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Abstract001

People get informed of a daily task plan002
through diverse media involving both texts and003
images. However, most prior research only fo-004
cuses on LLM’s capability of textual plan gen-005
eration. The potential of large-scale models in006
providing text-image plans remains understud-007
ied. Generating high-quality text-image plans008
faces two main challenges: ensuring consistent009
alignment between two modalities and keeping010
coherence among visual steps. To address these011
challenges, we propose a novel framework that012
generates and refines text-image plans step-013
by-step. At each iteration, our framework (1)014
drafts the next textual step based on the predic-015
tion history; (2) edits the last visual step to ob-016
tain the next one; (3) extracts PDDL-like visual017
information; and (4) refines the draft with the018
extracted visual information. The textual and019
visual step produced in stage (4) and (2) will020
then serve as inputs for the next iteration. Our021
approach offers a plug-and-play improvement022
to various backbone models, such as Mistral-023
7B, Gemini-1.5, and GPT-4o. To evaluate the024
effectiveness of our approach, we collect a new025
benchmark consisting of 1,100 tasks and their026
text-image pair solutions covering 11 daily top-027
ics. We also design and validate a new set of028
metrics to evaluate the multimodal consistency029
and coherence in text-image plans. Extensive030
experiment results show the effectiveness of031
our approach on a range of backbone models032
against competitive baselines.033

1 Introduction034

Recently, there has been growing attention on em-035

ploying LLMs for planning, the task of decom-036

posing a high-level goal into a sequence of exe-037

cutable steps (Valmeekam et al., 2022; Hao et al.,038

2023). LLMs have demonstrated strong capabil-039

ities in generating textual plans, enabling appli-040

cations in robotics, virtual assistants, and instruc-041

tional content generation (Huang et al., 2022; Liu042

et al., 2023; Silver et al., 2024). However, textual043

Step 1: Fill the container 
with fresh water. Gently 
place the onion bulbs in it.

Step 2: Place the container 
in a bright location with 
indirect sunlight.

Step 3: Replace the water
every 2-3 days to prevent
bacteria growth and keep
the roots healthy.

🤔

🗒Rudimentary Plan:

How to grow bulb 
onions in water?

Step 1: Prepare the onion 
bulbs. Trim the roots if they 
are too long. 

Step 2: Position the onion 
bulbs in the glass or jar with
the root end facing down.

Step 3: Position the glass or 
jar with the onion bulbs in a 
sunny windowsill.

Step 4: Change the water in 
the glass or jar every few 
days to prevent stagnation 
and the growth of bacteria.

🗒 Plan Improved by Us:

Figure 1: Plans generated by GPT-4o (left) and our
framework (right). Our framework maintains higher
consistency between images and texts, and achieves
higher coherence among images across different steps.

plans alone can be insufficient, as many real-world 044

tasks require both textual instructions and visual 045

demonstrations for clarity. Multimodal task plan- 046
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ning, which can be formulated as a paired text-047

image sequence generation problem conditioned048

on the task goal (Lu et al., 2024), enhances compre-049

hensibility and usability by leveraging the comple-050

mentary strengths of language and vision. Despite051

its potential, multimodal planning remains an un-052

derexplored problem, with prior approaches strug-053

gling to maintain consistency between modalities054

and coherence across visual steps.055

Multimodal task planning faces two main chal-056

lenges: ensuring coherence through visual steps057

and alignment between two modalities. Figure 1 il-058

lustrates these challenges through a comparative ex-059

ample of generating plans for the input goal “grow-060

ing bulb onions in water”. The left-hand side shows061

the plan generated by GPT-4o, and the right-hand062

side presents the corresponding plan generated by063

our framework. The baseline plan, although gen-064

erally reasonable, exhibits critical issues in both065

visual coherence and text-image alignment. First,066

it fails to maintain visual consistency between step067

1 and step 2, as highlighted in red. The container068

depicted in step 1 is a transparent glass, but in step069

2, it becomes an opaque white planter, disrupting070

coherence. Second, as highlighted in purple, step071

2’s image shows a location with direct sunlight,072

contradicting the textual instruction that specifies073

“indirect sunlight”. Furthermore, step 3 entirely074

diverges from the intended goal of growing onions075

in water, as it depicts bulbs planted in soil.076

On the other hand, our framework effectively077

improves visual coherence and text-image consis-078

tency. As shown on the right-hand side of Figure 1,079

our approach maintains a uniform depiction of the080

onion bulbs and their container throughout the pro-081

cess. The glass or jar remains consistent in shape082

and size from step 2 to step 4, avoiding abrupt083

visual changes. Moreover, the visual steps accu-084

rately reflect the textual descriptions through all085

steps. For instance, step 3 correctly depicts a sunny086

windowsill, aligning with the text’s instruction to087

position the jar in such a location.088

These improvements stem from our novel au-089

toregressive framework. At each iteration, the text090

generator drafts the current step based on the task091

goal and previous steps. The image generator then092

produces a corresponding visual representation con-093

ditioned on the last visual step. An image inter-094

preter subsequently extracts structured information095

from the generated image, which the text generator096

uses to refine the step draft. This iterative process097

enhances visual coherence with a text-image-to-098

image model and ensures text-image consistency 099

through cross-modality prompting. Compared to 100

vanilla approaches that simply concatenate an LLM 101

with a text-to-image model, our framework effec- 102

tively mitigates the challenges of multimodal task 103

planning, leading to more coherent and consistent 104

instructional sequences. 105

To evaluate our framework, we collect a dataset 106

from two popular websites: Instructables and wiki- 107

How. Our dataset consisting of 1100 examples in 108

11 categories, providing rich multimodal informa- 109

tion of procedural solutions to a variety of daily 110

tasks. We adopt a set of metrics including conven- 111

tional automatic measurements, LLM evaluations, 112

and human evaluations to comprehensively evalu- 113

ate planning performance in three aspects: textual 114

plan quality, visual plan quality, and textual-visual 115

plan alignment. To demonstrate the generalizabil- 116

ity of our approach, we evaluate our framework 117

with 3 different backbones: Mistral-7B (Jiang et al., 118

2023), Gemini-1.5-flash (Team et al., 2024), and 119

GPT-4o (Hurst et al., 2024). For every backbone, 120

we compare our framework with various baselines. 121

Extensive experiment results show our framework 122

outperforms all baselines, especially in terms of the 123

two concerns we aim to address. 124

In summary, our contributions are three-fold: 125

• We propose a novel framework to address both 126

visual coherence challenge and text-image 127

alignment challenge of multimodal planning 128

problem; 129

• We collect a dataset of daily tasks covering 130

diverse domains and complexity levels to eval- 131

uate the text-image planning performance. 132

• We empirically show the effectiveness of our 133

framework with extensive experimental re- 134

sults and visualization examples. 135

2 Related Work 136

Task Planning Task planning is broadly studied 137

in various scenarios of virtual environment (Zhao 138

et al., 2023; Gao et al., 2023; Hu et al., 2024), em- 139

bodied environment (Huang et al., 2022; Song et al., 140

2023; Zhang et al., 2024), and daily life (Oswald 141

et al., 2024; Wu et al., 2022). Despite classical 142

planning algorithms (Hoffmann and Nebel, 2001; 143

Alarnaouti et al., 2023), they are primarily appli- 144

cable with restrictions such as fully observable en- 145

vironments with pre-defined actions and objects. 146

It prohibits their usage in open-domain daily sce- 147

narios, igniting research interest in solutions from 148

LLM advancements (Kambhampati et al., 2024). 149
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LLMs, possessing a rich amount of common-150

sense knowledge and impressive reasoning capa-151

bility, are competent in such contexts. Huang et al.152

(2022) studies LLMs as zero-shot planners and153

shows their great planning potential in a virtual154

environment. Liu et al. (2023) combines the LLM155

with classical planners to get reliable solutions to156

robotic tasks in an embodied environment. Arora157

and Kambhampati (2023) tries to add an external158

verifier to improve the planning capabilities of a159

finetuned LLM. Wang et al. (2023) seeks to study160

textual plan generation provided visual states as161

supplements. Despite these, only rare efforts con-162

tribute to studying multimodal planning. Lu et al.163

(2024) first explores the potential of LLMs and164

text-to-image models to generate image-text paired165

plans. However, their performance reveals limi-166

tations in visual step coherence and room for im-167

provement in text-image consistency.168

Vision and Language Diffusion models (Ho169

et al., 2020; Ramesh et al., 2021; Rombach et al.,170

2022) have revolutionized image generation condi-171

tioned on texts. However, in specific circumstances172

where the models are expected to output coherent173

images, they exhibit poor performance because of174

the lack of visual context knowledge (Lu et al.,175

2024). This leads to the introduction of advanced176

image editing models (Kawar et al., 2023). Build-177

ing upon the success of image generation models,178

they are capable of generating images conditioned179

on both reference images and text instructions. For180

example, Brooks et al. (2023) achieves image edit-181

ing by fine-tuning the stable diffusion model on182

(original image, instruction, edited image) triplets.183

Zhang et al. (2023) enables precise spatial condi-184

tioning controls including edges, depth maps, pose185

information, etc. Souček et al. (2024) infuses video186

data into a diffusion model to generate images de-187

picting how actions lead to object state transfor-188

mations. However, they all tend to maintain the189

outline of objects in the original image while only190

editing the color, texture, or style. Thus, they are191

still inadequate in generating coherent images for192

planning, which typically involves scenario change193

and object transformation.194

3 Dataset195

Despite existing datasets in the daily task planning196

area, they either lack image modality (Koupaee and197

Wang, 2018; Valmeekam et al., 2023a), task do-198

main diversity (Yagcioglu et al., 2018; Valmeekam199

et al., 2023b), or are not intended for plan genera-200

22.0%

15.7% 11.1%

10.2%

9.8%

7.1%

7.1%
7.0%

5.8%
4.4%

Categories
Home & Garden
Health
Personal Care & Style
Hobbies & Crafts
Cooking
Food & Entertaining
Cars & Other Vehicles
Sports & Fitness
Education & Communications
Arts & Entertainment

Figure 2: The distribution of our dataset.

tion (Yang et al., 2021). Therefore, to benchmark 201

text-image plan generation, we collect a dataset of 202

daily task plans covering various topics. 203

Inspired by previous work, we consider two pop- 204

ular websites affording procedural daily task in- 205

structions: Instructables1 and wikiHow2. Both 206

data sources provide various modalities and cover 207

diverse daily task categories. The overall cate- 208

gory distribution of our dataset is shown in Figure 209

2. Compared with previous public datasets, our 210

dataset is rich in task categories and plan modali- 211

ties. Furthermore, we ensure high data quality by 212

manually filtering out malicious content and cu- 213

rating the collected plans to remove noises such 214

as the authors’ information and personal stories. 215

Please see Appendix B for more dataset statistics 216

and demonstrations. 217

Instructables To study how our framework per- 218

forms on simple daily tasks, we randomly col- 219

lect 100 plans from Instructable. Specifically, we 220

choose “Cooking” category as it is a common plan- 221

ning scenario. Plans from Instructables are pub- 222

lished by users who would like to share their expe- 223

rience in achieving a specific goal. Therefore, their 224

plans are more brief and more casual. 225

wikiHow We randomly sample 1,000 plans from 226

wikiHow expert articles. In 19 categories, we se- 227

lect 10 that best fit into the multimodal planning 228

context. The remaining categories, such as family 229

life, relationships, philosophy and religion, etc, of- 230

ten involve sensitive information. Moreover, they 231

are not suitable for our planning problem since 232

the provided “plans” are more like “advice” with- 233

out explicit temporal consistency and dependency 234

through the “steps”. Our collected wikiHow arti- 235

cles are reviewed, edited, or authored by domain 236

1https://www.instructables.com/
2https://www.wikihow.com/
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Stage 1: Textual Plan Generation

task goal G
Grow Bulb Onions in Water

Step 1: Prepare the onion 
bulbs. Trim the roots if they 
are too long…

Step 2: Position the onion 
bulbs in the glass or jar 
with the root end facing 
down…

textual steps !!:#$!

visual steps "!:#$!

Place the glass or jar in a
sunny location. Ensure
they receive plenty of
sunlight.

textual draft ##

Tool: Glass
Object: Plants
Action: Placing
Goal: Provide plants with 
access to sunlight for optimal 
growth

Step 3: Position the glass or
jar with the onion bulbs in a
sunny windowsill. Onions
need plenty of light to grow,
so ensure they receive at least
6-8 hours of sunlight.

textual step !#

Draft 
Generation

Image 
Generation

Visual Info
Extraction

Text
Refinement

Stage 2: Visual Plan Generation Stage 3: Visual Info Extraction

Stage 4: Textual Plan Refinement

visual	info	-#
visual step 𝑖!

Figure 3: Overview of our autoregressive framework at time step k. Stage 1: the text plan generator takes the input
task goal G and output textual steps t1:k−1 from previous time steps to predict dk. Stage 2: the image generator
outputs the visual step ik conditioned on dk and the last visual step ik−1. Stage 3: the text generator extracts
formatted visual information from the generated ik as vk. Stage 4: the text generator refines dk with vk to generate
tk. Dotted Arrow: The output tk and ik then serve as the input for the next time step k + 1.

experts verified by the platform. Therefore, these237

plans are longer, more detailed, and more formal.238

4 Approach239

Task Formulation Given a task goal G as the240

input, the output of multimodal planning is a se-241

quence of steps S = {s1, s2, ..., sn}. Each step242

consists of an instructional text tk and its corre-243

sponding image ik, so we have sk = (tk, ik), k ∈244

{1, 2, ..., n}. At every step k, tk and ik should245

be semantically consistent. Both textual plan246

St = {t1, ..., tn} and visual plan Si = {i1, ..., in}247

should be coherent through steps.248

Framework Overview As shown in Figure 3,249

our framework generates plan steps iteratively. At250

each step, 4 cross-modality stages collaboratively251

contribute to the multimodal plan generation. In252

the first stage, the textual plan drafter takes the in-253

put task goal G and the previous textual steps t1:k−1254

to draft the current textual step dk. In stage two,255

the image generator edits the last visual step ik−1256

conditioned on dk to get the current visual step ik.257

In stage three, an image interpreter extracts format-258

ted visual information vk from the generated ik.259

Last, the textual plan refiner collects vk and uses it260

to refine the original textual step draft dk to be tk.261

After the current iteration is complete, both tk and262

ik are added to history steps for the next iteration.263

The overall design ensures the coherence of visual264

steps by prompting the image generation module265

to predict the next image based on both textual 266

instruction and the previous visual state. Combin- 267

ing text-to-image and converse image-to-text in a 268

loop guarantees consistency between the generated 269

textual plan and its visual counterpart. Detailed 270

prompts for each module are in Appendix C. 271

4.1 Textual Plan Drafting 272

As LLMs embed a rich amount of commonsense 273

knowledge, we prompt them with the task goal G 274

at the first iteration to get the textual step draft d1. 275

At later iterations, we concatenate G with previous 276

textual steps t1:k−1 to draft dk: 277

dk =

{
Gt(G), k = 1

Gt(G,Concat(t1, t2, ..., tk−1)), k > 1
(1) 278

where Gt denotes the text generation model. 279

4.2 Visual Plan Generation 280

To maintain coherence through visual steps, we 281

employ InstructPix2Pix (Brooks et al., 2023), a 282

prevailing image editing model. Different from 283

image generation models, InstructPix2Pix is condi- 284

tioned on both the text prompt and the input image. 285

In our framework, it ensures the generation of the 286

current visual step ik is always aware of the last 287

visual state ik−1. This helps improve the coherence 288

through the visual plan Si = {i1, i2, ..., in}. 289
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ik = Gi(dk, ik−1) (2)290

where Gi denotes the image generation model.291

4.3 Textual Plan Refinement292

We further employ a textual plan refinement mecha-293

nism for two reasons: 1) to improve the consistency294

between textual step and visual step; 2) to comple-295

ment the textual step draft with implicit knowledge296

embedded in the image.297

Visual Information Extraction First, we adopt298

a visual information-infused model as the image in-299

terpreter to extract visual information. Specifically,300

we adopt the idea of planning domain definition301

language (PDDL) from the classical planning field302

(Fox and Long, 2003). We design a pseudo-PDDL303

(pPDDL) with structured representations that are304

applicable in our planning scenario. As displayed305

in Figure 3, we specify this pPDDL as 4 different306

types of information embedded in a single image:307

involved objects, tools, the action, and the goal.308

vk = E(ik) (3)309

E is a language model to generate pPDDL.310

Visual Information Incorporation Last, we311

feed the extracted visual information into the plan312

generator to revise the textual step draft.313

tk = Gt(dk, vk) (4)314

5 Experiment Settings315

5.1 Baselines316

To demonstrate the effectiveness of our model, we317

compare with three types of strong multimodal318

planning baselines based on state-of-the-art LLMs319

and diffusion models:320

• Vanilla LLM baselines including GEMINI-321

1.5-FLASH, GPT-4O, and LLaVa with instruc-322

tion finetuning using Mistral (M&L). The323

backbone LLM generates textual plan in one324

turn, and Stable Diffusion model generates the325

visual plan according to parsed textual steps.326

• SD: Stable Diffusion (Rombach et al., 2022)327

generates one visual step at each turn given the328

task goal G, and the backbone LLM describes329

each visual step to form a textual plan.330

• We also compare with a state-of-the-art mul-331

timodal planning framework TIP (Lu et al.,332

2024). Compared with the first type baseline,333

it leverages cross-modality prompting with a 334

T2I-Bridge and an I2T-Bridge to further im- 335

prove the performance. For fair comparison, 336

we use TIP on top of the same backbone lan- 337

guage model choices as ours. 338

5.2 Evaluation Metrics 339

Textual Plan Evaluation We conventionally 340

choose BertScore (Zhang et al., 2020) and ROUGE 341

(R-1, R-2, R-L) (Lin, 2004) to automatically mea- 342

sure the semantic similarity between generated tex- 343

tual plans and reference textual plans. Considering 344

the open-ended attribute of the daily task planning 345

problem, automatic metrics do not suffice to eval- 346

uate plan quality. Therefore, we also include four 347

qualitative metrics: correctness, executability, co- 348

herence, and informativeness. We use Claude-3.5- 349

Sonnet as the LLM judge to score generated plans 350

with awareness of reference plans and have three 351

human annotators verify the LLM evaluation’s re- 352

liance. Please see Appendix C for more evaluation 353

details. 354

Text-Image Evaluation Following the common 355

practice, we use CLIP score to examine the seman- 356

tic alignment between textual steps and their visual 357

counterparts. Like textual plan evaluation and vi- 358

sual plan evaluation, we use an LLM judge and 359

human annotators to perform evaluations as well. 360

Visual Plan Evaluation Evaluating visual plans 361

is nontrivial due to four cases through the plan: 362

scenario coherence/change when actions are con- 363

ducted in the same workplace/different workplaces; 364

object coherence/change when involved objects 365

are unchanged/changed in their states by some ac- 366

tions. Therefore, conventional image similarity 367

measurements like FID (Heusel et al., 2017) do not 368

fit into this context. To this end, we first convert 369

every image to a textual description of the back- 370

ground, salient objects, and the involved action (if 371

any). Then, we employ the perplexity score (PPL) 372

to check if consecutive descriptions are coherent 373

given the action corresponding to the later step. 374

In addition, we also conduct LLM evaluations and 375

human evaluations. 376

5.3 Implementation Details 377

Backbone LLMs To examine the effectiveness 378

of our approach on both open-source and closed- 379

source LLMs, we choose 3 different models as the 380

backbone: MISTRAL-7B, GEMINI-1.5-FLASH, and 381

GPT-4O. In all experiments, the backbone LLM 382
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Backbone
&

Dataset
Method

Automatic Evaluation LLM Evaluation

BertScore ↑ R-1 ↑ R-2 ↑ R-L ↑ CLIP ↑ PPL ↓ Corr. ↑ Exec. ↑ Coh. ↑ Info. ↑ T-I ↑ I-I ↑

Gemini
&

Instructables

GEMINI 0.835 26.3 7.00 24.7 17.84 5.98 4.81 4.84 4.96 4.85 1.59 2.33
SD 0.807 20.7 5.20 19.7 8.59 4.85 1.17 0.74 0.85 2.33 1.04 1.29
TIP 0.812 22.2 5.00 20.5 18.66 6.11 3.15 3.10 3.54 3.57 1.73 2.15
OURS 0.842 30.6 9.20 28.2 26.38 5.49 4.85 4.89 4.91 4.94 2.64 2.41

Gemini
&

wikiHow

GEMINI 0.847 26.1 7.30 24.4 15.61 5.92 4.83 4.84 4.97 4.82 1.69 2.32
SD 0.806 14.4 2.00 13.7 9.03 4.94 0.79 0.70 0.81 1.94 1.28 1.13
TIP 0.812 21.5 5.40 20.4 14.58 6.01 3.32 3.47 3.51 3.82 1.58 2.31
OURS 0.850 29.0 9.00 27.0 20.23 5.13 4.89 4.88 4.89 4.91 2.42 2.40

GPT
&

Instructables

GPT 0.827 27.8 7.40 26.0 12.32 5.75 4.90 4.87 4.97 4.83 1.53 2.47
SD 0.805 19.4 4.30 18.4 9.65 5.09 1.33 0.92 0.79 2.04 1.10 1.24
TIP 0.840 29.8 8.20 28.0 13.19 6.27 3.78 3.25 3.63 3.61 1.68 2.30
OURS 0.849 33.7 10.3 31.5 27.14 5.21 4.93 4.90 4.93 4.93 2.47 2.76

GPT
&

wikiHow

GPT 0.850 30.0 9.00 28.1 11.29 5.83 4.84 4.86 4.97 4.87 1.56 2.35
SD 0.811 20.3 4.80 19.2 10.37 5.17 1.19 0.80 0.84 2.12 1.08 1.13
TIP 0.843 29.9 8.70 27.9 11.81 5.97 3.50 3.71 3.88 3.68 1.73 2.21
OURS 0.856 33.2 10.5 30.9 24.62 5.30 4.88 4.91 4.90 4.94 2.58 2.68

M&L
&

Instructables

M&L 0.829 30.8 9.10 28.8 19.36 6.03 4.79 4.58 4.80 4.67 1.51 2.26
SD 0.807 20.7 5.20 19.7 11.21 5.31 0.83 0.75 0.71 1.96 1.06 1.25
TIP 0.842 30.5 9.50 29.3 20.07 5.99 4.02 3.85 4.07 3.73 1.82 2.18
OURS 0.848 32.5 10.1 30.1 26.39 5.47 4.81 4.74 4.66 4.74 2.58 2.70

M&L
&

wikiHow

M&L 0.836 30.0 9.00 28.1 15.82 6.19 4.75 4.62 4.77 4.60 1.53 2.29
SD 0.809 20.0 4.40 19.3 10.19 5.20 0.78 0.77 0.80 2.03 1.10 1.19
TIP 0.839 30.1 8.90 27.8 15.47 6.16 3.84 3.68 3.92 3.70 1.84 2.07
OURS 0.851 31.7 10.0 29.6 19.60 5.27 4.83 4.75 4.71 4.78 2.45 2.53

Table 1: Main results. The best results are in bold, and the second best results are underlined. Textual Plan Evalua-
tion: BertScore, R-1, R-2, R-L, Corr.(correctness), Exec.(executability), Coh.(coherence), Info.(informativeness).
Text-Image Evaluation: CLIP, T-I (text-image). Visual Plan Evaluation: PPL, I-I (image-image).

works both as the draft generator and the text re-383

finement editor. Since GEMINI-1.5-FLASH and384

GPT-4O can also interpret images, we use them385

as the visual information extractor in our frame-386

work. For experiments with MISTRAL-7B back-387

bone, we choose INSTRUCTBLIP-VICUNA-7B, a388

general-purpose MLLM tuned on diverse tasks, to389

extract visual information in the framework.390

InstructPix2Pix Finetuning To make the im-391

age generator better align with our context, we392

fine-tune INSTRUCTPIX2PIX on a re-purposed393

dataset collected from wikiHow (Yang et al., 2021).394

The original dataset includes more than 60,000395

tasks covering all categories in wikiHow. We396

sample 20,000 of them in the scope of our se-397

lected categories as shown in Figure 2. Further-398

more, we transform each plan into a series of399

{ik−1, tk, ik} triplets, where ik−1 and ik are two400

consecutive images, and tk the text corresponding401

to the later image. The fine-tuning aims to pro-402

mote INSTRUCTPIX2PIX’s capability to generate403

coherent ik given ik−1 and tk as input. We split the404

re-purposed dataset by tasks in 0.9/0.05/0.05 for405

training/validation/test. We follow most training406

hyperparameters in the original work but change407

the maximum number of epochs to 50. At the end 408

of training, we achieve training loss of 0.100 and 409

validation loss of 0.105. 410

6 Results and Analysis 411

6.1 Main Results 412

Table 1 shows automatic measurements and LLM 413

evaluation results with three different backbone 414

models. Despite value differences across three sets 415

of experiments, they exhibit the same trends in all 416

three aspects. OURS approach obtains consistently 417

higher scores on all automatic measurements of 418

textual plans. In LLM evaluation, the coherence of 419

textual plans generated by OURS approach ranks 420

second to the vanilla baselines GEMINI, GPT, and 421

M&L. The potential cause is that generating the 422

whole plan in one shot prevents semantic conflicts 423

and temporal inconsistency. It is also noteworthy 424

that all baselines and OURS approach obtain bet- 425

ter scores in terms of textual plan evaluation, but 426

obtain worse scores in terms of visual plan and 427

text-image pair evaluation on wikiHow tasks. The 428

observation is accountable provided different plan 429

lengths and language styles of two data sources as 430

we discussed in Section 3 and Appendix B. 431
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6.2 Visual Coherence Analyses432

From Table 1, OURS approach obtains consistent433

improvement in terms of PPL score and I-I score434

by LLM judge. Although SD baseline achieves the435

best PPL score in all cases, the underlying reason436

is that the image generation model is incapable of437

actual “task planning”. When the planning instruc-438

tions and task goal G are fed into it, it concentrates439

on the project or action mentioned in G and out-440

puts images about the topic. As shown in Figure441

5, the visual plan generated by SD fails to show-442

case expected object transitions in temporal logic.443

Therefore, the translated textual “steps” are seman-444

tically similar, further leading to lower PPL score.445

For other baselines, we observe that they tend to446

involve sharp transitions in the visual plan. Figure447

5 intensively shows such failures in maintaining448

visual coherence. For example, the visual plan gen-449

erated by GPT presents a cooking course where450

consecutive steps appear irrelevant. It is due to the451

ignorance of its image generation module about the452

last visual step. In contrast, the OURS approach ad-453

dresses this challenge by predicting the next image454

conditioned on both the textual instruction and the455

last visual step. Consequently, the cooking course456

is smooth with natural object transitions.457

6.3 Text-Image Consistency Analyses458

OURS approach outperforms all baselines in terms459

of CLIP score and T-I score by LLM judge. OURS460

approach ensures high consistency between two461

modalities with two passes that first use the textual462

draft to instruct image generation and then refine463

the draft with extracted information from the gen-464

erated image. As presented in Figure 5, the visual465

step in TIP’s plan digresses from the task goal and466

its corresponding textual instruction. It is hard to467

observe “oxtail” from step 3 on. The cause is that468

without awareness of the previous steps, the image469

generation module is easily attracted by the most470

mentioned objects in the text. On the other hand,471

OURS approach counteracts the textual noise with472

visual information from the last step.473

6.4 Human Evaluation474

To complement our automatic and LLM evalua-475

tion, we conduct a human evaluation by recruiting476

3 annotators. We randomly select 50 tasks as a val-477

idation dataset. Its category distribution is consis-478

tent with the overall dataset. We choose the strong479

baseline GPT as one candidate and OURS with the480

same backbone as the other. We show the plans481

generated by these two models in random order,482

Eval.
OURS v.s. GPT-4O

κ
Win / Tie / Lose

Text 34% 53% 13% 0.521

Image 77% 15% 8% 0.604

T-I 4%81% 15% 0.699

Table 2: Human evaluation results. The κ scores demon-
strate moderate to substantial inter-annotator agreement.

and the annotators are asked to make comparative 483

annotations (win/tie/lose) between the generated 484

plans in three aspects: textual plan quality, visual 485

plan coherence, and text-image alignment. Please 486

check Appendix D.2 for more evaluation details. 487

Table 2 shows the human evaluation results. It 488

verifies the effectiveness of OURS approach in all 3 489

dimensions and is generally in line with automatic 490

and LLM evaluations. Compared with the baseline 491

GPT, OURS approach obtains slight improvements 492

in textual plan quality. Regarding visual plan co- 493

herence and text-image alignment, OURS approach 494

exhibits significant superiority. 495

6.5 Ablation Studies 496

To further examine the effects of our formatted 497

visual information design, we implement three ab- 498

lation studies with backbone GPT-4O including 499

(1) W DES which replaces the formatted visual 500

information vk in our framework with general im- 501

age descriptions; (2) W IMG which directly feeds 502

the generated image ik and the draft dk into the 503

multimodal text refinement module and obtains 504

the output textual step tk; and (3) PPDDL-TO-NL 505

which conversely asks the draft generator to pro- 506

vide formatted draft as image generation guidance 507

and translates it into natural language afterward. 508

The experiment results are shown in Table 3. 509

Formatted v.s. General Visual Information 510

Aiming to study pPDDL’s necessity, we edit the 511

prompt in stage 3 to make the visual information 512

extractor describe ik in natural language (NL). The 513

results in Table 3 indicate a performance drop in- 514

duced by this modification. From its intermediate 515

outputs, we find that without a pre-defined format 516

restriction, the image-to-text model tends to gener- 517

ate lengthy, unstructured descriptions with much 518

attention on minutia. They introduce noise to text 519

refinement in stage 4. As our framework is autore- 520

gressive, the noise accumulates with time steps, 521

harming both the textual and visual plans. 522
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Dataset Method
Automatic Evaluation LLM Evaluation

BertScore ↑ R-1 ↑ R-2 ↑ R-L ↑ CLIP ↑ PPL ↓ Corr. ↑ Exec. ↑ Coh. ↑ Info. ↑ T-I ↑ I-I ↑

Instructables

W DES 0.841 0.295 0.083 0.279 14.71 5.92 4.63 4.17 4.34 4.58 1.76 2.39
W IMG 0.836 0.257 0.069 0.245 16.48 5.90 4.40 4.24 4.19 4.47 1.72 2.26
PPDDL-TO-NL 0.837 0.261 0.079 0.243 12.04 6.25 4.18 4.20 3.93 4.02 1.58 2.09
OURS 0.849 0.337 0.103 0.315 27.14 5.21 4.93 4.90 4.93 4.93 2.47 2.76

wikiHow

W DES 0.847 0.309 0.092 0.290 12.04 5.89 4.60 4.28 4.40 4.84 1.85 2.34
W IMG 0.849 0.298 0.090 0.278 11.97 5.76 4.36 4.31 4.48 4.77 1.79 2.18
PPDDL-TO-NL 0.840 0.279 0.081 0.255 11.35 6.38 4.14 4.02 3.95 4.33 1.45 1.97
OURS 0.856 0.332 0.105 0.309 14.62 5.30 4.88 4.91 4.90 4.94 2.58 2.68

Table 3: Ablation study using GPT-4o backbone.

Formatted v.s. Raw Visual Information Given523

that GEMINI-1.5-FLASH and GPT-4O are infused524

with visual knowledge, we seek to explore whether525

these models can directly use raw image ik to re-526

fine the draft dk. In this case, stage 3 is skipped.527

Table 3 demonstrates the failure of depending on528

their image interpretation capability to refine tex-529

tual plans. Without an external visual information530

extractor, they are likely to roughly append their531

image interpretations to the input drafts, leading to532

worse plan coherence.533

NL-to-pPDDL v.s. pPDDL-to-NL To determine534

whether the pPDDL functions better than NL for535

image generation, we exchange the order of gener-536

ating texts in two formats. In this ablation study,537

the draft generation module is prompted to gener-538

ate a pPDDL step dk in stage 1. In stage 3, we ask539

the visual information extractor to describe ik in540

NL vk. In stage 4, the text refinement is still based541

on both dk and vk.542

From Table 3, OURS approach outperforms the543

pPDDL-to-NL method. Inspecting the concrete544

generation results, we observe that the pPDDL-545

first design can not yield sufficient information for546

the image generation module in stage 2. The highly547

compact drafts make it difficult to generate visual548

counterparts that align with textual instructions.549

It further disables the visual information extrac-550

tor from generating accurate image descriptions.551

The refined textual steps are often accordingly am-552

biguous. Therefore, the overall evaluation of this553

method is poor in all aspects.554

6.6 Sensitivity to Task Complexity555

We observe that diverse task categories introduce556

different task complexities. For instance, “Home557

& Garden” tasks are moderately challenging, and558

both textual and visual plans provide similar infor-559

mation. “Hobbies & Craft” tasks are often complex560

and require delicate actions. In this case, the vi-561

sual plan is more informative than the textual plan.562

CLIP PPL T-I I-I
Vision-related Metrics
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Figure 4: Visual step coherence and text-image align-
ment across different task complexity levels. All val-
ues are normalized relative to the results from medium-
complexity tasks. For PPL score, the lower, the better.

“Education & Communications” tasks are relatively 563

abstract. The textual plan is better for such tasks 564

since the visual plan always depicts concrete ac- 565

tions or scenarios. To study the effectiveness of 566

our framework over varying task complexities, we 567

sample 100 tasks and manually annotate them with 568

complexity high, medium, or low. 569

Figure 4 demonstrates our approach yields bet- 570

ter visual plans when challenged with medium- 571

complexity tasks. Involved actions in such plans 572

are often concrete while not elaborate, enabling 573

the image generation model to visualize them pre- 574

cisely. However, it struggles with high- and low- 575

complexity tasks. Depicting abstract or delicate 576

actions still exceeds the capacity of current models. 577

7 Conclusion 578

Our work studies an underexplored problem of text- 579

image plan generation. We identify two main chal- 580

lenges: ensuring visual coherence and text-image 581

alignment, and propose a novel framework to ad- 582

dress them accordingly. For evaluation, we collect 583

a dataset of daily tasks covering diverse domains 584

and task complexities. Substantial experiment re- 585

sults demonstrate the effectiveness of our approach 586

on a range of various backbone models, especially 587

in terms of the two challenges we aim to address. 588
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Limitations589

While our approach exhibits promising results in590

improving text-image plan generation, it is note-591

worthy that our work has several limitations.592

First, given that LLMs are trained on vast593

amounts of data, data leakage is inevitable. This594

inherent characteristic potentially contributes to595

their strong performance in textual plan generation,596

as similar patterns may exist in their training data.597

Second, the quality of visual plans generated by598

fine-tuned InstructPix2Pix suggests room for im-599

provement. Although it is capable of maintaining600

visual coherence when the scenario and object have601

minor transitions, we still observe unexpected inco-602

herence when the textual instructions indicate sig-603

nificant workspace change. Last, the measurement604

of visual coherence through text-based metrics is605

indirect. The textual descriptions converted from606

images may not fully capture the nuanced visual re-607

lationships and coherence patterns that exist in the608

original images, potentially affecting the validity609

of our evaluation.610

These limitations shed light on potential direc-611

tions for future work, including the exploration of612

image editing models that better fit into the plan-613

ning context, the development of visual coherence614

metrics that function in the image space, etc.615

Ethics Statement616

Instructables and wikiHow are two public online617

platforms licensed under CC BY-NC-SA 3.0 and618

CC BY-NC-SA 4.0, respectively. Our data collec-619

tion process complies with their licensing terms,620

as both licenses permit academic use with proper621

attribution. Our work primarily focuses on generat-622

ing text-image plans for daily tasks. Therefore, we623

exclude potentially inappropriate content in the pro-624

cess of data collection and manually inspect data625

quality. To prevent privacy leakage, we anonymize626

any personal information of the plan authors. Our627

human evaluation is conducted by three graduate628

students who are co-authors of this paper. They par-629

ticipate in the evaluation process as part of their re-630

search contribution and are acknowledged through631

co-authorship.632

Last, our approach relies on LLMs, which may633

produce inconsistent or biased results. While de-634

signed for daily task planning, this approach could635

potentially be misused for malicious intents. Future636

work should investigate these risks and develop ad-637

ditional safeguards.638
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A Experiment Results Demonstration810

In addition to the quantitative results shown in 6.1,811

we also present a case in Figure 5 to provide an812

intuitive and qualitative comparison. On the top813

is the task goal, and each row below showcases814

a plan generated by the approach indicated in the815

left-hand side column.816

B Dataset817

Instructables wikiHow

# of tasks 100 1,000
# of task categories 1 10
Avg. # of steps per task 7.20 33.30
Avg. # of words per step 9.76 45.84

Table 4: Statistics of data collected from two sources.

To provide more insight into the two sources of818

our dataset, we further present both quantitative819

and qualitative comparisons between their plans.820

As discussed in Section 3, they mainly exhibit dif-821

ferences in plan lengths and language styles. As822

Table 4 reports, the average length of wikiHow823

plans exceeds Instructable plans in both the num-824

ber of steps per plan and the number of words per825

step.826

Figure 6 demonstrates an intuitive distinction827

between two data sources. The left-hand side plan828

from Instructables is brief in textual descriptions829

while the right-hand side plan from wikiHow is830

elaborate with details including execution tips and831

potential outcomes. The accompanying images are832

also different in style.833

C Experiment Settings834

In this section, we present our prompt design as a835

reference. Table 5 shows the prompts we use in836

all four stages of our framework with backbone837

Gemini-1.5-flash. We make only trivial adjust-838

ments for the other two backbone models and omit839

them for brevity and clarity.840

D Evaluation 841

D.1 LLM Evaluation 842

Table 6 presents prompts we use for LLM evalua- 843

tion. Regarding textual plan evaluation, we define 844

four aspects with inspirations from Huang et al. 845

(2022)’s metrics design: correctness, executability, 846

coherence, and informativeness. Their definitions 847

are shown in Table 6. For visual plan evaluation, 848

the evaluator Claude-3.5-Sonnet receives two im- 849

ages (ik−1, ik) in addition to the textual prompt. 850

We prompt the MLLM to measure if ik logically 851

follows ik−1 considering the potential effect ren- 852

dered by the step description tk. For text-image 853

alignment evaluation, the evaluator receives an im- 854

age ik. We prompt the MLLM to measure if ik is 855

semantically aligned with tk. The grading criteria 856

are elaborated in Table 6. 857

D.2 Human Evaluation 858

To facilitate human evaluation, we design an an- 859

notation tool as shown in Figure 7. In addition to 860

two candidate plans, we also provide the reference 861

article from the original data source (Instructables 862

and wikiHow) in case annotators are unfamiliar 863

with the task field. For every evaluation aspect, we 864

provide three options: Candidate 1 better, Tie, and 865

Candidate 2 better. To align with LLM evaluation, 866

we list potential reasons annotators do not choose 867

“Tie” for “Textual Quality”. For example, if the 868

annotator chooses “Candidate 1 better” when they 869

evaluate textual plans, and they find its superiority 870

over Candidate 2 is mainly in “coherence” and “in- 871

formativeness”, they are required to tick these two 872

reasons. Furthermore, there is a text field for anno- 873

tators to mark down their observations regarding 874

any plan quality issues. 875
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🤔 How to make oxtail soup?

GPT

SD

TIP

OURS

Step 1: Prepare the
Ingredients
Collect all necessary
ingredients including
oxtail, onions, carrots,
celery, and seasonings.

Step 1: Prepare the
Ingredients
Chop the onions,
carrots, and celery
into small, uniform
pieces. Trim any
excess fat from the
oxtail piece.

Step 2: Brown the
Oxtail Pieces
Heat oil in a pot until
it is hot. Add oxtail
pieces and brown
them on all sides.
Remove them from
the pot.

Step 3: Sauté the
Vegetables
Add the chopped
onions, carrots, and
celery to the pot.
Sauté the vegetables
until they begin to
soften.

Step 4: Simmer
Return oxtail pieces to
the pot. Add chopped
tomatoes, beef broth,
thyme, and salt.
Bring the mixture to a
boil, then allow it to
simmer for 2-3 hours.

Step 5: Serve
After the oxtail is
tender, taste the soup
and adjust the
seasoning as needed.
Serve hot and enjoy!

Step 2: Brown the
Oxtail
Heat oil in a pot. Add
the oxtail pieces.
Brown the oxtail on
all sides.

Step 3: Sauté the
Vegetables
Sauté chopped onions,
carrots, and celery.
Add beef broth and
salt to the pot.

Step 4: Simmer the
Soup
Add chopped tomatoes,
thyme, and oxtail to the
pot. Bring the mixture
to a boil, then let it
simmer for 2-3 hours.

Step 5: Serve the
Soup
Taste the soup and
adjust the seasoning.
Serve and enjoy your
soup.

Step 2: A pot of
cooked vegetables and
beef.

Step 3: The process
of making beef.

Step 4: A pot of beef
stew placed on a
white countertop.

Step 1: A bowl of
brown broth placed
on a dark surface.

Step 5: A pot of beef
soup.

Step 1: Prepare the
Ingredients
Collect all necessary
ingredients including
oxtail, onions, carrots,
celery, and seasonings.
The image features
vegetables.

Step 2: Brown the
Oxtail
Heat oil in a pot. Add
the oxtail pieces.
Brown the oxtail on
all sides.

Step 3: Sauté the
Vegetables
Sauté chopped onions,
carrots, and celery. Add
beef broth and salt to
the pot. The image
showcases the process
of cooking a dish in a
pot.

Step 4: Simmer the
Soup
Add vegetables and
oxtail to the pot.
Bring the mixture to a
boil, then let it
simmer for 2-3 hours.

Step 5: Serve the
Soup
Taste the soup and
adjust the seasoning.
Serve and enjoy your
soup. The image
shows a pot of soup
with a clear broth.

Figure 5: A qualitative comparison of plans output by all three baselines and our approach.
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Step 1: Melt and Cut
Melt your butter in the microwave
Cube your bread slices
*preheat oven to 350 degrees F*

Step 2: Mix
Poor the coconut milk into a large bowl
Add the apple sauce, sugar and vanilla paste,
mix well

Step 3: Stir in Butter
Stir in the melted butter

Step 4: Coat the Cubes
Add all the bread cubes to the milk mixture, stir
to coat evenly

Step 5: Prepare Baking Dish
Pour the coated bread cubes into your baking
dish

🤔

🧑💻 User Plan from Instructables:

How to make cranberry walnut bread pudding?

Step 6: Bake
Bake for 45 minutes, until the top in golden
brown
It’s best when served warm and topped with ice
cream

Step 1: Cut off a portion of the rhizome with 2-3
growth buds using a gardening knife.
Cut off a portion of rhizome with 2-3 growth buds using a
gardening knife. Carefully remove the dirt away from the
root system of your bamboo plant. Find a portion of the
rhizome that has 2 or 3 growth buds, or the areas where
stalks grow from. You may have to trim the stalks down to
collect the rhizome. Use a sharp knife to remove the portion.

Step 2: Lay the rhizome horizontally in a pot with
the buds facing up.
Have a layer of potting soil in the pot. Place the side where
the stalks of bamboo grow face-up. If you left some of the
stalk attached to the rhizome, keep those ends out of the soil.

Step 3: Cover the rhizome with 3 inches (7.6 cm) of
potting soil.
Bury the rhizome so it can start to develop and grow. Press
on the soil firmly so it has complete contact with the
rhizome.

Step 4:Water the soil with a watering can.
The soil should be deeply moist, but there should not be any
muddy water on the surface. Stick your finger into the soil
down to the second knuckle to make sure that the soil is
damp.

Step 5: Keep the pots in the shade for 4-6 weeks.
Keep the pot out of direct sunlight. The best place to keep it
is next to a shady exterior wall or under the cover of a large
tree. It will take 4 to 6 weeks before your bamboo sprouts
and grows through the soil again.

🤔

🧑💻 Expert Plan from wikiHow:

How to grow new bamboo from rhizomes?

Figure 6: Two example plans sampled from Instructables data (left) and wikiHow data (right) respectively.

Figure 7: User interface of our designed annotation tool.
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Stage Prompt

Draft Generation

You are a helpful planning assistant. Let’s break down how to achieve the following goal step by step:
GOAL: G
PREVIOUS STEPS: t1...k−1

What is the next specific, actionable step toward achieving this goal?
Please format your response as:
STEP [k]: [Step Title] [step descriptions]
After providing the step, indicate if the goal is achieved [YES/NO].

Image Generation A clear, detailed photograph showing dk, high quality, realistic with natural lighting

Visual Info
Extraction

The provided image shows a step to G. Please analyze it and extract the following information:
1. Objects: List salient objects in the image
2. Tools: Identify any tools, equipment, or instruments being used
3. Actions: Describe the specific actions being performed
4. Goal: Based on the visible actions and context, what appears to be the intended goal?
Please format your response as:
OBJECTS: [object list]
TOOLS: [tool list]
ACTIONS: [action list]
GOAL: [state the apparent goal]

Text Refinement

You are a helpful planning assistant. Let’s improve a step to G with visual information.
Original Step: dk
Visual Information Extracted: vk
The improved step should:
1. Be more specific about the objects and tools involved
2. Provide clearer action descriptions
3. Maintain alignment with the overall goal
Please format your response as: [improved step descriptions]

Table 5: Prompt templates we use in experiments with backbone model Gemini-1.5-flash.

Evaluation Prompt

Textual Plan

You are a helpful evaluation assistant. Please assess the following plan to G against the provided reference plan using these four criteria:
1. Correctness: Does the plan contain all necessary steps that align with the reference? This involves checking if the steps are complete.
2. Executability: How practical and actionable are the steps? This involves checking if they can be implemented in a real-world setting.
3. Coherence: Are all steps logically connected to each other? This involves checking if there are temporal conflicts or redundancy.
4. Informativeness: Does the plan provide sufficient detail? This involves checking if it provides enough information to understand the plan.
Grading scale: 1-Poor 2-Fair 3-Good 4-Very Good 5-Excellent
Reference Plan: [reference plan R]
Plan to Evaluate: [evaluated plan P]
Please provide a numeric score and a brief justification for each criterion.

Visual Plan

You are a helpful evaluation assistant. Please assess how well Image 2 continues from Image 1 considering the provided step description.
Step description: tk
Grading Scale:
1-Poor: images appear unrelated or contradictory
2-Fair: slight logical connection but major inconsistencies
3-Good: clear connection but some inconsistencies
4-Very good: strong connection with minor inconsistencies
5-Excellent: perfect logical progression
Please provide a numeric score and a brief justification.

Text-Image Alignment

You are a helpful evaluation assistant. Please evaluate how well the provided image aligns with the given step description.
Step description: tk
Grading Scale:
1-Poor: image appears unrelated to the step
2-Fair: image partially reflects the step but has major mismatches
3-Good: image mostly reflects the step with some mismatches
4-Very good-mage clearly reflects the step with minor mismatches
5-Excellent: image perfectly represents the step
Please provide a numeric score and a brief justification.

Table 6: Prompt templates we use for LLM evaluation.
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