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ABSTRACT

We propose a method for data augmentation in offline reinforcement learning ap-
plied to active positioning problems. The approach enables the training of off-
policy models from a limited number of trajectories generated by a suboptimal
logging policy. Our method is a trajectory-based augmentation technique that
exploits task structure and quantify the effect of admissible perturbations on the
data using the geometric interplay of properties of the reward, the value function,
and the logging policy. Moreover, we show that by training an off-policy model
with our augmentation while collecting data, the suboptimal logging policy can
be supported during collection, leading to higher data quality and improved of-
fline reinforcement learning performance. We provide theoretical justification for
these strategies and validate them empirically across positioning tasks of varying
dimensionality and under partial observability.

1 INTRODUCTION

In active positioning, an end-effector must place an object precisely at a desired pose. Such problems
occur in high-precision manufacturing, e.g., in camera Bräuniger et al. (2014) or telescope assem-
bly Upton et al. (2006), and in alignments of laser Rakhmatulin et al. (2024). In optical systems, this
involves iterative adjustment of components, such as lenses or mirrors, to maximize alignment qual-
ity from image-based signals. These tasks are naturally modeled as contextual partially observed
Markov decision problems (POMDPs) and demand generalization over the context Burkhardt et al.
(2025). While reinforcement learning (RL) has advanced algorithmically, online training is costly:
explorations in high-dimensional observation and continuous action spaces are inefficient, cause
long downtimes, and human interaction is often required between episodes, for instance to insert
new objects. At the same time, precise but inefficient expert routines can provide data, making of-
fline RL a promising alternative, which sidesteps online interactions by training from pre-collected
datasets(Levine et al., 2020). Although offline RL promise is to learn policies better than the log-
ging policy from static datasets, without online interactions, it suffers from distributional shifts and
inappropriate datasets, leading to suboptimal policies. To cope with distribution shift, contempo-
rary offline RL methods regularize policies toward the behavior distribution or warm-start from the
logging policy before cautiously improving it (see Section 1.2 for an overview). Despite these algo-
rithmic advances, it remains unclear how the data-generating logging policy limits what an offline
learner can achieve. Prior evidence already shows that dataset selection can dominate algorithmic
differences (Schweighofer et al., 2022; Fu et al., 2021); actionable guidance for improving the data
itself, however, remains scarce. Moreover, when probing effects of logging policies, prior work typ-
ically uses different categories of expertness where often the data of highest expertness is produced
by an RL agent trained online (Fu et al., 2021). Although this schema is convenient, it could intro-
duce a methodology bias: the generated trajectory inherits the exploration style and failure modes of
the training algorithm, not those of deterministic, production-grade expert routines common in prac-
tice. Mixing datasets of different quality not only degenerates performance, it can also practically
be infeasible to hand-off between policies. For instance, expert systems typically are deterministic,
tightly scripted routines with internal states where decisions can depend on the entire trajectory of
measurements. Inserting arbitrary policy actions in-between can invalidate the routine’s assumptions
and the expert may only be able to resume reliably if it restarts from the new state.

In this work, we want to understand how to design data-efficient RL methods for active positioning
tasks that can effectively learn from suboptimal expert policies. Our key idea is to augment the
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logging policy sparingly with actions proposed by an off-policy learner trained parallel to the data
collection. The off-policy learner is trained in a way to explore shortcuts in the experts trajectories
to make hand-offs seamless and effective.

1.1 CONTRIBUTIONS

We develop LIFT, short for logging improvement via fine-tuned trajectories, a framework that com-
prises two complementary augmentation modes: First, we use a static trajectory augmentation,
which applies structure-aware, trajectory-level perturbations – called shortcuts – to existing logs
derived from task geometry. Second, we propose a policy-time augmentation, which intermittently
injects admissible, optimistic actions during logging to create datasets that are easier to learn from
offline. Specifically, we introduce a novel augmentation scheme (Section 4) that keeps the expert
in charge while enabling optimistic probing to improve logged support. Moreover, we provide
theoretical justification in Section 3 why and when perturbations are beneficial via geometric prop-
erties of value functions and movement dynamics. Finally, Section 5 presents a systematic study
that underlines the strength and generality of our approach by analyzing the effect of the logging
policy, transition behavior, dimensionality and informativeness of observations on policy perfor-
mance across a diverse class of active positioning tasks. We implemented the shortcut augmentation
in d3rlpy Seno & Imai (2022) following its transition picker protocol, which allows integrating our
static augmentation method in any RL algorithm implemented in d3rlpy by adding one line of code1.

1.2 RELATED WORK

A central challenge in offline RL is overestimating values for out-of-distribution actions. Methods
address this either by constraining the learned policy toward the logging distribution or by learn-
ing pessimistic value functions. Representative approaches include behavior regularization via BC
losses or divergence penalties, like in BCQ (Fujimoto et al., 2019), TD3+BC (Fujimoto & Gu, 2021;
Tarasov et al., 2023) and pessimistic critics such as CQL (Kumar et al., 2020). Expectile-based pol-
icy extraction further avoids querying unseen actions, like IQL (Kostrikov et al., 2022). Despite
strong results on benchmarks, several studies note that algorithm performance is highly sensitive to
dataset composition, that is, mixing suboptimal trajectories with expert data can degrade CQL and
related methods (Fu et al., 2021; Hong et al., 2023).

In most hybrid schemes, the learner stays in charge and the expert is queried only occasionally.
Like in DAgger(Ross et al., 2011), that reduces imitation learning to no-regret online learning by
iteratively collect data on the states visited by the learner and querying the expert for corrective
labels. Methods depending on regularizations are sensitive to hyperparameters due to the additional
complexity introduced during online training. Moreover, they often limit the policy to stay close
to the behavior, for instance due to safety constraints, which can be detrimental if the behavior
is highly suboptimal. Orthogonal to regularizing the learner and more relevant for our work is
to permanently add offline data to the replay buffer and collecting new data online. Prior work
shows that this, in combination with a careful sampling scheme and network architecture Ball et al.
(2023) or policy regularizations Nair et al. (2018), can turn offline data into a strong initializer for
online learning. Nevertheless, these methods still require rather long online fine-tuning or high-
quality offline datasets, neither of which is typically available in active positioning tasks. Another
relevant line of work is to weave online transitions into logging policies as in iterative offline RL
(IORL) (Zhang et al., 2023). Here, exploratory actions are injected to discover unexplored regions
in state-action space while training an offline RL agent on the generated trajectories. This approach
is elaborated more in Section 4. Our approach is similar in spirit, but instead of exploring we want
to exploit shortcuts in the expert trajectories to make hand-offs seamless and effective.

2 ACTIVE POSITIONING

In this section, we introduce the specific framework for active positioning problems building upon
the framework for active alignments introduced in Burkhardt et al. (2025). There, active positioning
problems are modelled as an episodic and contextual POMDP Modi et al. (2018). Specifically, the

1The implementations are among the supplemental material of this submission and will be made available
on GitHub upon acceptance.
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state is decomposed in the current position s ∈ P with P a bounded subset of Rm and a static
context parameter W ∈ W , that is S = P ×W . The actions can be selected from a subsetA of Rd.
Applying an action a ∈ A at state (s,W ) gives the new state (s′,W ) with s′ = f(s, a,W ), where
f : P×A×W → Rd a parametrized distortion function. Typically, any position can be reached from
any other position within one action. Note that in our scenarios, the action space is additive, meaning
that the sum of two actions is itself an action if its inA. Throughout we assume that f(s, 0,W ) = s.
Our running example is f(s, a,W ) = s+W · a with W ∈ Rd×d a distortion matrix, like a rotation
matrix, but we will also consider non-linear distortions. Importantly, as W stay constant throughout
each episode, so is the extent of the distortion. One can think of W as variances introduced by the
gripping of an object, variances within an object, or conditions of the goal to be reached. In each
episode, the goal is to navigate from a random initial position s0 and randomized context W to a
terminal state sW ∈ Rd. The reward observed at state (s,W ) is R(s, a,W ) = −∥f(s, a, w)−sW ∥,
i.e. the negative distance to the terminal state. An episode ends once the state is sufficiently close
to sW or an upper limit of steps is reached. Formally, we terminal states are all within the set
{(s,W ) ∈ S : ∥s − sW ∥ ≤ θ}. Typically, W cannot be observed directly, often even s cannot.
Instead, an often high-dimensional and noised output OW (s) ∈ O is observed, which is controlled
by a conditional probability density function depending on s and W . In total, we call the tuple
(P,W,O, f, γ) an active positioning problem. This framework covers various industrial use cases,
from robot arm positioning, to active alignments of cameras or lasers.

Although active positioning problems can be considered as black-box optimization problems as well
(see Burkhardt et al. (2025)), they are inherently RL problems where symmetries and shortcuts in the
position space need to be actively explored. Typically, the observation space is highly symmetric,
context-dependent, and non-injective. For instance, positions s, s′ far apart can give very similar
observations O(s,W ) ≈ O(s′,W ) and same positions may give highly observations O(s,W ) and
O(s,W ′) in different contexts. In this RL formulation, the goal is to find a policy π : A×O → R
mapping observations and actions to likelihoods in a way that maximizes the accumulated observed
reward: The dynamics of the combined system works as follows. At a given state (s,W ), data
O(s,W ) is sampled. Then, an action a ∈ A is sampled from the distribution a ∼ π(·, O(s,W )).
From there, the system moves to the new state s′ = f(s, a,W ). Note that in this formation, a
and s do not need to have same dimensionality. Starting from state (s0,W ) ∈ S, the combined
dynamics yields a trajectory (s0,W ), . . . , (sk,W ). The goal is to find a policy such that J(π) :=

Es0,W

[∑k
i=0−γi∥si − sW ∥

]
is maximized, where γ ∈ (0, 1) is the discount factor given to trade-

off rewards in early and late states. Clearly, J(π) = Es0,W [V π(s0,W )] = Es0 [V
π(s0)] with V π

the state-value function and V π(s) := EW∼W [V π(s,W )]. Similarly, we define the state-action
value function Qπ(s, a,W ) and Qπ(s, a).

3 THEORETIC CONSIDERATION OF SHORTCUT AUGMENTATIONS

In this section, we lay the theoretic foundation for our investigation of shortcut augmentations. All
proofs are in Section A. We call a policy π distance-improving, if for all W ∈ W we have for two
subsequent states (si,W ) and (sj ,W ), with i < j visited by the policy that ∥sj−sW ∥ < ∥si−sW ∥.
In other words, the reward along a trajectory of π is strictly increasing. In this section, we restrict
to deterministic policies. Given the deterministic transition dynamics given by f , the value function
V π(s,W ) is exactly the return of π starting from (s,W ).
Proposition 3.1. Let π be a distance-improving policy and (s,W ), (s′,W ) ∈ S two states on a
trajectory of π where (s,W ) is visited prior to (s′,W ), then γV π(s′,W )−V π(s,W ) ≥ ∥s′−sW ∥.

First, we define the key player of this paper:
Definition 3.1. Let π be a policy, (s,W ) ∈ S a state, and a ∈ A an action with s′ = f(s, a,W ). If
γV π(s′,W )− V π(s,W ) ≥ ∥s′ − sW ∥, then is a is a π-shortcut at (s,W ).

Note that shortcuts depend on the latent information W , not on the state alone. In fact, it is easy to
show that mixing a policy π with its shortcuts yields an overall better policy:
Proposition 3.2. Let π and π′ be two policies, then J(πaug) ≥ J(π) with πaug defined as follows:

πaug(O(s,W )) :=

{
π′(O(s,W )) if π′(O(s,W )) is a π-shortcut at (s,W )

π(O(s,W )) otherwise
.
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The remainder of this section studies how to find shortcuts in offline trajectories. Combin-
ing Proposition 3.1 and Proposition 3.2 shows that augmenting trajectories of a policy with
shortcuts and retraining yields an improved policy. For example, consider a short trajectory
(s0,W ), (s1,W ), (s2,W ) from a distance-improving policy π with actions a0 and a1 (Figure 1a).
In principle, an action a with s2 = f(s0, a,W ) is a shortcut (Definition 3.1) and thus beneficial.
However, due to distortion in f , we cannot assume a = a0 + a1, nor that applying a0 + a1 at s0
will reach s2. We must ensure that a0 + a1 indeed leads near s2 and that the value function remains
stable in its vicinity. Formalizing this requires assumptions on both the dynamics f and the policy’s
value function. To illustrate, consider f(s, a,W ) = s+W · a with W ∈ Rm×d. Here, trajectories
can be augmented without placement errors:

Proposition 3.3. Let f(s, a,W ) = s+W ·a and let (si,W ) and (sj ,W ) with i < j on a trajectory
of a distance improving policy π and ai, . . . , aj−1 the chain of actions π undertook to get from si to
sj . Then a =

∑j−1
k=i ak is a shortcut for si.

s′ = f(s0, a0 + a1,W )

s0 s1

s2

a0

a1

a0 + a1

(a) Movement uncertainty
s

s′
π(O(s,W ))

π(O(s′,W ))

(b) An f -contraction π

Figure 1: Interactions of policy with movement dynamics.

Extending this to non-linear dynamics is not trivial. Generally, we want to have that then accumu-
lating actions along a trajectory does not lead to too much placement uncertainty, which is typically
the case in real-world positioning problems. We formalize this as follows:

Definition 3.2 (Linear placement-errors). A distortion function f has linear placement-errors (LPE)
if there exists a constant Lf such that for any chain of actions a0, . . . , ak−1 with â :=

∑k−1
i=0 ai ∈ A

executed on (s0,W ) with si = f(si−1, ai−1,W ), we have: ∥f(s0, â,W )− sk∥ ≤ Lf ·
∑k−1

i=0 ∥ai∥.

Intuitively, the LPE property means that although a system distort movements, the mismatch intro-
duced when regrouping actions cannot grow faster than linearly with the size of the path taken. This
actually includes a wide range of functions where the distortion depends on the state only:

Proposition 3.4. Let f(s, a,W ) = s+ g(s,W ) · a with g : S → Rm×d a bounded matrix-function.
Then f has LPE with Lf = 2 · supS ∥g∥.

As we will see, when the distortion term also depends on the action, i.e. g(s, a,W ), things become
more involved for small actions a even if g is bounded and LPE does not follow without additional
assumptions (see Section 5.1.1). The next Proposition B.1 introduces an even stronger property
which suffice to show LPE for distortion functions of common active positioning problems, like
linear movement dynamics of the form f(s, a,W ) = s + Wa, where we can directly follow that
f has LPE with Lf = 0. We call a value function V : S → R LV -Lipschitz continuous if for all
(s,W ), (s′,W ) ∈ S we have |V (s,W )− V (s′,W )| ≤ LV · ∥s− s′∥. The LPE property gives the
final ingredient to prove our main statement:

Theorem 3.5. Let π be distance improving and assume that V π is LV -Lipschitz continuous and
Lf -placement errors. Let (si,W ) and (sj ,W ) on a trajectory of π and let a =

∑j−1
k=i ak be the sum

of the chain of actions π undertook to get from si to sj . Then a is a π-shortcut for si if

γ · V π(sj ,W )− V π(si,W )− ∥sj − sW ∥ ≥ (γ · LV + 1) · Lf ·
j−1∑
k=i

∥ak∥.

In some sense, Proposition 3.3 for movement dynamics of the form f(s, a,W ) = s +W · a arises
as a special case of Theorem 3.5 because Lf = 0 implies that the right-hand side becomes 0 and the
left-hand side is always non-negative due to Proposition 3.1. However, we note that Theorem 3.5
requires V π to be Lipschitz continuous, which is not needed in Proposition 3.3.
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So far, we have not made any direct assumptions on policy π beside being distance improving and
V π being Lipschitz continuous. The next condition helps to ensure that V π is indeed Lipschitz
continuous (see Proposition A.2 in Section A), which requires a beneficial interplay with f :

Definition 3.3 (f -contraction). We call a policy π an f -contraction if for all pairs (s,W ), (s′,W )
with respective observations with o = O(s,W ) and o′ = O(s′,W ), we have

∥f(s, π(o),W )− f(s′, π(o′),W )∥ ≤ ∥s− s′∥.

Corollary 3.6. Let π be distance improving f -contraction and let f have LPE with constant Lf . Let
(si,W ) and (sj ,W ) on a trajectory of π and let a =

∑j−1
k=i ak be the sum of the chain of actions π

undertook to get from si to sj . Then a is a shortcut for si if

γ · V π(sj ,W )− V π(si,W )− ∥sj − sW ∥ ≥
Lf

1− γ
·
j−1∑
k=i

∥ak∥

Being an f -contraction is a stronger requirement than mere distance improvement. We refer to
Section B.2 for a discussion and examples of f -contractions and Lipschitz value functions in real-
world policies. In practice, many active positioning policies do not satisfy the contraction property
globally, yet this is not required for identifying useful shortcuts.

4 LOGGING IMPROVEMENTS VIA FINE-TUNED TRAJECTORIES

Theorem 3.5 gives a theoretical condition when and how to augment a collected trajectory
(o0, a0, r0), . . . , (on, an, rn) with latent states si = f(si−1, ai−1,W ), observations oi = O(si,W ),
rewards ri = −∥si+1 − sW ∥, and actions ai = πβ(oi) from a logging policy πβ . To convey them
into a practical algorithm, let C ∈ R≥0 be a constant and let Gi = V π(si,W ) =

∑n
k=i γ

k−irk be
the returns of πβ . Now, take any pair (i, j) with i < j, let â =

∑j−1
k=i ai be a shortcut candidate and

check if γGj−Gi+rj−1 ≥ C ·
∑j−1

k=i ∥ak∥ with some constant C holds true. Clearly, without prior
information on f and πβ , the exact value of C remains unclear, and thus it has to be considered a
regularization hyperparameter of our method. If C = 0, all pairs are considered shortcuts, if C is
large, only very few pairs where high reward is gained in a few short steps are considered shortcuts.
If the inequality is valid for (i, j), we can assume that â is a shortcut and ideally, we would add the
tuple (oi, â,−∥s′j − sW ∥, o′j) with s′j = f(si, â,W ) and o′j = O(s′j ,W ) to the dataset. However,
due to the movement uncertainty, there is a gap between the position s′j the shortcut leads to and the
observed state sj . Particularly, the image observation O(s′j ,W ) and the reward −∥s′j − sW ∥ differ
from the actually observed ones, namely oj and rj−1. We argue, however, that in many practical
applications, this gap is small and actually not present, for instance if Lf = 0 as in linear movement
dynamics f(s, a,W ) = s + W · a (see Proposition 3.3). Thus, we add the tuple (oi, a, rj−1, oj)
to the training dataset. Algorithm 1 summarizes our shortcut sampling procedure, and we want to
emphasize that it can be added to any offline RL method that samples from an offline dataset, like to
minimize the Bellman error or related temporal difference errors as in CQL.

In general, augmentations in pure offline settings have to be done with care, as updating Q-functions
on unseen state-action pairs can lead to overestimation errors. Although we will see in Section 5
that shortcut augmentations have a positive effect in pure offline settings for active positioning, we
think they nicely integrate in the iterative offline RL framework recently proposed in Zhang et al.
(2023). Here, an uncertainty model Eθ(s, a) is trained with Eθ(s, ·) a probability distribution on A
for each s ∈ S. Given a dataset D, Eθ is trained by minimizing E(o,a)∼D

[
− log(Eθ(s, a))+R(θ)

]
with R(θ) a regularization term. Intuitively, Eθ(s, a) can be seen as the probability that action a
has been seen for state s in D. Actions with small probability Eθ(s, a) at state s are considered as
exploratory action and should be selected according to some fixed probability p enriching a given
logging policy πβ during roleout. These exploratory actions are rather rare and thus help keeping
the system save and naturally close to the logging policy πβ that generated the data. We build upon
this idea, but instead of selecting actions that have not been seen in the data, we advocate to train a
Q-function Qθ on some initial dataset D and select actions having high Q-values. Formally, we set
aθ(s, a) = maxa′∈A Qθ(s, a

′) where Qθ can be trained with any offline RL method, like CQL or
IQL. By that, we aim to enrich the dataset with actions that are likely to be beneficial for πβ in the
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sense of higher returns. For that, they must have good hand-over properties and thus we augment the
dataset D with shortcuts computed via Algorithm 1 when training Qθ. Note that here, the synthetic
shortcuts are only used to obtain Qθ, which in turn is only used to fine-tune the logging policy, and
the collected dataset consists of real data only. The precise procedure is described in Algorithm 2.

Algorithm 1: Shortcut sampling
Input : C ≥ 0, i ∈ [n], trajectory

{(o0, a0, r0), . . . , (on, an, rn)}
Output : Tuple (oi, â, rj−1, oj)
Compute returns G0 . . . , Gn for

trajectory
S = {}
for j = i+ 1 · · ·n do

â←
∑j−1

k=i ak
if γGj −Gi ≥ C ·

∑j−1
k=i ∥ak∥ and

â ∈ A then
Add (oi, â, rj−1, oj) to S

Let m = |S| and denote r̂ = (r̂1, . . . , r̂m)
the rewards of the tuples in S

Let p ∼ r̂ −min r̂ a mass function
Sample (oi, â, rj−1, oj) from S w.r.t. p
return (oi, â, rj−1, oj)

Algorithm 2: LIFT
Input : Logging policy πβ , n ∈ N,

augmentor aθ, p ∈ [0, 1]
Output : Dataset D with n trajectories
Initialize: D = {}
repeat

Sample o0 from environment
Set d = false, τ = (), i = 0
while d is false do

ai = πβ(oi)
if p′ ≤ p with then

ai = aθ(oi, ai)
oi+1, ri, d = env.step(ai)
Reset πβ at oi+1 (if necessary)

else
oi+1, ri, d = env.step(ai)

Add (oi, ai, ri) to τ , i = i+ 1
Add Trajectory τ to D
if train augmentor then

Train aθ on D with with Algorithm 1
until |D| = n
return D

5 EXPERIMENTS

Our experiments to evaluate LIFT for active positioning problems address two main questions: First,
can shortcut augmentations improve pure offline RL, and second, can they be leveraged during data
collection by training a Q-based augmentor in comparison to warm-start RL? To this end, we test
different distortion functions f (Section 5.1.1), observation types O (Section 5.2.1), and levels of
expertness of the logging policies (Section 5.2).

5.1 ENVIRONMENTS

In order to analyze different movement distortions and observation types in isolation, we conducted
our experiments in semi-realistic active positioning environments. These environments are designed
to keep real world characteristics and entail small sim-to-real gaps. Throughout, we use−∥s− sW ∥
as reward signal. In trainings in simulated environments, this reward signal is easy to compute, as
one typically has access to latent information (s,W ). In real systems, on the other hand, this signal
needs to be added in hindsight once an episode is finished using a logging policy able to find sW .

5.1.1 MOVEMENT DISTORTIONS

We consider different movement distortions, some of them have linear forms, like fblend and frot both
with Lf = 0. We also use non-linear distortions, like fscale and fsin which have LPE with Lf > 0
and one non-continuous distortion fregrot also having LPE which is not contracting. We also test
a movement dynamics, called fsqrt, that does not satisfy the LPE property. We refer to Section B
for their precise mathematical definitions and corresponding proofs of their properties. Figure 3
illustrates an overview of the different distortions in two dimensions.

5.2 LOGGING POLICIES

Algorithms for active alignments do not follow a general recipe, but rather depend on the specific
application. Alignments of optical systems, for instance, have traditionally relied on iterative opti-
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mization of measured performance signals such as coupling efficiency or spot quality, where actu-
ators are moved sequentially or in small patterns and the response is evaluated to guide subsequent
steps, typically following coordinate-descent or heuristic search strategies that explore one or more
degrees of freedom at a time (Parks, 2006; An et al., 2021; Langehanenberg et al., 2015).
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Figure 2: Expertness of πcw,l.

Typically, the alignment starts with coarse steps and reduces
the step size later, for instance (Liu et al., 2024, Section 3.1)
for camera assembly. We have distilled the common princi-
ples into a synthetic logging policy called coordinate walk,
πcw,l that follows a structured coordinate walk with step size
l. This allows us to control the level of expertness of the log-
ging policy and thus the quality of the collected data. Our
synthetic position policy knows the location of sW , but can
only reach it via a path that is suboptimal in both, number
of steps and direction. More precisely, it sequentially moves
along individual coordinates of the positions s ∈ P ⊂ Rm by
choosing actions a ∈ A along unit vectors until si matches
(sW )i. Once a dimension is traversed, the policy cycles to the next coordinate and continues this
procedure, thereby producing a structured, axis-aligned walk toward the optimum. If all dimen-
sions have been optimized, the step size l is halved. By varying the initial step size, the expertness
of the logging policy can be adjusted (see Figure 2). Figure 7 shows trajectories of the coordinate
walk executed under different movement distortions. To model realistic hand-overs between logging
policies and augmentors, we assume the internal state of the policy, i.e. the current step size l and
dimensions already optimized, is reset to the initial values once the policy is reset. To not make our
mathematical framework introduced in Section 3 too specific for these types of resets, we assume
stateless policies there. For most states, V πl2 (s,W ) ≥ V πl1 (s,W ) for two step sizes l1 < l2 holds
true and thus Theorem 3.5 still hold in this specific application. However, restarting may also have
catastrophic effects, for instance if s is already very close to sW and resetting the step size may lead
to an overshoot. In Section B.2, a discussion about the contraction and Lipschitz-property of the
coordinate walk is given.

No distortion fblend frot fscale fregrot fsin fsqrt

Lfblend = 0 Lfrot = 0 Lfscale = 2 · λ Lfregrot = 2 Lfsin = σ ·
√
d Lfsqrt =∞

Figure 3: Movement distortions used when applying actions clipλ(sW − s).

5.2.1 OBSERVATIONS

A canonical type of observation is when the position can be observed directly, i.e., OPO(s,W ) = s.
Here, we have to fix optimum sW = s∗ throughout, as otherwise it is impossible to infer where
the optimum should be without observing information about W . Roughly speaking, these are sce-
narios where it is known where the optimum is, but not how to get there through the movement
distortion. We will evaluate these scenarios in d = 2 and d = 5 dimensions. Our motivation orig-

· · ·

· · ·

Figure 4: Exemplary trajectories of πcw,l executed in OLP (top) and OLT (bottom).

inally stems from scenarios where observations are drawn from optical sensors and hence we test
our method on different image generators. The first comes from active alignments problems from
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camera assembly, were a lens objective has to be positioned relative to a sensor to obtain optimal
optical performance Liu et al. (2024). Here, s relates to the position of the lens objective and W to
variances in the lens system the objective is decomposed and distortions in the movement dynamics.
At each position s, collimated light is sent through the lens system creating an image OLP(s,W )
on a sensor. The task is to position the objective with variances W precisely to an individual opti-
mum sW . As some information about W is contained in the image implicitly, it is possible to design
algorithms that leverage the image information to move towards sW . We use the semi-realistic
generator from Burkhardt et al. (2025) where light is sent out in the form of a Siemens star.

Our second image generator is the light tunnel from Gamella et al. (2025), where light is sent from
a source through two polarizers whose angles dictate how light passes through to an optical sen-
sor. Here, each position s of the polarizers filters out certain wavelengths of the light creating a
image I(s) at the sensor. Here, the image observation does not on depend on the context W and
essentially only on the relative difference of the angles of the polarizers, i.e. many states lead to the
same image. To add some context, we sample in each episode sW uniformly from the box [0, 2π]2

and set OLT(s,W ) = I(s) − I(sW ). In our experiments, we use the decoder of the autoencoder
trained on images from the real system provided in the data repository of Gamella et al. (2025).
Figure 4 shows exemplary trajectories of the coordinate walk in these two scenarios.

5.3 RESULTS

Our approach from Section 4 gives rise to essential two algorithms. First, a purely offline one
that takes a static dataset collected from some logging policy and trains an offline RL algorithm
with shortcut augmentations. In our experiments, we use CQL and denote this algorithm as CQL-
SC. Second, an iterative offline RL algorithm that collects data with an augmented logging policy
where CQL is trained on the collected data, called LIFT. If the subsequently trained CQL also uses
shortcuts, we denote this algorithm as LIFT-SC. By default, we use Algorithm 2 with p = 0.6, limit
augmentations per trajectory to 20. A detailed hyperparameter analysis is given in Section C.1.

First, we want to analyze the effect of different augmentations while collecting data and the
effect of using shortcuts in the CQL training afterward. Beside canonical augmentations like
adding noise πβ(o) + ϵ with ϵ ∼ N d(0, σ), or randomly scaling actions πβ(o) · ϵ with
ϵ = exp(η) · 2, η ∼ N (0, σ), we also use random actions in the sense of uniform sam-
ples from A and IORL-like augmentation based on an uncertainty model as in Zhang et al.
(2023). We run these experiments in (OPO, fblend) with step size 0.025 in d = 5 dimen-
sions, collected 3 independent datasets consisting of 100 trajectories each and trained 3 indepen-
dent CQL policies on each of them. The LIFT augmentor is trained once after 50 trajectories.

.0125 .025 .05 .1

fblend • • • •
fscale • • • •
frot • • • •
fregrot •
fsin • • • •
fsqrt • • •

Table 1: Cases where LIFT-SC out-
performs SAC baseline in OPO, d = 5.

The averaged convergences to sW of the CQL policies,
each evaluated on 20 randomly drawn contexts are shown
in Figure 5a. Here, we see that, independently of shortcuts
are used in the training afterward, the best CQL policies
can be obtained when trained on the data collected with
LIFT. Moreover, we see that when training takes place
with shortcuts, every policy can be improved. This find-
ing is underpinned when computing the dataset character-
istics introduced in Schweighofer et al. (2022) shown in
Figure 5b. LIFT creates trajectories having the highest av-
erage returns reproducing findings in Schweighofer et al.
(2022) that this correlates with CQL performance. On the
other hand, LIFT does not explore the space as good as
other methods, showing a clear differentiation to IORL that has been explicitly designed to explore
well. However, high exploration comes at the price of an impeded hand-off back to the logging
policy, leading to low trajectory qualities for IORL and random actions.

In our second type of experiments, we want to evaluate how our methods compare under different
movement distortions and observation types. In OPO, algorithms collect a total of n = 100 and
n = 500 trajectories for d = 2 and d = 5 respectively, where the LIFT augmentor is trained once
after 50 and 100 collected trajectories respectively. In OLP, we collect 500 trajectories and LIFT
is trained once after 100 episodes. In OLT, we collect only 100 trajectories and LIFT is trained
once after 50 collected trajectories. Here, we additionally compare to SAC Haarnoja et al. (2018)
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Steps

With Shortcuts
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IORL 
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πβ(O) + ε
πβ(O) ⋅ ε
LIFT 

(a) Comparison of augmentations.
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Void

IORL

Random Action

πβ(O) + ε

πβ(O) ⋅ ε

LIFT 

Trajectory Quality

0 2000 4000 6000 8000

State Exploration

(b) Dataset properties.

Figure 5: Experiments in (OPO, fblend) with step size 0.025 with d = 5.

trained with a mixture of offline and online data as done in warm-start RL that is restricted to the
same number of trajectories as in our offline datasets. Specifically, in a scenario with n many
episodes, the replay buffer of SAC is initialized with the same number of trajectories collected by
the logging policy the LIFT augmentor obtains in training, e.g. m = 50 for OLT. Figure 6 presents
selected comparisons across the multiple scenarios and all comparisons can be found in Section C.
In all tested environments, we see that CQL policies trained offline on data from LIFT (blue) have
better performance than these trained on unaugmented data from the logging policy (green). This
effect fades a bit when adding shortcuts to the subsequent offline training: In most scenarios, the
performance of LIFT-SC is better or equal than CQL-SC. This is, for instance, not the case in when
using image data from OLP, where CQL training on data obtained from LIFT-SC showed high
variance. Studying the effect of shortcuts in isolation, CQL-SC consistently outperforms CQL and
LIFT-SC consistently outperforms LIFT, making LIFT-SC the best of our methods. Comparing
LIFT-SC to the SAC with offline data, we see a clear picture: SAC stays ahead in all low-dimensional
cases for OPO with d = 2, and LIFT-SC outperforms SAC almost consistently over all movement
dynamics and expert-levels of the logging policy in OPO for d = 5 (see Table 1), as well as in
both image-based scenarios. Interestingly, for fregrot where the contraction property is violated,
augmentations with shortcut fail where in fsqrt, where LPE does not hold, augmentations still help
but the advantage over SAC is almost negligible.

5 10 15 20 25
Steps

0.0

0.2

0.4

0.6

||s
i−

s w
||

5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
CQL CQL-SC LIFT LIFT-SC SAC + Offline Data

OPO, fblend
d = 2, l = 0.025

OPO, fregrot
d = 5, l = 0.0125

OPO, fscale
d = 5, l = 0.025

OPO, frot
d = 5, l = 0.05

OLT, fblend
d = 2, l = 0.025

OLP, fblend
d = 5, l = 0.025

Figure 6: Comparisons of our methods under various distortions and observation types.

6 DISCUSSION

We demonstrate that shortcut augmentations can consistently improve the effectiveness of offline
RL in active positioning problems in both, theoretical and experimental validations. In particular,
we find that augmentations provide the largest gains in complex scenarios with higher action dimen-
sionality or partial observability, where plain offline RL often fails. This suggests that exploiting
task structure to expand data coverage is a promising alternative to relying solely on behavior regu-
larization. Compared to warm-start RL, LIFT offers a more data-efficient way to leverage subopti-
mal expert routines: by selectively taking shortcuts suggested by an off-policy learner, we improve
dataset quality without requiring extensive online fine-tuning.

Nevertheless, our approach has limitations. Shortcut validity depends on assumptions about the
distortion function and value function regularity, which may not hold in all real-world positioning
systems. Moreover, our experiments are limited to semi-realistic simulators; future work should
validate these methods on physical platforms, especially in robotic alignment tasks. Another open
question is how to combine shortcut augmentation with model-based methods or world models to
further improve sample efficiency. We believe that the principles underlying LIFT are broadly
applicable in robotics and other domains beyond active positioning tasks where expert routines exist
but are suboptimal. We hope this work encourages a more systematic treatment of data augmentation
strategies for offline RL in structured industrial tasks.
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A PROOFS FOR SECTION 3

Lemma A.1. Let π be distance-improving, then (1− γ)V π(s,W ) ≥ −∥s− sW ∥ for all (s,W ).

Proof. Let (s0,W ), (s1,W ), . . . , (sk,W ) be a trajectory of π starting at s = s0, then

V π(s,W ) = −
k∑

i=1

γi−1∥si − sW ∥ ≥ −∥s− sW ∥
k−1∑
i=0

γi = −∥s− sW ∥ ·
1− γk

1− γ

where we have used that π is distance improving in every step. Finally, (1− γ)V π(s,W ) ≥ −∥s−
sW ∥(1− γk) ≥ −∥s− sW ∥.

Proof of Proposition 3.1. Assume that τ = (s0, . . . , sk) is the sub-trajectory of π starting at s = s0
and ending at s′ = sk. We prove the statement via induction on k. Note that since s′ ̸= s, we have
k ≥ 1. Let k = 1, then

V π(s,W ) = −∥s1 − sW ∥+ γ · V π(s′,W )

and the claim holds. Now, assume the statement holds from s1 to sk = s′, then

γV π(s′,W )− V π(s1,W ) ≥ ∥s′ − sW ∥
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by the induction hypothesis. Furthermore, we have

γV π(s′,W )− V π(s,W ) = γV π(s′,W )− V π(s1,W ) + V π(s1,W )− V π(s,W )

≥ ∥s′ − sW ∥+ V π(s1,W )− V π(s,W )

= ∥s′ − sW ∥+ V π(s1,W )− (−∥s1 − sW ∥+ γV π(s1,W ))

= ∥s′ − sW ∥+ (1− γ)V π(s1,W ) + ∥s1 − sW ∥
Using Lemma A.1, we have (1− γ)V π(s1,W ) + ∥s1 − sW ∥ ≥ 0 and the claim follows.

Proof of Proposition 3.2. It suffices to show that the statement holds if augmentation only is applied
at one single state (s̃,W ). That is, there exists an action a that satisfies:

γ · V π(f(s̃, a,W ),W )− ∥f(s̃, a,W )− sW ∥ ≥ V π(s̃,W )

Let πa be the policy that uses a at s̃ and on all other states coincides with π. First, we show that
J(πa) ≥ J(π). It suffices to show that V πa(s) ≥ V π(s) for all s ∈ S. Let (s,W ) be an initial
state. If the trajectory of π does not traverse s̃, then V πa(s) = V π(s). Assume differently that the
trajectory visits s̃ at the t-th step. Then, the trajectory starting at s follows π till s̃, then chooses the
shortcut a, and then follows π from s′ = f(s̃, a,W ). The value for this trajectory is:

V πa(s,W ) = V π(s,W )− γt · V π(s̃,W )− γt∥s′ − sW ∥+ γt+1V π(s′,W ).

From the assumption of (s̃, a), we have

γt · (−V π(s̃,W )− ∥s′ − sW ∥+ γ · V π(s′,W )) ≥ 0

and hence V πa(s,W ) ≥ V π(s,W ).

Proof of Proposition 3.3. Since Proposition 3.1 gives that γV π(sj ,W )−V π(si,W ) ≥ ∥sj−sW ∥,
it is left to prove that f(si, a,W ) = sj . We have

f(si, a,W ) = si +W ·
j−1∑
k=i

ai = si +W · ai +W · ai+1 + . . .+W · aj−1.

Let si+1, . . . , sj−2 be the intermediate states, i.e. sk = f(sk−1, ak−1,W ), then replacing sk =
sk − 1 +W · ak−1 in the equation above from k = i to k = j − 1 gives the claim.

Proof of Proposition 3.4. Let a0, . . . , ak−1 a chain of actions and set A =
∑k−1

i=0 = ai, (s0,W ) an
initial state and set si = f(si−1, ai−1,W ). Recursively unraveling the definition of f yields

sk = s0 +
∑
i=0

g(si,W ) · ai

and consequently

f(s0, A,W )− sk = g(s0,W )

k−1∑
i=0

ai −
k−1∑
i=0

g(si,W ))ai

=

k−1∑
i=0

(
g(s0,W )− g(si,W )

)
ai.

Taking norms and using the induced matrix norm on Rm×d gives∥∥f(s0, A,W )− sk
∥∥ ≤ k−1∑

i=0

∥∥g(s0,W )− g(si,W )
∥∥ · ∥ai∥.

By the assumption on g, we have

∥g(s0,W )− g(si,W )∥ ≤ ∥g(s0,W )∥+ ∥g(si,W )∥ ≤ 2 · sup
S×W

∥g∥

independently of the actions for all i and the claim follows.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Proof of Theorem 3.5. For brevity, we omit W in the notation of the value function. We have to
show that γV π(f(si, a,W )) − V π(si) ≥ ∥f(si, a,W ) − sW ∥. Because f has linear-placement
errors, it follows directly from Definition 3.2 that ∥f(si, a,W )− sj∥ ≤ Lf ·

∑j−1
k=i ∥ak∥ and thus

∥f(si, a,W )− sW ∥ = ∥f(si, a,W )− sj + sj − sW ∥ ≤ Lf ·
j−1∑
k=i

∥ak∥+ ∥sj − sW ∥.

On the other hand, using the Lipschitz continuity of V π , we get

γV π(f(si, a,W ))− V π(si) ≥ γ · (V π(sj)− LV · ∥f(si, a,W )− sj∥)− V π(si)

≥ γ · V π(sj)− V π(si)− γ · LV · Lf ·
j−1∑
k=i

∥ak∥

Now, as the inequality from the theorem statement holds, we have

γ · V π(sj)− V π(si) ≥ (γ · LV + 1) · Lf ·
j−1∑
k=i

∥ak∥+ ∥sj − sW ∥

and plugging this into the upper equation gives the claim.

Proposition A.2. Let π be an f -contraction. Then V π is 1
1−γ -Lipschitz continuous in the states.

Proof. Define L = 1
1−γ and let (s,W ) and (s′,W ) be two states. We prove via induction over the

combined number of steps k needed to reach the optimality region around sW starting at s and s′

that
|V π(s,W )− V π(s′,W )| ≤ L · ∥s− s′∥.

If k = 0, then s and s′ are both within the optimality region, i.e. ∥s − sW ∥ ≤ θ and ∥s′ −
sW ∥ ≤ θ, then V π(s,W ) = V π(s′,W ) = 0 and the claim holds. Now, let o = O(s,W ) and
o′ = O(s′,W ) be the observations at s and s′ and s1 = f(s, π(o),W ) and s′1 = f(s′, π(o′),W )
be the next states after one step of π. Particularly, the induction hypothesis holds for s1 and s′1,
i.e. |V π(s1,W ) − V π(s′1,W )| ≤ L · ∥s1 − s′1∥. Since V π(s) = −∥s1 − sW ∥ + γV π(s,W ) and
V π(s′) = −∥s′1 − sW ∥+ γV π(s′,W ), we have

|V π(s)− V π(s′)| = |γ · V π(s1,W )− γ · V π(s′1,W )− ∥s1 − sW ∥+ ∥s′1 − sW ∥|
≤ γ · |V π(s1,W )− V π(s′1,W )|+ |∥s1 − sW ∥ − ∥s′1 − sW ∥|
≤ γ · L · ∥s1 − s′1∥+ ∥s1 − s′1∥
≤ (γ · L+ 1) · ∥s1 − s′1∥
= L · ∥s1 − s′1∥

where the last equation is due to L = 1
1−γ . Finally, because π is an f -contraction, we have ∥s1 −

s′1∥ = ∥f(s, π(o),W )− f(s′, π(o′),W )∥ ≤ ∥s− s′∥ and the claim follows.

Proof of Corollary 3.6. Because π is an f -contraction, V π is 1
1−γ -Lipschitz continuous by Propo-

sition A.2. Plugging LV = 1
1−γ into Theorem 3.5 gives the claim.

B MOVEMENT DISTORTION FUNCTIONS

In this section, we formally define the different movement distortions f we consider in our exper-
iments. The first set of distortions are linear distortions of the form f(s, a,W ) = s + W · a with
W ∈ Rd×d a distortion matrix, more specific, we use

fblend(s, a,W ) = s+ (Id×d +W ) · a, W ∼ Nd×d(0, σ)
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For W ∈ R a scalar, let RW =

(
cos(W ) − sin(W )
sin(W ) cos(W )

)
be a two-dimensional rotation matrix. We

rise this to a high-dimensional rotation matrix where adjacent dimensions are rotated, i.e.,

RotW = diag(RW , . . . , RW ) ∈ Rd×d

where diag(A1, . . . , Ak) is the block-diagonal matrix with blocks A1, . . . , Ak on the diagonal.

frot(s, a,W ) = s+ RotW · a, W ∼ N (0, σ)

The next distortion function is a scaling-based one which does not depend on a latent context W :

fscale(s, a,W ) = s+ clipC,λ (∥s− sW ∥) · a

with some constant 0 < C < λ to ensure that the steps are not to small so that the optimum can be
reached in finitely many steps.

The next set of distortions is again a rotation-based one, but one where the rotation matrix depends
on the region. For that, we assume the position space P is decomposed into c-many non-overlapping
subsets P1, . . . ,Pc such that ∪ci=1Pi = P . Then

fregrot(s, a,W ) = s+

c∑
i=1

1s∈Pi · RotWi · a, W ∈ Nc(µ, σ), µ ∈ Rc

As Pi ∩ Pj = ∅ for i ̸= j, only one rotation matrix is active at a time, depending on the state.

In our experiments, we used c = 4 and divided P into four sets depending on in which quadrant of
R2 the first two dimensions reside. Moreover, we set µ = (−0.3, 0.6,−0.3, 0.6).
The next distortion is one where a non-linear offset is added which depends on both, the state and
the action:

fsin(s, a,W ) = s+ a+W · sin(s) ◦ cos(s) · ∥a∥, W ∼ U(0, σ)
where sin and cos are applied component-wise and ◦ denote the element-wise multiplication. Fi-
nally, we consider a distortion function that does not have linear placement errors:

fsqrt(s, a,W ) = s+ (Id×d +W ) ·
√
∥a∥ · a, W ∼ Nd×d(0, σ).

B.1 LINEAR PLACEMENT-ERRORS

We begin by proving a stronger conditions, which is easier to check and implies LPE:
Proposition B.1. Let f be a distortion function and assume there exists a constant Lf such that for
all states (s,W ) and actions a, a′ ∈ A

∥f(s, a+ a′,W )− f(f(s, a,W ), a′,W )∥ ≤ Lf · ∥a∥

Then f has LPE with constant Lf .

Proof. For i ∈ {0, . . . , k}, define the tail sums ãi :=
∑k−1

j=i aj and the states s̃i := f(si, ãi,W ).
By definition s̃0 = f(s0, a0 + . . .+ ak−1,W ) and, since ãk = 0 and f(s, 0,W ) = s, we also have
s̃k = sk. Thus, we have to prove that ∥s̃0− s̃k∥ ≤ Lf

∑k−1
i=0 ∥ai∥. Now, for any i ∈ {0, . . . , k− 1}

we have
∥s̃i − s̃i+1∥ = ∥f(si, ai + ãi+1,W )− f(si+1, ãi+1,W )∥ ≤ Lf∥ai∥.

because of the assumptions on f from the statement of the proposition. Summing these inequalities
and applying the triangle inequality yields

∥s̃0 − s̃k∥ ≤
k−1∑
i=0

∥s̃i − s̃i+1∥ ≤ Lf

k−1∑
i=0

∥ai∥.
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(a) Direct policy in fblend
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(b) Coordinate walk in fblend
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(c) Direct policy in fscale
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(d) Coordinate walk in fscale
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(e) Direct policy in frot
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(f) Coordinate walk in frot

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(g) Direct policy in fregrot
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(h) Coordinate walk in fregrot

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(i) Direct policy in fsin
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(j) Coordinate walk in fsin
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(k) Direct policy in fsqrt
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(l) Direct walk in fsqrt

Figure 7: Trajectories of direct policy and coordinate walk in different movement dynamics.

LPE and the proposition of Proposition B.1 are not equivalent: Consider f(s, a) = s + sign(s) · a.
Then its easy to show that f has linear-placement errors with Lf = 2, but it does not have the
property from Proposition B.1.

Proposition B.2. The distortion fblend has LPE with Lfblend = 0.
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Proof. Straight-forward application of Proposition B.1.

Proposition B.3. The distortion frot has LPE with Lfrot = 0.

Proof. Straight-forward application of Proposition B.1.

Proposition B.4. The distortion fscale has LPE with Lfscale = 2 · λ.

Proof. We write fscale(s, a,W ) = s+ g(s,W ) · a with g(s,W ) = clipC,λ(∥s− sW ∥) · Id with Id
the identity function of Rd×d. Clearly g is bounded and we have supS×W ∥g∥ = λ and the claim
follows by an application of Proposition 3.4.

Proposition B.5. The distortion fregrot has LPE with Lfregrot = 2.

Proof. We write fregrot(s, a,W ) = s+g(s,W ) ·a with g(s,W ) = RotWi
whenever s ∈ Pi, where

P1, . . . ,Pc are the partitions of S from Section 5.1.1. For every state (s,W ), g(s,W ) is a rotation
matrix and thus ∥g(s,W )∥ = 1 and g statisfies the the claim follows from Proposition 3.4.

Proposition B.6. The distortion fsin has LPE with Lfsin =
√
dσ.

Proof. Let fsin(s, a,W ) = s+ a+ g(s) · ∥a∥ with g(s,W ) := W · sin(s)⊙ cos(s). Although we
cannot apply Proposition 3.4 as fsin has not the desired form, we can follow a similar strategy. First,
we observe that g is bounded:

∥g(s,W )∥ = |W | ·

√√√√ d∑
i=1

sin(si)2 · cos(si)2 ≤ σ
√
d

because W ∼ U(0, σ). Let a0, . . . , ak−1 be a chain of actions and set A =
∑k−1

i=1 ai and si =
f(si−1, ai−1,W ), then

fsin(s0, A,W )−sk = A+g(s0,W )∥A∥−
k−1∑
i=0

(
ai+g(si,W )∥ai∥

)
= g(s0,W )∥A∥−

k−1∑
i=0

g(si,W )∥ai∥

and thus:

∥fsin(s0, A,W )− sk∥ ≤ ∥g(s0,W )∥A∥+
k−1∑
i=0

∥g(si,W )∥ai∥ ≤ σ
√
d

k−1∑
i=0

∥ai∥

because ∥A∥ ≤
∑k−1

i=0 ∥ai∥ by the triangle inequality.

Next, we show that fsqrt is not LPE:

Proposition B.7. The distortion fsqrt does not have LPE.

Proof. Let v ∈ Rd be a unit vector and let a0 = a1 = c · v with c ≤ λ. Let (0, 0) ∈ Rd × Rd×d

be an initial state, then s1 = fsqrt(0, a0, 0) =
√
c · c · v and s2 = fsqrt(s1, a1, 0) = 2

√
c · c · v.

Moreover, we have f(s0, a0 + a1, 0) = f(0, 2 · c · v, 0) = 2
√
2c · c · v and hence

∥f(s0, a0 + a1, 0)− s2∥ = (2
√
2− 2) ·

√
c · c.

which cannot be bounded by Lf · (∥a0∥+ ∥a1∥) = 2 · Lf · c for any constant Lf .
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B.2 CONTRACTIONS AND LIPSCHITZ-CONTINUITY IN REAL-WORLD APPLICATIONS

We do not expect that policies and distortions from real-world applications satisfy the rigorous
mathematical assumptions stated in Section 3. Pedantically, even simple modeling choices already
break global smoothness: for instance, having A = Bλ(0) with A a strict subset of S, combined
with an optimality region defined by a threshold θ, induces discontinuities in the value function. The
same holds for the coordinate walk policy in Section 5.2, where a fixed step length produces value
functions with sharp discontinuities, as shown in Figure 9.

Nevertheless, global mathematical rigor is not required to detect local shortcuts in real trajectories.
A striking example is the coordinate walk under fregrot: since different rotations apply in different
regions, the policy is not an f -contraction globally, because nearby states s and s′ lying in different
regions Pi and Pj may be rotated in different directions (Figure 8a). Yet, for states within same
region where the coordinate walk applies same actions, the contraction property is preserved (Fig-
ure 8b). This illustrates that shortcut identification relies less on global guarantees and more on local
structure along trajectory segments.

Informally speaking, it suffices that the value function does not change too abruptly for small mis-
placements, so that local improvements can be exploited as shortcuts. In practice, this condition is
often met: physical systems typically exhibit continuity over small ranges of motion, even if dis-
continuities or non-contractive behavior emerge globally. Hence, while our theoretical assumptions
provide clean guarantees, the underlying ideas remain applicable well beyond the idealized setting
as demonstrated by our experiments in Section 5.

s s′

π(O(s,W )) π(O(s′,W ))

Pi Pj

(a) fregrot in different regions

s s′

π(O(s,W )) π(O(s′,W ))

Pi

(b) fregrot in same partition

Figure 8: In fregrot, starting at two close-by states s and s′ in different regions P1 and P2 can increase
the distance between subsequent states as opposed rotation matrices apply.

No distortion fblend frot fscale fregrot fsin fsqrt

Figure 9: Value functions V π(·,W ) of coordinate walk for a random but fixed context W each.
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C DETAILS FOR EXPERIMENTAL RESULTS

C.1 HYPERPARAMETERS OF LEARNING ALGORITHMS

Parameter Value
actor learning rate 10−3

critic learning rate 10−3

conservative weight 5.0
α-threshold 10.0
batch size 500

γ 0.99
τ 0.005

Table 2: Parameter for CQL
trained on collected datasets.

Parameter Value
actor learning rate 10−3

critic learning rate 10−3

conservative weight 5.0
α-threshold 10.0
batch size 500

γ 0.99
τ 0.005

Table 3: Parameter for CQL
trained as LIFT augmentor.

Parameter Value
actor learning rate 10−3

critic learning rate 10−3

batch size 256
n updates per step 5

n critics 2
γ 0.99
τ 0.005

Table 4: Parameter for SAC.

C.2 HYPERPARAMETER STUDY OF LIFT

In this section, we study effects of the different hyperparameters of the shortcut computation (Al-
gorithm 1) and LIFT (Algorithm 2). First, we study the effect of the number of augmentations per
trajectory n and the probability of applying an augmentation p. The results are shown in Figure 10.
One can see that as few as 20 augmentations per trajectory are sufficient to achieve a substantial
improvement in performance, provided that the augmentation probability is not too low. Notably,
higher probabilities correspond to augmentations being applied earlier in the trajectory. This sug-
gests that augmentations at the beginning of a trajectory are more beneficial than those applied later.
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Figure 10: Experiments in fblend with step size 0.025 and different probabilities p of applying aug-
mentations and different maximal number of augmentations per trajectory

Next, we analyse the effect of the sampling scheme of shortcuts along a trajectory. Here, we denote
the sampling mechanism described in Algorithm 1 as weighted. Another way to sample shortcuts
from the set S computed in Algorithm 1 is to use a distribution that is proportional to the inverse
distance to the optimum, i.e. p(i) ∼ 1

∥si−sW ∥ or to sample uniformly from S. Instead of sampling,
one can also just use the shortcut residing within the action space that leads to the point of highest
reward within the trajectory called best. The results are shown in Figure 11 for n = 20 augmenta-
tions per trajectory and p = 0.4 showing that in the environments we consider, the sampling strategy
does not have a significant effect on the performance.
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Figure 11: Experiments in fblend with different step size and different sampling strategies.

C.3 ADDITIONAL VISUALIZATION
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Figure 12: Augmented trajectories generated by LIFT for OLP in 5 dimensional hidden position
space: Actions coming from the augmentor in red and actions from the logging policy in blue.
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(a) 100 Episodes OPO with d = 2
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(b) 500 Episodes OPO with d = 5

Figure 13: Experiments in fblend.
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(a) 100 Episodes OPO with d = 2
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(b) 500 Episodes OPO with d = 5

Figure 14: Experiments in fscale.
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(a) 100 Episodes OPO with d = 2
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(b) 500 Episodes OPO with d = 5

Figure 15: Experiments in frot.
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(a) 100 Episodes OPO with d = 2
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(b) 500 Episodes OPO with d = 5

Figure 16: Experiments in fregrot.
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(a) 100 Episodes OPO with d = 2
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(b) 500 Episodes OPO with d = 5

Figure 17: Experiments in fsin.
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(a) 100 Episodes OPO with d = 2
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(b) 500 Episodes OPO with d = 5

Figure 18: Experiments in fsqrt.
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