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Abstract

In order to enable fluid and natural human-machine speech interaction, existing
full-duplex conversational systems often adopt modular architectures with auxiliary
components such as voice activity detectors, interrupters, conversation state predic-
tors, or multiple LLMs. These systems, however, suffer from error accumulation
across modules and struggle with key challenges such as context-dependent barge-
in and echo cancellation. Recent approaches, most notably Moshi, simplify the
pipeline by injecting audio codecs into the token space of a single LLM. However,
such methods still incur significant performance degradation when operating on the
speech rather than text modality. In this paper, we introduce SALMONN-omni, the
first single, standalone full-duplex speech LLM that operates without audio codecs
in its token space. It features a novel dynamic thinking mechanism within the
LLM backbone, enabling the model to learn when to transition between speaking
and listening states. Experiments on widely used benchmarks for spoken ques-
tion answering and open-domain dialogue show that SALMONN-omni achieves
at least 30% relative performance improvement over existing open-source full-
duplex models and performs highly competitively to half-duplex and turn-based
systems, despite using substantially less training data. Moreover, SALMONN-omni
demonstrates strong performance in complex conversational scenarios, including
turn-taking, backchanneling, echo cancellation and context-dependent barge-in,
with further improvements achieved through reinforcement learning. Some demo
conversations between user and SALMONN-omni are provided in the following
repository https://github.com/bytedance/SALMONN.

1 Introduction

Large language models (LLMs) [1, 2, 3] have revolutionized problem-solving and task execution
through text-based interaction. However, speech, being a more natural and intuitive modality, offers a
smoother and more human-centric interface for human-machine communication. As a result, there is
increasing interest in extending text-based LLMs with speech-processing capabilities. These efforts
span a range of tasks, including advanced speech and audio understanding [4, 5, 6], text-driven speech
synthesis [7, 8, 9] and interactive spoken dialogue systems [10, 11, 12].

While turn-based speech LLMs [10, 12, 13, 14, 15] support conversational artificial intelligence (AI)
in a half-duplex manner, human conversation is inherently full-duplex, requiring the ability to listen,
think, and speak simultaneously. This dynamic is evident in natural conversational behaviours such
as frequent turn-taking, backchanneling, overlapping speech and barge-ins, all of which contribute to
more fluid and engaging interactions. These rich, interactive communication patterns have spurred
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growing interest in full-duplex speech LLMs, which seek to improve the naturalness, responsiveness
and overall quality of human-AI conversations.

The recent release of GPT-4o (GPT-4omni) has demonstrated low-latency, emotionally expressive
speech capabilities, further increasing global interest in full-duplex speech technologies. Among open
research efforts, models such as Moshi [11], SyncLLM [16] and OmniFlatten [17] inject discrete
audio codec tokens into pre-trained LLM backbones and fine-tune them to support flexible speech
input and output. However, these approaches typically require large-scale training data to bridge
the modality gap between text and speech and to mitigate catastrophic forgetting of original LLM
textual knowledge. As a result, the speech synthesizer must infer whether to produce speech or
silence based solely on the codec stream. While these models avoid the need for annotations of
conversational dynamics, they frequently struggle with accurate timing of dialogue transitions [18].
Other approaches [19, 20, 21, 22] explicitly predict transitions between speaking and non-speaking
states and integrate streaming speech encoders and synthesizers to enable real-time interaction.
However, these systems typically rely on complex mechanisms rather than a standalone LLM to
handle full-duplex functionality, resulting in added system complexity and suboptimal context
integration. Some methods, such as [21, 22], propose cascaded systems with external modules like
voice activity detection (VAD) and dialogue controllers to manage conversational flow, which suffers
from error propagation. Others, including VITA [19] and Freeze-Omni [20], follow a “model-as-a-
server” paradigm, running two interdependent LLM processes, with one dedicated to listening and
the other to speaking, thus introducing additional computational and memory overhead.

This paper introduces SALMONN-omni, a standalone speech interaction model based on a novel
codec-free, full-duplex spoken dialogue framework. By seamlessly integrating a streaming speech
encoder, a single LLM backbone without audio codec injection, and a streaming speech synthesizer,
SALMONN-omni supports simultaneous speech input and output within a unified end-to-end archi-
tecture. To autonomously manage dialogue state transitions in full-duplex interactions, we propose a
periodic synchronisation mechanism coupled with a novel “thinking”’ strategy, endowing the model
with the temporal awareness that enables coherent and responsive real-time speech communication.

Our key contributions are summarized as follows:

• We present SALMONN-omni, the first standalone speech LLM that enables full-duplex
human-AI conversations without injecting audio codecs into the LLM backbone. Unlike
previous models, SALMONN-omni directly integrates a streaming speech encoder, an LLM,
and a speech synthesizer, requiring careful synchronisation to process input and output
speech simultaneously. As a standalone model, the model must also decide when to start
and stop speaking on its own. To achieve this, we train the LLM to generate special tokens
that control dialogue timing, treating these state transitions just like generating normal text
tokens, based on the idea that “your LLM is secretly a full-duplex predictor.”

• Experiments on widely used spoken question answering (QA) and conversation benchmarks
demonstrate the strong performance of SALMONN-omni. In full-duplex mode, SALMONN-
omni sets a new state-of-the-art (SOTA), achieving at least 30% relative improvement over
previous best results. In half-duplex evaluation, it delivers highly competitive performance
compared to recent turn-based models, including those trained on substantially larger
datasets – some with up to 13 million hours of audio [21].

• SALMONN-omni shows strong performance in predicting the timing of turn-taking,
backchanneling, and context-dependent barge-ins in free-form conversations. Additionally,
to the best of our knowledge, we are the first to incorporate reinforcement learning (RL) to
further improve the modeling of dialogue dynamics.

2 Related Work

2.1 End-to-end speech (interaction) LLMs

Compared with traditional modular conversational AI systems [23, 24, 25], end-to-end speech interac-
tion LLMs have attracted great attention for their ability to support fluent, expressive, and emotionally
rich spoken interactions. Depending on whether the model can listen and speak simultaneously, a
core characteristic of human communication, recent end-to-end conversational AI systems can be
broadly categorized into two types: half-duplex (turn-based) and full-duplex speech LLMs.
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Currently, most speech LLMs operate in a half-duplex manner [13, 14, 19, 26, 27], including models
such as GLM-4-Voice [15], Qwen2.5-Omni [22], and Kimi-Audio [21]. While these models can
engage in turn-based speech conversations, they lack an internal duplex strategy for modeling dialogue
dynamics like turn-taking. Instead, they rely on external VAD modules to alternate between listening
and speaking states. As a result, they struggle with key aspects of natural conversation (e.g., barge-ins
and backchanneling) which require the ability to listen and speak simultaneously.

Full-duplex speech LLMs [11, 16, 17, 20, 28, 29] can process streaming speech input and output
simultaneously, while also determining when to speak and when to stop. One straightforward
approach to building such models involves injecting audio codecs into the LLM vocabulary, adopted
by Moshi [11], syncLLM [16] and OmniFlatten [17]. Despite its conceptual simplicity, this approach
demands large-scale speech-text paired data to prevent catastrophic forgetting. Even with extensive
training, they typically lag behind similarly sized text-only LLMs in knowledge and reasoning
and suffer from the modality gap. An alternative strategy used by VITA [19], Freeze-Omni [20]
and MinMo [28] is to connect the LLM backbone with speech encoder and synthesizer through
embeddings, without significantly hurting the LLMs. However, they are not standalone full-duplex
since one LLM instance can only listen or speak, and they require two separate LLM processes
to manage simultaneous listening and speaking. In contrast, SALMONN-omni introduces a novel
duplex strategy that enables a single LLM to perform standalone full-duplex speech interaction.

Table 1: Categorization of speech interaction LLMs by full-duplex support.

Half-duplex (turn-based) Full-duplex
standalone non-standalone

GLM-4-Voice[15], Qwen2.5-Omni[22] dGSLM[30], Moshi[11] Freeze-Omni[20]
miniCPM-o[26], Baichuan-Audio[27] SALMONN-omni VITA[19], MinMo[28]

2.2 Reinforcement learning (RL) for speech LLMs

RL has long been applied to advance speech tasks, for example, to minimize word errors for automatic
speech recognition (ASR) [31, 32, 33, 34], to optimize task-oriented spoken dialogue procedure [35,
36], and to enhance emotional expressiveness in speech synthesis [37, 38, 39]. As for speech LLMs,
recent RL methods such as proximal policy optimisation [40] and direct preference optimisation
(DPO) [41] have been adopted by speech understanding models like Qwen2-Audio [6] and Step-
Audio [42] to align speech LLM behaviour with human preference. However, RL remains unexplored
in the context of full-duplex speech LLMs. To the best of our knowledge, SALMONN-omni is the
first work to apply RL to improve the modeling of dialogue dynamics for full-duplex speech LLMs.

3 Methodology

Four challenges must be solved when implementing a full-duplex speech LLM. To implement
SALMONN-omni as a standalone full-duplex model without codec injection, a novel codec-free (no
audio codecs in LLM vocabulary) full-duplex spoken dialogue framework is proposed.

The model must support streaming speech input and output. Without relying on codecs,
SALMONN-omni achieves real-time speech interaction by integrating an LLM backbone with a
streaming speech encoder and a streaming speech synthesizer through hidden embeddings.

The model must process both environmental sounds and the assistant’s speech simultaneously.
In full-duplex conversations, the speech LLM must generate speech responses as the assistant stream
while concurrently processing all incoming sounds (background sounds, user speech, assistant echo
and etc.) as the environment stream. SALMONN-omni achieves this by interleaving LLM text
response tokens, environment stream embeddings, and assistant stream embeddings into a single
sequence, enabling the LLM backbone to model them jointly in an autoregressive manner. Note that
Moshi [11] also jointly models these two streams, but with different purposes and design choices.

The model must incorporate a sense of “time” to align audio and text modalities. SALMONN-
omni employs a periodic synchronisation mechanism, processing a fixed duration of input speech
while generating a matching duration of speech responses in each time block for smooth interactions.

3



The model must handle natural conversation dynamics such as turn-taking and barge-ins.
This requires the model to decide when to start and stop speaking based on contextual understanding.
SALMONN-omni learns these state transitions using a novel “thinking” strategy. Instead of adding a
separate full-duplex predictor, we propose that your LLM is secretly a full-duplex predictor and train
it to generate state transition tokens as part of its normal output.

Notably, the last three features are key distinctions between SALMONN-omni and models such as
VITA, Freeze-Omni, and MinMo, whose LLM decoders cannot listen and speak simultaneously. This
limitation also prevents these models from achieving full-duplex dialogue in a standalone manner.
The structure of SALMONN-omni is illustrated in Fig. 1, with a detailed explanation of its key
components provided in the following subsections.

Mamba Streaming Speech Encoder

…

…

…

…

<bos> <think> <shift> It's raining …… umbrella. <shift> <think>

Streaming Speech Synthesizer

(What’s the weather today?)    (It’s raining outside. You’d better bring an umbrella.)    (Thanks for your advice!)

Environment stream hidden
Assistant stream hidden
Text hidden

Large Language Model

Figure 1: The architecture of SALMONN-omni. Two input streams, the environment stream and
the assistant stream, are processed by the streaming speech encoder. Speech embeddings from both
streams, along with textual embeddings, are fed into the LLM backbone in an interleaved manner.
When in the speaking state, the streaming speech synthesizer takes the textual embeddings derived
from the LLM backbone as input to produce speech responses.

3.1 Mamba streaming speech encoder

It is demonstrated that a streaming general-purpose encoder can be effectively trained using knowl-
edge distillation from multiple pre-trained non-streaming encoders [43]. Following this approach,
SALMONN-omni employs a streaming speech encoder designed to enhance generalisation in long
conversational contexts, with Whisper-large-v3 [44] serving as the teacher model. Specifically,
log-Mel filter bank features are extracted at a 100Hz frame rate, then downsampled to 50Hz using
two convolutional layers. Next, two adjacent embeddings are concatenated into a single embedding,
which is fed into a number of Mamba language model blocks [45]. An L1 loss function is applied to
match the output features of the streaming encoder to those of the teacher model.

3.2 Streaming speech synthesizer

Our streaming speech synthesizer builds upon CosyVoice2 [46], adopting its fixed-length interleaved
speech generation strategy. In this approach, input text and output speech tokens are interleaved
so that for every N text tokens, the model generates M speech tokens in sequence. To support
end-to-end integration with the LLM, we replace the original text input of the synthesizer with the
LLM backbone’s output embeddings. Several linear transformations is then applied to align these
LLM embeddings with the input space expected by the streaming speech synthesizer.
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3.3 Full-duplex strategy

Interleaving multiple streams into a single stream. LLMs are traditionally trained to model a
single sequence in an autoregressive manner. To enable pre-trained LLM backbones to effectively
handle multiple concurrent streams in natural conversations, we propose interleaving these streams
into a unified soft token sequence. Specifically, we divide a conversation into two primary streams:
the assistant stream, representing the model’s generated responses, and the environment stream,
which includes all incoming audio, such as user speech, background noise, and echoes from the
assistant’s own speech. A full-duplex model must autoregressively generate the assistant stream while
continuously attending to the environment stream. To facilitate this, we segment the conversation into
fixed-duration time blocks. Within each block, SALMONN-omni first processes speech embeddings
from the environment stream, then generates the corresponding assistant response. To further stabilise
training and enhance performance, a dual-channel input mechanism is employed: in each time block,
the model also receives speech embeddings from its own prior assistant outputs (including echo
information) before generating the next textual response.

text hidden Environment stream hidden

Large Language Model

<bos> <think> <shift> <ans>

(b) Explicit thinking

Listening Listening Speaking 

…
… <think> <shift> <think>

… …

…

      Large Language Model

(a) Implicit thinking

Listening Listening Speaking 

<bos>

<listen> <listen>

…

…
<speak>

<ans>

…

…
<speak>

<ans>

<speak>

…

…
<listen>

Figure 2: Illustration of “Implicit” and “Explicit” thinking strategies. The tokens on the top of the
LLM are predicted by speech embeddings, while the bottom ones are predicted by textual embeddings
and fed back to the input sequences to the LLM.

“Thinking” strategy for handling dynamics in natural conversations. The difference between
turn-based and full-duplex spoken dialogue models is the latter’s ability to dynamically determine
when to start and stop speaking. To enable this, we propose a novel “thinking” strategy that allows
SALMONN-omni to learn the transitions between listening and speaking states. Within each time
block, the model must decide whether a state transition should occur. We explored two variants of this
strategy, which differ in whether the predicted state token from each time block is autoregressively
fed as input to the next time block. An illustration of the two strategies is shown in Figure 2.

Implicit “thinking”. Under this strategy, the state determined by the model in each time block
is not carried over in the LLM’s input sequence. Whenever receiving an audio segment, the model
determines the state as “listen” or “speak”. If “listen”, it continues to ingest the next audio time block.
If “speak”, it generates a specified number of textual tokens as the response before consuming the
next audio segment. Notably, when a state transition from “listen” to “speak” occurs, a special token
<shift> is sent to the input manually to initiate the text generation process.

Explicit “thinking”. This strategy does not distinguish between the prediction of state-related
special tokens and the generation of the textual response. Consequently, a special token predicted
by the model is autoregressively used as input for the subsequent time block. Two special tokens,
<think> and <shift>, are introduced in this strategy. The special token <think> is utilized in two
scenarios. First, when the model is in the listening state, it should generate <think> in each time
block, which mimics the human thought process of deciding when to speak in a conversation. Second,
due to the large difference in frame rates between text and speech modalities, the model generates
<think> during the time blocks after completing the text response while waiting for a state transition
from speaking to listening. The special token <shift> marks the state transitions of both “listening
→ speaking” and “speaking → listening”.

The comparison of these two strategies is performed in Section 5.1, and the better performance
achieved through explicit “thinking” demonstrates that training the LLM to generate a whole sequence
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consisting of both normal responses and state-transition-related tokens naturally aligns with its
intrinsic mechanism. In other words, your LLM is secretly a full-duplex predictor.

3.4 Training scheme

We propose a three-stage training procedure for SALMONN-omni, as illustrated in Fig 3.

Stage 1: Connecting streaming encoder. In stage 1, we focus on enabling the model with
streaming speech understanding ability by connecting the Mamba streaming encoder with the LLM.
The connector between the streaming encoder and the LLM is an MLP. Only the connector and LoRA
on LLM are trained on ASR and QA tasks, with the encoder and LLM backbone frozen.

Stage 2: Connecting streaming synthesizer. In stage 2, SALMONN-omni is equipped with the
speech generation capability and the whole model is trained in an end-to-end manner. In this stage,
the streaming encoder and LLM backbone remain frozen. The connectors for the encoder and
synthesizer, LoRA on LLM and the streaming synthesizer are trained on ASR, QA and multi-turn
dialogue, including conversation dynamics such as barge-ins and backchanneling.

Stage 3: RL for full-duplex modeling. After the first two-stage training, SALMONN-omni demon-
strates the capability to manage complex dynamics in free-form conversations, particularly in handling
context-aware barge-ins and backchanneling. However, after the above supervised fine-tuning (SFT),
the model exhibits a clear bias towards being interrupted and shows insufficient understanding of the
dialogue semantics. Thus, we incorporate reinforcement learning to further enhance the full-duplex
modeling ability. Concretely, DPO [41] is applied to barge-in and backchanneling tasks, while a
subset of the SFT data from other tasks is retained to preserve overall performance.

Large Language Model LoRA

Speech Encoder

Encoder Adapter

Ltext (CE)

System 
Prompt 

Environment stream

Large Language Model LoRA

Speech Encoder

Encoder AdapterSystem 
Prompt 

Environment stream + assistant stream 

Synthesizer Adapter

Speech Synthesizer

(a) Stage1 
Connecting Encoder

Ltext (CE)

Lspeech (CE)

Large Language Model LoRA

Speech Encoder

Encoder AdapterSystem 
Prompt 

Environment stream + assistant stream 

Synthesizer Adapter

Speech Synthesizer

Ltext (DPO)

Lspeech (CE)

(b) Stage2 
Connecting Synthesizer

(c) Stage3 
RL for full-duplex modeling

Figure 3: Three-stage training strategy for SALMONN-omni.

4 Experimental Setups

4.1 Model specifications

The Mamba streaming encoder in SALMONN-omni consists of 32 Mamba [45] LM blocks with
a 2048-dimensional hidden state. The encoder generates embeddings at a frame rate of 25Hz,
requiring downsampling of Whisper-large-v3 embeddings from 50Hz to 25Hz. This is achieved
by concatenating every two adjacent embeddings into a single embedding. To ensure dimensional
compatibility before applying L1 loss, we introduce a linear layer to align the embedding dimensions
of the two models. We use Llama-3-8B-Instruct as the LLM backbone and use LoRA [47] with a
rank of 32 and a scaling factor of 1.0 when finetuning the LLM backbone. Our streaming speech
synthesizer is finetuned based on CosyVoice2-0.5B [46].

We set 80 milliseconds (ms) as the time block size and the model generates one textual token after
listening to 80 ms of audio. Once the LLM backbone generates 4 tokens, 12 speech tokens will be
generated by the streaming speech synthesizer, namely 480 ms speech. Thus, a delay of 320 ms
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occurs between the moment the model initiates speech and the onset of audio output. The current
design strikes an effective balance between response latency and speech generation quality.

4.2 Training tasks

SALMONN-omni is trained on ASR, spoken QA and multi-round conversation tasks. For ASR task,
LibriSpeech-960h [48] corpus and GigaSpeech-M [49] with ∼480k training samples are utilized.
For spoken QA task, we gather questions from a variety of sources, including Alpaca-52k [50], Web
Questions [51], TriviaQA [52], SQuAD [53], Natural Questions [54], VoiceAssistant-400K from
Mini-Omni [14] and UltraChat from SLAM-Omni [55]. Overall, there are ∼730k QA samples in our
training datasets. For multi-round conversation, the conversation is generated by Llama-3-8B-Instruct
based on a theme selected from TriviaQA and Natural Questions. Then the conversation is synthesized
by CosyVoice2-0.5B. There are ∼80k multi-round conversation samples in our training datasets.

Moreover, we consider scenarios involving barge-ins and backchanneling in multi-turn conversations.
The dataset includes two types of barge-ins. For context-independent barge-ins, we prompt GPT-4o to
generate 10 direct interrupting sentences (e.g. Please stop talking right now.). For context-dependent
barge-ins, we design a task to evaluate the model’s ability to determine whether to stop speaking
based on contextual cues. Specifically, we prompt Llama-3-8B-Instruct to generate questions that
are either closely related to the ongoing dialogue (as meaningful interruptions) or entirely unrelated
(as distractors). For backchanneling, we include 7 commonly used words or phrases (e.g. Uh-huh.).
Notably, our experiments also take into account multi-speaker barge-in scenarios. More details about
our training dataset can be found in Appendix A.

4.3 Evaluation

Evaluation datasets and metrics. We evaluate the speech interaction ability on four commonly
used datasets, Llama Questions [56], Web Questions [51], TriviaQA [52] and AlpacaEval from
Voicebench [57]. For Web Questions, the questions are converted into speech using a commercial
TTS model from Volcano Engine. For triviaQA, we use the subset with 1000 samples from Ope-
nAudioBench [27]. For knowledge QA datasets, Llama Questions, Web Questions and TriviaQA,
accuracy are calculated as evaluation metric. For oral conversation dataset AlpacaEval, GPTScore by
GPT-4.1-2025-04-14 is reported to score the appropriateness and reasonableness of the answer, rang-
ing from 1 to 5 with 1 indicating the worst and 5 the best. Both answer text and speech are evaluated,
noted as S2T and S2S. For S2S, answer speech is transcribed into text using Whisper-large-v3 first.
The quality of the response speech is evaluated using the widely used UTMOS [58].

For evaluating full-duplex modeling capabilities, first, we report the success rate of turn-taking timing
prediction, which reflects the model’s ability to determine the appropriate moment to begin speaking.
Second, we assess the model’s ability to decide whether it should be interrupted, measured by the F1
score. For the context-independent setting, we collect 100 direct interrupting sentences – 50 spoken
by the user and 50 by a third speaker – as positive examples, and 100 user-spoken backchanneling
phrases as distractors. In the context-dependent setting, we collect 100 contextually relevant questions
intended to interrupt the model (again, 50 from the user and 50 from a third speaker), while using 50
unrelated questions spoken by a third speaker and 50 silent samples as negative examples. Noted that
the sentences used for evaluation are different from those during training.

To assess turn-taking statistics and real-world latency, we conduct live human-machine conversa-
tions across three scenarios: multi-turn dialogue, contextual-independent barge-in and contextual-
dependent barge-in. A total of 60 dialogue sessions are collected (20 for each scenario). On average,
conversations in multi-turn scenario consist of 5 turns with a mean duration of 75 seconds, whereas
the dialogues in barge-in settings are shorter, averaging 3 turns. Statistics of turn-taking events
including Inter-Pausal Unit (IPU), Pause and Gap are only evaluated in the multi-turn scenario.

Baselines. We select a large scale of performant open-source half-duplex or full-duplex speech
LLMs as baselines, including Moshi [11], Freeze-Omni [20], GLM-4-Voice [15], Qwen2.5-Omni
[22], VITA 1.5 [19], miniCPM-o [26], Kimi-Audio [21] and Baichuan-Audio [27]. All models are
tested in an “oracle turn-taking” setting, in which models are forced to start speaking at the end of
the question, except Moshi since it’s difficult to force Moshi speak. Moreover, we also experiment
with a more practical “predicted turn-taking” setting, in which the model needs to determine when to
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start speaking by itself, which only full-duplex models can achieve. Moshi and Freeze-Omni serve as
baselines in this setting.

5 Experimental Results

5.1 Comparison between implicit “thinking” and explicit “thinking”

We first compare the models trained with implicit and explicit “thinking” strategies in stage 1. As
shown in Table 2, explicit “thinking” consistently outperforms implicit “thinking”. We attribute this
to training the LLM to output sequences containing both normal responses and state-transition-related
tokens better aligns with its autoregressive nature. In contrast, the implicit “thinking” lacks complete
feedback from the output back to the input of the LLM. An interesting observation is that after Stage
1, models achieve only around 70% turn-taking success rates on AlpacaEval. However, with the
introduction of the assistant stream in Stage 2, success rates increase to approximately 90%, which
highlights the importance of incorporating the assistant stream in full-duplex modeling for more
robust turn-taking prediction. According to above results, we adopt explicit “thinking” as full-duplex
strategy throughout this work. Actually, some variants can be derived from these two basic strategies,
which are further analyzed in the Appendix C.

Table 2: Comparison of implicit and explicit thinking strategy.
Full-duplex Llama Q. Web Q. TriviaQA AlpacaEval

strategy succ. % S2T succ. % S2T succ. % S2T succ. % S2T

Implicit 97.3 76.3 99.9 50.8 95.8 62.0 67.3 3.73
Explicit 100.0 82.0 99.9 52.4 92.3 67.5 68.3 4.48

5.2 Comparison of the speech interaction capabilities between different speech LLMs

The main results of speech interaction abilities evaluation are shown in Table 3. Under the predicted
turn-taking setting, SALMONN-omni achieves SOTA performance across all datasets, delivering
an average 35.9% relative improvement over previous open-source full-duplex speech interaction
LLMs. This substantial gain highlights SALMONN-omni’s strong capabilities in handling a wide
range of conversational scenarios—from general knowledge queries to everyday casual dialogue. In
the oracle turn-taking setting, we further compare SALMONN-omni with more recent turn-based
speech interaction LLMs. As illustrated in Table 3, SALMONN-omni achieves the best overall
performance across all models, with best speech-to-text performances across 4 datasets and best
speech-to-speech performances on Web Questions and TriviaQA. The average UTMOS across all
datasets indicates that the speech generated by SALMONN-omni is of high quality. These results
demonstrate that SALMONN-omni not only excels in speech understanding but also maintains highly
stable and coherent speech generation.

5.3 Evaluation of full-duplex modeling capabilities

5.3.1 Turn-taking prediction

The turn-taking performances of different full-duplex speech interaction LLMs are presented in Table
4. The results show that SALMONN-omni achieves the highest success rate in accurately predicting
turn-taking moments, averaged across multiple datasets. Notably, SALMONN-omni maintains strong
performance even when handling short and fast-paced speech inputs, such as those in TriviaQA and
AlpacaEval, a scenario in which Moshi and Freeze-Omni suffer a significant performance decline.

5.3.2 Distinguish true barge-ins from false barge-ins and backchanneling

Comparison between different models on contextual-independent setting. As shown in Table
5, SALMONN-omni demonstrates more robust performance on handling contextual-independent
barge-ins and backchanneling. Moreover, both SALMONN-omni and Moshi can perform well when
listening to their own echoes simultaneously, while Freeze-Omni exhibits a significant performance
drop. It highlights the drawback of not implementing full-duplex models in a standalone manner.
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Table 3: The performance of different speech interaction LLMs. For Llama Questions, Web Questions
and TriviaQA, the evaluation metric is Acc.% For AlpacaEval, the evaluation metric is GPTScore.
S2T is the speech-to-text performance and S2S is the speech-to-speech performance. The average
UTMOS across all datasets is also reported with a more detailed version in Table 13.

Model Llama Q. Web Q. TriviaQA AlpacaEval Avg.
S2T S2S S2T S2S S2T S2S S2T S2S UTMOS

Predicted turn-taking
Moshi [11] 60.8 54.5 23.4 22.1 25.6 16.7 1.84 1.76 3.178
Freeze-Omni [20] 74.2 56.2 40.8 27.9 45.1 28.5 3.90 2.46 4.277
SALMONN-omni 79.3 73.6 49.7 43.7 63.6 56.0 4.01 3.22 4.255

Oracle turn-taking
GLM-4-Voice [15] 75.0 65.7 38.5 37.0 50.8 47.5 3.82 3.58 4.081
Qwen2.5-Omni [22] 78.7 75.7 41.9 39.6 55.5 52.2 3.04 2.61 4.085
VITA-1.5 [19] 77.3 56.0 43.9 31.0 54.8 41.3 3.92 1.94 4.022
miniCPM-o [26] 76.3 70.0 47.1 42.7 65.4 56.0 3.99 3.44 4.147
Kimi-Audio [21] 79.7 68.3 44.0 37.3 63.6 51.2 3.92 2.95 2.679
Baichuan-Audio [27] 76.0 74.0 43.1 40.7 56.9 53.0 3.76 3.32 4.182
Freeze-Omni [20] 77.0 61.0 42.3 29.1 53.5 36.5 3.71 2.42 4.276
SALMONN-omni 80.0 75.0 50.5 45.4 66.0 58.8 4.05 3.33 4.261

Table 4: Turn-taking success rate (%) of full-duplex speech interaction LLMs.
Model Llama Q. Web Q. TriviaQA AlpacaEval
Moshi 85.0 76.0 37.1 83.4
Freeze-Omni 99.7 99.8 72.0 87.9
SALMONN-omni 99.7 99.6 92.8 92.0

Since Freeze-Omni relies on an additional VAD module, its performance is severely affected when
the VAD module fails to provide accurate speech segmentation.

Table 5: Comparison between different models on contextual-independent barge-ins and backchan-
neling. Echo factor means the model can hear ×n its own echo.

Model Echo factor Precision Recall F1 score
Moshi ×1.0 0.84 0.77 0.80
Freeze-Omni ×0.0 0.64 0.72 0.68
Freeze-Omni ×0.1 0.19 0.86 0.31
Freeze-Omni ×1.0 0.10 0.69 0.17
SALMONN-omni ×1.0 0.84 0.92 0.88

DPO further enhances model’s full-duplex modeling capabilities. We train SALMONN-omni on
both context-independent and context-dependent settings, and it turns out that the model can handle
both scenarios effectively, which demonstrates our framework can handle complex context-aware
dynamics in free-form conversations. However, after the two SFT stages, the low precision shows
that SALMONN-omni equips a tendency to be interrupted, which reflects the model’s insufficient
understanding of context. Thus, we incorporate DPO for post-training the model, and the overall
performance improvement confirms the effectiveness of this approach. As shown in Fig. 4 and Table
6, an interesting phenomenon observed during DPO training is that the model initially becomes
extremely conservative, rarely getting interrupted at all. However, as training progresses, the model’s
capabilities gradually recover and eventually surpass those of the SFT-trained models. More details
can be found in Appendix D.
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Table 6: The performance of SALMONN-omni on contextual-dependent and contextual-independent
settings through the DPO training stage with batch size set to 256.

Stage Contextual-Independent Contextual-Dependent Overall
Precision Recall F1 score Precision Recall F1 score F1 score

SFT (Stage 2) 0.68 0.93 0.79 0.88 0.99 0.93 0.86
DPO - 10 steps 0.88 0.07 0.13 0.95 0.21 0.34 0.24
DPO - 40 steps 0.84 0.92 0.88 0.89 0.98 0.93 0.90
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Figure 4: The overall F1 score of
SALMONN-omni when trained with dif-
ferent batch sizes during the DPO stage.

Table 7: Statistics of turn-takings events (IPU, Pause
and Gap) in real-world human-machine dialogues.

IPU Pause Gap
Ground Truth 61.89s 5.49s 6.50s
SALMONN-omni 63.30s 4.68s 5.01s

5.4 Turn-taking statistics and latency evaluation in real-world deployment

The turn-taking statistics in the multi-turn dialogue scenario (normalized to 5-turn dialogues) are
shown in Table 7, which is largely consistent with the statistical properties of the training data. As
for latency, SALMONN-omni exhibits an average Time-to-First-Audio (TTFA) of 405ms. This
latency is primarily a consequence of its design, which mandates waiting for four time blocks
to accumulate sufficient context for the speech synthesizer. We posit that this latency is not a
fundamental limitation and could be substantially reduced through synthesizer optimization. In
contrast, the model demonstrates its capacity for rapid interaction in the barge-in scenarios, achieving
response latencies of approximately 128 ms and 144 ms for contextual-independent and contextual-
dependent interruptions, respectively. These results confirm the model’s ability to react swiftly to
user interjections.

6 Conclusion

In this work, we present SALMONN-omni, the first standalone full-duplex speech LLM that operates
without injecting audio codec tokens into its vocabulary. By seamlessly integrating a streaming
speech encoder, a unified LLM backbone, and a streaming speech synthesiser, and introducing a novel
explicit “thinking” strategy for predicting dialogue state transitions, SALMONN-omni autonomously
learns when to listen and when to speak. Extensive experiments on standard benchmarks for
spoken QA and open-domain dialogue show that SALMONN-omni achieves an average 35.9%
relative accuracy improvement over existing open-source full-duplex models in predicted turn-taking
scenarios, while remaining highly competitive with half-duplex models trained on significantly larger
datasets. Furthermore, SALMONN-omni demonstrates robust modeling of full-duplex conversational
dynamics, including turn-taking, backchanneling, echo cancellation, and context-dependent barge-ins.
Additional RL further enhances the model’s ability to handle real-time dialogue behaviours with
improved fluency and responsiveness.
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A Further experimental details

A.1 Details for training data

For VoiceAssistant-400K and UltraChat, we only select the first-round QA and filter repeated
questions. We utilize the question speech in the dataset and re-synthesize answer speech based on the
text answer by CosyVoice2-0.5B [46] for training. For other dataset, text responses are generated by
Llama-3-8B-Instruct and both question and speech audio are synthesized by CosyVoice2-0.5B.

Table 8: Training dataset details.
Task Dataset #Samples

ASR LibriSpeech 281k
GigaSpeech 200k

QA

Alpaca-52k 39k
Web Questions 4k

TriviaQA 58k
SQuAD 127k

Natural Questions 301k
VoiceAssistant-400k 79k

UltraChat 120k

multi-round TriviaQA 25k
conversation Natural Questions 56k

A.2 Training specifications

The Mamba streaming encoder is pre-trained on LibriHeavy [59] and GigaSpeech [49] for 300k steps
with a batch size of 512. The AdamW [60] optimizer with β1 = 0.9 and β2 = 0.95 were used. In the
first two stages, the batch size is set to 128 and the learning rates are 4× 105 and 3× 105 respectively.
In the third stage, batch sizes include 128, 256 and 512 are compared with learning rate set to 1× 106.
All training processes are performed on 32 A100 GPUs with 50k and 30k steps for stage 1 and 2.
Model checkpoints with the best validation accuracy are used for evaluation.

B Prompts

Prompts for Llama-3-8B-Instruct to generated spoken QA response

Please answer the following question {} in a conversational style. Keep your response concise,
to the point, and within 300 tokens.

Prompts for Llama-3-8B-Instruct to generated multi-turn dialogues

Based on the topic: {}. Write the transcript of a conversation between two people A and B.
Use short turns. The conversation should be in spoken form (especially the numbers or dates
should be in spoken form) and doesn’t include ∗xxx∗ or [xxx] or (xxx).
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Prompts for Llama-3-8B-Instruct to generated context-dependent barge-in data

The following is a conversation between A and B.

{}

Please ask B a question based on the conversation. This question needs to be strongly
related to what B said. The question should be concise, short and in spoken form. Please only
output your response.

Prompts for GPT-4.1-2025-04-14 to evaluate oral conversation results on AlpacaEval

I need your help to evaluate the performance of several models in the speech interaction scenario.
The models will receive a speech input from the user, which they need to understand and
respond to with a speech output.
Your task is to rate the model’s responses solely based on their accuracy and reasonableness,
using the provided user input transcription [Instruction] and the model’s output transcription
[Response]. Please evaluate the response on a scale of 1 to 5:
1 point: The response is clearly incorrect, illogical, or entirely fails to address the user’s request.
2 points: The response contains major inaccuracies or flaws in reasoning, even if it appears
somewhat related to the question.
3 points: The response is mostly reasonable and factually correct but may include minor
mistakes or unsupported assumptions.
4 points: The response is accurate and logically sound, with only negligible or borderline issues.
5 points: The response is fully accurate and logically consistent. It reflects a correct and
well-reasoned understanding of the user’s input.

Below are the transcription of user’s instruction and models’ response:
### [Instruction]
{}

### [Response]
{}

After evaluating, please output the score only without anything else. You don’t need
to provide any explanations.

Prompts for gpt-4o-audio-preview-2024-12-17 to evaluate emotion intensity

Given a speech audio clip, evaluate whether the speaker expresses any emotion, and if so, how
strongly and clearly that emotion is conveyed. Focus on ∗vocal features∗ such as pitch variation,
intonation, rhythm, volume, and prosodic dynamics. Do ∗not∗ infer from semantic content —
only judge the presence and intensity of emotion in how the ∗voice sounds∗. Output a single
integer score from 1 to 5 based on the following scale: ### Scoring Rubric:
∗∗1 — No Emotion∗∗: Completely flat and monotone. Voice sounds like a neutral, mechanical
reading or a dry recitation.
∗∗2 — Barely Emotional∗∗: Emotion may feel suppressed or accidental. Difficult to confidently
say any emotion is present.
∗∗3 — Mild Emotion∗∗: Emotion is noticeably present but limited in strength. Vocal delivery
includes some clear variation in tone or rhythm suggesting emotional engagement.
∗∗4 — Clear Emotion∗∗: Emotion is clearly conveyed through dynamic changes in pitch,
volume, and timing. Voice reflects emotional involvement (e.g., excitement, frustration, warmth).
∗∗5 — Strong and Expressive Emotion∗∗: Emotion is vivid, intense, and unmistakable. Rich,
nuanced control over prosody (e.g., expressive pitch arcs, pauses, stress) highlights emotional
intensity.
After evaluating, please output the score only without anything else. You don’t need to provide
any explanations.

15



C Other Variants of Thinking Strategy

We also explore other thinking strategies with different thinking contents. We experiment with a
small dataset of only LibriSpeech and Alpaca-52k. The ASR results are reported in Table 9.

Implicit-ASR. Implicit-ASR is a variant of the implicit “thinking” strategy. Here we only use
one special token <shift>. At those steps to keep silent, the model is trained to perform streaming
ASR. Moreover, within those time blocks that the model has finished the text response and is waiting
for speech synthesizing, we utilize an LLM to generate some inner thoughts related to the current
conversation as the label. At those points for state transition, it should output <shift> marking the
state transition.

Explicit-ASR. Explicit-ASR is similar to Implicit-ASR, apart from that the thinking contents are
sent back to the input autoregressively.

Explicit-NS. Explicit-NS has two special tokens <think> and <shift>. For the time blocks
without generating text response, <think> is used as the input and <shift> is used as the label.
However, the weight of the loss is negative except for those time blocks in which the model needs to
perform state transition.

Table 9: The performance of different “thinking” strategies on ASR task. succ. is the success rate of
turn-taking prediction.

“Thinking” Strategy test-clean test-other
succ. %WER (↓) succ. %WER (↓)

Implicit 93.3 2.67 94.6 6.63
Implicit-ASR 94.7 3.48 95.7 8.26
Explicit 95.6 2.40 95.6 6.09
Explicit-ASR 91.8 5.09 94.2 9.85
Explicit-NS 91.8 7.65 92.9 10.5

As shown in 9, increasing the diversity of labels during the thinking process (listening state) hurts
performance. We assume that the performance differences of different thinking labels may be partially
attributed to the full-duplex finetuning. In a text LLM, the model doesn’t need to generate explicit
responses upon receiving user input. However, for full-duplex speech interaction LLMs, the model
must consistently generate responses to manage turn-taking in natural dialogues, alternating between
speaking and listening states. During full-duplex fine-tuning, the model must learn two critical skills:
first, the ability to model state transitions; second, the ability to distinguish between the operational
modes of the speaking and listening states. When using the simple Explicit thinking strategy, the
listening state (where the model generates only a single special token) is easily distinguishable. This
allows the model to focus on learning state transitions and optimizing the speaking state’s operation
mode, leading to high turn-taking precision and improved content quality. However, as the diversity
of thinking labels increases, the operation modes of the two states become less distinct, which
sometimes results in undesirable messy generation during the speaking state. Meanwhile, while
oracle “thinking” ASR content can enhance speech generation, incorrect “thinking” content during
inference may introduce biases and hurt the quality of generated speech due to the error propagation
in response generation.

D More Results on DPO Post-Training for Full-duplex Modeling

As shown in Table 10, 11, 12, the intriguing observation, consistent across different training batch
sizes, is that during DPO training, the model initially becomes overly cautious—rarely getting
interrupted. However, as training progresses, its performance steadily improves and eventually
surpasses that of the SFT-trained model.
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Table 10: The performance of SALMONN-omni on contextual-dependent and contextual-independent
settings through the DPO training stage with batch size set to 128. (detailed version)

Stage Contextual-Independent Contextual-Dependent Overall
Precision Recall F1 score Precision Recall F1 score F1 score

SFT (Stage 2) 0.68 0.93 0.79 0.88 0.99 0.93 0.86
DPO - 10 steps 0.88 0.14 0.24 0.97 0.38 0.55 0.41
DPO - 20 steps 0.78 0.75 0.77 0.91 0.96 0.94 0.85
DPO - 30 steps 0.83 0.88 0.85 0.90 0.98 0.93 0.89
DPO - 40 steps 0.81 0.84 0.82 0.90 0.95 0.93 0.88

Table 11: The performance of SALMONN-omni on contextual-dependent and contextual-independent
settings through the DPO training stage with batch size set to 256. (detailed version)

Stage Contextual-Independent Contextual-Dependent Overall
Precision Recall F1 score Precision Recall F1 score F1 score

SFT (Stage 2) 0.68 0.93 0.79 0.88 0.99 0.93 0.86
DPO - 10 steps 0.88 0.07 0.13 0.95 0.21 0.34 0.24
DPO - 20 steps 0.92 0.45 0.60 0.98 0.78 0.87 0.75
DPO - 30 steps 0.84 0.88 0.86 0.92 0.97 0.95 0.90
DPO - 40 steps 0.84 0.92 0.88 0.89 0.98 0.93 0.90

E Speech Quality Assessment

Detailed UTMOS on all the datasets of each model is reported in Table 13.

F Emotional Speech Generation

We also explore equipping SALMONN-omni with emotional speech generation to support more
natural and human-like speech interactions. To achieve this, the LLM backbone is prompted to
produce an emotion indicator prior to generating its verbal response, and the speech synthesizer
operates in an instruction TTS style. Emotional speech samples are synthesized using a commercial
TTS model provided by Volcano Engine. The emotion intensity of the emotion enhanced SALMONN-
omni, along with baseline models, is evaluated on an in-house dataset using gpt-4o-audio-preview-
2024-12-17, with results summarized in Table 14. Findings show that SALMONN-omni achieves the
highest emotion intensity among all evaluated systems. However, its emotional expression remains
inconsistent, occasionally producing responses with inappropriate or mismatched emotions.

G Limitation

While SALMONN-omni is a high-performance full-duplex speech interaction LLM, it still faces
several limitations. First, although it effectively predicts turn-taking and can distinguish between
user barge-ins and backchanneling, it rarely generates backchanneling responses during user speech,
primarily due to limitations in the training data. Enhancing this capability is essential for achieving
more natural, human-like conversational behavior. Second, SALMONN-omni’s training sequence
is limited to three minutes due to memory constraints. As a result, its performance noticeably
degrades when interaction exceeds this duration. Future work involves enabling long-term memory
for full-duplex speech interaction LLM.

H Impact Statement

This paper aims to explore robust full-duplex speech interaction framework, advancing the frontier of
real-time, fully interactive conversational AI. We believe that, alongside enhancing the performance
of conversational AI, it is essential to prioritize AI safety. This includes ensuring that all generated
content is free from harm, discrimination, and bias, as well as developing detection models to identify
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Table 12: The performance of SALMONN-omni on contextual-dependent and contextual-independent
settings through the DPO training stage with batch size set to 512. (detailed version)

Stage Contextual-Independent Contextual-Dependent Overall
Precision Recall F1 score Precision Recall F1 score F1 score

SFT (Stage 2) 0.68 0.93 0.79 0.88 0.99 0.93 0.86
DPO - 10 steps 1.0 0.01 0.02 1.0 0.01 0.02 0.02
DPO - 20 steps 0.88 0.29 0.44 0.98 0.96 0.55 0.58
DPO - 30 steps 0.82 0.86 0.84 0.93 0.97 0.95 0.89
DPO - 40 steps 0.82 0.88 0.85 0.91 0.95 0.93 0.89

Table 13: UTMOS of SALMONN-omni and other speech LLMs on spoken QA task.
Model Llama Q. Web Q. TriviaQA AlpacaEval

Predicted turn-taking
Moshi [11] 3.245 3.257 3.017 3.193
Freeze-Omni [20] 4.288 4.273 4.293 4.255
SALMONN-omni 4.256 4.250 4.272 4.243

Oracle turn-taking
GLM-4-Voice [15] 4.180 4.107 4.145 3.890
Qwen2.5-Omni [22] 4.140 4.124 4.127 3.950
VITA-1.5 [19] 4.042 4.091 4.104 3.852
miniCPM-o [26] 4.171 4.152 4.155 4.110
Kimi-Audio [21] 2.882 2.713 2.793 2.327
Baichuan-Audio [27] 4.261 4.216 4.292 3.959
Freeze-Omni [20] 4.300 4.281 4.278 4.245
SALMONN-omni 4.262 4.263 4.279 4.240

AI-generated content. It is also crucial that all users are made aware when they are interacting with a
conversational AI chatbot.

I Case Studies

(Which Olympic sport is also 
known as "table tennis"?)

(You're thinking of table tennis, eh? 
Well, the Olympic sport you're 
referring to is actually called table 
tennis, but it's also commonly known 
as ping-pong! It's a super popular 
sport, and the Olympics have been 
featuring it since 1988. The name 
"ping-pong" actually comes from the 
sound the ball makes when it bounces 
off the table. Pretty cool, right? So, 
there you have it - table tennis, or 
ping-pong, is the Olympic sport you 
were thinking of!)

USER

SALMONN-omni

Figure 5: Spoken QA: SALMONN-omni can handle turn-taking in spoken question answering
scenarios with “thinking” mechanism.
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Table 14: Emotion intensity of speech interaction LLMs.
Model Emotion intensity

GLM-4-Voice 3.30
Qwen2.5-Omni 3.27

VITA-1.5 3.03
miniCPM-o 3.16
Kimi-Audio 3.39

Baichuan-Audio 3.14
Freeze-Omni 3.00

SALMONN-omni 3.49

(I want to get better at 
networking at work.)

(That's a great goal! Start by being 
approachable and friendly. Show 
genuine interest in others and ask 
open-ended questions to spark 
conversations. Attend company events 
and participate in team-building 
activities to build connections. Be 
proactive in offering help or support 
to your colleagues. Remember, 
networking is about building 
relationships, so focus on being a 
supportive and helpful person. Lastly, 
follow up with new contacts to keep 
the connection alive.)

USER

SALMONN-omni

Figure 6: Open-domain dialogue: SALMONN-omni can handle turn-taking in spoken question
answering scenarios with “thinking” mechanism.

(Stop)

(It‘s in pretty bad shape. The 
sea’s biodiversity is declining, 
and there are concerns about the 
long-term sustainability of the 
fishery. There are efforts to …)

(What's causing the decline 
in the sea's biodiversity?)

USER

SALMONN-omni

SALMONN-omni

(What's the state of the 
sea's ecosystem like?)

USER

Figure 7: Context-dependent barge-in: When the user is quick to buzz in with the response,
SALMONN-omni can stop generating speech.
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(Continue)

(Sure! Tikal was a major city in 
the Maya region during the 
Classic period.)

(I see.)USER

SALMONN-omni

SALMONN-omni

(Could you tell me something 
about the Tikal City?)

USER

(And it is abandoned now.)

Figure 8: Distinguishing backchanneling: When the user interjects with a backchannel cue,
SALMONN-omni can continue speaking.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In both the abstract and the introduction section, we have summarized the
scope and the claims of this paper accurately.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A limitation section is provided in Appendix G, which describes the limitation
of this work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: Our paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Detailed experimental setups are provided in Section 4 and Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We’ll open source the code once accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 4 provides general descriptions of the experimental setup, further
details on training data is provided in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: This item is not necessary in our experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide information about the computational resources used in the experi-
ment in Section 4 and Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential impact of our work in Appendix H.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We believe our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have used assets in accordance with the license and terms.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new assets introduced in the paper have well-documented records.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work involves no crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work involves no crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We use LLM to generate training data (Llama-3-Instruct) and evaluate the
oral conversation results for AlpacaEval (GPT-4.1-2025-04-14), which is stated clearly in
Section 4 and Appendix A.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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