
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AUGMENTATIONS IN OFFLINE REINFORCEMENT
LEARNING FOR ACTIVE POSITIONING

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a method for data augmentation in offline reinforcement learning ap-
plied to active positioning problems. The approach enables the training of off-
policy models from a limited number of trajectories generated by a suboptimal
logging policy. Our method is a trajectory-based augmentation technique that
exploits task structure and quantify the effect of admissible perturbations on the
data using the geometric interplay of properties of the reward, the value function,
and the logging policy. Moreover, we show that by training an off-policy model
with our augmentation while collecting data, the suboptimal logging policy can
be supported during collection, leading to higher data quality and improved of-
fline reinforcement learning performance. We provide theoretical justification for
these strategies and validate them empirically across positioning tasks of varying
dimensionality and under partial observability.

1 INTRODUCTION

In active positioning, an end-effector must place an object precisely at a desired pose. Such problems
occur in high-precision manufacturing, e.g., in camera Bräuniger et al. (2014) or telescope assem-
bly Upton et al. (2006), and in alignments of laser Rakhmatulin et al. (2024). In optical systems, this
involves iterative adjustment of components, such as lenses or mirrors, to maximize alignment qual-
ity from image-based signals. These tasks are naturally modeled as contextual partially observed
Markov decision problems (POMDPs) and demand generalization over the context Burkhardt et al.
(2025). While reinforcement learning (RL) has advanced algorithmically, online training is costly:
explorations in high-dimensional observation and continuous action spaces are inefficient, cause
long downtimes, and human interaction is often required between episodes, for instance to insert
new objects. At the same time, precise but inefficient expert routines can provide data, making of-
fline RL a promising alternative, which sidesteps online interactions by training from pre-collected
datasets(Levine et al., 2020). Although offline RL promise is to learn policies better than the log-
ging policy from static datasets, without online interactions, it suffers from distributional shifts and
inappropriate datasets, leading to suboptimal policies. To cope with distribution shift, contempo-
rary offline RL methods regularize policies toward the behavior distribution or warm-start from the
logging policy before cautiously improving it (see Section 1.2 for an overview). Despite these algo-
rithmic advances, it remains unclear how the data-generating logging policy limits what an offline
learner can achieve. Prior evidence already shows that dataset selection can dominate algorithmic
differences (Schweighofer et al., 2022; Fu et al., 2021); actionable guidance for improving the data
itself, however, remains scarce. Moreover, when probing effects of logging policies, prior work typ-
ically uses different categories of expertness where often the data of highest expertness is produced
by an RL agent trained online (Fu et al., 2021). Although this schema is convenient, it could intro-
duce a methodology bias: the generated trajectory inherits the exploration style and failure modes of
the training algorithm, not those of deterministic, production-grade expert routines common in prac-
tice. Mixing datasets of different quality not only degenerates performance, it can also practically
be infeasible to hand-off between policies. For instance, expert systems typically are deterministic,
tightly scripted routines with internal states where decisions can depend on the entire trajectory of
measurements. Inserting arbitrary policy actions in-between can invalidate the routine’s assumptions
and the expert may only be able to resume reliably if it restarts from the new state.

In this work, we want to understand how to design data-efficient RL methods for active positioning
tasks that can effectively learn from suboptimal expert policies. Our key idea is to augment the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

logging policy sparingly with actions proposed by an off-policy learner trained parallel to the data
collection. The off-policy learner is trained in a way to explore shortcuts in the experts trajectories
to make hand-offs seamless and effective.

1.1 CONTRIBUTIONS

We develop LIFT, short for logging improvement via fine-tuned trajectories, a framework that com-
prises two complementary augmentation modes: First, we use a static trajectory augmentation,
which applies structure-aware, trajectory-level perturbations – called shortcuts – to existing logs
derived from task geometry. Second, we propose a policy-time augmentation, which intermittently
injects admissible, optimistic actions during logging to create datasets that are easier to learn from
offline. Specifically, we introduce a novel augmentation scheme (Section 4) that keeps the expert
in charge while enabling optimistic probing to improve logged support. Moreover, we provide
theoretical justification in Section 3 why and when perturbations are beneficial via geometric prop-
erties of value functions and movement dynamics. Finally, Section 5 presents a systematic study
that underlines the strength and generality of our approach by analyzing the effect of the logging
policy, transition behavior, dimensionality and informativeness of observations on policy perfor-
mance across a diverse class of active positioning tasks. We implemented the shortcut augmentation
in d3rlpy Seno & Imai (2022) following its transition picker protocol, which allows integrating our
static augmentation method in any RL algorithm implemented in d3rlpy by adding one line of code1.

1.2 RELATED WORK

A central challenge in offline RL is overestimating values for out-of-distribution actions. Methods
address this either by constraining the learned policy toward the logging distribution or by learn-
ing pessimistic value functions. Representative approaches include behavior regularization via BC
losses or divergence penalties, like in BCQ (Fujimoto et al., 2019), TD3+BC (Fujimoto & Gu, 2021;
Tarasov et al., 2023) and pessimistic critics such as CQL (Kumar et al., 2020). Expectile-based pol-
icy extraction further avoids querying unseen actions, like IQL (Kostrikov et al., 2022). Despite
strong results on benchmarks, several studies note that algorithm performance is highly sensitive to
dataset composition, that is, mixing suboptimal trajectories with expert data can degrade CQL and
related methods (Fu et al., 2021; Hong et al., 2023).

In most hybrid schemes, the learner stays in charge and the expert is queried only occasionally.
Like in DAgger(Ross et al., 2011), that reduces imitation learning to no-regret online learning by
iteratively collect data on the states visited by the learner and querying the expert for corrective
labels. Methods depending on regularizations are sensitive to hyperparameters due to the additional
complexity introduced during online training. Moreover, they often limit the policy to stay close
to the behavior, for instance due to safety constraints, which can be detrimental if the behavior
is highly suboptimal. Orthogonal to regularizing the learner and more relevant for our work is
to permanently add offline data to the replay buffer and collecting new data online. Prior work
shows that this, in combination with a careful sampling scheme and network architecture Ball et al.
(2023) or policy regularizations Nair et al. (2018), can turn offline data into a strong initializer for
online learning. Nevertheless, these methods still require rather long online fine-tuning or high-
quality offline datasets, neither of which is typically available in active positioning tasks. Another
relevant line of work is to weave online transitions into logging policies as in iterative offline RL
(IORL) (Zhang et al., 2023). Here, exploratory actions are injected to discover unexplored regions
in state-action space while training an offline RL agent on the generated trajectories. This approach
is elaborated more in Section 4. Our approach is similar in spirit, but instead of exploring we want
to exploit shortcuts in the expert trajectories to make hand-offs seamless and effective.

2 ACTIVE POSITIONING

In this section, we introduce the specific framework for active positioning problems building upon
the framework for active alignments introduced in Burkhardt et al. (2025). There, active positioning
problems are modelled as an episodic and contextual POMDP Modi et al. (2018). Specifically, the

1The implementations are among the supplemental material of this submission and will be made available
on GitHub upon acceptance.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

state is decomposed in the current position s ∈ P with P a bounded subset of Rm and a static
context parameter W ∈ W , that is S = P ×W . The actions can be selected from a subsetA of Rd.
Applying an action a ∈ A at state (s,W) gives the new state (s′,W) with s′ = f(s, a,W), where
f : P×A×W → Rd a parametrized distortion function. Typically, any position can be reached from
any other position within one action. Note that in our scenarios, the action space is additive, meaning
that the sum of two actions is itself an action if its inA. Throughout we assume that f(s, 0,W) = s.
Our running example is f(s, a,W) = s+W · a with W ∈ Rd×d a distortion matrix, like a rotation
matrix, but we will also consider non-linear distortions. Importantly, as W stay constant throughout
each episode, so is the extent of the distortion. One can think of W as variances introduced by the
gripping of an object, variances within an object, or conditions of the goal to be reached. In each
episode, the goal is to navigate from a random initial position s0 and randomized context W to a
terminal state sW ∈ Rd. The reward observed at state (s,W) is R(s, a,W) = −∥f(s, a, w)−sW ∥,
i.e. the negative distance to the terminal state. An episode ends once the state is sufficiently close
to sW or an upper limit of steps is reached. Formally, we terminal states are all within the set
{(s,W) ∈ S : ∥s − sW ∥ ≤ θ}. Typically, W cannot be observed directly, often even s cannot.
Instead, an often high-dimensional and noised output OW (s) ∈ O is observed, which is controlled
by a conditional probability density function depending on s and W . In total, we call the tuple
(P,W,O, f, γ) an active positioning problem. This framework covers various industrial use cases,
from robot arm positioning, to active alignments of cameras or lasers.

Although active positioning problems can be considered as black-box optimization problems as well
(see Burkhardt et al. (2025)), they are inherently RL problems where symmetries and shortcuts in the
position space need to be actively explored. Typically, the observation space is highly symmetric,
context-dependent, and non-injective. For instance, positions s, s′ far apart can give very similar
observations O(s,W) ≈ O(s′,W) and same positions may give highly observations O(s,W) and
O(s,W ′) in different contexts. In this RL formulation, the goal is to find a policy π : A×O → R
mapping observations and actions to likelihoods in a way that maximizes the accumulated observed
reward: The dynamics of the combined system works as follows. At a given state (s,W), data
O(s,W) is sampled. Then, an action a ∈ A is sampled from the distribution a ∼ π(·, O(s,W)).
From there, the system moves to the new state s′ = f(s, a,W). Note that in this formation, a
and s do not need to have same dimensionality. Starting from state (s0,W) ∈ S, the combined
dynamics yields a trajectory (s0,W), . . . , (sk,W). The goal is to find a policy such that J(π) :=

Es0,W

[∑k
i=0−γi∥si − sW ∥

]
is maximized, where γ ∈ (0, 1) is the discount factor given to trade-

off rewards in early and late states. Clearly, J(π) = Es0,W [V π(s0,W)] = Es0 [V
π(s0)] with V π

the state-value function and V π(s) := EW∼W [V π(s,W)]. Similarly, we define the state-action
value function Qπ(s, a,W) and Qπ(s, a).

3 THEORETIC CONSIDERATION OF SHORTCUT AUGMENTATIONS

In this section, we lay the theoretic foundation for our investigation of shortcut augmentations. All
proofs are in Section A. We call a policy π distance-improving, if for all W ∈ W we have for two
subsequent states (si,W) and (sj ,W), with i < j visited by the policy that ∥sj−sW ∥ < ∥si−sW ∥.
In other words, the reward along a trajectory of π is strictly increasing. In this section, we restrict
to deterministic policies. Given the deterministic transition dynamics given by f , the value function
V π(s,W) is exactly the return of π starting from (s,W).
Proposition 3.1. Let π be a distance-improving policy and (s,W), (s′,W) ∈ S two states on a
trajectory of π where (s,W) is visited prior to (s′,W), then γV π(s′,W)−V π(s,W) ≥ ∥s′−sW ∥.

First, we define the key player of this paper:
Definition 3.1. Let π be a policy, (s,W) ∈ S a state, and a ∈ A an action with s′ = f(s, a,W). If
γV π(s′,W)− V π(s,W) ≥ ∥s′ − sW ∥, then is a is a π-shortcut at (s,W).

Note that shortcuts depend on the latent information W , not on the state alone. In fact, it is easy to
show that mixing a policy π with its shortcuts yields an overall better policy:
Proposition 3.2. Let π and π′ be two policies, then J(πaug) ≥ J(π) with πaug defined as follows:

πaug(O(s,W)) :=

{
π′(O(s,W)) if π′(O(s,W)) is a π-shortcut at (s,W)

π(O(s,W)) otherwise
.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The remainder of this section studies how to find shortcuts in offline trajectories. Combin-
ing Proposition 3.1 and Proposition 3.2 shows that augmenting trajectories of a policy with
shortcuts and retraining yields an improved policy. For example, consider a short trajectory
(s0,W), (s1,W), (s2,W) from a distance-improving policy π with actions a0 and a1 (Figure 1a).
In principle, an action a with s2 = f(s0, a,W) is a shortcut (Definition 3.1) and thus beneficial.
However, due to distortion in f , we cannot assume a = a0 + a1, nor that applying a0 + a1 at s0
will reach s2. We must ensure that a0 + a1 indeed leads near s2 and that the value function remains
stable in its vicinity. Formalizing this requires assumptions on both the dynamics f and the policy’s
value function. To illustrate, consider f(s, a,W) = s+W · a with W ∈ Rm×d. Here, trajectories
can be augmented without placement errors:

Proposition 3.3. Let f(s, a,W) = s+W ·a and let (si,W) and (sj ,W) with i < j on a trajectory
of a distance improving policy π and ai, . . . , aj−1 the chain of actions π undertook to get from si to
sj . Then a =

∑j−1
k=i ak is a shortcut for si.

s′ = f(s0, a0 + a1,W)

s0 s1

s2

a0

a1

a0 + a1

(a) Movement uncertainty
s

s′
π(O(s,W))

π(O(s′,W))

(b) An f -contraction π

Figure 1: Interactions of policy with movement dynamics.

Extending this to non-linear dynamics is not trivial. Generally, we want to have that then accumu-
lating actions along a trajectory does not lead to too much placement uncertainty, which is typically
the case in real-world positioning problems. We formalize this as follows:

Definition 3.2 (Linear placement-errors). A distortion function f has linear placement-errors (LPE)
if there exists a constant Lf such that for any chain of actions a0, . . . , ak−1 with â :=

∑k−1
i=0 ai ∈ A

executed on (s0,W) with si = f(si−1, ai−1,W), we have: ∥f(s0, â,W)− sk∥ ≤ Lf ·
∑k−1

i=0 ∥ai∥.

Intuitively, the LPE property means that although a system distort movements, the mismatch intro-
duced when regrouping actions cannot grow faster than linearly with the size of the path taken. This
actually includes a wide range of functions where the distortion depends on the state only:

Proposition 3.4. Let f(s, a,W) = s+ g(s,W) · a with g : S → Rm×d a bounded matrix-function.
Then f has LPE with Lf = 2 · supS ∥g∥.

As we will see, when the distortion term also depends on the action, i.e. g(s, a,W), things become
more involved for small actions a even if g is bounded and LPE does not follow without additional
assumptions (see Section 5.1.1). The next Proposition B.1 introduces an even stronger property
which suffice to show LPE for distortion functions of common active positioning problems, like
linear movement dynamics of the form f(s, a,W) = s + Wa, where we can directly follow that
f has LPE with Lf = 0. We call a value function V : S → R LV -Lipschitz continuous if for all
(s,W), (s′,W) ∈ S we have |V (s,W)− V (s′,W)| ≤ LV · ∥s− s′∥. The LPE property gives the
final ingredient to prove our main statement:

Theorem 3.5. Let π be distance improving and assume that V π is LV -Lipschitz continuous and
Lf -placement errors. Let (si,W) and (sj ,W) on a trajectory of π and let a =

∑j−1
k=i ak be the sum

of the chain of actions π undertook to get from si to sj . Then a is a π-shortcut for si if

γ · V π(sj ,W)− V π(si,W)− ∥sj − sW ∥ ≥ (γ · LV + 1) · Lf ·
j−1∑
k=i

∥ak∥.

In some sense, Proposition 3.3 for movement dynamics of the form f(s, a,W) = s +W · a arises
as a special case of Theorem 3.5 because Lf = 0 implies that the right-hand side becomes 0 and the
left-hand side is always non-negative due to Proposition 3.1. However, we note that Theorem 3.5
requires V π to be Lipschitz continuous, which is not needed in Proposition 3.3.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

So far, we have not made any direct assumptions on policy π beside being distance improving and
V π being Lipschitz continuous. The next condition helps to ensure that V π is indeed Lipschitz
continuous (see Proposition A.2 in Section A), which requires a beneficial interplay with f :

Definition 3.3 (f -contraction). We call a policy π an f -contraction if for all pairs (s,W), (s′,W)
with respective observations with o = O(s,W) and o′ = O(s′,W), we have

∥f(s, π(o),W)− f(s′, π(o′),W)∥ ≤ ∥s− s′∥.

Corollary 3.6. Let π be distance improving f -contraction and let f have LPE with constant Lf . Let
(si,W) and (sj ,W) on a trajectory of π and let a =

∑j−1
k=i ak be the sum of the chain of actions π

undertook to get from si to sj . Then a is a shortcut for si if

γ · V π(sj ,W)− V π(si,W)− ∥sj − sW ∥ ≥
Lf

1− γ
·
j−1∑
k=i

∥ak∥

Being an f -contraction is a stronger requirement than mere distance improvement. We refer to
Section B.2 for a discussion and examples of f -contractions and Lipschitz value functions in real-
world policies. In practice, many active positioning policies do not satisfy the contraction property
globally, yet this is not required for identifying useful shortcuts.

4 LOGGING IMPROVEMENTS VIA FINE-TUNED TRAJECTORIES

Theorem 3.5 gives a theoretical condition when and how to augment a collected trajectory
(o0, a0, r0), . . . , (on, an, rn) with latent states si = f(si−1, ai−1,W), observations oi = O(si,W),
rewards ri = −∥si+1 − sW ∥, and actions ai = πβ(oi) from a logging policy πβ . To convey them
into a practical algorithm, let C ∈ R≥0 be a constant and let Gi = V π(si,W) =

∑n
k=i γ

k−irk be
the returns of πβ . Now, take any pair (i, j) with i < j, let â =

∑j−1
k=i ai be a shortcut candidate and

check if γGj−Gi+rj−1 ≥ C ·
∑j−1

k=i ∥ak∥ with some constant C holds true. Clearly, without prior
information on f and πβ , the exact value of C remains unclear, and thus it has to be considered a
regularization hyperparameter of our method. If C = 0, all pairs are considered shortcuts, if C is
large, only very few pairs where high reward is gained in a few short steps are considered shortcuts.
If the inequality is valid for (i, j), we can assume that â is a shortcut and ideally, we would add the
tuple (oi, â,−∥s′j − sW ∥, o′j) with s′j = f(si, â,W) and o′j = O(s′j ,W) to the dataset. However,
due to the movement uncertainty, there is a gap between the position s′j the shortcut leads to and the
observed state sj . Particularly, the image observation O(s′j ,W) and the reward −∥s′j − sW ∥ differ
from the actually observed ones, namely oj and rj−1. We argue, however, that in many practical
applications, this gap is small and actually not present, for instance if Lf = 0 as in linear movement
dynamics f(s, a,W) = s + W · a (see Proposition 3.3). Thus, we add the tuple (oi, a, rj−1, oj)
to the training dataset. Algorithm 1 summarizes our shortcut sampling procedure, and we want to
emphasize that it can be added to any offline RL method that samples from an offline dataset, like to
minimize the Bellman error or related temporal difference errors as in CQL.

In general, augmentations in pure offline settings have to be done with care, as updating Q-functions
on unseen state-action pairs can lead to overestimation errors. Although we will see in Section 5
that shortcut augmentations have a positive effect in pure offline settings for active positioning, we
think they nicely integrate in the iterative offline RL framework recently proposed in Zhang et al.
(2023). Here, an uncertainty model Eθ(s, a) is trained with Eθ(s, ·) a probability distribution on A
for each s ∈ S. Given a dataset D, Eθ is trained by minimizing E(o,a)∼D

[
− log(Eθ(s, a))+R(θ)

]
with R(θ) a regularization term. Intuitively, Eθ(s, a) can be seen as the probability that action a
has been seen for state s in D. Actions with small probability Eθ(s, a) at state s are considered as
exploratory action and should be selected according to some fixed probability p enriching a given
logging policy πβ during roleout. These exploratory actions are rather rare and thus help keeping
the system save and naturally close to the logging policy πβ that generated the data. We build upon
this idea, but instead of selecting actions that have not been seen in the data, we advocate to train a
Q-function Qθ on some initial dataset D and select actions having high Q-values. Formally, we set
aθ(s, a) = maxa′∈A Qθ(s, a

′) where Qθ can be trained with any offline RL method, like CQL or
IQL. By that, we aim to enrich the dataset with actions that are likely to be beneficial for πβ in the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

sense of higher returns. For that, they must have good hand-over properties and thus we augment the
dataset D with shortcuts computed via Algorithm 1 when training Qθ. Note that here, the synthetic
shortcuts are only used to obtain Qθ, which in turn is only used to fine-tune the logging policy, and
the collected dataset consists of real data only. The precise procedure is described in Algorithm 2.

Algorithm 1: Shortcut sampling
Input : C ≥ 0, i ∈ [n], trajectory

{(o0, a0, r0), . . . , (on, an, rn)}
Output : Tuple (oi, â, rj−1, oj)
Compute returns G0 . . . , Gn for

trajectory
S = {}
for j = i+ 1 · · ·n do

â←
∑j−1

k=i ak
if γGj −Gi ≥ C ·

∑j−1
k=i ∥ak∥ and

â ∈ A then
Add (oi, â, rj−1, oj) to S

Let m = |S| and denote r̂ = (r̂1, . . . , r̂m)
the rewards of the tuples in S

Let p ∼ r̂ −min r̂ a mass function
Sample (oi, â, rj−1, oj) from S w.r.t. p
return (oi, â, rj−1, oj)

Algorithm 2: LIFT
Input : Logging policy πβ , n ∈ N,

augmentor aθ, p ∈ [0, 1]
Output : Dataset D with n trajectories
Initialize: D = {}
repeat

Sample o0 from environment
Set d = false, τ = (), i = 0
while d is false do

ai = πβ(oi)
if p′ ≤ p with then

ai = aθ(oi, ai)
oi+1, ri, d = env.step(ai)
Reset πβ at oi+1 (if necessary)

else
oi+1, ri, d = env.step(ai)

Add (oi, ai, ri) to τ , i = i+ 1
Add Trajectory τ to D
if train augmentor then

Train aθ on D with with Algorithm 1
until |D| = n
return D

5 EXPERIMENTS

Our experiments to evaluate LIFT for active positioning problems address two main questions: First,
can shortcut augmentations improve pure offline RL, and second, can they be leveraged during data
collection by training a Q-based augmentor in comparison to warm-start RL? To this end, we test
different distortion functions f (Section 5.1.1), observation types O (Section 5.2.1), and levels of
expertness of the logging policies (Section 5.2).

5.1 ENVIRONMENTS

In order to analyze different movement distortions and observation types in isolation, we conducted
our experiments in semi-realistic active positioning environments. These environments are designed
to keep real world characteristics and entail small sim-to-real gaps. Throughout, we use−∥s− sW ∥
as reward signal. In trainings in simulated environments, this reward signal is easy to compute, as
one typically has access to latent information (s,W). In real systems, on the other hand, this signal
needs to be added in hindsight once an episode is finished using a logging policy able to find sW .

5.1.1 MOVEMENT DISTORTIONS

We consider different movement distortions, some of them have linear forms, like fblend and frot both
with Lf = 0. We also use non-linear distortions, like fscale and fsin which have LPE with Lf > 0
and one non-continuous distortion fregrot also having LPE which is not contracting. We also test
a movement dynamics, called fsqrt, that does not satisfy the LPE property. We refer to Section B
for their precise mathematical definitions and corresponding proofs of their properties. Figure 3
illustrates an overview of the different distortions in two dimensions.

5.2 LOGGING POLICIES

Algorithms for active alignments do not follow a general recipe, but rather depend on the specific
application. Alignments of optical systems, for instance, have traditionally relied on iterative opti-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

mization of measured performance signals such as coupling efficiency or spot quality, where actu-
ators are moved sequentially or in small patterns and the response is evaluated to guide subsequent
steps, typically following coordinate-descent or heuristic search strategies that explore one or more
degrees of freedom at a time (Parks, 2006; An et al., 2021; Langehanenberg et al., 2015).

0.0125 0.025 0.05 0.1
Step Size

102

103

Nu
m

be
r o

f S
te

ps

Figure 2: Expertness of πcw,l.

Typically, the alignment starts with coarse steps and reduces
the step size later, for instance (Liu et al., 2024, Section 3.1)
for camera assembly. We have distilled the common princi-
ples into a synthetic logging policy called coordinate walk,
πcw,l that follows a structured coordinate walk with step size
l. This allows us to control the level of expertness of the log-
ging policy and thus the quality of the collected data. Our
synthetic position policy knows the location of sW , but can
only reach it via a path that is suboptimal in both, number
of steps and direction. More precisely, it sequentially moves
along individual coordinates of the positions s ∈ P ⊂ Rm by
choosing actions a ∈ A along unit vectors until si matches
(sW)i. Once a dimension is traversed, the policy cycles to the next coordinate and continues this
procedure, thereby producing a structured, axis-aligned walk toward the optimum. If all dimen-
sions have been optimized, the step size l is halved. By varying the initial step size, the expertness
of the logging policy can be adjusted (see Figure 2). Figure 7 shows trajectories of the coordinate
walk executed under different movement distortions. To model realistic hand-overs between logging
policies and augmentors, we assume the internal state of the policy, i.e. the current step size l and
dimensions already optimized, is reset to the initial values once the policy is reset. To not make our
mathematical framework introduced in Section 3 too specific for these types of resets, we assume
stateless policies there. For most states, V πl2 (s,W) ≥ V πl1 (s,W) for two step sizes l1 < l2 holds
true and thus Theorem 3.5 still hold in this specific application. However, restarting may also have
catastrophic effects, for instance if s is already very close to sW and resetting the step size may lead
to an overshoot. In Section B.2, a discussion about the contraction and Lipschitz-property of the
coordinate walk is given.

No distortion fblend frot fscale fregrot fsin fsqrt

Lfblend = 0 Lfrot = 0 Lfscale = 2 · λ Lfregrot = 2 Lfsin = σ ·
√
d Lfsqrt =∞

Figure 3: Movement distortions used when applying actions clipλ(sW − s).

5.2.1 OBSERVATIONS

A canonical type of observation is when the position can be observed directly, i.e., OPO(s,W) = s.
Here, we have to fix optimum sW = s∗ throughout, as otherwise it is impossible to infer where
the optimum should be without observing information about W . Roughly speaking, these are sce-
narios where it is known where the optimum is, but not how to get there through the movement
distortion. We will evaluate these scenarios in d = 2 and d = 5 dimensions. Our motivation orig-

· · ·

· · ·

Figure 4: Exemplary trajectories of πcw,l executed in OLP (top) and OLT (bottom).

inally stems from scenarios where observations are drawn from optical sensors and hence we test
our method on different image generators. The first comes from active alignments problems from

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

camera assembly, were a lens objective has to be positioned relative to a sensor to obtain optimal
optical performance Liu et al. (2024). Here, s relates to the position of the lens objective and W to
variances in the lens system the objective is decomposed and distortions in the movement dynamics.
At each position s, collimated light is sent through the lens system creating an image OLP(s,W)
on a sensor. The task is to position the objective with variances W precisely to an individual opti-
mum sW . As some information about W is contained in the image implicitly, it is possible to design
algorithms that leverage the image information to move towards sW . We use the semi-realistic
generator from Burkhardt et al. (2025) where light is sent out in the form of a Siemens star.

Our second image generator is the light tunnel from Gamella et al. (2025), where light is sent from
a source through two polarizers whose angles dictate how light passes through to an optical sen-
sor. Here, each position s of the polarizers filters out certain wavelengths of the light creating a
image I(s) at the sensor. Here, the image observation does not on depend on the context W and
essentially only on the relative difference of the angles of the polarizers, i.e. many states lead to the
same image. To add some context, we sample in each episode sW uniformly from the box [0, 2π]2

and set OLT(s,W) = I(s) − I(sW). In our experiments, we use the decoder of the autoencoder
trained on images from the real system provided in the data repository of Gamella et al. (2025).
Figure 4 shows exemplary trajectories of the coordinate walk in these two scenarios.

5.3 RESULTS

Our approach from Section 4 gives rise to essential two algorithms. First, a purely offline one
that takes a static dataset collected from some logging policy and trains an offline RL algorithm
with shortcut augmentations. In our experiments, we use CQL and denote this algorithm as CQL-
SC. Second, an iterative offline RL algorithm that collects data with an augmented logging policy
where CQL is trained on the collected data, called LIFT. If the subsequently trained CQL also uses
shortcuts, we denote this algorithm as LIFT-SC. By default, we use Algorithm 2 with p = 0.6, limit
augmentations per trajectory to 20. A detailed hyperparameter analysis is given in Section C.1.

First, we want to analyze the effect of different augmentations while collecting data and the
effect of using shortcuts in the CQL training afterward. Beside canonical augmentations like
adding noise πβ(o) + ϵ with ϵ ∼ N d(0, σ), or randomly scaling actions πβ(o) · ϵ with
ϵ = exp(η) · 2, η ∼ N (0, σ), we also use random actions in the sense of uniform sam-
ples from A and IORL-like augmentation based on an uncertainty model as in Zhang et al.
(2023). We run these experiments in (OPO, fblend) with step size 0.025 in d = 5 dimen-
sions, collected 3 independent datasets consisting of 100 trajectories each and trained 3 indepen-
dent CQL policies on each of them. The LIFT augmentor is trained once after 50 trajectories.

.0125 .025 .05 .1

fblend • • • •
fscale • • • •
frot • • • •
fregrot •
fsin • • • •
fsqrt • • •

Table 1: Cases where LIFT-SC out-
performs SAC baseline in OPO, d = 5.

The averaged convergences to sW of the CQL policies,
each evaluated on 20 randomly drawn contexts are shown
in Figure 5a. Here, we see that, independently of shortcuts
are used in the training afterward, the best CQL policies
can be obtained when trained on the data collected with
LIFT. Moreover, we see that when training takes place
with shortcuts, every policy can be improved. This find-
ing is underpinned when computing the dataset character-
istics introduced in Schweighofer et al. (2022) shown in
Figure 5b. LIFT creates trajectories having the highest av-
erage returns reproducing findings in Schweighofer et al.
(2022) that this correlates with CQL performance. On the
other hand, LIFT does not explore the space as good as
other methods, showing a clear differentiation to IORL that has been explicitly designed to explore
well. However, high exploration comes at the price of an impeded hand-off back to the logging
policy, leading to low trajectory qualities for IORL and random actions.

In our second type of experiments, we want to evaluate how our methods compare under different
movement distortions and observation types. In OPO, algorithms collect a total of n = 100 and
n = 500 trajectories for d = 2 and d = 5 respectively, where the LIFT augmentor is trained once
after 50 and 100 collected trajectories respectively. In OLP, we collect 500 trajectories and LIFT
is trained once after 100 episodes. In OLT, we collect only 100 trajectories and LIFT is trained
once after 50 collected trajectories. Here, we additionally compare to SAC Haarnoja et al. (2018)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 10 15 20 25
Steps

0.0

0.2

0.4

0.6

||s
i−

s w
||

Without Shortcuts

5 10 15 20 25
Steps

With Shortcuts
Void
IORL
Random action
πβ(O) + ε
πβ(O) ⋅ ε
LIFT

(a) Comparison of augmentations.

−60 −50 −40 −30 −20 −10 0

Void

IORL

Random Action

πβ(O) + ε

πβ(O) ⋅ ε

LIFT

Trajectory Quality

0 2000 4000 6000 8000

State Exploration

(b) Dataset properties.

Figure 5: Experiments in (OPO, fblend) with step size 0.025 with d = 5.

trained with a mixture of offline and online data as done in warm-start RL that is restricted to the
same number of trajectories as in our offline datasets. Specifically, in a scenario with n many
episodes, the replay buffer of SAC is initialized with the same number of trajectories collected by
the logging policy the LIFT augmentor obtains in training, e.g. m = 50 for OLT. Figure 6 presents
selected comparisons across the multiple scenarios and all comparisons can be found in Section C.
In all tested environments, we see that CQL policies trained offline on data from LIFT (blue) have
better performance than these trained on unaugmented data from the logging policy (green). This
effect fades a bit when adding shortcuts to the subsequent offline training: In most scenarios, the
performance of LIFT-SC is better or equal than CQL-SC. This is, for instance, not the case in when
using image data from OLP, where CQL training on data obtained from LIFT-SC showed high
variance. Studying the effect of shortcuts in isolation, CQL-SC consistently outperforms CQL and
LIFT-SC consistently outperforms LIFT, making LIFT-SC the best of our methods. Comparing
LIFT-SC to the SAC with offline data, we see a clear picture: SAC stays ahead in all low-dimensional
cases for OPO with d = 2, and LIFT-SC outperforms SAC almost consistently over all movement
dynamics and expert-levels of the logging policy in OPO for d = 5 (see Table 1), as well as in
both image-based scenarios. Interestingly, for fregrot where the contraction property is violated,
augmentations with shortcut fail where in fsqrt, where LPE does not hold, augmentations still help
but the advantage over SAC is almost negligible.

5 10 15 20 25
Steps

0.0

0.2

0.4

0.6

||s
i−

s w
||

5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
CQL CQL-SC LIFT LIFT-SC SAC + Offline Data

OPO, fblend
d = 2, l = 0.025

OPO, fregrot
d = 5, l = 0.0125

OPO, fscale
d = 5, l = 0.025

OPO, frot
d = 5, l = 0.05

OLT, fblend
d = 2, l = 0.025

OLP, fblend
d = 5, l = 0.025

Figure 6: Comparisons of our methods under various distortions and observation types.

6 DISCUSSION

We demonstrate that shortcut augmentations can consistently improve the effectiveness of offline
RL in active positioning problems in both, theoretical and experimental validations. In particular,
we find that augmentations provide the largest gains in complex scenarios with higher action dimen-
sionality or partial observability, where plain offline RL often fails. This suggests that exploiting
task structure to expand data coverage is a promising alternative to relying solely on behavior regu-
larization. Compared to warm-start RL, LIFT offers a more data-efficient way to leverage subopti-
mal expert routines: by selectively taking shortcuts suggested by an off-policy learner, we improve
dataset quality without requiring extensive online fine-tuning.

Nevertheless, our approach has limitations. Shortcut validity depends on assumptions about the
distortion function and value function regularity, which may not hold in all real-world positioning
systems. Moreover, our experiments are limited to semi-realistic simulators; future work should
validate these methods on physical platforms, especially in robotic alignment tasks. Another open
question is how to combine shortcut augmentation with model-based methods or world models to
further improve sample efficiency. We believe that the principles underlying LIFT are broadly
applicable in robotics and other domains beyond active positioning tasks where expert routines exist
but are suboptimal. We hope this work encourages a more systematic treatment of data augmentation
strategies for offline RL in structured industrial tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work investigates RL methods for active positioning problems, with a particular focus on data
augmentation for improving offline policy learning. Our experiments are conducted exclusively in
simulated environments and do not involve human subjects, personal data, or sensitive informa-
tion. The proposed methods are designed for applications such as optical alignment and robotic
positioning in industrial settings, where potential impacts include increased energy efficiency and
reduced material waste through more accurate and reliable automation. We do not anticipate any di-
rect negative societal consequences of this research. However, as with any advancement in machine
learning for automation, care should be taken to ensure that these methods are deployed in ways that
complement human expertise and respect workplace safety standards.

REPRODUCIBILITY STATEMENT

All proofs for the theoretical results in Section 3 are provided in Section A. The mathematical prop-
erties of the movement distortions used in our experiments in Section 5 are given in Section B.
Further implementation details and results of all benchmarks of our experimental validation from
Section 5, can be found in Section C. The implementations of our experiments are among the sup-
plemental material of this submission and will be made available on GitHub upon acceptance.

LLM STATEMENT

Large language models (LLMs) were used to refine the manuscript’s language, particularly to
streamline paragraphs, improve reading flow and grammar using original drafts as input, streamlin-
ing and refining mathematical expressions, and helped to address LaTeX-specific issues. Moreover,
they provided to refine the mathematical definitions of some movement distortions and polishing
a lengthy proof via induction for Proposition 3.4. They also assisted in summarizing related work
and provided guidance on the experimental code (e.g., refactoring and debugging hints). All outputs
were reviewed and edited by the authors, who take full responsibility for the final content.

REFERENCES

Qichang An, Xiaoxia Wu, Xudong Lin, Jianli Wang, Tao Chen, Jingxu Zhang, Hongwen Li, Haifeng
Cao, Jing Tang, Ningxin Guo, and Hongchao Zhao. Alignment of decam-like large survey
telescope for real-time active optics and error analysis. Optics Communications, 484:126685,
2021. ISSN 0030-4018. doi: https://doi.org/10.1016/j.optcom.2020.126685. URL https:
//www.sciencedirect.com/science/article/pii/S0030401820311032.

Philip J. Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learn-
ing with offline data. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 1577–1594.
PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/ball23a.
html.

K. Bräuniger, D. Stickler, D. Winters, C. Volmer, M. Jahn, and S. Krey. Automated assembly of
camera modules using active alignment with up to six degrees of freedom. In Yakov G. Soskind
and Craig Olson (eds.), Photonic Instrumentation Engineering, volume 8992, pp. 89920F. In-
ternational Society for Optics and Photonics, SPIE, 2014. doi: 10.1117/12.2041754. URL
https://doi.org/10.1117/12.2041754.

Matthias Burkhardt, Tobias Schmähling, Pascal Stegmann, Michael Layh, and Tobias Windisch.
Active alignments of lens systems with reinforcement learning, 2025. URL https://arxiv.
org/abs/2503.02075.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2021. URL https://arxiv.org/abs/2004.07219.

Scott Fujimoto and Shixiang Gu. A minimalist approach to offline reinforcement learning. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural

10

https://www.sciencedirect.com/science/article/pii/S0030401820311032
https://www.sciencedirect.com/science/article/pii/S0030401820311032
https://proceedings.mlr.press/v202/ball23a.html
https://proceedings.mlr.press/v202/ball23a.html
https://doi.org/10.1117/12.2041754
https://arxiv.org/abs/2503.02075
https://arxiv.org/abs/2503.02075
https://arxiv.org/abs/2004.07219

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Information Processing Systems, 2021. URL https://openreview.net/forum?id=
Q32U7dzWXpc.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062, 2019.

Juan L. Gamella, Jonas Peters, and Peter B”uhlmann. Causal chambers as a real-world
physical testbed for AI methodology. Nature Machine Intelligence, 2025. doi: 10.1038/
s42256-024-00964-x.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy and An-
dreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 1861–1870. PMLR, 10–15 Jul
2018. URL https://proceedings.mlr.press/v80/haarnoja18b.html.

Zhang-Wei Hong, Pulkit Agrawal, Remi Tachet des Combes, and Romain Laroche. Harnessing
mixed offline reinforcement learning datasets via trajectory weighting. In The Eleventh Interna-
tional Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=OhUAblg27z.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. In International Conference on Learning Representations, 2022. URL https://
openreview.net/forum?id=68n2s9ZJWF8.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for of-
fline reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 1179–1191. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf.

Patrik Langehanenberg, Josef Heinisch, Chrisitan Wilde, Felix Hahne, and Bernd Lüerß. Strategies
for active alignment of lenses. In Julie L. Bentley and Sebastian Stoebenau (eds.), Optifab 2015,
volume 9633, pp. 963314. International Society for Optics and Photonics, SPIE, 2015. doi: 10.
1117/12.2195936. URL https://doi.org/10.1117/12.2195936.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tu-
torial, review, and perspectives on open problems, 2020. URL https://arxiv.org/abs/
2005.01643.

Haibin Liu, Wenyong Li, Shaohua Gao, Qi Jiang, Lei Sun, Benhao Zhang, Liefeng Zhao, Jiahuang
Zhang, and Kaiwei Wang. Application of deep learning in active alignment leads to high-
efficiency and accurate camera lens assembly. Opt. Express, 32(25):43834–43849, Dec 2024.
doi: 10.1364/OE.537241. URL https://opg.optica.org/oe/abstract.cfm?URI=
oe-32-25-43834.

Aditya Modi, Nan Jiang, Satinder Singh, and Ambuj Tewari. Markov decision processes with contin-
uous side information. In Firdaus Janoos, Mehryar Mohri, and Karthik Sridharan (eds.), Proceed-
ings of Algorithmic Learning Theory, volume 83 of Proceedings of Machine Learning Research,
pp. 597–618. PMLR, 07–09 Apr 2018. URL https://proceedings.mlr.press/v83/
modi18a.html.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
coming exploration in reinforcement learning with demonstrations. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pp. 6292–6299, 2018. doi: 10.1109/ICRA.2018.
8463162.

Robert E. Parks. Alignment of optical systems. In International Optical Design, pp. MB4. Op-
tica Publishing Group, 2006. doi: 10.1364/IODC.2006.MB4. URL https://opg.optica.
org/abstract.cfm?URI=IODC-2006-MB4.

11

https://openreview.net/forum?id=Q32U7dzWXpc
https://openreview.net/forum?id=Q32U7dzWXpc
https://proceedings.mlr.press/v80/haarnoja18b.html
https://openreview.net/forum?id=OhUAblg27z
https://openreview.net/forum?id=OhUAblg27z
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=68n2s9ZJWF8
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf
https://doi.org/10.1117/12.2195936
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643
https://opg.optica.org/oe/abstract.cfm?URI=oe-32-25-43834
https://opg.optica.org/oe/abstract.cfm?URI=oe-32-25-43834
https://proceedings.mlr.press/v83/modi18a.html
https://proceedings.mlr.press/v83/modi18a.html
https://opg.optica.org/abstract.cfm?URI=IODC-2006-MB4
https://opg.optica.org/abstract.cfm?URI=IODC-2006-MB4

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ildar Rakhmatulin, Donald Risbridger, Richard M. Carter, M.J. Daniel Esser, and Mustafa Suphi
Erden. A review of automation of laser optics alignment with a focus on machine learning
applications. Optics and Lasers in Engineering, 173:107923, 2024. ISSN 0143-8166. doi:
https://doi.org/10.1016/j.optlaseng.2023.107923. URL https://www.sciencedirect.
com/science/article/pii/S0143816623004529.

Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Geoffrey Gordon, David Dunson, and Miroslav
Dudı́k (eds.), Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, volume 15 of Proceedings of Machine Learning Research, pp. 627–635, Fort Laud-
erdale, FL, USA, 11–13 Apr 2011. PMLR. URL https://proceedings.mlr.press/
v15/ross11a.html.

Kajetan Schweighofer, Marius-constantin Dinu, Andreas Radler, Markus Hofmarcher, Vi-
hang Prakash Patil, Angela Bitto-nemling, Hamid Eghbal-zadeh, and Sepp Hochreiter. A dataset
perspective on offline reinforcement learning. In Sarath Chandar, Razvan Pascanu, and Doina
Precup (eds.), Proceedings of The 1st Conference on Lifelong Learning Agents, volume 199
of Proceedings of Machine Learning Research, pp. 470–517. PMLR, 22–24 Aug 2022. URL
https://proceedings.mlr.press/v199/schweighofer22a.html.

Takuma Seno and Michita Imai. d3rlpy: An offline deep reinforcement learning library. Journal of
Machine Learning Research, 23(315):1–20, 2022. URL http://jmlr.org/papers/v23/
22-0017.html.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the
minimalist approach to offline reinforcement learning. In Thirty-seventh Conference on Neu-
ral Information Processing Systems, 2023. URL https://openreview.net/forum?id=
vqGWslLeEw.

Robert Upton, Thomas Rimmele, and Robert Hubbard. Active optical alignment of the Advanced
Technology Solar Telescope. In Martin J. Cullum and George Z. Angeli (eds.), Modeling, Systems
Engineering, and Project Management for Astronomy II, volume 6271, pp. 62710R. International
Society for Optics and Photonics, SPIE, 2006. doi: 10.1117/12.671826. URL https://doi.
org/10.1117/12.671826.

Lan Zhang, Luigi Franco Tedesco, Pankaj Rajak, Youcef Zemmouri, and Hakan Brunzell. Ac-
tive learning for iterative offline reinforcement learning. In NeurIPS 2023 Workshop on Adap-
tive Experimental Design and Active Learning in the Real World, 2023. URL https://
openreview.net/forum?id=yuJEkWSkTN.

A PROOFS FOR SECTION 3

Lemma A.1. Let π be distance-improving, then (1− γ)V π(s,W) ≥ −∥s− sW ∥ for all (s,W).

Proof. Let (s0,W), (s1,W), . . . , (sk,W) be a trajectory of π starting at s = s0, then

V π(s,W) = −
k∑

i=1

γi−1∥si − sW ∥ ≥ −∥s− sW ∥
k−1∑
i=0

γi = −∥s− sW ∥ ·
1− γk

1− γ

where we have used that π is distance improving in every step. Finally, (1− γ)V π(s,W) ≥ −∥s−
sW ∥(1− γk) ≥ −∥s− sW ∥.

Proof of Proposition 3.1. Assume that τ = (s0, . . . , sk) is the sub-trajectory of π starting at s = s0
and ending at s′ = sk. We prove the statement via induction on k. Note that since s′ ̸= s, we have
k ≥ 1. Let k = 1, then

V π(s,W) = −∥s1 − sW ∥+ γ · V π(s′,W)

and the claim holds. Now, assume the statement holds from s1 to sk = s′, then

γV π(s′,W)− V π(s1,W) ≥ ∥s′ − sW ∥

12

https://www.sciencedirect.com/science/article/pii/S0143816623004529
https://www.sciencedirect.com/science/article/pii/S0143816623004529
https://proceedings.mlr.press/v15/ross11a.html
https://proceedings.mlr.press/v15/ross11a.html
https://proceedings.mlr.press/v199/schweighofer22a.html
http://jmlr.org/papers/v23/22-0017.html
http://jmlr.org/papers/v23/22-0017.html
https://openreview.net/forum?id=vqGWslLeEw
https://openreview.net/forum?id=vqGWslLeEw
https://doi.org/10.1117/12.671826
https://doi.org/10.1117/12.671826
https://openreview.net/forum?id=yuJEkWSkTN
https://openreview.net/forum?id=yuJEkWSkTN

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

by the induction hypothesis. Furthermore, we have

γV π(s′,W)− V π(s,W) = γV π(s′,W)− V π(s1,W) + V π(s1,W)− V π(s,W)

≥ ∥s′ − sW ∥+ V π(s1,W)− V π(s,W)

= ∥s′ − sW ∥+ V π(s1,W)− (−∥s1 − sW ∥+ γV π(s1,W))

= ∥s′ − sW ∥+ (1− γ)V π(s1,W) + ∥s1 − sW ∥
Using Lemma A.1, we have (1− γ)V π(s1,W) + ∥s1 − sW ∥ ≥ 0 and the claim follows.

Proof of Proposition 3.2. It suffices to show that the statement holds if augmentation only is applied
at one single state (s̃,W). That is, there exists an action a that satisfies:

γ · V π(f(s̃, a,W),W)− ∥f(s̃, a,W)− sW ∥ ≥ V π(s̃,W)

Let πa be the policy that uses a at s̃ and on all other states coincides with π. First, we show that
J(πa) ≥ J(π). It suffices to show that V πa(s) ≥ V π(s) for all s ∈ S. Let (s,W) be an initial
state. If the trajectory of π does not traverse s̃, then V πa(s) = V π(s). Assume differently that the
trajectory visits s̃ at the t-th step. Then, the trajectory starting at s follows π till s̃, then chooses the
shortcut a, and then follows π from s′ = f(s̃, a,W). The value for this trajectory is:

V πa(s,W) = V π(s,W)− γt · V π(s̃,W)− γt∥s′ − sW ∥+ γt+1V π(s′,W).

From the assumption of (s̃, a), we have

γt · (−V π(s̃,W)− ∥s′ − sW ∥+ γ · V π(s′,W)) ≥ 0

and hence V πa(s,W) ≥ V π(s,W).

Proof of Proposition 3.3. Since Proposition 3.1 gives that γV π(sj ,W)−V π(si,W) ≥ ∥sj−sW ∥,
it is left to prove that f(si, a,W) = sj . We have

f(si, a,W) = si +W ·
j−1∑
k=i

ai = si +W · ai +W · ai+1 + . . .+W · aj−1.

Let si+1, . . . , sj−2 be the intermediate states, i.e. sk = f(sk−1, ak−1,W), then replacing sk =
sk − 1 +W · ak−1 in the equation above from k = i to k = j − 1 gives the claim.

Proof of Proposition 3.4. Let a0, . . . , ak−1 a chain of actions and set A =
∑k−1

i=0 = ai, (s0,W) an
initial state and set si = f(si−1, ai−1,W). Recursively unraveling the definition of f yields

sk = s0 +
∑
i=0

g(si,W) · ai

and consequently

f(s0, A,W)− sk = g(s0,W)

k−1∑
i=0

ai −
k−1∑
i=0

g(si,W))ai

=

k−1∑
i=0

(
g(s0,W)− g(si,W)

)
ai.

Taking norms and using the induced matrix norm on Rm×d gives∥∥f(s0, A,W)− sk
∥∥ ≤ k−1∑

i=0

∥∥g(s0,W)− g(si,W)
∥∥ · ∥ai∥.

By the assumption on g, we have

∥g(s0,W)− g(si,W)∥ ≤ ∥g(s0,W)∥+ ∥g(si,W)∥ ≤ 2 · sup
S×W

∥g∥

independently of the actions for all i and the claim follows.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Proof of Theorem 3.5. For brevity, we omit W in the notation of the value function. We have to
show that γV π(f(si, a,W)) − V π(si) ≥ ∥f(si, a,W) − sW ∥. Because f has linear-placement
errors, it follows directly from Definition 3.2 that ∥f(si, a,W)− sj∥ ≤ Lf ·

∑j−1
k=i ∥ak∥ and thus

∥f(si, a,W)− sW ∥ = ∥f(si, a,W)− sj + sj − sW ∥ ≤ Lf ·
j−1∑
k=i

∥ak∥+ ∥sj − sW ∥.

On the other hand, using the Lipschitz continuity of V π , we get

γV π(f(si, a,W))− V π(si) ≥ γ · (V π(sj)− LV · ∥f(si, a,W)− sj∥)− V π(si)

≥ γ · V π(sj)− V π(si)− γ · LV · Lf ·
j−1∑
k=i

∥ak∥

Now, as the inequality from the theorem statement holds, we have

γ · V π(sj)− V π(si) ≥ (γ · LV + 1) · Lf ·
j−1∑
k=i

∥ak∥+ ∥sj − sW ∥

and plugging this into the upper equation gives the claim.

Proposition A.2. Let π be an f -contraction. Then V π is 1
1−γ -Lipschitz continuous in the states.

Proof. Define L = 1
1−γ and let (s,W) and (s′,W) be two states. We prove via induction over the

combined number of steps k needed to reach the optimality region around sW starting at s and s′

that
|V π(s,W)− V π(s′,W)| ≤ L · ∥s− s′∥.

If k = 0, then s and s′ are both within the optimality region, i.e. ∥s − sW ∥ ≤ θ and ∥s′ −
sW ∥ ≤ θ, then V π(s,W) = V π(s′,W) = 0 and the claim holds. Now, let o = O(s,W) and
o′ = O(s′,W) be the observations at s and s′ and s1 = f(s, π(o),W) and s′1 = f(s′, π(o′),W)
be the next states after one step of π. Particularly, the induction hypothesis holds for s1 and s′1,
i.e. |V π(s1,W) − V π(s′1,W)| ≤ L · ∥s1 − s′1∥. Since V π(s) = −∥s1 − sW ∥ + γV π(s,W) and
V π(s′) = −∥s′1 − sW ∥+ γV π(s′,W), we have

|V π(s)− V π(s′)| = |γ · V π(s1,W)− γ · V π(s′1,W)− ∥s1 − sW ∥+ ∥s′1 − sW ∥|
≤ γ · |V π(s1,W)− V π(s′1,W)|+ |∥s1 − sW ∥ − ∥s′1 − sW ∥|
≤ γ · L · ∥s1 − s′1∥+ ∥s1 − s′1∥
≤ (γ · L+ 1) · ∥s1 − s′1∥
= L · ∥s1 − s′1∥

where the last equation is due to L = 1
1−γ . Finally, because π is an f -contraction, we have ∥s1 −

s′1∥ = ∥f(s, π(o),W)− f(s′, π(o′),W)∥ ≤ ∥s− s′∥ and the claim follows.

Proof of Corollary 3.6. Because π is an f -contraction, V π is 1
1−γ -Lipschitz continuous by Propo-

sition A.2. Plugging LV = 1
1−γ into Theorem 3.5 gives the claim.

B MOVEMENT DISTORTION FUNCTIONS

In this section, we formally define the different movement distortions f we consider in our exper-
iments. The first set of distortions are linear distortions of the form f(s, a,W) = s + W · a with
W ∈ Rd×d a distortion matrix, more specific, we use

fblend(s, a,W) = s+ (Id×d +W) · a, W ∼ Nd×d(0, σ)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

For W ∈ R a scalar, let RW =

(
cos(W) − sin(W)
sin(W) cos(W)

)
be a two-dimensional rotation matrix. We

rise this to a high-dimensional rotation matrix where adjacent dimensions are rotated, i.e.,

RotW = diag(RW , . . . , RW) ∈ Rd×d

where diag(A1, . . . , Ak) is the block-diagonal matrix with blocks A1, . . . , Ak on the diagonal.

frot(s, a,W) = s+ RotW · a, W ∼ N (0, σ)

The next distortion function is a scaling-based one which does not depend on a latent context W :

fscale(s, a,W) = s+ clipC,λ (∥s− sW ∥) · a

with some constant 0 < C < λ to ensure that the steps are not to small so that the optimum can be
reached in finitely many steps.

The next set of distortions is again a rotation-based one, but one where the rotation matrix depends
on the region. For that, we assume the position space P is decomposed into c-many non-overlapping
subsets P1, . . . ,Pc such that ∪ci=1Pi = P . Then

fregrot(s, a,W) = s+

c∑
i=1

1s∈Pi · RotWi · a, W ∈ Nc(µ, σ), µ ∈ Rc

As Pi ∩ Pj = ∅ for i ̸= j, only one rotation matrix is active at a time, depending on the state.

In our experiments, we used c = 4 and divided P into four sets depending on in which quadrant of
R2 the first two dimensions reside. Moreover, we set µ = (−0.3, 0.6,−0.3, 0.6).
The next distortion is one where a non-linear offset is added which depends on both, the state and
the action:

fsin(s, a,W) = s+ a+W · sin(s) ◦ cos(s) · ∥a∥, W ∼ U(0, σ)
where sin and cos are applied component-wise and ◦ denote the element-wise multiplication. Fi-
nally, we consider a distortion function that does not have linear placement errors:

fsqrt(s, a,W) = s+ (Id×d +W) ·
√
∥a∥ · a, W ∼ Nd×d(0, σ).

B.1 LINEAR PLACEMENT-ERRORS

We begin by proving a stronger conditions, which is easier to check and implies LPE:
Proposition B.1. Let f be a distortion function and assume there exists a constant Lf such that for
all states (s,W) and actions a, a′ ∈ A

∥f(s, a+ a′,W)− f(f(s, a,W), a′,W)∥ ≤ Lf · ∥a∥

Then f has LPE with constant Lf .

Proof. For i ∈ {0, . . . , k}, define the tail sums ãi :=
∑k−1

j=i aj and the states s̃i := f(si, ãi,W).
By definition s̃0 = f(s0, a0 + . . .+ ak−1,W) and, since ãk = 0 and f(s, 0,W) = s, we also have
s̃k = sk. Thus, we have to prove that ∥s̃0− s̃k∥ ≤ Lf

∑k−1
i=0 ∥ai∥. Now, for any i ∈ {0, . . . , k− 1}

we have
∥s̃i − s̃i+1∥ = ∥f(si, ai + ãi+1,W)− f(si+1, ãi+1,W)∥ ≤ Lf∥ai∥.

because of the assumptions on f from the statement of the proposition. Summing these inequalities
and applying the triangle inequality yields

∥s̃0 − s̃k∥ ≤
k−1∑
i=0

∥s̃i − s̃i+1∥ ≤ Lf

k−1∑
i=0

∥ai∥.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) Direct policy in fblend

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) Coordinate walk in fblend

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(c) Direct policy in fscale

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(d) Coordinate walk in fscale

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(e) Direct policy in frot

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(f) Coordinate walk in frot

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(g) Direct policy in fregrot

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(h) Coordinate walk in fregrot

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(i) Direct policy in fsin

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(j) Coordinate walk in fsin

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(k) Direct policy in fsqrt

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(l) Direct walk in fsqrt

Figure 7: Trajectories of direct policy and coordinate walk in different movement dynamics.

LPE and the proposition of Proposition B.1 are not equivalent: Consider f(s, a) = s + sign(s) · a.
Then its easy to show that f has linear-placement errors with Lf = 2, but it does not have the
property from Proposition B.1.

Proposition B.2. The distortion fblend has LPE with Lfblend = 0.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof. Straight-forward application of Proposition B.1.

Proposition B.3. The distortion frot has LPE with Lfrot = 0.

Proof. Straight-forward application of Proposition B.1.

Proposition B.4. The distortion fscale has LPE with Lfscale = 2 · λ.

Proof. We write fscale(s, a,W) = s+ g(s,W) · a with g(s,W) = clipC,λ(∥s− sW ∥) · Id with Id
the identity function of Rd×d. Clearly g is bounded and we have supS×W ∥g∥ = λ and the claim
follows by an application of Proposition 3.4.

Proposition B.5. The distortion fregrot has LPE with Lfregrot = 2.

Proof. We write fregrot(s, a,W) = s+g(s,W) ·a with g(s,W) = RotWi
whenever s ∈ Pi, where

P1, . . . ,Pc are the partitions of S from Section 5.1.1. For every state (s,W), g(s,W) is a rotation
matrix and thus ∥g(s,W)∥ = 1 and g statisfies the the claim follows from Proposition 3.4.

Proposition B.6. The distortion fsin has LPE with Lfsin =
√
dσ.

Proof. Let fsin(s, a,W) = s+ a+ g(s) · ∥a∥ with g(s,W) := W · sin(s)⊙ cos(s). Although we
cannot apply Proposition 3.4 as fsin has not the desired form, we can follow a similar strategy. First,
we observe that g is bounded:

∥g(s,W)∥ = |W | ·

√√√√ d∑
i=1

sin(si)2 · cos(si)2 ≤ σ
√
d

because W ∼ U(0, σ). Let a0, . . . , ak−1 be a chain of actions and set A =
∑k−1

i=1 ai and si =
f(si−1, ai−1,W), then

fsin(s0, A,W)−sk = A+g(s0,W)∥A∥−
k−1∑
i=0

(
ai+g(si,W)∥ai∥

)
= g(s0,W)∥A∥−

k−1∑
i=0

g(si,W)∥ai∥

and thus:

∥fsin(s0, A,W)− sk∥ ≤ ∥g(s0,W)∥A∥+
k−1∑
i=0

∥g(si,W)∥ai∥ ≤ σ
√
d

k−1∑
i=0

∥ai∥

because ∥A∥ ≤
∑k−1

i=0 ∥ai∥ by the triangle inequality.

Next, we show that fsqrt is not LPE:

Proposition B.7. The distortion fsqrt does not have LPE.

Proof. Let v ∈ Rd be a unit vector and let a0 = a1 = c · v with c ≤ λ. Let (0, 0) ∈ Rd × Rd×d

be an initial state, then s1 = fsqrt(0, a0, 0) =
√
c · c · v and s2 = fsqrt(s1, a1, 0) = 2

√
c · c · v.

Moreover, we have f(s0, a0 + a1, 0) = f(0, 2 · c · v, 0) = 2
√
2c · c · v and hence

∥f(s0, a0 + a1, 0)− s2∥ = (2
√
2− 2) ·

√
c · c.

which cannot be bounded by Lf · (∥a0∥+ ∥a1∥) = 2 · Lf · c for any constant Lf .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.2 CONTRACTIONS AND LIPSCHITZ-CONTINUITY IN REAL-WORLD APPLICATIONS

We do not expect that policies and distortions from real-world applications satisfy the rigorous
mathematical assumptions stated in Section 3. Pedantically, even simple modeling choices already
break global smoothness: for instance, having A = Bλ(0) with A a strict subset of S, combined
with an optimality region defined by a threshold θ, induces discontinuities in the value function. The
same holds for the coordinate walk policy in Section 5.2, where a fixed step length produces value
functions with sharp discontinuities, as shown in Figure 9.

Nevertheless, global mathematical rigor is not required to detect local shortcuts in real trajectories.
A striking example is the coordinate walk under fregrot: since different rotations apply in different
regions, the policy is not an f -contraction globally, because nearby states s and s′ lying in different
regions Pi and Pj may be rotated in different directions (Figure 8a). Yet, for states within same
region where the coordinate walk applies same actions, the contraction property is preserved (Fig-
ure 8b). This illustrates that shortcut identification relies less on global guarantees and more on local
structure along trajectory segments.

Informally speaking, it suffices that the value function does not change too abruptly for small mis-
placements, so that local improvements can be exploited as shortcuts. In practice, this condition is
often met: physical systems typically exhibit continuity over small ranges of motion, even if dis-
continuities or non-contractive behavior emerge globally. Hence, while our theoretical assumptions
provide clean guarantees, the underlying ideas remain applicable well beyond the idealized setting
as demonstrated by our experiments in Section 5.

s s′

π(O(s,W)) π(O(s′,W))

Pi Pj

(a) fregrot in different regions

s s′

π(O(s,W)) π(O(s′,W))

Pi

(b) fregrot in same partition

Figure 8: In fregrot, starting at two close-by states s and s′ in different regions P1 and P2 can increase
the distance between subsequent states as opposed rotation matrices apply.

No distortion fblend frot fscale fregrot fsin fsqrt

Figure 9: Value functions V π(·,W) of coordinate walk for a random but fixed context W each.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C DETAILS FOR EXPERIMENTAL RESULTS

C.1 HYPERPARAMETERS OF LEARNING ALGORITHMS

Parameter Value
actor learning rate 10−3

critic learning rate 10−3

conservative weight 5.0
α-threshold 10.0
batch size 500

γ 0.99
τ 0.005

Table 2: Parameter for CQL
trained on collected datasets.

Parameter Value
actor learning rate 10−3

critic learning rate 10−3

conservative weight 5.0
α-threshold 10.0
batch size 500

γ 0.99
τ 0.005

Table 3: Parameter for CQL
trained as LIFT augmentor.

Parameter Value
actor learning rate 10−3

critic learning rate 10−3

batch size 256
n updates per step 5

n critics 2
γ 0.99
τ 0.005

Table 4: Parameter for SAC.

C.2 HYPERPARAMETER STUDY OF LIFT

In this section, we study effects of the different hyperparameters of the shortcut computation (Al-
gorithm 1) and LIFT (Algorithm 2). First, we study the effect of the number of augmentations per
trajectory n and the probability of applying an augmentation p. The results are shown in Figure 10.
One can see that as few as 20 augmentations per trajectory are sufficient to achieve a substantial
improvement in performance, provided that the augmentation probability is not too low. Notably,
higher probabilities correspond to augmentations being applied earlier in the trajectory. This sug-
gests that augmentations at the beginning of a trajectory are more beneficial than those applied later.

0 5 10 15 20 25 30
Steps

0.0

0.2

0.4

0.6

||s
i−

s w
||

20 Augmentations
p=0.2
p=0.4
p=0.6
p=0.8

0 5 10 15 20 25 30
Steps

0.1
0.2
0.3
0.4
0.5
0.6

||s
i−

s w
||

40 Augmentations
p=0.2
p=0.4
p=0.6
p=0.8

0 5 10 15 20 25 30
Steps

0.1
0.2
0.3
0.4
0.5
0.6

||s
i−

s w
||

60 Augmentations
p=0.2
p=0.4
p=0.6
p=0.8

0 5 10 15 20 25 30
Steps

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

80 Augmentations
p=0.2
p=0.4
p=0.6
p=0.8

Figure 10: Experiments in fblend with step size 0.025 and different probabilities p of applying aug-
mentations and different maximal number of augmentations per trajectory

Next, we analyse the effect of the sampling scheme of shortcuts along a trajectory. Here, we denote
the sampling mechanism described in Algorithm 1 as weighted. Another way to sample shortcuts
from the set S computed in Algorithm 1 is to use a distribution that is proportional to the inverse
distance to the optimum, i.e. p(i) ∼ 1

∥si−sW ∥ or to sample uniformly from S. Instead of sampling,
one can also just use the shortcut residing within the action space that leads to the point of highest
reward within the trajectory called best. The results are shown in Figure 11 for n = 20 augmenta-
tions per trajectory and p = 0.4 showing that in the environments we consider, the sampling strategy
does not have a significant effect on the performance.

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

||s
i−

s w
||

Step size 0.0125
Best
Weighted
Random
Distance Weighting

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

||s
i−

s w
||

Step size 0.025
Best
Weighted
Random
Distance Weighting

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

||s
i−

s w
||

Step size 0.5
Best
Weighted
Random
Distance Weighting

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

||s
i−

s w
||

Step size 0.1
Best
Weighted
Random
Distance Weighting

Figure 11: Experiments in fblend with different step size and different sampling strategies.

C.3 ADDITIONAL VISUALIZATION

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

x

y

x

z

x

Rx

x

Ry

y

z

y

Rx

y

Ry

z

Rx

z

Ry

Rx

Ry

(a)

x

y

x

z

x

Rx

x

Ry

y

z

y

Rx

y

Ry

z

Rx

z

Ry

Rx

Ry

(b)

x

y

x

z

x

Rx

x

Ry

y

z

y

Rx

y

Ry

z

Rx

z

Ry

Rx

Ry

(c)

Figure 12: Augmented trajectories generated by LIFT for OLP in 5 dimensional hidden position
space: Actions coming from the augmentor in red and actions from the logging policy in blue.

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.0125
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.025
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.05
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.1
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

(a) 100 Episodes OPO with d = 2

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.0125
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.025

CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.05
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.1
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

(b) 500 Episodes OPO with d = 5

Figure 13: Experiments in fblend.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.0125
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.025
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.05
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.1
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

(a) 100 Episodes OPO with d = 2

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.0125
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.025

CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.05
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.1
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

(b) 500 Episodes OPO with d = 5

Figure 14: Experiments in fscale.

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.0125
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.025
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.05
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.1
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

(a) 100 Episodes OPO with d = 2

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.0125
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.025
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.05
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6
||s

i−
s w

||
Step Size 0.1

CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

(b) 500 Episodes OPO with d = 5

Figure 15: Experiments in frot.

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.0125
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.025
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.05
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.1
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

(a) 100 Episodes OPO with d = 2

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.0125
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.025
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.05
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.1
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

(b) 500 Episodes OPO with d = 5

Figure 16: Experiments in fregrot.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.0125
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.025
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.05
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.1
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

(a) 100 Episodes OPO with d = 2

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.0125

CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.025
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.05
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.1
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

(b) 500 Episodes OPO with d = 5

Figure 17: Experiments in fsin.

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.0125
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.025
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.05
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.1
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

(a) 100 Episodes OPO with d = 2

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.0125

CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.025
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.05
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.1
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

(b) 500 Episodes OPO with d = 5

Figure 18: Experiments in fsqrt.

22

	Introduction
	Contributions
	Related Work

	Active positioning
	Theoretic consideration of shortcut augmentations
	Logging Improvements via Fine-Tuned Trajectories
	Experiments
	Environments
	Movement distortions

	Logging policies
	Observations

	Results

	Discussion
	Proofs for Section ??
	Movement distortion functions
	Linear placement-errors
	Contractions and Lipschitz-continuity in real-world applications

	Details for Experimental Results
	Hyperparameters of learning algorithms
	Hyperparameter study of LIFT
	Additional visualization

