Table.1 reports the number of wrong trajectories
removing different components, which demonstrates the improvement of robust-
ness using sequential matching and DMC constraints.
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Fig. 4: Visualization of obvious break in trajectory failures

Table 1: Ablation in Calibration

Method #Total Failure #Regis.Failure #Traj.Failure

COLMAP 52 27 25
ours 0 0 0

w/o DMC 37 14 23
w/o sequential matching 6 6 0

4.2 3D Human Pose Estimation

We use the mean average precision (AP ) under different threshold (AP 50, AP 75)
defined by the COCO challenge [24] for quantitative evaluation. Specifically, we
use drone No.1 for pose estimation, and we select consecutive 100 frames from
the test view camera (drone No.2) from each scene in the 25 scenes and carefully
annotate the 17 2D keypoints (referring to COCO 2017 dataset [24]) per frame as
the corresponding GT keypoints. We use our MoCap system to estimate 3D pose
skeletons only using the input 25×100 frames from drone No.1 and project the
estimated 3D skeletons to their corresponding test view (drone No.2) to calculate
their keypoint similarity with GT keypoints and measure the metrics in Table
2. Here we use different methods for comparison including: 1) OpenPose [5] 2)
using 2D CNN rather than 2D transformer as 2D pose detector 3) removing
sequential smoothness in optimization 4) MoCap system in NeuMan [16].

Table 2: Comparison in Human Motion Capture Methods

Method AP AP
50

AP
75

OpenPose [5] 62.7 70.2 66.9
ours 67.9 89.2 78.3

ours w/o 2D transfomer 64.5 76.0 70.1
ours w/o sequential smoothness 66.3 83.4 74.2

NeuMan [16] 66.7 83.2 76.1
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4.3 Reconstruction and Rendering

We compare with monocular SOTA systems designed for outdoor settings [16,
21,25], and test them for novel view rendering on 3 datasets. On AerialRecon, all
the methods use the same training data from drone No.1 and the same test view
from drone No.2 for calculating metrics. Our method outperforms other methods
in qualitative (See Fig.5) and quantitative (See Table. 3) results. NeRF-T [21]
does not use human pose priors and is difficult to reconstruct a fast-moving
human body. NeuMan [16] Uses Vanillar-NeRF to reconstruct the background,
displaying obvious blurs in the scene. Besides, NeuMan [16] and HOSNeRF [25]
have misaligned human body positions compared with GT, and some problems
on the scale (e.g. penetrated human feet in climbing). We also compare our
method with [16] and [25] on their datasets in Table. 4 and Table. 5. Results
show we are superior than or on-par with SOTA methods on their datasets.

Table 3: Quantitative Comparison of SOTA Methods on AerialRecon Dataset

Climb Jogging Kungfu Football

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

HOSNeRF [25] 21.80 0.743 0.271 21.28 0.724 0.314 21.07 0.698 0.277 20.92 0.745 0.291
NeRF-T [21] 16.37 0.563 0.389 14.82 0.497 0.617 13.62 0.378 0.633 17.38 0.591 0.379
NeuMan [16] 19.36 0.658 0.363 19.76 0.623 0.352 19.31 0.657 0.579 20.01 0.680 0.315

Ours 24.24 0.891 0.203 22.94 0.841 0.243 23.29 0.874 0.237 22.41 0.793 0.268

Fig. 5: Qualitative Comparison of SOTA Methods on AerialRecon Dataset
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Table 4: Quantitative Comparison of SOTA Methods on NeuMan Dataset [16]

SEATTLE PARKING BIKE

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

HOSNeRF [25] 26.35 0.893 0.135 26.98 0.879 0.158 26.03 0.901 0.177
NeuMan [16] 24.01 0.792 0.254 26.07 0.803 0.277 25.90 0.823 0.236

Ours 27.32 0.925 0.112 26.80 0.912 0.131 27.32 0.939 0.159

JOGGING LABS CITRON

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

HOSNeRF [25] 24.97 0.878 0.182 24.89 0.892 0.175 24.09 0.893 0.184
NeuMan [16] 23.69 0.725 0.306 25.61 0.862 0.254 25.31 0.811 0.263

Ours 26.03 0.907 0.158 25.53 0.903 0.173 26.18 0.928 0.157

Table 5: Quantitative Comparison of SOTA Methods on HOSNeRF Dataset [25]

BACKPACK TENNIS SUITCASE

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

HOSNeRF 22.53 0.775 0.241 24.50 0.910 0.323 21.79 0.839 0.389

NeuMan 21.68 0.613 0.458 23.93 0.802 0.377 21.33 0.635 0.433
Ours 23.58 0.806 0.229 23.95 0.827 0.308 21.67 0.821 0.412

PLAYGROUND DANCE LOUNGE

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

HOSNeRF 22.59 0.793 0.346 22.67 0.802 0.250 27.84 0.967 0.218
NeuMan 21.93 0.672 0.427 22.03 0.603 0.389 27.79 0.923 0.253

Ours 24.56 0.852 0.279 23.54 0.833 0.297 28.91 0.975 0.157

4.4 Ablation Study Between Drone and Handheld

As we illustrated, we have 4 drone videos at the same time for certain scenes.
Specifically, we use drone No.3 for training Handheld system, and drone No.4
for providing test view GT. We use drone No.1 for training Drone system, and
drone No.2 for providing test view GT. This is to clarify the advantages of using
an orbiting drone in our system, rather than a handheld camera used in [16,25].

3D Human Pose Estimation For each system, we project the estimated
3D human SMPL mesh to the corresponding render view GT image. In some
handheld videos, the human body could fail to align. For example, in Fig. 6, the
climber’s arms and hands have bad results, as extreme view directions by ground
cameras increase the difficulties of 2D keypoints detection. Also, the video shot
by a handheld camera mostly contains only one-sided observations of the athlete,
which aggravates self-occlusions, hindering accurate estimation.

Novel View Rendering Qualitative comparisons are shown in Fig. 7. Com-
pared with an orbiting drone, a handheld camera cannot guarantee to cover all
surrounding 360° viewing angles, causing artifacts in human and distorted scene
details in backgrounds. We also report the metrics in Table. 6. Consequently,
the shortcoming of existing SOTA systems using a handheld camera as input
like [16,25] constrain their application in real-world sports.
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Fig. 6: Qualitative MoCap comparison between a)drone videos and b) handheld videos.

Table 6: Ablation Study Between Drone and Handheld System on AerialRecon

Climb Jogging Kungfu Football

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Drone 22.18 0.715 0.289 21.54 0.723 0.324 20.84 0.698 0.357 21.03 0.695 0.309

Handheld 20.34 0.677 0.337 17.28 0.587 0.412 18.97 0.626 0.633 15.34 0.492 0.625

5 Dataset and Future Work

Our new dataset AerialRecon paves the way for future work. It fills the gap in
multi-view dataset of real-world outdoor sports scenes. Extension work could
further support tracking and reconstruction of moving objects.

Fig. 7: Novel view rendering comparison between Handheld and Drone. Here: 1)GT
2)Handheld 3)Drone 4)Handheld human only 5)Drone human only
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