AUGMENTATIONS IN OFFLINE REINFORCEMENT LEARNING FOR ACTIVE POSITIONING

Anonymous authors

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

023

025

026

027

029

031

033

034

036

037

040

041

042

043

044

046

047

048

049

050

051

052

Paper under double-blind review

ABSTRACT

We propose a method for data augmentation in offline reinforcement learning applied to active positioning problems. The approach enables the training of offpolicy models from a limited number of trajectories generated by a suboptimal logging policy. Our method is a trajectory-based augmentation technique that exploits task structure and quantify the effect of admissible perturbations on the data using the geometric interplay of properties of the reward, the value function, and the logging policy. Moreover, we show that by training an off-policy model with our augmentation while collecting data, the suboptimal logging policy can be supported during collection, leading to higher data quality and improved offline reinforcement learning performance. We provide theoretical justification for these strategies and validate them empirically across positioning tasks of varying dimensionality and under partial observability.

1 Introduction

In active positioning, an end-effector must place an object precisely at a desired pose. Such problems occur in high-precision manufacturing, e.g., in camera Bräuniger et al. (2014) or telescope assembly Upton et al. (2006), and in alignments of laser Rakhmatulin et al. (2024). In optical systems, this involves iterative adjustment of components, such as lenses or mirrors, to maximize alignment quality from image-based signals. These tasks are naturally modeled as contextual partially observed Markov decision problems (POMDPs) and demand generalization over the context Burkhardt et al. (2025). While reinforcement learning (RL) has advanced algorithmically, online training is costly: explorations in high-dimensional observation and continuous action spaces are inefficient, cause long downtimes, and human interaction is often required between episodes, for instance to insert new objects. At the same time, precise but inefficient expert routines can provide data, making offline RL a promising alternative, which sidesteps online interactions by training from pre-collected datasets(Levine et al., 2020). Although offline RL promise is to learn policies better than the logging policy from static datasets, without online interactions, it suffers from distributional shifts and inappropriate datasets, leading to suboptimal policies. To cope with distribution shift, contemporary offline RL methods regularize policies toward the behavior distribution or warm-start from the logging policy before cautiously improving it (see Section 1.2 for an overview). Despite these algorithmic advances, it remains unclear how the data-generating logging policy limits what an offline learner can achieve. Prior evidence already shows that dataset selection can dominate algorithmic differences (Schweighofer et al., 2022; Fu et al., 2021); actionable guidance for improving the data itself, however, remains scarce. Moreover, when probing effects of logging policies, prior work typically uses different categories of expertness where often the data of highest expertness is produced by an RL agent trained online (Fu et al., 2021). Although this schema is convenient, it could introduce a methodology bias: the generated trajectory inherits the exploration style and failure modes of the training algorithm, not those of deterministic, production-grade expert routines common in practice. Mixing datasets of different quality not only degenerates performance, it can also practically be infeasible to hand-off between policies. For instance, expert systems typically are deterministic, tightly scripted routines with internal states where decisions can depend on the entire trajectory of measurements. Inserting arbitrary policy actions in-between can invalidate the routine's assumptions and the expert may only be able to resume reliably if it restarts from the new state.

In this work, we want to understand how to design data-efficient RL methods for active positioning tasks that can effectively learn from suboptimal expert policies. Our key idea is to augment the

logging policy sparingly with actions proposed by an off-policy learner trained parallel to the data collection. The off-policy learner is trained in a way to explore shortcuts in the experts trajectories to make hand-offs seamless and effective.

1.1 Contributions

We develop *LIFT*, short for logging improvement via fine-tuned trajectories, a framework that comprises two complementary augmentation modes: First, we use a static trajectory augmentation, which applies structure-aware, trajectory-level perturbations – called *shortcuts* – to existing logs derived from task geometry. Second, we propose a policy-time augmentation, which intermittently injects admissible, optimistic actions during logging to create datasets that are easier to learn from offline. Specifically, we introduce a novel augmentation scheme (Section 4) that keeps the expert in charge while enabling optimistic probing to improve logged support. Moreover, we provide theoretical justification in Section 3 why and when perturbations are beneficial via geometric properties of value functions and movement dynamics. Finally, Section 5 presents a systematic study that underlines the strength and generality of our approach by analyzing the effect of the logging policy, transition behavior, dimensionality and informativeness of observations on policy performance across a diverse class of active positioning tasks. We implemented the shortcut augmentation in d3rlpy Seno & Imai (2022) following its transition picker protocol, which allows integrating our static augmentation method in any RL algorithm implemented in d3rlpy by adding one line of code¹.

1.2 RELATED WORK

A central challenge in offline RL is overestimating values for out-of-distribution actions. Methods address this either by constraining the learned policy toward the logging distribution or by learning pessimistic value functions. Representative approaches include behavior regularization via BC losses or divergence penalties, like in BCQ (Fujimoto et al., 2019), TD3+BC (Fujimoto & Gu, 2021; Tarasov et al., 2023) and pessimistic critics such as CQL (Kumar et al., 2020). Expectile-based policy extraction further avoids querying unseen actions, like IQL (Kostrikov et al., 2022). Despite strong results on benchmarks, several studies note that algorithm performance is highly sensitive to dataset composition, that is, mixing suboptimal trajectories with expert data can degrade CQL and related methods (Fu et al., 2021; Hong et al., 2023).

In most hybrid schemes, the learner stays in charge and the expert is queried only occasionally. Like in DAgger(Ross et al., 2011), that reduces imitation learning to no-regret online learning by iteratively collect data on the states visited by the learner and querying the expert for corrective labels. Methods depending on regularizations are sensitive to hyperparameters due to the additional complexity introduced during online training. Moreover, they often limit the policy to stay close to the behavior, for instance due to safety constraints, which can be detrimental if the behavior is highly suboptimal. Orthogonal to regularizing the learner and more relevant for our work is to permanently add offline data to the replay buffer and collecting new data online. Prior work shows that this, in combination with a careful sampling scheme and network architecture Ball et al. (2023) or policy regularizations Nair et al. (2018), can turn offline data into a strong initializer for online learning. Nevertheless, these methods still require rather long online fine-tuning or highquality offline datasets, neither of which is typically available in active positioning tasks. Another relevant line of work is to weave online transitions into logging policies as in iterative offline RL (IORL) (Zhang et al., 2023). Here, exploratory actions are injected to discover unexplored regions in state-action space while training an offline RL agent on the generated trajectories. This approach is elaborated more in Section 4. Our approach is similar in spirit, but instead of exploring we want to exploit shortcuts in the expert trajectories to make hand-offs seamless and effective.

2 ACTIVE POSITIONING

In this section, we introduce the specific framework for active positioning problems building upon the framework for active alignments introduced in Burkhardt et al. (2025). There, active positioning problems are modelled as an *episodic* and *contextual* POMDP Modi et al. (2018). Specifically, the

¹The implementations are among the supplemental material of this submission and will be made available on GitHub upon acceptance.

state is decomposed in the current position $s \in \mathcal{P}$ with \mathcal{P} a bounded subset of \mathbb{R}^m and a static context parameter $W \in \mathcal{W}$, that is $\mathcal{S} = \mathcal{P} \times \mathcal{W}$. The actions can be selected from a subset \mathcal{A} of \mathbb{R}^d . Applying an action $a \in \mathcal{A}$ at state (s, W) gives the new state (s', W) with s' = f(s, a, W), where $f: \mathcal{P} \times \mathcal{A} \times \mathcal{W} \to \mathbb{R}^d$ a parametrized distortion function. Typically, any position can be reached from any other position within one action. Note that in our scenarios, the action space is additive, meaning that the sum of two actions is itself an action if its in A. Throughout we assume that f(s, 0, W) = s. Our running example is $f(s, a, W) = s + W \cdot a$ with $W \in \mathbb{R}^{d \times d}$ a distortion matrix, like a rotation matrix, but we will also consider non-linear distortions. Importantly, as W stay constant throughout each episode, so is the extent of the distortion. One can think of W as variances introduced by the gripping of an object, variances within an object, or conditions of the goal to be reached. In each episode, the goal is to navigate from a random initial position s_0 and randomized context W to a terminal state $s_W \in \mathbb{R}^d$. The reward observed at state (s, W) is $R(s, a, W) = -\|f(s, a, w) - s_W\|$, i.e. the negative distance to the terminal state. An episode ends once the state is sufficiently close to s_W or an upper limit of steps is reached. Formally, we terminal states are all within the set $\{(s,W)\in S: \|s-s_W\|\leq \theta\}$. Typically, W cannot be observed directly, often even s cannot. Instead, an often high-dimensional and noised output $O_W(s) \in \mathcal{O}$ is observed, which is controlled by a conditional probability density function depending on s and W. In total, we call the tuple $(\mathcal{P}, \mathcal{W}, \mathcal{O}, f, \gamma)$ an active positioning problem. This framework covers various industrial use cases, from robot arm positioning, to active alignments of cameras or lasers.

Although active positioning problems can be considered as black-box optimization problems as well (see Burkhardt et al. (2025)), they are inherently RL problems where symmetries and shortcuts in the position space need to be actively explored. Typically, the observation space is highly symmetric, context-dependent, and non-injective. For instance, positions s,s' far apart can give very similar observations $O(s,W)\approx O(s',W)$ and same positions may give highly observations O(s,W) and O(s,W') in different contexts. In this RL formulation, the goal is to find a $policy \ \pi: \mathcal{A} \times \mathcal{O} \to \mathbb{R}$ mapping observations and actions to likelihoods in a way that maximizes the accumulated observed reward: The dynamics of the combined system works as follows. At a given state (s,W), data O(s,W) is sampled. Then, an action $a\in\mathcal{A}$ is sampled from the distribution $a\sim\pi(\cdot,O(s,W))$. From there, the system moves to the new state s'=f(s,a,W). Note that in this formation, a and s do not need to have same dimensionality. Starting from state $(s_0,W)\in\mathcal{S}$, the combined dynamics yields a trajectory $(s_0,W),\ldots,(s_k,W)$. The goal is to find a policy such that $J(\pi):=\mathbb{E}_{s_0,W}\left[\sum_{i=0}^k -\gamma^i\|s_i-s_W\|\right]$ is maximized, where $\gamma\in(0,1)$ is the discount factor given to tradeoff rewards in early and late states. Clearly, $J(\pi)=\mathbb{E}_{s_0,W}[V^\pi(s_0,W)]=\mathbb{E}_{s_0}[V^\pi(s_0)]$ with V^π the state-value function and $V^\pi(s):=\mathbb{E}_{W\sim\mathcal{W}}[V^\pi(s,W)]$. Similarly, we define the state-action value function $Q^\pi(s,a,W)$ and $Q^\pi(s,a)$.

3 THEORETIC CONSIDERATION OF SHORTCUT AUGMENTATIONS

In this section, we lay the theoretic foundation for our investigation of shortcut augmentations. All proofs are in Section A. We call a policy π distance-improving, if for all $W \in \mathcal{W}$ we have for two subsequent states (s_i, W) and (s_j, W) , with i < j visited by the policy that $\|s_j - s_W\| < \|s_i - s_W\|$. In other words, the reward along a trajectory of π is strictly increasing. In this section, we restrict to deterministic policies. Given the deterministic transition dynamics given by f, the value function $V^{\pi}(s, W)$ is exactly the return of π starting from (s, W).

Proposition 3.1. Let π be a distance-improving policy and $(s, W), (s', W) \in \mathcal{S}$ two states on a trajectory of π where (s, W) is visited prior to (s', W), then $\gamma V^{\pi}(s', W) - V^{\pi}(s, W) \geq \|s' - s_W\|$.

First, we define the key player of this paper:

Definition 3.1. Let π be a policy, $(s, W) \in \mathcal{S}$ a state, and $a \in \mathcal{A}$ an action with s' = f(s, a, W). If $\gamma V^{\pi}(s', W) - V^{\pi}(s, W) \ge ||s' - s_W||$, then is a is a π -shortcut at (s, W).

Note that shortcuts depend on the latent information W, not on the state alone. In fact, it is easy to show that mixing a policy π with its shortcuts yields an overall better policy:

Proposition 3.2. Let π and π' be two policies, then $J(\pi_{aug}) \geq J(\pi)$ with π_{aug} defined as follows:

$$\pi_{\mathrm{aug}}(O(s,W)) := \begin{cases} \pi'(O(s,W)) & \text{if } \pi'(O(s,W)) \text{ is a π-shortcut at } (s,W) \\ \pi(O(s,W)) & \text{otherwise} \end{cases}$$

The remainder of this section studies how to find shortcuts in offline trajectories. Combining Proposition 3.1 and Proposition 3.2 shows that augmenting trajectories of a policy with shortcuts and retraining yields an improved policy. For example, consider a short trajectory $(s_0, W), (s_1, W), (s_2, W)$ from a distance-improving policy π with actions a_0 and a_1 (Figure 1a). In principle, an action a with $s_2 = f(s_0, a, W)$ is a shortcut (Definition 3.1) and thus beneficial. However, due to distortion in f, we cannot assume $a = a_0 + a_1$, nor that applying $a_0 + a_1$ at s_0 will reach s_2 . We must ensure that $a_0 + a_1$ indeed leads near s_2 and that the value function remains stable in its vicinity. Formalizing this requires assumptions on both the dynamics f and the policy's value function. To illustrate, consider $f(s, a, W) = s + W \cdot a$ with $W \in \mathbb{R}^{m \times d}$. Here, trajectories can be augmented without placement errors:

Proposition 3.3. Let $f(s, a, W) = s + W \cdot a$ and let (s_i, W) and (s_j, W) with i < j on a trajectory of a distance improving policy π and a_i, \ldots, a_{j-1} the chain of actions π undertook to get from s_i to s_j . Then $a = \sum_{k=i}^{j-1} a_k$ is a shortcut for s_i .

Figure 1: Interactions of policy with movement dynamics.

Extending this to non-linear dynamics is not trivial. Generally, we want to have that then accumulating actions along a trajectory does not lead to too much placement uncertainty, which is typically the case in real-world positioning problems. We formalize this as follows:

Definition 3.2 (Linear placement-errors). A distortion function f has linear placement-errors (LPE) if there exists a constant L_f such that for any chain of actions a_0, \ldots, a_{k-1} with $\hat{a} := \sum_{i=0}^{k-1} a_i \in \mathcal{A}$ executed on (s_0, W) with $s_i = f(s_{i-1}, a_{i-1}, W)$, we have: $||f(s_0, \hat{a}, W) - s_k|| \le L_f \cdot \sum_{i=0}^{k-1} ||a_i||$.

Intuitively, the LPE property means that although a system distort movements, the mismatch introduced when regrouping actions cannot grow faster than linearly with the size of the path taken. This actually includes a wide range of functions where the distortion depends on the state only:

Proposition 3.4. Let $f(s, a, W) = s + g(s, W) \cdot a$ with $g : S \to \mathbb{R}^{m \times d}$ a bounded matrix-function. Then f has LPE with $L_f = 2 \cdot \sup_{S} \|g\|$.

As we will see, when the distortion term also depends on the action, i.e. g(s,a,W), things become more involved for small actions a even if g is bounded and LPE does not follow without additional assumptions (see Section 5.1.1). The next Proposition B.1 introduces an even stronger property which suffice to show LPE for distortion functions of common active positioning problems, like linear movement dynamics of the form f(s,a,W) = s + Wa, where we can directly follow that f has LPE with $L_f = 0$. We call a value function $V: \mathcal{S} \to \mathbb{R}$ L_V -Lipschitz continuous if for all $(s,W),(s',W) \in \mathcal{S}$ we have $|V(s,W) - V(s',W)| \le L_V \cdot ||s-s'||$. The LPE property gives the final ingredient to prove our main statement:

Theorem 3.5. Let π be distance improving and assume that V^{π} is L_V -Lipschitz continuous and L_f -placement errors. Let (s_i, W) and (s_j, W) on a trajectory of π and let $a = \sum_{k=i}^{j-1} a_k$ be the sum of the chain of actions π undertook to get from s_i to s_j . Then a is a π -shortcut for s_i if

$$\gamma \cdot V^{\pi}(s_j, W) - V^{\pi}(s_i, W) - \|s_j - s_W\| \ge (\gamma \cdot L_V + 1) \cdot L_f \cdot \sum_{k=i}^{j-1} \|a_k\|.$$

In some sense, Proposition 3.3 for movement dynamics of the form $f(s,a,W)=s+W\cdot a$ arises as a special case of Theorem 3.5 because $L_f=0$ implies that the right-hand side becomes 0 and the left-hand side is always non-negative due to Proposition 3.1. However, we note that Theorem 3.5 requires V^{π} to be Lipschitz continuous, which is not needed in Proposition 3.3.

So far, we have not made any direct assumptions on policy π beside being distance improving and V^{π} being Lipschitz continuous. The next condition helps to ensure that V^{π} is indeed Lipschitz continuous (see Proposition A.2 in Section A), which requires a beneficial interplay with f:

Definition 3.3 (f-contraction). We call a policy π an f-contraction if for all pairs (s, W), (s', W) with respective observations with o = O(s, W) and o' = O(s', W), we have

$$||f(s,\pi(o),W) - f(s',\pi(o'),W)|| \le ||s-s'||.$$

Corollary 3.6. Let π be distance improving f-contraction and let f have LPE with constant L_f . Let (s_i, W) and (s_j, W) on a trajectory of π and let $a = \sum_{k=1}^{j-1} a_k$ be the sum of the chain of actions π undertook to get from s_i to s_j . Then a is a shortcut for s_i if

$$\gamma \cdot V^{\pi}(s_j, W) - V^{\pi}(s_i, W) - ||s_j - s_W|| \ge \frac{L_f}{1 - \gamma} \cdot \sum_{k=i}^{j-1} ||a_k||$$

Being an f-contraction is a stronger requirement than mere distance improvement. We refer to Section B.2 for a discussion and examples of f-contractions and Lipschitz value functions in real-world policies. In practice, many active positioning policies do not satisfy the contraction property globally, yet this is not required for identifying useful shortcuts.

4 LOGGING IMPROVEMENTS VIA FINE-TUNED TRAJECTORIES

Theorem 3.5 gives a theoretical condition when and how to augment a collected trajectory $(o_0, a_0, r_0), \ldots, (o_n, a_n, r_n)$ with latent states $s_i = f(s_{i-1}, a_{i-1}, W)$, observations $o_i = \mathcal{O}(s_i, W)$, rewards $r_i = -\|s_{i+1} - s_W\|$, and actions $a_i = \pi_\beta(o_i)$ from a logging policy π_β . To convey them into a practical algorithm, let $C \in \mathbb{R}_{\geq 0}$ be a constant and let $G_i = V^{\pi}(s_i, W) = \sum_{k=i}^n \gamma^{k-i} r_k$ be the returns of π_{β} . Now, take any pair (i,j) with i < j, let $\hat{a} = \sum_{k=i}^{j-1} a_i$ be a shortcut candidate and check if $\gamma G_j - G_i + r_{j-1} \ge C \cdot \sum_{k=i}^{j-1} \|a_k\|$ with some constant C holds true. Clearly, without prior information on f and f. information on f and π_{β} , the exact value of C remains unclear, and thus it has to be considered a regularization hyperparameter of our method. If C=0, all pairs are considered shortcuts, if C is large, only very few pairs where high reward is gained in a few short steps are considered shortcuts. If the inequality is valid for (i, j), we can assume that \hat{a} is a shortcut and ideally, we would add the tuple $(o_i, \hat{a}, -\|s'_j - s_W\|, o'_j)$ with $s'_j = f(s_i, \hat{a}, W)$ and $o'_j = O(s'_j, W)$ to the dataset. However, due to the movement uncertainty, there is a gap between the position s'_j the shortcut leads to and the observed state s_j . Particularly, the image observation $O(s_i', W)$ and the reward $-\|s_i' - s_W\|$ differ from the actually observed ones, namely o_j and r_{j-1} . We argue, however, that in many practical applications, this gap is small and actually not present, for instance if $L_f = 0$ as in linear movement dynamics $f(s, a, W) = s + W \cdot a$ (see Proposition 3.3). Thus, we add the tuple (o_i, a, r_{i-1}, o_i) to the training dataset. Algorithm 1 summarizes our shortcut sampling procedure, and we want to emphasize that it can be added to any offline RL method that samples from an offline dataset, like to minimize the Bellman error or related temporal difference errors as in CQL.

In general, augmentations in pure offline settings have to be done with care, as updating Q-functions on unseen state-action pairs can lead to overestimation errors. Although we will see in Section 5 that shortcut augmentations have a positive effect in pure offline settings for active positioning, we think they nicely integrate in the iterative offline RL framework recently proposed in Zhang et al. (2023). Here, an $\mathit{uncertainty model}\ E_{\theta}(s,a)$ is trained with $E_{\theta}(s,\cdot)$ a probability distribution on \mathcal{A} for each $s \in S$. Given a dataset D, E_{θ} is trained by minimizing $\mathbb{E}_{(o,a)\sim D}\big[-\log(E_{\theta}(s,a))+\mathcal{R}(\theta)\big]$ with $\mathcal{R}(\theta)$ a regularization term. Intuitively, $E_{\theta}(s,a)$ can be seen as the probability that action a has been seen for state s in s. Actions with small probability s at state s are considered as exploratory action and should be selected according to some fixed probability s enriching a given logging policy s during roleout. These s exploratory actions are rather rare and thus help keeping the system save and naturally close to the logging policy s that generated the data. We build upon this idea, but instead of selecting actions that have not been seen in the data, we advocate to train a s-function s0 on some initial dataset s1 and select actions having high s2-values. Formally, we set s3 and s4 that, we aim to enrich the dataset with actions that are likely to be beneficial for s4 in the

sense of higher returns. For that, they must have good hand-over properties and thus we augment the dataset D with shortcuts computed via Algorithm 1 when training Q_{θ} . Note that here, the synthetic shortcuts are only used to obtain Q_{θ} , which in turn is only used to fine-tune the logging policy, and the collected dataset consists of real data only. The precise procedure is described in Algorithm 2.

Algorithm 1: Shortcut sampling

270

271

272

273

274275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

295296

297298

299

300

301

302303304

305

306

307

308

309

310

311 312

313 314

315

316

317

318

319 320 321

322

323

```
Input
             : C \ge 0, i \in [n], \text{ trajectory}
                \{(o_0, a_0, r_0), \dots, (o_n, a_n, r_n)\}
Output: Tuple (o_i, \hat{a}, r_{j-1}, o_j)
Compute returns G_0 \dots, G_n for
 trajectory
S = \{\}
for j = i + 1 \cdots n do
     \hat{a} \leftarrow \sum_{k=i}^{j-1} a_k
     if \gamma G_j - G_i \ge C \cdot \sum_{k=i}^{j-1} \|a_k\| and \hat{a} \in \mathcal{A} then
       Add (o_i, \hat{a}, r_{j-1}, o_j) to S
Let m = |S| and denote \hat{r} = (\hat{r}_1, \dots, \hat{r}_m)
 the rewards of the tuples in S
Let p \sim \hat{r} - \min \hat{r} a mass function
Sample (o_i, \hat{a}, r_{j-1}, o_j) from S w.r.t. p
return (o_i, \hat{a}, r_{i-1}, o_i)
```

```
Algorithm 2: LIFT
```

```
Input
           : Logging policy \pi_{\beta}, n \in \mathbb{N},
             augmentor a_{\theta}, p \in [0, 1]
Output: Dataset D with n trajectories
Initialize: D = \{\}
repeat
    Sample o_0 from environment
    Set d = \text{false}, \tau = (), i = 0
    while d is false do
         a_i = \pi_\beta(o_i)
         if p' \leq p with then
             a_i = a_\theta(o_i, a_i)
              o_{i+1}, r_i, d = \text{env.step}(a_i)
              Reset \pi_{\beta} at o_{i+1} (if necessary)
             o_{i+1}, r_i, d = \text{env.step}(a_i)
         Add (o_i, a_i, r_i) to \tau, i = i + 1
    Add Trajectory \tau to D
    if train augmentor then
         Train a_{\theta} on D with with Algorithm 1
until |D| = n
return D
```

5 EXPERIMENTS

Our experiments to evaluate LIFT for active positioning problems address two main questions: First, can shortcut augmentations improve pure offline RL, and second, can they be leveraged during data collection by training a Q-based augmentor in comparison to warm-start RL? To this end, we test different distortion functions f (Section 5.1.1), observation types \mathcal{O} (Section 5.2.1), and levels of expertness of the logging policies (Section 5.2).

5.1 Environments

In order to analyze different movement distortions and observation types in isolation, we conducted our experiments in semi-realistic active positioning environments. These environments are designed to keep real world characteristics and entail small sim-to-real gaps. Throughout, we use $-\|s-s_W\|$ as reward signal. In trainings in simulated environments, this reward signal is easy to compute, as one typically has access to latent information (s, W). In real systems, on the other hand, this signal needs to be added in hindsight once an episode is finished using a logging policy able to find s_W .

5.1.1 MOVEMENT DISTORTIONS

We consider different movement distortions, some of them have linear forms, like $f_{\rm blend}$ and $f_{\rm rot}$ both with $L_f=0$. We also use non-linear distortions, like $f_{\rm scale}$ and $f_{\rm sin}$ which have LPE with $L_f>0$ and one non-continuous distortion $f_{\rm regrot}$ also having LPE which is not contracting. We also test a movement dynamics, called $f_{\rm sqrt}$, that does not satisfy the LPE property. We refer to Section B for their precise mathematical definitions and corresponding proofs of their properties. Figure 3 illustrates an overview of the different distortions in two dimensions.

5.2 LOGGING POLICIES

Algorithms for active alignments do not follow a general recipe, but rather depend on the specific application. Alignments of optical systems, for instance, have traditionally relied on iterative opti-

mization of measured performance signals such as coupling efficiency or spot quality, where actuators are moved sequentially or in small patterns and the response is evaluated to guide subsequent steps, typically following coordinate-descent or heuristic search strategies that explore one or more degrees of freedom at a time (Parks, 2006; An et al., 2021; Langehanenberg et al., 2015).

Typically, the alignment starts with coarse steps and reduces the step size later, for instance (Liu et al., 2024, Section 3.1) for camera assembly. We have distilled the common principles into a synthetic logging policy called *coordinate walk*, $\pi_{\mathrm{cw},l}$ that follows a structured coordinate walk with step size l. This allows us to control the level of expertness of the logging policy and thus the quality of the collected data. Our synthetic position policy knows the location of s_W , but can only reach it via a path that is suboptimal in both, number of steps and direction. More precisely, it sequentially moves along individual coordinates of the positions $s \in \mathcal{P} \subset \mathbb{R}^m$ by choosing actions $a \in \mathcal{A}$ along unit vectors until s_i matches

Figure 2: Expertness of $\pi_{\text{cw},l}$.

 $(s_W)_i$. Once a dimension is traversed, the policy cycles to the next coordinate and continues this procedure, thereby producing a structured, axis-aligned walk toward the optimum. If all dimensions have been optimized, the step size l is halved. By varying the initial step size, the expertness of the logging policy can be adjusted (see Figure 2). Figure 7 shows trajectories of the coordinate walk executed under different movement distortions. To model realistic hand-overs between logging policies and augmentors, we assume the internal state of the policy, i.e. the current step size l and dimensions already optimized, is reset to the initial values once the policy is reset. To not make our mathematical framework introduced in Section 3 too specific for these types of resets, we assume stateless policies there. For most states, $V^{\pi_{l_2}}(s,W) \geq V^{\pi_{l_1}}(s,W)$ for two step sizes $l_1 < l_2$ holds true and thus Theorem 3.5 still hold in this specific application. However, restarting may also have catastrophic effects, for instance if s is already very close to s_W and resetting the step size may lead to an overshoot. In Section B.2, a discussion about the contraction and Lipschitz-property of the coordinate walk is given.

Figure 3: Movement distortions used when applying actions $\operatorname{clip}_{\lambda}(s_W - s)$.

5.2.1 Observations

A canonical type of observation is when the position can be observed directly, i.e., $\mathcal{O}_{PO}(s,W)=s$. Here, we have to fix optimum $s_W=s^*$ throughout, as otherwise it is impossible to infer where the optimum should be without observing information about W. Roughly speaking, these are scenarios where it is known where the optimum is, but not how to get there through the movement distortion. We will evaluate these scenarios in d=2 and d=5 dimensions. Our motivation original contents of the conte

Figure 4: Exemplary trajectories of $\pi_{\text{cw},l}$ executed in \mathcal{O}_{LP} (top) and \mathcal{O}_{LT} (bottom).

inally stems from scenarios where observations are drawn from optical sensors and hence we test our method on different image generators. The first comes from active alignments problems from camera assembly, were a lens objective has to be positioned relative to a sensor to obtain optimal optical performance Liu et al. (2024). Here, s relates to the position of the lens objective and W to variances in the lens system the objective is decomposed and distortions in the movement dynamics. At each position s, collimated light is sent through the lens system creating an image $\mathcal{O}_{LP}(s,W)$ on a sensor. The task is to position the objective with variances W precisely to an individual optimum s_W . As some information about W is contained in the image implicitly, it is possible to design algorithms that leverage the image information to move towards s_W . We use the semi-realistic generator from Burkhardt et al. (2025) where light is sent out in the form of a *Siemens star*.

Our second image generator is the *light tunnel* from Gamella et al. (2025), where light is sent from a source through two polarizers whose angles dictate how light passes through to an optical sensor. Here, each position s of the polarizers filters out certain wavelengths of the light creating a image $\mathcal{I}(s)$ at the sensor. Here, the image observation does not on depend on the context W and essentially only on the relative difference of the angles of the polarizers, i.e. many states lead to the same image. To add some context, we sample in each episode s_W uniformly from the box $[0, 2\pi]^2$ and set $\mathcal{O}_{LT}(s,W)=\mathcal{I}(s)-\mathcal{I}(s_W)$. In our experiments, we use the decoder of the autoencoder trained on images from the real system provided in the data repository of Gamella et al. (2025). Figure 4 shows exemplary trajectories of the coordinate walk in these two scenarios.

5.3 RESULTS

Our approach from Section 4 gives rise to essential two algorithms. First, a purely offline one that takes a static dataset collected from some logging policy and trains an offline RL algorithm with shortcut augmentations. In our experiments, we use CQL and denote this algorithm as CQL-SC. Second, an iterative offline RL algorithm that collects data with an augmented logging policy where CQL is trained on the collected data, called LIFT. If the subsequently trained CQL also uses shortcuts, we denote this algorithm as LIFT-SC. By default, we use Algorithm 2 with p=0.6, limit augmentations per trajectory to 20. A detailed hyperparameter analysis is given in Section C.1.

First, we want to analyze the effect of different augmentations while collecting data and the effect of using shortcuts in the CQL training afterward. Beside canonical augmentations like adding noise $\pi_{\beta}(o) + \epsilon$ with $\epsilon \sim \mathcal{N}^d(0,\sigma)$, or randomly scaling actions $\pi_{\beta}(o) \cdot \epsilon$ with $\epsilon = \exp(\eta) \cdot 2$, $\eta \sim \mathcal{N}(0,\sigma)$, we also use random actions in the sense of uniform samples from \mathcal{A} and IORL-like augmentation based on an uncertainty model as in Zhang et al. (2023). We run these experiments in $(\mathcal{O}_{PO}, f_{blend})$ with step size 0.025 in d=5 dimensions, collected 3 independent datasets consisting of 100 trajectories each and trained 3 independent CQL policies on each of them. The LIFT augmentor is trained once after 50 trajectories.

The averaged convergences to s_W of the CQL policies, each evaluated on 20 randomly drawn contexts are shown in Figure 5a. Here, we see that, independently of shortcuts are used in the training afterward, the best CQL policies can be obtained when trained on the data collected with LIFT. Moreover, we see that when training takes place with shortcuts, every policy can be improved. This finding is underpinned when computing the dataset characteristics introduced in Schweighofer et al. (2022) shown in Figure 5b. LIFT creates trajectories having the highest average returns reproducing findings in Schweighofer et al. (2022) that this correlates with CQL performance. On the other hand, LIFT does not explore the space as good as

	.0125	.025	.05	.1
$f_{ m blend}$	•	•	•	•
$f_{ m scale}$	•	•	•	•
$f_{ m rot}$	•	•	•	•
$f_{ m regrot}$	•			
$f_{\rm sin}$	•	•	•	•
$f_{ m sqrt}$		•	•	•

Table 1: Cases where LIFT-SC outperforms SAC baseline in \mathcal{O}_{PO} , d=5.

other methods, showing a clear differentiation to IORL that has been explicitly designed to explore well. However, high exploration comes at the price of an impeded hand-off back to the logging policy, leading to low trajectory qualities for IORL and random actions.

In our second type of experiments, we want to evaluate how our methods compare under different movement distortions and observation types. In \mathcal{O}_{PO} , algorithms collect a total of n=100 and n=500 trajectories for d=2 and d=5 respectively, where the LIFT augmentor is trained once after 50 and 100 collected trajectories respectively. In \mathcal{O}_{LP} , we collect 500 trajectories and LIFT is trained once after 100 episodes. In \mathcal{O}_{LT} , we collect only 100 trajectories and LIFT is trained once after 50 collected trajectories. Here, we additionally compare to SAC Haarnoja et al. (2018)

Figure 5: Experiments in $(\mathcal{O}_{PO}, f_{blend})$ with step size 0.025 with d = 5.

trained with a mixture of offline and online data as done in warm-start RL that is restricted to the same number of trajectories as in our offline datasets. Specifically, in a scenario with n many episodes, the replay buffer of SAC is initialized with the same number of trajectories collected by the logging policy the LIFT augmentor obtains in training, e.g. m=50 for \mathcal{O}_{LT} . Figure 6 presents selected comparisons across the multiple scenarios and all comparisons can be found in Section C. In all tested environments, we see that CQL policies trained offline on data from LIFT (blue) have better performance than these trained on unaugmented data from the logging policy (green). This effect fades a bit when adding shortcuts to the subsequent offline training: In most scenarios, the performance of LIFT-SC is better or equal than CQL-SC. This is, for instance, not the case in when using image data from \mathcal{O}_{LP} , where CQL training on data obtained from LIFT-SC showed high variance. Studying the effect of shortcuts in isolation, CQL-SC consistently outperforms CQL and LIFT-SC consistently outperforms LIFT, making LIFT-SC the best of our methods. Comparing LIFT-SC to the SAC with offline data, we see a clear picture: SAC stays ahead in all low-dimensional cases for \mathcal{O}_{PO} with d=2, and LIFT-SC outperforms SAC almost consistently over all movement dynamics and expert-levels of the logging policy in \mathcal{O}_{PO} for d=5 (see Table 1), as well as in both image-based scenarios. Interestingly, for f_{regrot} where the contraction property is violated, augmentations with shortcut fail where in f_{sqrt} , where LPE does not hold, augmentations still help but the advantage over SAC is almost negligible.

Figure 6: Comparisons of our methods under various distortions and observation types.

6 DISCUSSION

We demonstrate that shortcut augmentations can consistently improve the effectiveness of offline RL in active positioning problems in both, theoretical and experimental validations. In particular, we find that augmentations provide the largest gains in complex scenarios with higher action dimensionality or partial observability, where plain offline RL often fails. This suggests that exploiting task structure to expand data coverage is a promising alternative to relying solely on behavior regularization. Compared to warm-start RL, LIFT offers a more data-efficient way to leverage suboptimal expert routines: by selectively taking shortcuts suggested by an off-policy learner, we improve dataset quality without requiring extensive online fine-tuning.

Nevertheless, our approach has limitations. Shortcut validity depends on assumptions about the distortion function and value function regularity, which may not hold in all real-world positioning systems. Moreover, our experiments are limited to semi-realistic simulators; future work should validate these methods on physical platforms, especially in robotic alignment tasks. Another open question is how to combine shortcut augmentation with model-based methods or world models to further improve sample efficiency. We believe that the principles underlying LIFT are broadly applicable in robotics and other domains beyond active positioning tasks where expert routines exist but are suboptimal. We hope this work encourages a more systematic treatment of data augmentation strategies for offline RL in structured industrial tasks.

ETHICS STATEMENT

This work investigates RL methods for active positioning problems, with a particular focus on data augmentation for improving offline policy learning. Our experiments are conducted exclusively in simulated environments and do not involve human subjects, personal data, or sensitive information. The proposed methods are designed for applications such as optical alignment and robotic positioning in industrial settings, where potential impacts include increased energy efficiency and reduced material waste through more accurate and reliable automation. We do not anticipate any direct negative societal consequences of this research. However, as with any advancement in machine learning for automation, care should be taken to ensure that these methods are deployed in ways that complement human expertise and respect workplace safety standards.

REPRODUCIBILITY STATEMENT

All proofs for the theoretical results in Section 3 are provided in Section A. The mathematical properties of the movement distortions used in our experiments in Section 5 are given in Section B. Further implementation details and results of all benchmarks of our experimental validation from Section 5, can be found in Section C. The implementations of our experiments are among the supplemental material of this submission and will be made available on GitHub upon acceptance.

LLM STATEMENT

Large language models (LLMs) were used to refine the manuscript's language, particularly to streamline paragraphs, improve reading flow and grammar using original drafts as input, streamlining and refining mathematical expressions, and helped to address LaTeX-specific issues. Moreover, they provided to refine the mathematical definitions of some movement distortions and polishing a lengthy proof via induction for Proposition 3.4. They also assisted in summarizing related work and provided guidance on the experimental code (e.g., refactoring and debugging hints). All outputs were reviewed and edited by the authors, who take full responsibility for the final content.

REFERENCES

- Qichang An, Xiaoxia Wu, Xudong Lin, Jianli Wang, Tao Chen, Jingxu Zhang, Hongwen Li, Haifeng Cao, Jing Tang, Ningxin Guo, and Hongchao Zhao. Alignment of decam-like large survey telescope for real-time active optics and error analysis. *Optics Communications*, 484:126685, 2021. ISSN 0030-4018. doi: https://doi.org/10.1016/j.optcom.2020.126685. URL https://www.sciencedirect.com/science/article/pii/S0030401820311032.
- Philip J. Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning with offline data. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 1577–1594. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/ball23a.html.
- K. Bräuniger, D. Stickler, D. Winters, C. Volmer, M. Jahn, and S. Krey. Automated assembly of camera modules using active alignment with up to six degrees of freedom. In Yakov G. Soskind and Craig Olson (eds.), *Photonic Instrumentation Engineering*, volume 8992, pp. 89920F. International Society for Optics and Photonics, SPIE, 2014. doi: 10.1117/12.2041754. URL https://doi.org/10.1117/12.2041754.
- Matthias Burkhardt, Tobias Schmähling, Pascal Stegmann, Michael Layh, and Tobias Windisch. Active alignments of lens systems with reinforcement learning, 2025. URL https://arxiv.org/abs/2503.02075.
- Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep data-driven reinforcement learning, 2021. URL https://arxiv.org/abs/2004.07219.
- Scott Fujimoto and Shixiang Gu. A minimalist approach to offline reinforcement learning. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural*

Information Processing Systems, 2021. URL https://openreview.net/forum?id=Q32U7dzWXpc.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without exploration. In *International Conference on Machine Learning*, pp. 2052–2062, 2019.

- Juan L. Gamella, Jonas Peters, and Peter B"uhlmann. Causal chambers as a real-world physical testbed for AI methodology. *Nature Machine Intelligence*, 2025. doi: 10.1038/s42256-024-00964-x.
- Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy and Andreas Krause (eds.), *Proceedings of the 35th International Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*, pp. 1861–1870. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/haarnoja18b.html.
- Zhang-Wei Hong, Pulkit Agrawal, Remi Tachet des Combes, and Romain Laroche. Harnessing mixed offline reinforcement learning datasets via trajectory weighting. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=OhUAblg27z.
- Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-learning. In *International Conference on Learning Representations*, 2022. URL https://openreview.net/forum?id=68n2s9ZJWF8.
- Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 1179–1191. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf.
- Patrik Langehanenberg, Josef Heinisch, Chrisitan Wilde, Felix Hahne, and Bernd Lüerß. Strategies for active alignment of lenses. In Julie L. Bentley and Sebastian Stoebenau (eds.), *Optifab* 2015, volume 9633, pp. 963314. International Society for Optics and Photonics, SPIE, 2015. doi: 10. 1117/12.2195936. URL https://doi.org/10.1117/12.2195936.
- Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review, and perspectives on open problems, 2020. URL https://arxiv.org/abs/2005.01643.
- Haibin Liu, Wenyong Li, Shaohua Gao, Qi Jiang, Lei Sun, Benhao Zhang, Liefeng Zhao, Jiahuang Zhang, and Kaiwei Wang. Application of deep learning in active alignment leads to higherfliciency and accurate camera lens assembly. *Opt. Express*, 32(25):43834–43849, Dec 2024. doi: 10.1364/OE.537241. URL https://opg.optica.org/oe/abstract.cfm?URI=oe-32-25-43834.
- Aditya Modi, Nan Jiang, Satinder Singh, and Ambuj Tewari. Markov decision processes with continuous side information. In Firdaus Janoos, Mehryar Mohri, and Karthik Sridharan (eds.), *Proceedings of Algorithmic Learning Theory*, volume 83 of *Proceedings of Machine Learning Research*, pp. 597–618. PMLR, 07–09 Apr 2018. URL https://proceedings.mlr.press/v83/modi18a.html.
- Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Overcoming exploration in reinforcement learning with demonstrations. In *2018 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 6292–6299, 2018. doi: 10.1109/ICRA.2018. 8463162.
- Robert E. Parks. Alignment of optical systems. In *International Optical Design*, pp. MB4. Optica Publishing Group, 2006. doi: 10.1364/IODC.2006.MB4. URL https://opg.optica.org/abstract.cfm?URI=IODC-2006-MB4.

Ildar Rakhmatulin, Donald Risbridger, Richard M. Carter, M.J. Daniel Esser, and Mustafa Suphi Erden. A review of automation of laser optics alignment with a focus on machine learning applications. *Optics and Lasers in Engineering*, 173:107923, 2024. ISSN 0143-8166. doi: https://doi.org/10.1016/j.optlaseng.2023.107923. URL https://www.sciencedirect.com/science/article/pii/S0143816623004529.

Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured prediction to no-regret online learning. In Geoffrey Gordon, David Dunson, and Miroslav Dudík (eds.), *Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics*, volume 15 of *Proceedings of Machine Learning Research*, pp. 627–635, Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR. URL https://proceedings.mlr.press/v15/ross11a.html.

Kajetan Schweighofer, Marius-constantin Dinu, Andreas Radler, Markus Hofmarcher, Vihang Prakash Patil, Angela Bitto-nemling, Hamid Eghbal-zadeh, and Sepp Hochreiter. A dataset perspective on offline reinforcement learning. In Sarath Chandar, Razvan Pascanu, and Doina Precup (eds.), *Proceedings of The 1st Conference on Lifelong Learning Agents*, volume 199 of *Proceedings of Machine Learning Research*, pp. 470–517. PMLR, 22–24 Aug 2022. URL https://proceedings.mlr.press/v199/schweighofer22a.html.

Takuma Seno and Michita Imai. d3rlpy: An offline deep reinforcement learning library. *Journal of Machine Learning Research*, 23(315):1–20, 2022. URL http://jmlr.org/papers/v23/22-0017.html.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the minimalist approach to offline reinforcement learning. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=vqGWslLeEw.

Robert Upton, Thomas Rimmele, and Robert Hubbard. Active optical alignment of the Advanced Technology Solar Telescope. In Martin J. Cullum and George Z. Angeli (eds.), *Modeling, Systems Engineering, and Project Management for Astronomy II*, volume 6271, pp. 62710R. International Society for Optics and Photonics, SPIE, 2006. doi: 10.1117/12.671826. URL https://doi.org/10.1117/12.671826.

Lan Zhang, Luigi Franco Tedesco, Pankaj Rajak, Youcef Zemmouri, and Hakan Brunzell. Active learning for iterative offline reinforcement learning. In *NeurIPS 2023 Workshop on Adaptive Experimental Design and Active Learning in the Real World*, 2023. URL https://openreview.net/forum?id=yuJEkWSkTN.

A PROOFS FOR SECTION 3

Lemma A.1. Let π be distance-improving, then $(1-\gamma)V^{\pi}(s,W) \geq -\|s-s_W\|$ for all (s,W).

Proof. Let $(s_0, W), (s_1, W), \ldots, (s_k, W)$ be a trajectory of π starting at $s = s_0$, then

$$V^{\pi}(s,W) = -\sum_{i=1}^{k} \gamma^{i-1} \|s_i - s_W\| \ge -\|s - s_W\| \sum_{i=0}^{k-1} \gamma^i = -\|s - s_W\| \cdot \frac{1 - \gamma^k}{1 - \gamma}$$

where we have used that π is distance improving in every step. Finally, $(1-\gamma)V^{\pi}(s,W) \geq -\|s-s_W\|(1-\gamma^k) \geq -\|s-s_W\|$.

Proof of Proposition 3.1. Assume that $\tau = (s_0, \dots, s_k)$ is the sub-trajectory of π starting at $s = s_0$ and ending at $s' = s_k$. We prove the statement via induction on k. Note that since $s' \neq s$, we have $k \geq 1$. Let k = 1, then

$$V^{\pi}(s, W) = -\|s_1 - s_W\| + \gamma \cdot V^{\pi}(s', W)$$

and the claim holds. Now, assume the statement holds from s_1 to $s_k = s'$, then

$$\gamma V^{\pi}(s', W) - V^{\pi}(s_1, W) \ge ||s' - s_W||$$

by the induction hypothesis. Furthermore, we have

$$\gamma V^{\pi}(s', W) - V^{\pi}(s, W) = \gamma V^{\pi}(s', W) - V^{\pi}(s_1, W) + V^{\pi}(s_1, W) - V^{\pi}(s, W)$$

$$\geq \|s' - s_W\| + V^{\pi}(s_1, W) - V^{\pi}(s, W)$$

$$= \|s' - s_W\| + V^{\pi}(s_1, W) - (-\|s_1 - s_W\| + \gamma V^{\pi}(s_1, W))$$

$$= \|s' - s_W\| + (1 - \gamma)V^{\pi}(s_1, W) + \|s_1 - s_W\|$$

Using Lemma A.1, we have $(1-\gamma)V^{\pi}(s_1,W) + ||s_1-s_W|| \ge 0$ and the claim follows.

Proof of Proposition 3.2. It suffices to show that the statement holds if augmentation only is applied at one single state (\tilde{s}, W) . That is, there exists an action a that satisfies:

$$\gamma \cdot V^{\pi}(f(\tilde{s}, a, W), W) - \|f(\tilde{s}, a, W) - s_W\| \ge V^{\pi}(\tilde{s}, W)$$

Let π_a be the policy that uses a at \tilde{s} and on all other states coincides with π . First, we show that $J(\pi_a) \geq J(\pi)$. It suffices to show that $V^{\pi_a}(s) \geq V^{\pi}(s)$ for all $s \in S$. Let (s,W) be an initial state. If the trajectory of π does not traverse \tilde{s} , then $V^{\pi_a}(s) = V^{\pi}(s)$. Assume differently that the trajectory visits \tilde{s} at the t-th step. Then, the trajectory starting at s follows π till \tilde{s} , then chooses the shortcut a, and then follows π from $s' = f(\tilde{s}, a, W)$. The value for this trajectory is:

$$V^{\pi_a}(s, W) = V^{\pi}(s, W) - \gamma^t \cdot V^{\pi}(\tilde{s}, W) - \gamma^t \|s' - s_W\| + \gamma^{t+1} V^{\pi}(s', W).$$

From the assumption of (\tilde{s}, a) , we have

$$\gamma^t\cdot (-V^\pi(\tilde s,W)-\|s'-s_W\|+\gamma\cdot V^\pi(s',W))\geq 0$$
 and hence $V^{\pi_a}(s,W)\geq V^\pi(s,W).$ \qed

Proof of Proposition 3.3. Since Proposition 3.1 gives that $\gamma V^{\pi}(s_j, W) - V^{\pi}(s_i, W) \ge ||s_j - s_W||$, it is left to prove that $f(s_i, a, W) = s_j$. We have

$$f(s_i, a, W) = s_i + W \cdot \sum_{i=1}^{j-1} a_i = s_i + W \cdot a_i + W \cdot a_{i+1} + \dots + W \cdot a_{j-1}.$$

Let s_{i+1}, \ldots, s_{j-2} be the intermediate states, i.e. $s_k = f(s_{k-1}, a_{k-1}, W)$, then replacing $s_k = s_k - 1 + W \cdot a_{k-1}$ in the equation above from k = i to k = j - 1 gives the claim.

Proof of Proposition 3.4. Let a_0, \ldots, a_{k-1} a chain of actions and set $A = \sum_{i=0}^{k-1} = a_i$, (s_0, W) an initial state and set $s_i = f(s_{i-1}, a_{i-1}, W)$. Recursively unraveling the definition of f yields

$$s_k = s_0 + \sum_{i=0} g(s_i, W) \cdot a_i$$

and consequently

$$f(s_0, A, W) - s_k = g(s_0, W) \sum_{i=0}^{k-1} a_i - \sum_{i=0}^{k-1} g(s_i, W)) a_i$$
$$= \sum_{i=0}^{k-1} (g(s_0, W) - g(s_i, W)) a_i.$$

Taking norms and using the induced matrix norm on $\mathbb{R}^{m \times d}$ gives

$$||f(s_0, A, W) - s_k|| \le \sum_{i=0}^{k-1} ||g(s_0, W) - g(s_i, W)|| \cdot ||a_i||.$$

By the assumption on g, we have

$$||g(s_0, W) - g(s_i, W)|| \le ||g(s_0, W)|| + ||g(s_i, W)|| \le 2 \cdot \sup_{S \times W} ||g||$$

independently of the actions for all i and the claim follows.

Proof of Theorem 3.5. For brevity, we omit W in the notation of the value function. We have to show that $\gamma V^{\pi}(f(s_i,a,W)) - V^{\pi}(s_i) \geq \|f(s_i,a,W) - s_W\|$. Because f has linear-placement errors, it follows directly from Definition 3.2 that $\|f(s_i,a,W) - s_i\| \leq L_f \cdot \sum_{k=1}^{j-1} \|a_k\|$ and thus

$$||f(s_i, a, W) - s_W|| = ||f(s_i, a, W) - s_j + s_j - s_W|| \le L_f \cdot \sum_{k=i}^{j-1} ||a_k|| + ||s_j - s_W||.$$

On the other hand, using the Lipschitz continuity of V^{π} , we get

$$\gamma V^{\pi}(f(s_i, a, W)) - V^{\pi}(s_i) \ge \gamma \cdot (V^{\pi}(s_j) - L_V \cdot ||f(s_i, a, W) - s_j||) - V^{\pi}(s_i)$$

$$\ge \gamma \cdot V^{\pi}(s_j) - V^{\pi}(s_i) - \gamma \cdot L_V \cdot L_f \cdot \sum_{k=1}^{j-1} ||a_k||$$

Now, as the inequality from the theorem statement holds, we have

$$\gamma \cdot V^{\pi}(s_j) - V^{\pi}(s_i) \ge (\gamma \cdot L_V + 1) \cdot L_f \cdot \sum_{k=i}^{j-1} ||a_k|| + ||s_j - s_W||$$

and plugging this into the upper equation gives the claim.

Proposition A.2. Let π be an f-contraction. Then V^{π} is $\frac{1}{1-\gamma}$ -Lipschitz continuous in the states.

Proof. Define $L = \frac{1}{1-\gamma}$ and let (s,W) and (s',W) be two states. We prove via induction over the combined number of steps k needed to reach the optimality region around s_W starting at s and s' that

$$|V^{\pi}(s, W) - V^{\pi}(s', W)| \le L \cdot ||s - s'||.$$

If k=0, then s and s' are both within the optimality region, i.e. $\|s-s_W\| \leq \theta$ and $\|s'-s_W\| \leq \theta$, then $V^\pi(s,W) = V^\pi(s',W) = 0$ and the claim holds. Now, let o = O(s,W) and o' = O(s',W) be the observations at s and s' and $s_1 = f(s,\pi(o),W)$ and $s'_1 = f(s',\pi(o'),W)$ be the next states after one step of π . Particularly, the induction hypothesis holds for s_1 and s'_1 , i.e. $|V^\pi(s_1,W) - V^\pi(s'_1,W)| \leq L \cdot \|s_1 - s'_1\|$. Since $V^\pi(s) = -\|s_1 - s_W\| + \gamma V^\pi(s,W)$ and $V^\pi(s') = -\|s'_1 - s_W\| + \gamma V^\pi(s',W)$, we have

$$|V^{\pi}(s) - V^{\pi}(s')| = |\gamma \cdot V^{\pi}(s_1, W) - \gamma \cdot V^{\pi}(s'_1, W) - ||s_1 - s_W|| + ||s'_1 - s_W|||$$

$$\leq \gamma \cdot |V^{\pi}(s_1, W) - V^{\pi}(s'_1, W)| + ||s_1 - s_W|| - ||s'_1 - s_W|||$$

$$\leq \gamma \cdot L \cdot ||s_1 - s'_1|| + ||s_1 - s'_1||$$

$$\leq (\gamma \cdot L + 1) \cdot ||s_1 - s'_1||$$

$$= L \cdot ||s_1 - s'_1||$$

where the last equation is due to $L=\frac{1}{1-\gamma}$. Finally, because π is an f-contraction, we have $\|s_1-s_1'\|=\|f(s,\pi(o),W)-f(s',\pi(o'),W)\|\leq \|s-s'\|$ and the claim follows. \square

Proof of Corollary 3.6. Because π is an f-contraction, V^{π} is $\frac{1}{1-\gamma}$ -Lipschitz continuous by Proposition A.2. Plugging $L_V = \frac{1}{1-\gamma}$ into Theorem 3.5 gives the claim.

B MOVEMENT DISTORTION FUNCTIONS

In this section, we formally define the different movement distortions f we consider in our experiments. The first set of distortions are linear distortions of the form $f(s, a, W) = s + W \cdot a$ with $W \in \mathbb{R}^{d \times d}$ a distortion matrix, more specific, we use

$$f_{\text{blend}}(s, a, W) = s + (I_{d \times d} + W) \cdot a, \quad W \sim \mathcal{N}_{d \times d}(0, \sigma)$$

For $W \in \mathbb{R}$ a scalar, let $R_W = \begin{pmatrix} \cos(W) & -\sin(W) \\ \sin(W) & \cos(W) \end{pmatrix}$ be a two-dimensional rotation matrix. We rise this to a high-dimensional rotation matrix where adjacent dimensions are rotated, i.e.,

$$Rot_W = diag(R_W, \dots, R_W) \in \mathbb{R}^{d \times d}$$

where diag (A_1, \ldots, A_k) is the block-diagonal matrix with blocks A_1, \ldots, A_k on the diagonal.

$$f_{\text{rot}}(s, a, W) = s + \text{Rot}_W \cdot a, \quad W \sim \mathcal{N}(0, \sigma)$$

The next distortion function is a scaling-based one which does not depend on a latent context W:

$$f_{\text{scale}}(s, a, W) = s + \text{clip}_{C, \lambda} (\|s - s_W\|) \cdot a$$

with some constant $0 < C < \lambda$ to ensure that the steps are not to small so that the optimum can be reached in finitely many steps.

The next set of distortions is again a rotation-based one, but one where the rotation matrix depends on the region. For that, we assume the position space \mathcal{P} is decomposed into c-many non-overlapping subsets $\mathcal{P}_1, \ldots, \mathcal{P}_c$ such that $\bigcup_{i=1}^c \mathcal{P}_i = \mathcal{P}$. Then

$$f_{\text{regrot}}(s, a, W) = s + \sum_{i=1}^{c} \mathbf{1}_{s \in \mathcal{P}_i} \cdot \text{Rot}_{W_i} \cdot a, \quad W \in \mathcal{N}_c(\mu, \sigma), \mu \in \mathbb{R}^c$$

As $\mathcal{P}_i \cap \mathcal{P}_j = \emptyset$ for $i \neq j$, only one rotation matrix is active at a time, depending on the state.

In our experiments, we used c=4 and divided \mathcal{P} into four sets depending on in which quadrant of \mathbb{R}^2 the first two dimensions reside. Moreover, we set $\mu=(-0.3,0.6,-0.3,0.6)$.

The next distortion is one where a non-linear offset is added which depends on both, the state and the action:

$$f_{\sin}(s, a, W) = s + a + W \cdot \sin(s) \circ \cos(s) \cdot ||a||, \quad W \sim \mathcal{U}(0, \sigma)$$

where \sin and \cos are applied component-wise and \circ denote the element-wise multiplication. Finally, we consider a distortion function that does not have linear placement errors:

$$f_{\text{sqrt}}(s, a, W) = s + (I_{d \times d} + W) \cdot \sqrt{\|a\|} \cdot a, \quad W \sim \mathcal{N}_{d \times d}(0, \sigma).$$

B.1 LINEAR PLACEMENT-ERRORS

We begin by proving a stronger conditions, which is easier to check and implies LPE:

Proposition B.1. Let f be a distortion function and assume there exists a constant L_f such that for all states (s, W) and actions $a, a' \in A$

$$||f(s, a + a', W) - f(f(s, a, W), a', W)|| < L_f \cdot ||a||$$

Then f has LPE with constant L_f .

Proof. For $i \in \{0,\dots,k\}$, define the tail sums $\tilde{a}_i := \sum_{j=i}^{k-1} a_j$ and the states $\tilde{s}_i := f(s_i,\tilde{a}_i,W)$. By definition $\tilde{s}_0 = f(s_0,a_0+\dots+a_{k-1},W)$ and, since $\tilde{a}_k = 0$ and f(s,0,W) = s, we also have $\tilde{s}_k = s_k$. Thus, we have to prove that $\|\tilde{s}_0 - \tilde{s}_k\| \le L_f \sum_{i=0}^{k-1} \|a_i\|$. Now, for any $i \in \{0,\dots,k-1\}$ we have

$$\|\tilde{s}_i - \tilde{s}_{i+1}\| = \|f(s_i, a_i + \tilde{a}_{i+1}, W) - f(s_{i+1}, \tilde{a}_{i+1}, W)\| \le L_f \|a_i\|.$$

because of the assumptions on f from the statement of the proposition. Summing these inequalities and applying the triangle inequality yields

$$\|\tilde{s}_0 - \tilde{s}_k\| \le \sum_{i=0}^{k-1} \|\tilde{s}_i - \tilde{s}_{i+1}\| \le L_f \sum_{i=0}^{k-1} \|a_i\|.$$

Figure 7: Trajectories of direct policy and coordinate walk in different movement dynamics.

LPE and the proposition of Proposition B.1 are not equivalent: Consider $f(s, a) = s + \text{sign}(s) \cdot a$. Then its easy to show that f has linear-placement errors with $L_f = 2$, but it does not have the property from Proposition B.1.

Proposition B.2. The distortion f_{blend} has LPE with $L_{f_{blend}} = 0$.

857858859860

861

862

Proof. Straight-forward application of Proposition B.1.

Proposition B.3. The distortion f_{rot} has LPE with $L_{f_{not}} = 0$.

Proof. Straight-forward application of Proposition B.1.

Proposition B.4. The distortion f_{scale} has LPE with $L_{f_{\text{scale}}} = 2 \cdot \lambda$.

Proof. We write $f_{\text{scale}}(s, a, W) = s + g(s, W) \cdot a$ with $g(s, W) = \text{clip}_{C, \lambda}(\|s - s_W\|) \cdot I_d$ with I_d the identity function of $\mathbb{R}^{d \times d}$. Clearly g is bounded and we have $\sup_{S \times W} \|g\| = \lambda$ and the claim follows by an application of Proposition 3.4.

Proposition B.5. The distortion f_{regrot} has LPE with $L_{f_{regrot}} = 2$.

Proof. We write $f_{\text{regrot}}(s, a, W) = s + g(s, W) \cdot a$ with $g(s, W) = \text{Rot}_{W_i}$ whenever $s \in \mathcal{P}_i$, where $\mathcal{P}_1, \dots, \mathcal{P}_c$ are the partitions of \mathcal{S} from Section 5.1.1. For every state (s, W), g(s, W) is a rotation matrix and thus ||g(s, W)|| = 1 and g statisfies the the claim follows from Proposition 3.4.

Proposition B.6. The distortion f_{\sin} has LPE with $L_{f_{\sin}} = \sqrt{d}\sigma$.

Proof. Let $f_{\sin}(s, a, W) = s + a + g(s) \cdot ||a||$ with $g(s, W) := W \cdot \sin(s) \odot \cos(s)$. Although we cannot apply Proposition 3.4 as f_{\sin} has not the desired form, we can follow a similar strategy. First, we observe that g is bounded:

$$||g(s, W)|| = |W| \cdot \sqrt{\sum_{i=1}^{d} \sin(s_i)^2 \cdot \cos(s_i)^2} \le \sigma \sqrt{d}$$

because $W \sim \mathcal{U}(0, \sigma)$. Let a_0, \ldots, a_{k-1} be a chain of actions and set $A = \sum_{i=1}^{k-1} a_i$ and $s_i = f(s_{i-1}, a_{i-1}, W)$, then

$$f_{\sin}(s_0, A, W) - s_k = A + g(s_0, W) \|A\| - \sum_{i=0}^{k-1} \left(a_i + g(s_i, W) \|a_i\| \right) = g(s_0, W) \|A\| - \sum_{i=0}^{k-1} g(s_i, W) \|a_i\|$$

and thus:

$$||f_{\sin}(s_0, A, W) - s_k|| \le ||g(s_0, W)||A|| + \sum_{i=0}^{k-1} ||g(s_i, W)||a_i|| \le \sigma \sqrt{d} \sum_{i=0}^{k-1} ||a_i||$$

because $\|A\| \leq \sum_{i=0}^{k-1} \|a_i\|$ by the triangle inequality.

Next, we show that $f_{\rm sqrt}$ is not LPE:

Proposition B.7. The distortion f_{sqrt} does not have LPE.

Proof. Let $v \in \mathbb{R}^d$ be a unit vector and let $a_0 = a_1 = c \cdot v$ with $c \leq \lambda$. Let $(0,0) \in \mathbb{R}^d \times \mathbb{R}^{d \times d}$ be an initial state, then $s_1 = f_{\operatorname{sqrt}}(0, a_0, 0) = \sqrt{c} \cdot c \cdot v$ and $s_2 = f_{\operatorname{sqrt}}(s_1, a_1, 0) = 2\sqrt{c} \cdot c \cdot v$. Moreover, we have $f(s_0, a_0 + a_1, 0) = f(0, 2 \cdot c \cdot v, 0) = 2\sqrt{2c} \cdot c \cdot v$ and hence

$$||f(s_0, a_0 + a_1, 0) - s_2|| = (2\sqrt{2} - 2) \cdot \sqrt{c} \cdot c.$$

which cannot be bounded by $L_f \cdot (\|a_0\| + \|a_1\|) = 2 \cdot L_f \cdot c$ for any constant L_f .

B.2 CONTRACTIONS AND LIPSCHITZ-CONTINUITY IN REAL-WORLD APPLICATIONS

We do not expect that policies and distortions from real-world applications satisfy the rigorous mathematical assumptions stated in Section 3. Pedantically, even simple modeling choices already break global smoothness: for instance, having $A = B_{\lambda}(0)$ with A a strict subset of S, combined with an optimality region defined by a threshold θ , induces discontinuities in the value function. The same holds for the coordinate walk policy in Section 5.2, where a fixed step length produces value functions with sharp discontinuities, as shown in Figure 9.

Nevertheless, global mathematical rigor is not required to detect local shortcuts in real trajectories. A striking example is the coordinate walk under f_{regrot} : since different rotations apply in different regions, the policy is not an f-contraction globally, because nearby states s and s' lying in different regions \mathcal{P}_i and \mathcal{P}_j may be rotated in different directions (Figure 8a). Yet, for states within same region where the coordinate walk applies same actions, the contraction property is preserved (Figure 8b). This illustrates that shortcut identification relies less on global guarantees and more on local structure along trajectory segments.

Informally speaking, it suffices that the value function does not change too abruptly for small misplacements, so that local improvements can be exploited as shortcuts. In practice, this condition is often met: physical systems typically exhibit continuity over small ranges of motion, even if discontinuities or non-contractive behavior emerge globally. Hence, while our theoretical assumptions provide clean guarantees, the underlying ideas remain applicable well beyond the idealized setting as demonstrated by our experiments in Section 5.

Figure 8: In f_{regrot} , starting at two close-by states s and s' in different regions \mathcal{P}_1 and \mathcal{P}_2 can increase the distance between subsequent states as opposed rotation matrices apply.

Figure 9: Value functions $V^{\pi}(\cdot, W)$ of coordinate walk for a random but fixed context W each.

C DETAILS FOR EXPERIMENTAL RESULTS

C.1 HYPERPARAMETERS OF LEARNING ALGORITHMS

Parameter	Value	Parameter	Value	Parameter	Value
actor learning rate	10^{-3}	actor learning rate	10^{-3}	actor learning rate	10^{-3}
critic learning rate	10^{-3}	critic learning rate	10^{-3}	critic learning rate	10^{-3}
conservative weight	5.0	conservative weight	5.0	batch size	256
α -threshold	10.0	α -threshold	10.0	n updates per step	5
batch size	500	batch size	500	n critics	2
γ	0.99	γ	0.99	γ	0.99
au	0.005	au	0.005	au	0.005

Table 2: Parameter for CQL trained on collected datasets.

Table 3: Parameter for CQL trained as LIFT augmentor.

Table 4: Parameter for SAC.

C.2 HYPERPARAMETER STUDY OF LIFT

In this section, we study effects of the different hyperparameters of the shortcut computation (Algorithm 1) and LIFT (Algorithm 2). First, we study the effect of the number of augmentations per trajectory n and the probability of applying an augmentation p. The results are shown in Figure 10. One can see that as few as 20 augmentations per trajectory are sufficient to achieve a substantial improvement in performance, provided that the augmentation probability is not too low. Notably, higher probabilities correspond to augmentations being applied earlier in the trajectory. This suggests that augmentations at the beginning of a trajectory are more beneficial than those applied later.

Figure 10: Experiments in $f_{\rm blend}$ with step size 0.025 and different probabilities p of applying augmentations and different maximal number of augmentations per trajectory

Next, we analyse the effect of the sampling scheme of shortcuts along a trajectory. Here, we denote the sampling mechanism described in Algorithm 1 as weighted. Another way to sample shortcuts from the set S computed in Algorithm 1 is to use a distribution that is proportional to the inverse distance to the optimum, i.e. $p(i) \sim \frac{1}{\|s_i - s_W\|}$ or to sample uniformly from S. Instead of sampling, one can also just use the shortcut residing within the action space that leads to the point of highest reward within the trajectory called best. The results are shown in Figure 11 for n=20 augmentations per trajectory and p=0.4 showing that in the environments we consider, the sampling strategy does not have a significant effect on the performance.

Figure 11: Experiments in f_{blend} with different step size and different sampling strategies.

C.3 ADDITIONAL VISUALIZATION

Figure 12: Augmented trajectories generated by LIFT for \mathcal{O}_{LP} in 5 dimensional hidden position space: Actions coming from the augmentor in red and actions from the logging policy in blue.

Figure 13: Experiments in f_{blend} .

Figure 16: Experiments in f_{regrot} .

Figure 17: Experiments in f_{sin} .

Figure 18: Experiments in f_{sqrt} .