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ABSTRACT

We propose a method for data augmentation in offline reinforcement learning ap-
plied to active positioning problems. The approach enables the training of off-
policy models from a limited number of trajectories generated by a suboptimal
logging policy. Our method is a trajectory-based augmentation technique that ex-
ploits task structure and quantifies the effect of admissible perturbations on the
data using the geometric interplay of properties of the reward, the value function,
and the logging policy. Moreover, we show that by training an off-policy model
with our augmentation while collecting data, the suboptimal logging policy can
be supported during collection, leading to higher data quality and improved of-
fline reinforcement learning performance. We provide theoretical justification for
these strategies and validate them empirically across positioning tasks of varying
dimensionality and under partial observability.

1 INTRODUCTION

In active positioning, an end-effector must place an object precisely at a desired pose. Such prob-
lems occur in high-precision manufacturing, e.g., in camera Bräuniger et al. (2014) or telescope
assembly Upton et al. (2006), in alignments of laser optics Rakhmatulin et al. (2024), as well as in
many robotic manipulation tasks Plappert et al. (2018). In optical systems, this involves iterative
adjustment of components, such as lenses or mirrors, to maximize alignment quality from image-
based signals. These tasks are naturally modeled as contextual partially observed Markov decision
problems (POMDPs) and demand generalization over the context Burkhardt et al. (2025). While
reinforcement learning (RL) has advanced algorithmically, online training is costly: explorations in
high-dimensional observation and continuous action spaces are inefficient, cause long downtimes,
and human interaction is often required between episodes, for instance to insert new objects. At the
same time, precise but inefficient expert routines can provide data, making offline RL a promising
alternative, which sidesteps online interactions by training from pre-collected datasets(Levine et al.,
2020). Although offline RL promises is to learn policies better than the logging policy from static
datasets, without online interactions, it suffers from distributional shifts and inappropriate datasets,
leading to suboptimal policies. To cope with distribution shift, contemporary offline RL methods
regularize policies toward the behavior distribution or warm-start from the logging policy before
cautiously improving it (see Section 1.2 for an overview).

Trajectories of πβ Shortcut augmented trajectories Trajectories of πβ with aθ

Compute
shortcuts

Train
augmentor aθ

Figure 1: Overview of LIFT.

Despite these algorithmic advances, it remains unclear how the data-generating logging policy limits
what an offline learner can achieve. Prior evidence already shows that dataset selection can dominate
algorithmic differences (Schweighofer et al., 2022; Fu et al., 2021; Yarats et al., 2022); actionable
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guidance for improving the data itself, however, remains scarce. Moreover, when probing effects of
logging policies, prior work typically uses different categories of expertness where often the data
of highest expertness is produced by an RL agent trained online (Fu et al., 2021). Although this
schema is convenient, it could introduce a methodology bias: the generated trajectory inherits the
exploration style and failure modes of the training algorithm, not those of deterministic, production-
grade expert routines common in practice. Mixing datasets of different quality not only degenerates
performance, it can also practically be infeasible to hand-off between policies. For instance, expert
systems typically are deterministic, tightly scripted routines with internal states where decisions can
depend on the entire trajectory of measurements. Inserting actions in-between can invalidate the
routine’s assumptions and it only be able to resume reliably if it restarts from the new state.

In this work, we design data-efficient RL methods for active positioning tasks that can effectively
learn from inefficient expert policies that can precisely place objects but need many steps to do so.
Our key idea is to augment the logging policy sparingly with actions proposed by an off-policy
learner trained parallel to the data collection. The off-policy learner is trained in a way to explore
shortcuts in the experts trajectories to make hand-offs seamless and effective.

1.1 CONTRIBUTIONS

We introduce LIFT, short for logging improvement via fine-tuned trajectories, a framework that
enhances punctual data collection for offline RL. Specifically, we propose a novel augmentation
scheme (Section 4) that keeps the logging policy in control while enabling optimistic probing by an
augmentor trained as data is collected. The augmentor’s goal is to skip redundant and unnecessary
sub-trajectories during collection and to smooth hand-offs between itself and the logging policy. A
key challenge is to train the augmentor with very limited data so that such shortcuts can be identified
punctually. Our idea is to train the augmentor on synthetic trajectories obtained from real data that
exhibit such shortcuts. We prove in Section 3 under which conditions such shortcuts can be reliably
identified in logged data, and we devise an algorithm to extract them from this data (Algorithm 1).
Finally, Section 5 presents a systematic study that underlines the strength and generality of our
approach by analyzing the effect of the logging policy, transition behavior, dimensionality, and
informativeness of observations on policy performance across a diverse class of active positioning
tasks. We implemented the shortcut augmentation in d3rlpy Seno & Imai (2022), following its
transition picker protocol, which allows our static augmentation method to be integrated into any
RL algorithm implemented in d3rlpy by adding a single line of code.1

1.2 RELATED WORK

A central challenge in offline RL is overestimating values for out-of-distribution actions. Methods
address this either by constraining the learned policy toward the logging distribution or by learn-
ing pessimistic value functions. Representative approaches include behavior regularization via BC
losses or divergence penalties (Fujimoto et al., 2019; Fujimoto & Gu, 2021; Tarasov et al., 2023),
pessimistic critics (Kumar et al., 2020), or expectile-based policy extraction (Kostrikov et al., 2022).
Methods depending on regularizations are sensitive to hyperparameters and they often limit the pol-
icy to stay close to the behavior, for instance due to safety constraints, which can be detrimental if the
behavior is highly suboptimal. Moreover, several studies note that algorithm performance is highly
sensitive to dataset composition (Fu et al., 2021; Hong et al., 2023), that is, mixing suboptimal tra-
jectories with expert data. Prior work has studied intensively the importance of high-coverage Yarats
et al. (2022); Wagenmaker et al. (2025) and expertness of datasets Kumar et al. (2022); Corrado et al.
(2024) for offline RL. This has been underpinned by the investigations in Schweighofer et al. (2022),
where scores are designed that measure exploitation and exploration capabilities of datasets and how
these affect algorithmic performance of offline RL methods. Increasing the dataset diversity via data
augmentations is another line of work to mitigate narrow data distributions. In Andrychowicz et al.
(2017), an augmentation scheme for sparse reward in robotic manipulation tasks is proposed that
re-labels goals and states in logged trajectories to create additional successful transitions. Augmen-
tations for problems with image observations have been studied extensively in the literature, were
it was shown that rather simple image augmentations Laskin et al. (2020); Sinha et al. (2022), like

1The implementations are included in the supplemental material of this submission and will be made avail-
able on GitHub upon acceptance.
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random or utilizing causal techniques Pitis et al. (2020) can significantly improve sample efficiency.
Recently, diffusion-based techniques have been proposed that generate synthetic trajectories in order
to make offline RL more robust Li et al. (2024); Lee et al. (2024); Lu et al. (2023). Different than
purely offline augmentations generating synthetic data from static datasets and more relevant for
our work are hybrid schemes actively enhance the data collection process itself. The easiest hybrid
scheme is to warm-start online RL from an offline-trained policy, then continue by adding newly
collected online. Prior work shows that this, in combination with a careful sampling scheme and
network architecture Ball et al. (2023) or policy regularizations Nair et al. (2018), can turn offline
data into a strong initializer for online learning. Nevertheless, these methods still require rather long
online fine-tuning or high-quality offline datasets, neither of which is typically available in active
positioning tasks. A more subtle scheme is to let an expert guide the data collection process, like in
GuDA Corrado et al. (2024), where human-guidance is interleaved to direct trajectories toward suc-
cess. Another relevant line of work is to weave online transitions into logging policies as in iterative
offline RL (IORL) (Zhang et al., 2023). Here, exploratory actions are injected to discover unex-
plored regions in state-action space while training an offline RL agent on the generated trajectories.
This approach is discussed in Section 4. Our approach is similar in spirit, but instead of exploring
we want to exploit shortcuts in the trajectories to make hand-offs seamless and effective.

2 ACTIVE POSITIONING

In this section, we introduce the specific framework for active positioning problems building upon
the framework for active alignments introduced in Burkhardt et al. (2025). There, active positioning
problems are modelled as an episodic and contextual POMDP Modi et al. (2018). Specifically, the
state is decomposed in the current position s ∈ P with P a bounded subset of Rm and a static
context parameter W ∈ W , that is S = P ×W . The actions can be selected from a subsetA of Rd.
Applying an action a ∈ A at state (s,W ) gives the new state (s′,W ) with s′ = f(s, a,W ), where
f : P×A×W → Rd a parametrized distortion function. Typically, any position can be reached from
any other position within one action. Note that in our scenarios, the action space is additive, meaning
that the sum of two actions is itself an action if its inA. Throughout we assume that f(s, 0,W ) = s.
Our running example is f(s, a,W ) = s+W · a with W ∈ Rd×d a distortion matrix, like a rotation
matrix, but we will also consider non-linear distortions. Importantly, as W stay constant through-
out each episode, so is the extent of the distortion. One can think of W as variances introduced
by the gripping of an object, variances within an object, or conditions of the goal to be reached.

si+1 = f(si, π(OW (si)),W )

(si,W )

(si+1,W )

OW (si)

OW (si+1)

Figure 2: Active positioning of a lens system,
taken from Burkhardt et al. (2025)

In each episode, the goal is to navigate from a ran-
dom initial position s0 and randomized context W to
a terminal state sW ∈ Rd. The reward observed at
state (s,W ) is R(s, a,W ) = −∥f(s, a, w) − sW ∥,
i.e. the negative distance to the terminal state. An
episode ends once the state is sufficiently close to
sW or an upper limit of steps is reached. Formally,
we terminal states are all within the set {(s,W ) ∈
S : ∥s − sW ∥ ≤ θ}. Typically, W cannot be ob-
served directly, often even s cannot. Instead, an of-
ten high-dimensional and noised output OW (s) ∈ O
is observed, which is controlled by a conditional
probability density function depending on s and W .
In total, we call the tuple (P,W,O, f, γ) an active
positioning problem. This framework covers various
industrial use cases, from robot arm positioning, to active alignments of optical devices (Figure 2).

Although active positioning problems can also be considered as black-box optimization prob-
lems Burkhardt et al. (2025), they are inherently RL problems where symmetries and ambigui-
ties in the need to be actively explored. For instance, the observation space is typically highly
symmetric and context-dependent: states s and s′ that are far apart can yield very similar observa-
tions O(s,W ) ≈ O(s′,W ), while the same state can produce very different observations O(s,W )
and O(s,W ′) under different contexts. Additionally, safety constraints and physical limitations
often restrict the action space A so that the optimal state cannot be reached in one step and a
sequence of informed actions is required. In the RL formulation, a policy π : A × O → R
is a mapping of observations and actions to likelihood and the dynamics of the combined sys-
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tem works as follows: At a given state (s,W ), O(s,W ) is observed and an action a is sam-
pled from π(·, O(s,W )). The system then moves to the new state s′ = f(s, a,W ). Note that
a and s do not need to have same dimensionality. Starting from state (s0,W ) ∈ S, the com-
bined dynamics yields a trajectory (s0,W ), . . . , (sk,W ). The goal is to find a policy π maxi-
mizing J(π) := Es0,W

[∑k
i=0−γi∥si − sW ∥

]
, where γ ∈ (0, 1) is a discount factor. Clearly,

J(π) = Es0,W [V π(s0,W )] = Es0 [V
π(s0)] with V π the state-value function and V π(s) :=

EW∼W [V π(s,W )]. Similarly, we define the state-action value functions Qπ(s, a,W ) and Qπ(s, a).

3 THEORETICAL ANALYSIS OF SHORTCUT AUGMENTATIONS

In active positioning, good trajectories reach the optimal position in as few steps as possible. Al-
though most logging policies used in applications visit states that are close to the optimal state,
they often produce long and redundant trajectories. Our core idea is to train agents on synthetic
trajectories distilled from these imperfect data, which are more direct and goal-reaching. Intuitively,
we want the agent to skip parts of the trajectory that do not add much value — for example, going
straight instead of replicating zig-zag movements or detours present in the logged data (Figure 1).
However, improving logged trajectories is not straightforward. For instance, assume a collected tra-
jectory of a logging policy contains a sub-trajectory (si,W ), (si+1,W ), . . . , (sj ,W ) with actions
ai, . . . , aj−1, representing a long detour, like a zig-zag movement, from si to sj . Clearly, going
directly from si to sj would yield a trajectory with higher return. However, naively applying the
accumulated action a = ai + ai+1 + . . . + aj−1 at si will not necessarily land exactly at sj due
to distortions in the dynamics induced by f . Even small misplacements, that is ending up close to
sj but not exactly at sj , can cause significant value degradation if the value function is not stable in
the vicinity of sj . Worse, applying ′ at si may even move us in the opposite direction, away from
sj , with no guarantee that the new state has a higher value than si. Here, the length of the action
′, the value gap between si and sj , the stability of the value function around sj , and the distortion
in the dynamics at si all play a role. This section is about when the accumulated action a is indeed
beneficial. To start, we first formalize what it means for an action to be beneficial in our setting. We
call a policy π distance-improving, if for all W ∈ W we have for two subsequent states (si,W ) and
(sj ,W ), with i < j visited by the policy that ∥sj − sW ∥ < ∥si − sW ∥. In other words, the reward
along a trajectory of π is strictly increasing. In this section, we restrict to deterministic policies
which most logging policies are. Given the deterministic transition dynamics given by f , the value
function V π(s,W ) is exactly the return of π starting from (s,W ).

Proposition 3.1. Let π be a distance-improving policy and (s,W ), (s′,W ) ∈ S two states on a
trajectory of π where (s,W ) is visited prior to (s′,W ), then γV π(s′,W )−V π(s,W ) ≥ ∥s′−sW ∥.

All proofs are in Section A. Restricting the focus on distance-improving logging policies, beneficial
actions for active positioning problems can be defined as follows:

Definition 3.1. Let π be a policy, (s,W ) ∈ S a state, and a ∈ A an action with s′ = f(s, a,W ). If
γV π(s′,W )− V π(s,W ) ≥ ∥s′ − sW ∥, then is a is a π-shortcut at (s,W ).

Note that shortcuts depend on the latent information W , not on the position alone. The remainder of
this section studies how to find shortcuts in offline trajectories. To do so, consider a short trajectory
(s0,W ), (s1,W ), (s2,W ) from a distance-improving policy π with actions a0 and a1 (Figure 3a).
In principle, an action a with s2 = f(s0, a,W ) is a shortcut (Definition 3.1) and thus beneficial.
However, due to distortion in f , we cannot assume a = a0 + a1, nor that applying a0 + a1 at s0
will reach s2. We must at least ensure that a0 + a1 indeed leads near s2 which requires to control
placement errors induced by f . In case f(s, a,W ) = s +W · a with W ∈ Rm×d, trajectories can
be augmented without placement errors:

Proposition 3.2. Let f(s, a,W ) = s+W ·a and let (si,W ) and (sj ,W ) with i < j on a trajectory
of a distance improving policy π and ai, . . . , aj−1 the chain of actions π undertook to get from si to
sj . Then a =

∑j−1
k=i ak is a shortcut for si.

Extending Proposition 3.2 to non-linear dynamics is not trivial. Generally, we want to have that
accumulating actions along a trajectory does not lead to too much placement uncertainty, which is
typically the case in real-world positioning problems. We formalize this as follows:
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s′ = f(s0, a0 + a1,W )

s0 s1

s2

a0

a1

a0 + a1

(a) Movement uncertainty
s

s′
π(O(s,W ))

π(O(s′,W ))

(b) An f -contraction π

Figure 3: Interactions of policy with movement dynamics.

Definition 3.2 (Linear placement-errors). A distortion function f has linear placement-errors (LPE)
if there exists a constant Lf such that for any chain of actions a0, . . . , ak−1 with â :=

∑k−1
i=0 ai ∈ A

executed on (s0,W ) with si = f(si−1, ai−1,W ), we have: ∥f(s0, â,W )− sk∥ ≤ Lf ·
∑k−1

i=0 ∥ai∥.

Intuitively, the LPE property means that although a system distort movements, the mismatch intro-
duced when regrouping actions cannot grow faster than linearly with the size of the path taken. This
actually includes a wide range of functions where the distortion depends on the state only:
Proposition 3.3. Let f(s, a,W ) = s+ g(s,W ) · a with g : S → Rm×d a bounded matrix-function.
Then f has LPE with Lf = 2 · supS ∥g∥.

As we will see, when the distortion term also depends on the action, i.e. g(s, a,W ), things become
more involved for small actions a even if g is bounded and LPE does not follow without additional
assumptions (see Section 5.1.1). In Proposition B.1, we introduce an even stronger property which
suffice to imply LPE for distortion functions of common active positioning problems, like linear
movement dynamics. More specifically, it follows directly that a linear movement-dynamics of the
form f(s, a,W ) = s+Wa has LPE with Lf = 0.

Having gathered a notion of placement errors, we now need to control the stability of the value
function. Specifically, even when we can precisely reach sj from si, the value function V π can
change drastically in the vicinity of sj , making it hard to guarantee that applying the accumulated
action a at si is indeed beneficial. To control this, we have to impose good prroperties on V π . We
call a value function V : S → R LV -Lipschitz continuous if for all (s,W ), (s′,W ) ∈ S we have
|V (s,W )− V (s′,W )| ≤ LV · ∥s− s′∥. This is the final ingredient to prove our main statement:
Theorem 3.4. Let π be distance improving and assume that V π is LV -Lipschitz continuous and
Lf -placement errors. Let (si,W ) and (sj ,W ) on a trajectory of π and let a =

∑j−1
k=i ak be the sum

of the chain of actions π undertook to get from si to sj . Then a is a π-shortcut for si if

γ · V π(sj ,W )− V π(si,W )− ∥sj − sW ∥ ≥ (γ · LV + 1) · Lf ·
j−1∑
k=i

∥ak∥.

In some sense, Proposition 3.2 for movement dynamics of the form f(s, a,W ) = s +W · a arises
as a special case of Theorem 3.4 because Lf = 0 implies that the right-hand side becomes 0 and the
left-hand side is always non-negative due to Proposition 3.1. However, we note that Theorem 3.4
requires V π to be Lipschitz continuous, which is not needed in Proposition 3.2.

So far, we have not made any direct assumptions on policy π beside being distance improving and
V π being Lipschitz continuous. The next condition helps to ensure that V π is indeed Lipschitz
continuous (see Proposition A.2 in Section A), which requires a beneficial interplay with f :
Definition 3.3 (f -contraction). We call a policy π an f -contraction if for all pairs (s,W ), (s′,W )
with respective observations with o = O(s,W ) and o′ = O(s′,W ), we have

∥f(s, π(o),W )− f(s′, π(o′),W )∥ ≤ ∥s− s′∥.
Corollary 3.5. Let π be distance improving f -contraction and let f have LPE with constant Lf . Let
(si,W ) and (sj ,W ) on a trajectory of π and let a =

∑j−1
k=i ak be the sum of the chain of actions π

undertook to get from si to sj . Then a is a shortcut for si if

γ · V π(sj ,W )− V π(si,W )− ∥sj − sW ∥ ≥
Lf

1− γ
·
j−1∑
k=i

∥ak∥
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Being an f -contraction is a stronger requirement than mere distance improvement. We refer to
Section B.2 for a discussion and examples of f -contractions and Lipschitz value functions in real-
world policies. In practice, many active positioning policies do not satisfy the contraction property
globally, yet this is not required for identifying useful shortcuts as shown in our experiments.

4 LOGGING IMPROVEMENTS VIA FINE-TUNED TRAJECTORIES

The idea of iterative reinforcement learning is to enrich logging policies with exploratory steps while
collecting data (Zhang et al., 2023), mostly in order to improve coverage of the state-action space.
Specifically, an uncertainty model Eθ(s, a) is trained with Eθ(s, ·) a probability distribution onA for
each s ∈ S. Given a dataset D, Eθ is trained by minimizing E(o,a)∼D

[
−log(Eθ(s, a))+R(θ)

]
with

R(θ) a regularization term. Intuitively, Eθ(s, a) can be seen as the probability that action a has been
seen for state s in D. Actions with small probability Eθ(s, a) at state s are considered as exploratory
action and should be selected according to some fixed probability p enriching a given logging policy
πβ during rollout. These exploratory actions are rather rare and thus help keeping the system save
and naturally close to the logging policy πβ that generated the data. Although this approach seems
appealing, a central part that has been underexplored in current literature, namely that static logging
policies may not deal well with intermediate exploratory steps. In practise, arbitrary exploratory
steps may lead to states where the logging policy cannot recover well from, leading to lower overall
returns. We build upon this idea, but instead of selecting actions that have not been seen in the
data, we advocate to train a Q-function Qθ on some initial dataset D and select actions having high
Q-values. Formally, we set aθ(s, a) = maxa′∈A Qθ(s, a

′) where Qθ can be trained with any offline
RL method, like CQL or IQL. We call aθ an augmentor. By that, we aim to enrich the dataset with
actions that are likely to be beneficial for πβ in the sense of higher returns. While this idea is quite
universal and it remains unclear how action that ease hand-overs look like in general. Moreover, in
order that the augmentor provides useful steps, it has to be trained well already with limited data.
The idea of LIFT to show the augmentor data of good behavior by applying augmentation to the
logged data that emphasizes such behavior. Its easy to show that when aθ to suggest πβ-shortcuts
(Definition 3.1), a better logging policy can be obtained:
Proposition 4.1. Let πβ and aθ be two policies, then J(πaug) ≥ J(πβ) with πaug defined as follows:

πaug(O(s,W )) :=

{
aθ(O(s,W )) if aθ(O(s,W )) is a πβ-shortcut at (s,W )

πβ(O(s,W )) otherwise
.

This can be seen a special case of the policy improvement theorem (Sutton & Barto, 2018, Sec-
tion 4.2) to active positioning. For the remainder of this section, we discuss how to train aθ in order
that it suggests πβ-shortcuts for active positioning problems. However, we want to emphasize that
LIFT in general is not tied to this form of backbone-augmentations.

Theorem 3.4 gives a condition when and how to augment a trajectory (o0, a0, r0), . . . , (on, an, rn)
with latent states si = f(si−1, ai−1,W ), observations oi = O(si,W ), rewards ri = −∥si+1−sW ∥,
and actions ai = πβ(oi) from a logging policy πβ . To convey them into a practical algorithm, let
C ∈ R≥0 be a constant and let Gi = V π(si,W ) =

∑n
k=i γ

k−irk be the returns of πβ . Now, take
any pair (i, j) with i < j, let â =

∑j−1
k=i ai be a shortcut candidate and check if γGj −Gi+ rj−1 ≥

C ·
∑j−1

k=i ∥ak∥ with some constant C holds true. Clearly, without prior information on f and πβ , the
exact value of C remains unclear, and thus it has to be considered a regularization hyperparameter
of our method. If C = 0, all pairs are considered shortcuts, if C is large, only very few pairs where
high reward is gained in a few short steps are considered shortcuts. If the inequality is valid for (i, j),
we can assume that â is a shortcut and ideally, we would add the tuple (oi, â,−∥s′j − sW ∥, o′j) with
s′j = f(si, â,W ) and o′j = O(s′j ,W ) to the dataset. However, due to the movement uncertainty,
there is a gap between the position s′j the shortcut leads to and the observed state sj . Particularly,
the image observation O(s′j ,W ) and the reward−∥s′j−sW ∥ differ from the actually observed ones,
namely oj and rj−1. We argue, however, that in many practical applications, this gap is small, for
instance if Lf = 0 as in linear movement dynamics f(s, a,W ) = s +W · a (see Proposition 3.2).
Thus, we add (oi, a, rj−1, oj) to the training dataset. Algorithm 1 summarizes our shortcut sampling
procedure, and we want to emphasize that it can be added to any offline RL method that samples
from an offline dataset, like to minimize the Bellman error or related temporal difference errors as
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in CQL. Note that for a given input tuple, the runtime of Algorithm 1 is O(n). Observe that the
synthetic shortcuts are only used to obtain the augmentor aθ, which in turn is only used to fine-tune
the logging policy, and the collected dataset consists of real data only. The precise procedure is
described in Algorithm 2. For that, they must have good hand-over properties and thus we augment
the dataset D with shortcuts computed via Algorithm 1 when training Qθ.

Algorithm 1: Shortcut sampling
Input : C ≥ 0, i ∈ [n], trajectory

{(o0, a0, r0), . . . , (on, an, rn)}
Output : Tuple (oi, â, rj−1, oj)
Compute returns G0 . . . , Gn for

trajectory
S = {}
for j = i+ 1 · · ·n do

â←
∑j−1

k=i ak
if γGj −Gi ≥ C ·

∑j−1
k=i ∥ak∥ and

â ∈ A then
Add (oi, â, rj−1, oj) to S

Let m = |S| and denote r̂ = (r̂1, . . . , r̂m)
the rewards of the tuples in S

Let p ∼ r̂ −min r̂ a mass function
Sample (oi, â, rj−1, oj) from S w.r.t. p
return (oi, â, rj−1, oj)

Algorithm 2: LIFT
Input : Logging policy πβ , n ∈ N,

augmentor aθ, p ∈ [0, 1]
Output : Dataset D with n trajectories
Initialize: D = {}
repeat

Sample o0 from environment
Set d = false, τ = (), i = 0
while d is false do

ai = πβ(oi)
if p′ ≤ p with then

ai = aθ(oi, ai)
oi+1, ri, d = env.step(ai)
Reset πβ at oi+1 (if necessary)

else
oi+1, ri, d = env.step(ai)

Add (oi, ai, ri) to τ , i = i+ 1
Add Trajectory τ to D
if train augmentor then

Train aθ on D with with Algorithm 1
until |D| = n
return D

5 EXPERIMENTS

To evaluate LIFT for active positioning problems, we address two main questions: First, can short-
cut augmentations improve pure offline RL, and second, can they be leveraged during data collection
by training a Q-based augmentor in comparison to warm-start RL? To this end, we test different dis-
tortion functions f , observation types O, and levels of expertness of the logging policies.

5.1 ENVIRONMENTS

In order to analyze different movement distortions and observation types in isolation, we conducted
our experiments in semi-realistic active positioning environments designed to keep real world char-
acteristics and entail small sim-to-real gaps. Throughout, we use−∥s−sW ∥ as reward signal, which
is easy to compute in simulations, as one typically has access to latent information (s,W ).

5.1.1 MOVEMENT DISTORTIONS

We consider different movement distortions, some of them have linear forms, like fblend and frot both
with Lf = 0. We also use non-linear distortions, like fscale and fsin which have LPE with Lf > 0
and one non-continuous distortion fregrot also having LPE which is not contracting. We also test
a movement dynamics, called fsqrt, that does not satisfy the LPE property. We refer to Section B
for their precise mathematical definitions and corresponding proofs of their properties. Figure 6
illustrates an overview of the different distortions in two dimensions.

5.1.2 OBSERVATIONS

A canonical type of observation is when the position can be observed directly, i.e., OPO(s,W ) = s.
Here, we have to fix optimum sW = s∗ throughout, as otherwise it is impossible to infer where the
optimum should be without observing information about W . Roughly speaking, these are scenarios
where it is known where the optimum is, but not how to get there. We will evaluate these scenarios
in d = 2 and d = 5 dimensions. Our motivation stems from scenarios where observations are drawn
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from optical sensors and hence we test our method on different image generators (Figure 4). The
first comes from active alignments problems from camera assembly, were a lens objective has to
be positioned relative to a sensor to obtain optimal optical performance Liu et al. (2024). Here, s
relates to the position of the lens objective and W to variances in the lenses of the objective and
distortions in the movement dynamics. At each position s, light is sent through the lens system
creating an image OLP(s,W ) on a sensor. The task is to position the objective with variances W
precisely to an individual optimum sW (Figure 2) As some information about W is contained in
the image implicitly, it is possible to design algorithms that leverage the image information to move
towards sW . We use the realistic generator from Burkhardt et al. (2025) where collimated light is
sent in the form of a Siemens star producing images whose contrast and sharpness are sensitive to
small misalignments, thereby providing a rich and informative signal for learning-based control.

· · ·

· · ·

· · ·

Figure 4: Exemplary trajectories of πcw,l executed in OLP, OLT, and ORI (top to bottom).

Our second image generator is the light tunnel from Gamella et al. (2025), where light is sent from
a source through two polarizers whose angles dictate how light passes through to an optical sen-
sor. Here, each position s of the polarizers filters out certain wavelengths of the light creating a
image I(s) at the sensor. Here, the image observation does not on depend on the context W and
essentially only on the relative difference of the angles of the polarizers, i.e. many states lead to the
same image. To add some context, we sample in each episode sW uniformly from the box [0, 2π]2

and set OLT(s,W ) = I(s) − I(sW ). In our experiments, we use the decoder of the autoencoder
trained on images from the real system provided in the data repository of Gamella et al. (2025).

Lastly, we run experiments in the Fetch Reach environment Plappert et al. (2018), where a robotic
arm has to reach a position sW . Here, we use the vanilla environment ORP(s,W ) = s− sW where
the distance to the target is observed. In Section C we study the effect of shortcut augmentation for
harder variants using image observations and reaching multiple goals subsequently.

5.1.3 LOGGING POLICIES

0.0125 0.025 0.05 0.1
Step Size

102

103

Nu
m

be
r o

f S
te

ps

Figure 5: Expertness of πcw,l.

Algorithms for active positioning do not follow a general
recipe, but rather depend on the specific application. Align-
ments of optical systems, for instance, have traditionally re-
lied on iterative optimization of measured performance sig-
nals such as coupling efficiency or spot quality, where ac-
tuators are moved sequentially or in small patterns and the
response is evaluated to guide subsequent steps, typically fol-
lowing coordinate-descent or heuristic search strategies that
explore one or more degrees of freedom at a time (Parks,
2006; An et al., 2021; Langehanenberg et al., 2015).

Typically, the alignment starts with coarse steps and reduces
the step size later, for instance (Liu et al., 2024, Section 3.1)
for camera assembly. We have distilled the common principles into a synthetic logging policy called
coordinate walk, πcw,l that follows a structured coordinate walk with step size l. This allows us
to control the level of expertness of the logging policy and thus the quality of the collected data.
Our synthetic position policy knows the location of sW , but can only reach it via a path that is
suboptimal in both, number of steps and direction. More precisely, it sequentially moves along
individual coordinates of the positions s ∈ P ⊂ Rm by choosing actions a ∈ A along unit vectors
until si matches (sW )i. Once a dimension is traversed, the policy cycles to the next coordinate and
continues this procedure, thereby producing a structured, axis-aligned walk toward the optimum.
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If all dimensions have been optimized, the step size l is halved. By varying the initial step size,
the expertness of the logging policy can be adjusted (see Figure 5). Figure 9 shows trajectories of
the coordinate walk executed under different movement distortions. To model realistic hand-overs
between logging policies and augmentors, we assume the internal state of the policy, i.e. the current
step size l and dimensions already optimized, is reset to the initial values once the policy is reset. To
not make our mathematical framework introduced in Section 3 too specific for these types of resets,
we assume stateless policies there. For most states, V πl2 (s,W ) ≥ V πl1 (s,W ) for two step sizes
l1 < l2 holds true and thus Theorem 3.4 still hold in this specific application. In Section B.2, a
detailed discussion on the contraction-property and LPE of πcw,l is given.

No distortion fblend frot fscale fregrot fsin fsqrt

Lfblend = 0 Lfrot = 0 Lfscale = 2 · λ Lfregrot = 2 Lfsin = σ ·
√
d Lfsqrt =∞

Figure 6: Movement distortions used when applying actions clipλ(sW − s).

5.2 RESULTS

Our approach from Section 4 gives rise to essential two algorithms. First, a purely offline one
that takes a static dataset collected from some logging policy and trains an offline RL algorithm
with shortcut augmentations. In our experiments, we use CQL and denote this algorithm as CQL-
SC. Second, an iterative offline RL algorithm that collects data with an augmented logging policy
where CQL is trained on the collected data, called LIFT. If the subsequently trained CQL also uses
shortcuts, we denote this algorithm as LIFT-SC. By default, we use Algorithm 2 with p = 0.6, limit
augmentations per trajectory to 20. A detailed hyperparameter analysis is given in Section D.1.

First, we want to analyze the effect of different augmentations while collecting data and the effect
of using shortcuts in the CQL training afterward. Beside naive augmentations as adding gaussian
noise πβ(o) + ϵ or randomly scaling actions πβ(o) · ϵ with ϵ = 2 · exp(η), η ∼ N (0, σ), we
also use uniformly sampled actions from A and IORL-like augmentations based on an uncertainty
model as in Zhang et al. (2023). We run these experiments in (OPO, fblend) with step size 0.025 in
d = 5 dimensions, collected 3 independent datasets consisting of 100 trajectories each and trained 3
independent CQL policies on each of them. The LIFT augmentor is trained once after 50 trajectories.

πcw,l .0125 .025 .05 .1

fblend • • • •
fscale • • • •
frot • • • •
fregrot •
fsin • • • •
fsqrt • • •

Table 1: Cases where LIFT-SC out-
performs SAC baseline in OPO, d = 5.

The averaged convergences to sW of the CQL policies,
each evaluated on 20 randomly drawn contexts are shown
in Figure 7a. Here, we see that, independently of shortcuts
are used in the training afterward, the best CQL policies
can be obtained when trained on the data collected with
LIFT. Moreover, we see that when training takes place
with shortcuts, every policy can be improved. This find-
ing is underpinned when computing the dataset character-
istics introduced in Schweighofer et al. (2022) shown in
Figure 7b. LIFT creates trajectories having the highest av-
erage returns reproducing findings in Schweighofer et al.
(2022) that this correlates with CQL performance. On the
other hand, LIFT does not explore the space as good as
other methods, showing a clear differentiation to IORL that has been explicitly designed to explore
well. However, high exploration comes at the price of an impeded hand-off back to the logging
policy, leading to low trajectory qualities for IORL and random actions.

In our second type of experiments, we want to evaluate how our methods compare under different
movement distortions and observation types. In OPO, algorithms collect a total of n = 100 and
n = 500 trajectories for d = 2 and d = 5 respectively, where the LIFT augmentor is trained once
after 50 and 100 collected trajectories respectively. In OLP, we collect 500 trajectories and LIFT is
trained once after 100 episodes. In OLT, we collect only 100 trajectories and LIFT is trained once
after 50 collected trajectories. Here, we additionally compare to SAC Haarnoja et al. (2018) trained

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5 10 15 20 25
Steps

0.0

0.2

0.4

0.6

||s
i−

s w
||

Without Shortcuts

5 10 15 20 25
Steps

With Shortcuts
Void
IORL 
Random action
πβ(O) + ε
πβ(O) ⋅ ε
LIFT 

(a) Comparison of online augmentations.
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(b) Dataset properties.

Figure 7: Experiments in (OPO, fblend) with step size l = 0.025 with d = 5.

with a mixture of offline and online data as done in warm-start RL that is restricted to the same
number of trajectories as in our offline datasets. Specifically, in a scenario with n many episodes,
the replay buffer of SAC is initialized with the same number of trajectories collected by the logging
policy the LIFT augmentor obtains in training, e.g. m = 50 for OLT. Moreover, we also compare
to diffusion-based techniques, like GTA Lee et al. (2024) that generate synthetic transitions and
Diffusion-QL (DQL) Wang et al. (2023) that learns a diffusion-based policy. Figure 8 presents
selected comparisons across the multiple scenarios and all comparisons can be found in Section D.
In all tested environments, we see that CQL policies trained offline on data from LIFT have better
performance than these trained on unaugmented data from the logging policy. This effect fades a
bit when adding shortcuts to the subsequent offline training: In most scenarios, the performance of
LIFT-SC is better or equal than CQL-SC. This is, for instance, not the case in when using image data
fromOLP, where CQL training on data obtained from LIFT-SC showed high variance. Studying the
effect of shortcuts in isolation, CQL-SC consistently outperforms CQL and LIFT-SC consistently
outperforms LIFT, making LIFT-SC the best of our methods. Comparing LIFT-SC to the SAC
with offline data, we see a clear picture: SAC stays ahead in all low-dimensional cases for OPO, and
LIFT-SC outperforms SAC almost consistently over all movement dynamics and expert-levels of
the logging policy inOPO for d = 5 (see Table 1), as well as in image-based scenarios. Interestingly,
for fregrot where the contraction property is violated, augmentations with shortcut fail where in fsqrt,
where LPE does not hold, augmentations still help but the advantage over SAC is almost negligible.

10 20 30 40
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0.0
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0.6

||s
i−

s w
||

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 400.00
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CQL CQL-SC LIFT LIFT-SC SAC + Offline Data CQL-GTA DQL

OPO, fregrot
d = 5, l = 0.0125

OPO, fscale
d = 5, l = 0.025

OPO, frot
d = 5, l = 0.05

OLP, fblend
d = 5, l = 0.025

OLT, fblend
d = 2, l = 0.025

ORP

d = 3, l = 0.2

Figure 8: Comparisons of our methods under various distortions and observation types.

6 DISCUSSION

We demonstrate that shortcut augmentations can consistently improve the effectiveness of offline
RL in active positioning problems in both, theoretical and experimental validations. In particu-
lar, we find that augmentations provide the largest gains in complex scenarios with higher action
dimensionality or partial observability, where plain offline RL often fails. This suggests that exploit-
ing task structure to expand data coverage is a promising alternative to relying solely on behavior
regularization. Compared to warm-start RL, LIFT offers a more data-efficient way to leverage
suboptimal expert routines: by selectively taking shortcuts suggested by an off-policy learner, we
improve dataset quality without requiring extensive online fine-tuning. Nevertheless, our approach
has limitations. Shortcut validity depends on assumptions about the distortion function and value
function regularity, which may not hold in all real-world positioning systems. Moreover, our experi-
ments are limited to semi-realistic simulators; future work should validate these methods on physical
platforms, especially in robotic alignment tasks. Another open question is how to combine shortcut
augmentation with model-based methods or world models to further improve sample efficiency. We
believe that the principles underlying LIFT are broadly applicable beyond active positioning tasks
where expert routines exist but are suboptimal. We hope this work encourages a more systematic
treatment of data augmentation strategies for offline RL in structured industrial tasks.
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This work investigates RL methods for active positioning problems, with a particular focus on data
augmentation for improving offline policy learning. Our experiments are conducted exclusively in
simulated environments and do not involve human subjects, personal data, or sensitive informa-
tion. The proposed methods are designed for applications such as optical alignment and robotic
positioning in industrial settings, where potential impacts include increased energy efficiency and
reduced material waste through more accurate and reliable automation. We do not anticipate any di-
rect negative societal consequences of this research. However, as with any advancement in machine
learning for automation, care should be taken to ensure that these methods are deployed in ways that
complement human expertise and respect workplace safety standards.

REPRODUCIBILITY STATEMENT

All proofs for the theoretical results in Section 3 are provided in Section A. The mathematical prop-
erties of the movement distortions used in our experiments in Section 5 are given in Section B.
Further implementation details and results of all benchmarks of our experimental validation from
Section 5, can be found in Section D. The implementations of our experiments are among the sup-
plemental material of this submission and will be made available on GitHub upon acceptance.
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they provided to refine the mathematical definitions of some movement distortions and polishing
a lengthy proof via induction for Proposition 3.3. They also assisted in summarizing related work
and provided guidance on the experimental code (e.g., refactoring and debugging hints). All outputs
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K. Bräuniger, D. Stickler, D. Winters, C. Volmer, M. Jahn, and S. Krey. Automated assembly of
camera modules using active alignment with up to six degrees of freedom. In Yakov G. Soskind
and Craig Olson (eds.), Photonic Instrumentation Engineering, volume 8992, pp. 89920F. In-
ternational Society for Optics and Photonics, SPIE, 2014. doi: 10.1117/12.2041754. URL
https://doi.org/10.1117/12.2041754.

Matthias Burkhardt, Tobias Schmähling, Pascal Stegmann, Michael Layh, and Tobias Windisch.
Active alignments of lens systems with reinforcement learning, 2025. URL https://arxiv.
org/abs/2503.02075.

11

https://www.sciencedirect.com/science/article/pii/S0030401820311032
https://www.sciencedirect.com/science/article/pii/S0030401820311032
https://proceedings.neurips.cc/paper_files/paper/2017/file/453fadbd8a1a3af50a9df4df899537b5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/453fadbd8a1a3af50a9df4df899537b5-Paper.pdf
https://proceedings.mlr.press/v202/ball23a.html
https://proceedings.mlr.press/v202/ball23a.html
https://doi.org/10.1117/12.2041754
https://arxiv.org/abs/2503.02075
https://arxiv.org/abs/2503.02075


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Nicholas E. Corrado, Yuxiao Qu, John U. Balis, Adam Labiosa, and Josiah P. Hanna. Guided data
augmentation for offline reinforcement learning and imitation learning. Reinforcement Learning
Conference (RLC), 2024.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2021. URL https://arxiv.org/abs/2004.07219.

Scott Fujimoto and Shixiang Gu. A minimalist approach to offline reinforcement learning. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, 2021. URL https://openreview.net/forum?id=
Q32U7dzWXpc.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062, 2019.

Juan L. Gamella, Jonas Peters, and Peter B”uhlmann. Causal chambers as a real-world
physical testbed for AI methodology. Nature Machine Intelligence, 2025. doi: 10.1038/
s42256-024-00964-x.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy and An-
dreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 1861–1870. PMLR, 10–15 Jul
2018. URL https://proceedings.mlr.press/v80/haarnoja18b.html.

Zhang-Wei Hong, Pulkit Agrawal, Remi Tachet des Combes, and Romain Laroche. Harnessing
mixed offline reinforcement learning datasets via trajectory weighting. In The Eleventh Interna-
tional Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=OhUAblg27z.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. In International Conference on Learning Representations, 2022. URL https://
openreview.net/forum?id=68n2s9ZJWF8.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for of-
fline reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 1179–1191. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf.

Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. When should we prefer offline rein-
forcement learning over behavioral cloning? In International Conference on Learning Represen-
tations, 2022.

Patrik Langehanenberg, Josef Heinisch, Chrisitan Wilde, Felix Hahne, and Bernd Lüerß. Strategies
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A PROOFS FOR SECTION 3

Lemma A.1. Let π be distance-improving, then (1− γ)V π(s,W ) ≥ −∥s− sW ∥ for all (s,W ).

Proof. Let (s0,W ), (s1,W ), . . . , (sk,W ) be a trajectory of π starting at s = s0, then

V π(s,W ) = −
k∑

i=1

γi−1∥si − sW ∥ ≥ −∥s− sW ∥
k−1∑
i=0

γi = −∥s− sW ∥ ·
1− γk

1− γ

where we have used that π is distance improving in every step. Finally, (1− γ)V π(s,W ) ≥ −∥s−
sW ∥(1− γk) ≥ −∥s− sW ∥.
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Proof of Proposition 3.1. Assume that τ = (s0, . . . , sk) is the sub-trajectory of π starting at s = s0
and ending at s′ = sk. We prove the statement via induction on k. Note that since s′ ̸= s, we have
k ≥ 1. Let k = 1, then

V π(s,W ) = −∥s1 − sW ∥+ γ · V π(s′,W )

and the claim holds. Now, assume the statement holds from s1 to sk = s′, then

γV π(s′,W )− V π(s1,W ) ≥ ∥s′ − sW ∥
by the induction hypothesis. Furthermore, we have

γV π(s′,W )− V π(s,W ) = γV π(s′,W )− V π(s1,W ) + V π(s1,W )− V π(s,W )

≥ ∥s′ − sW ∥+ V π(s1,W )− V π(s,W )

= ∥s′ − sW ∥+ V π(s1,W )− (−∥s1 − sW ∥+ γV π(s1,W ))

= ∥s′ − sW ∥+ (1− γ)V π(s1,W ) + ∥s1 − sW ∥
Using Lemma A.1, we have (1− γ)V π(s1,W ) + ∥s1 − sW ∥ ≥ 0 and the claim follows.

Proof of Proposition 4.1. We denote πβ simply by π in the following. It suffices to show that the
statement holds if augmentation only is applied at one single state (s̃,W ) as we than can apply the
statement repeatedly. That is, there exists an action a that satisfies:

γ · V π(f(s̃, a,W ),W )− ∥f(s̃, a,W )− sW ∥ ≥ V π(s̃,W )

Let πa be the policy that uses a at s̃ and on all other states coincides with π. First, we show that
J(πa) ≥ J(π). It suffices to show that V πa(s) ≥ V π(s) for all s ∈ S. Let (s,W ) be an initial
state. If the trajectory of π does not traverse s̃, then V πa(s) = V π(s). Assume differently that the
trajectory visits s̃ at the t-th step. Then, the trajectory starting at s follows π till s̃, then chooses the
shortcut a, and then follows π from s′ = f(s̃, a,W ). The value for this trajectory is:

V πa(s,W ) = V π(s,W )− γt · V π(s̃,W )− γt∥s′ − sW ∥+ γt+1V π(s′,W ).

From the assumption of (s̃, a), we have

γt · (−V π(s̃,W )− ∥s′ − sW ∥+ γ · V π(s′,W )) ≥ 0

and hence V πa(s,W ) ≥ V π(s,W ).

Proof of Proposition 3.2. Since Proposition 3.1 gives that γV π(sj ,W )−V π(si,W ) ≥ ∥sj−sW ∥,
it is left to prove that f(si, a,W ) = sj . We have

f(si, a,W ) = si +W ·
j−1∑
k=i

ai = si +W · ai +W · ai+1 + . . .+W · aj−1.

Let si+1, . . . , sj−2 be the intermediate states, i.e. sk = f(sk−1, ak−1,W ), then replacing sk =
sk − 1 +W · ak−1 in the equation above from k = i to k = j − 1 gives the claim.

Proof of Proposition 3.3. Let a0, . . . , ak−1 a chain of actions and set A =
∑k−1

i=0 = ai, (s0,W ) an
initial state and set si = f(si−1, ai−1,W ). Recursively unraveling the definition of f yields

sk = s0 +
∑
i=0

g(si,W ) · ai

and consequently

f(s0, A,W )− sk = g(s0,W )

k−1∑
i=0

ai −
k−1∑
i=0

g(si,W ))ai

=

k−1∑
i=0

(
g(s0,W )− g(si,W )

)
ai.
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Taking norms and using the induced matrix norm on Rm×d gives

∥∥f(s0, A,W )− sk
∥∥ ≤ k−1∑

i=0

∥∥g(s0,W )− g(si,W )
∥∥ · ∥ai∥.

By the assumption on g, we have

∥g(s0,W )− g(si,W )∥ ≤ ∥g(s0,W )∥+ ∥g(si,W )∥ ≤ 2 · sup
S×W

∥g∥

independently of the actions for all i and the claim follows.

Proof of Theorem 3.4. For brevity, we omit W in the notation of the value function. We have to
show that γV π(f(si, a,W )) − V π(si) ≥ ∥f(si, a,W ) − sW ∥. Because f has linear-placement
errors, it follows directly from Definition 3.2 that ∥f(si, a,W )− sj∥ ≤ Lf ·

∑j−1
k=i ∥ak∥ and thus

∥f(si, a,W )− sW ∥ = ∥f(si, a,W )− sj + sj − sW ∥ ≤ Lf ·
j−1∑
k=i

∥ak∥+ ∥sj − sW ∥.

On the other hand, using the Lipschitz continuity of V π , we get

γV π(f(si, a,W ))− V π(si) ≥ γ · (V π(sj)− LV · ∥f(si, a,W )− sj∥)− V π(si)

≥ γ · V π(sj)− V π(si)− γ · LV · Lf ·
j−1∑
k=i

∥ak∥

Now, as the inequality from the theorem statement holds, we have

γ · V π(sj)− V π(si) ≥ (γ · LV + 1) · Lf ·
j−1∑
k=i

∥ak∥+ ∥sj − sW ∥

and plugging this into the upper equation gives the claim.

Proposition A.2. Let π be an f -contraction. Then V π is 1
1−γ -Lipschitz continuous in the states.

Proof. Define L = 1
1−γ and let (s,W ) and (s′,W ) be two states. We prove via induction over the

combined number of steps k needed to reach the optimality region around sW starting at s and s′

that
|V π(s,W )− V π(s′,W )| ≤ L · ∥s− s′∥.

If k = 0, then s and s′ are both within the optimality region, i.e. ∥s − sW ∥ ≤ θ and ∥s′ −
sW ∥ ≤ θ, then V π(s,W ) = V π(s′,W ) = 0 and the claim holds. Now, let o = O(s,W ) and
o′ = O(s′,W ) be the observations at s and s′ and s1 = f(s, π(o),W ) and s′1 = f(s′, π(o′),W )
be the next states after one step of π. Particularly, the induction hypothesis holds for s1 and s′1,
i.e. |V π(s1,W ) − V π(s′1,W )| ≤ L · ∥s1 − s′1∥. Since V π(s) = −∥s1 − sW ∥ + γV π(s,W ) and
V π(s′) = −∥s′1 − sW ∥+ γV π(s′,W ), we have

|V π(s)− V π(s′)| = |γ · V π(s1,W )− γ · V π(s′1,W )− ∥s1 − sW ∥+ ∥s′1 − sW ∥|
≤ γ · |V π(s1,W )− V π(s′1,W )|+ |∥s1 − sW ∥ − ∥s′1 − sW ∥|
≤ γ · L · ∥s1 − s′1∥+ ∥s1 − s′1∥
≤ (γ · L+ 1) · ∥s1 − s′1∥
= L · ∥s1 − s′1∥

where the last equation is due to L = 1
1−γ . Finally, because π is an f -contraction, we have ∥s1 −

s′1∥ = ∥f(s, π(o),W )− f(s′, π(o′),W )∥ ≤ ∥s− s′∥ and the claim follows.

Proof of Corollary 3.5. Because π is an f -contraction, V π is 1
1−γ -Lipschitz continuous by Propo-

sition A.2. Plugging LV = 1
1−γ into Theorem 3.4 gives the claim.
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B MOVEMENT DISTORTION FUNCTIONS

In this section, we formally define the different movement distortions f we consider in our exper-
iments. The first set of distortions are linear distortions of the form f(s, a,W ) = s + W · a with
W ∈ Rd×d a distortion matrix, more specific, we use

fblend(s, a,W ) = s+ (Id×d +W ) · a, W ∼ Nd×d(0, σ)

For W ∈ R a scalar, let RW =

(
cos(W ) − sin(W )
sin(W ) cos(W )

)
be a two-dimensional rotation matrix. We

rise this to a high-dimensional rotation matrix where adjacent dimensions are rotated, i.e.,

RotW = diag(RW , . . . , RW ) ∈ Rd×d

where diag(A1, . . . , Ak) is the block-diagonal matrix with blocks A1, . . . , Ak on the diagonal.

frot(s, a,W ) = s+ RotW · a, W ∼ N (0, σ)

The next distortion function is a scaling-based one which does not depend on a latent context W :

fscale(s, a,W ) = s+ clipC,λ (∥s− sW ∥) · a

with some constant 0 < C < λ to ensure that the steps are not to small so that the optimum can be
reached in finitely many steps.

The next set of distortions is again a rotation-based one, but one where the rotation matrix depends
on the region. For that, we assume the position space P is decomposed into c-many non-overlapping
subsets P1, . . . ,Pc such that ∪ci=1Pi = P . Then

fregrot(s, a,W ) = s+

c∑
i=1

1s∈Pi
· RotWi

· a, W ∈ Nc(µ, σ), µ ∈ Rc

As Pi ∩ Pj = ∅ for i ̸= j, only one rotation matrix is active at a time, depending on the state.

In our experiments, we used c = 4 and divided P into four sets depending on in which quadrant of
R2 the first two dimensions reside. Moreover, we set µ = (−0.3, 0.6,−0.3, 0.6).
The next distortion is one where a non-linear offset is added which depends on both, the state and
the action:

fsin(s, a,W ) = s+ a+W · sin(s) ◦ cos(s) · ∥a∥, W ∼ U(0, σ)
where sin and cos are applied component-wise and ◦ denote the element-wise multiplication. Fi-
nally, we consider a distortion function that does not have linear placement errors:

fsqrt(s, a,W ) = s+ (Id×d +W ) ·
√
∥a∥ · a, W ∼ Nd×d(0, σ).

B.1 LINEAR PLACEMENT-ERRORS

We begin by proving a stronger conditions, which is easier to check and implies LPE:
Proposition B.1. Let f be a distortion function and assume there exists a constant Lf such that for
all states (s,W ) and actions a, a′ ∈ A

∥f(s, a+ a′,W )− f(f(s, a,W ), a′,W )∥ ≤ Lf · ∥a∥

Then f has LPE with constant Lf .

Proof. For i ∈ {0, . . . , k}, define the tail sums ãi :=
∑k−1

j=i aj and the states s̃i := f(si, ãi,W ).
By definition s̃0 = f(s0, a0 + . . .+ ak−1,W ) and, since ãk = 0 and f(s, 0,W ) = s, we also have
s̃k = sk. Thus, we have to prove that ∥s̃0− s̃k∥ ≤ Lf

∑k−1
i=0 ∥ai∥. Now, for any i ∈ {0, . . . , k− 1}

we have
∥s̃i − s̃i+1∥ = ∥f(si, ai + ãi+1,W )− f(si+1, ãi+1,W )∥ ≤ Lf∥ai∥.
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(b) Coordinate walk in fblend
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(c) Direct policy in fscale
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(d) Coordinate walk in fscale
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(e) Direct policy in frot
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(f) Coordinate walk in frot
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(g) Direct policy in fregrot
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(h) Coordinate walk in fregrot
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(i) Direct policy in fsin
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(j) Coordinate walk in fsin
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(k) Direct policy in fsqrt
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Figure 9: Trajectories of direct policy and coordinate walk in different movement dynamics.

because of the assumptions on f from the statement of the proposition. Summing these inequalities
and applying the triangle inequality yields

∥s̃0 − s̃k∥ ≤
k−1∑
i=0

∥s̃i − s̃i+1∥ ≤ Lf

k−1∑
i=0

∥ai∥.
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LPE and the proposition of Proposition B.1 are not equivalent: Consider f(s, a) = s + sign(s) · a.
Then its easy to show that f has linear-placement errors with Lf = 2, but it does not have the
property from Proposition B.1.
Proposition B.2. The distortion fblend has LPE with Lfblend = 0.

Proof. Straight-forward application of Proposition B.1.

Proposition B.3. The distortion frot has LPE with Lfrot = 0.

Proof. Straight-forward application of Proposition B.1.

Proposition B.4. The distortion fscale has LPE with Lfscale = 2 · λ.

Proof. We write fscale(s, a,W ) = s+ g(s,W ) · a with g(s,W ) = clipC,λ(∥s− sW ∥) · Id with Id
the identity function of Rd×d. Clearly g is bounded and we have supS×W ∥g∥ = λ and the claim
follows by an application of Proposition 3.3.

Proposition B.5. The distortion fregrot has LPE with Lfregrot = 2.

Proof. We write fregrot(s, a,W ) = s+g(s,W ) ·a with g(s,W ) = RotWi
whenever s ∈ Pi, where

P1, . . . ,Pc are the partitions of S from Section 5.1.1. For every state (s,W ), g(s,W ) is a rotation
matrix and thus ∥g(s,W )∥ = 1 and g statisfies the the claim follows from Proposition 3.3.

Proposition B.6. The distortion fsin has LPE with Lfsin =
√
dσ.

Proof. Let fsin(s, a,W ) = s+ a+ g(s) · ∥a∥ with g(s,W ) := W · sin(s)⊙ cos(s). Although we
cannot apply Proposition 3.3 as fsin has not the desired form, we can follow a similar strategy. First,
we observe that g is bounded:

∥g(s,W )∥ = |W | ·

√√√√ d∑
i=1

sin(si)2 · cos(si)2 ≤ σ
√
d

because W ∼ U(0, σ). Let a0, . . . , ak−1 be a chain of actions and set A =
∑k−1

i=1 ai and si =
f(si−1, ai−1,W ), then

fsin(s0, A,W )−sk = A+g(s0,W )∥A∥−
k−1∑
i=0

(
ai+g(si,W )∥ai∥

)
= g(s0,W )∥A∥−

k−1∑
i=0

g(si,W )∥ai∥

and thus:

∥fsin(s0, A,W )− sk∥ ≤ ∥g(s0,W )∥A∥+
k−1∑
i=0

∥g(si,W )∥ai∥ ≤ σ
√
d

k−1∑
i=0

∥ai∥

because ∥A∥ ≤
∑k−1

i=0 ∥ai∥ by the triangle inequality.

Next, we show that fsqrt is not LPE:
Proposition B.7. The distortion fsqrt does not have LPE.

Proof. Let v ∈ Rd be a unit vector and let a0 = a1 = c · v with c ≤ λ. Let (0, 0) ∈ Rd × Rd×d

be an initial state, then s1 = fsqrt(0, a0, 0) =
√
c · c · v and s2 = fsqrt(s1, a1, 0) = 2

√
c · c · v.

Moreover, we have f(s0, a0 + a1, 0) = f(0, 2 · c · v, 0) = 2
√
2c · c · v and hence

∥f(s0, a0 + a1, 0)− s2∥ = (2
√
2− 2) ·

√
c · c.

which cannot be bounded by Lf · (∥a0∥+ ∥a1∥) = 2 · Lf · c for any constant Lf .
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B.2 CONTRACTIONS AND LIPSCHITZ-CONTINUITY IN REAL-WORLD APPLICATIONS

We do not expect that policies and distortions from real-world applications satisfy the rigorous
mathematical assumptions stated in Section 3. Pedantically, even simple modeling choices already
break global smoothness: for instance, having A = Bλ(0) with A a strict subset of S, combined
with an optimality region defined by a threshold θ, induces discontinuities in the value function. The
same holds for the coordinate walk policy in Section 5.1.3, where a fixed step length produces value
functions with sharp discontinuities, as shown in Figure 11.

Nevertheless, global mathematical rigor is not required to detect local shortcuts in real trajectories.
A striking example is the coordinate walk under fregrot: since different rotations apply in different
regions, the policy is not an f -contraction globally, because nearby states s and s′ lying in different
regions Pi and Pj may be rotated in different directions (Figure 10a). Yet, for states within same
region where the coordinate walk applies same actions, the contraction property is preserved (Fig-
ure 10b). This illustrates that shortcut identification relies less on global guarantees and more on
local structure along trajectory segments.

Informally speaking, it suffices that the value function does not change too abruptly for small mis-
placements, so that local improvements can be exploited as shortcuts. In practice, this condition is
often met: physical systems typically exhibit continuity over small ranges of motion, even if dis-
continuities or non-contractive behavior emerge globally. Hence, while our theoretical assumptions
provide clean guarantees, the underlying ideas remain applicable well beyond the idealized setting
as demonstrated by our experiments in Section 5.

s s′

π(O(s,W )) π(O(s′,W ))

Pi Pj

(a) fregrot in different regions

s s′

π(O(s,W )) π(O(s′,W ))

Pi

(b) fregrot in same partition

Figure 10: In fregrot, starting at two close-by states s and s′ in different regions P1 and P2 can
increase the distance between subsequent states as opposed rotation matrices apply.

No distortion fblend frot fscale fregrot fsin fsqrt

Figure 11: Value functions V π(·,W ) of coordinate walk for a random but fixed context W each.

C ADDITIONAL EXPERIMENTS IN FETCH-ENVIRONMENT

In extension to the reach experiments in Section 5 where the positional differences are directly
observed, we provide in this section a proof of principle that shortcut augmentations can also benefit
offline RL methods in more involved robotic environments. To this end, we consider two scenarios
based on the Fetch environment Plappert et al. (2018). In the first scenario, we study a reaching task
in which the robotic arm must reach a target position in 3D space. The observation is an image of
the scene. We collect 100 trajectories using the coordinate walk policy described in Section 5.1.3.

In the second scenario, we consider a variant of the pick-and-place task where the robotic arm must
move an object from a random initial position to a random target position. We focus solely on the
positioning, i.e., the object does not need to be grasped, only touched, assuming perfect gripper
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control. The policy used here performs two consecutive coordinate walks: one to reach the object
and one to reach the target position. The observations are given by the distances from the gripper
to the object and from the gripper to the target where the first distance is zeroed once solves the
touching task. In this setting, we collect 1000 trajectories. On the collected datasets, we train CQL
both with and without shortcuts, and the results are reported in Figure 12.
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s w
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(a) Image-based reaching in d = 3 with 100
trajectories
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(b) Position based pick-and-place in d = 3
with 1000 trajectories

Figure 12: Experiments in the Fetch environment.
.

D DETAILS FOR EXPERIMENTAL RESULTS

D.1 HYPERPARAMETERS OF LEARNING ALGORITHMS

Parameter Value
actor learning rate 10−3

critic learning rate 10−3

conservative weight 5.0
α-threshold 10.0
batch size 500

γ 0.99
τ 0.005

Table 2: Parameter for CQL
trained on collected datasets.

Parameter Value
actor learning rate 10−3

critic learning rate 10−3

conservative weight 5.0
α-threshold 10.0
batch size 500

γ 0.99
τ 0.005

Table 3: Parameter for CQL
trained as LIFT augmentor.

Parameter Value
actor learning rate 10−3

critic learning rate 10−3

batch size 256
n updates per step 5

n critics 2
γ 0.99
τ 0.005

Table 4: Parameter for SAC.

D.2 HYPERPARAMETER STUDY OF LIFT

In this section, we study effects of the different hyperparameters of the shortcut computation (Al-
gorithm 1) and LIFT (Algorithm 2). First, we study the effect of the number of augmentations per
trajectory n and the probability of applying an augmentation p. The results are shown in Figure 13.
One can see that as few as 20 augmentations per trajectory are sufficient to achieve a substantial
improvement in performance, provided that the augmentation probability is not too low. Notably,
higher probabilities correspond to augmentations being applied earlier in the trajectory. This sug-
gests that augmentations at the beginning of a trajectory are more beneficial than those applied later.
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Figure 13: Experiments in fblend with step size 0.025 and different probabilities p of applying aug-
mentations and different maximal number of augmentations per trajectory

Next, we analyse the effect of the sampling scheme of shortcuts along a trajectory. Here, we denote
the sampling mechanism described in Algorithm 1 as weighted. Another way to sample shortcuts
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from the set S computed in Algorithm 1 is to use a distribution that is proportional to the inverse
distance to the optimum, i.e. p(i) ∼ 1

∥si−sW ∥ or to sample uniformly from S. Instead of sampling,
one can also just use the shortcut residing within the action space that leads to the point of highest
reward within the trajectory called best. The results are shown in Figure 14 for n = 20 augmenta-
tions per trajectory and p = 0.4 showing that in the environments we consider, the sampling strategy
does not have a significant effect on the performance.
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Figure 14: Experiments in fblend with different step size and different sampling strategies.

D.3 ADDITIONAL VISUALIZATION
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Figure 15: Augmented trajectories generated by LIFT for OLP in 5 dimensional hidden position
space: Actions coming from the augmentor in red and actions from the logging policy in blue.
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(a) 100 Episodes OPO with d = 2
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(b) 500 Episodes OPO with d = 5

Figure 16: Experiments in fblend.
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(a) 100 Episodes OPO with d = 2
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(b) 500 Episodes OPO with d = 5

Figure 17: Experiments in fscale.
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(a) 100 Episodes OPO with d = 2

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.0125
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.025
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.05
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

0 5 10 15 20 25 30
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||s
i−

s w
||

Step Size 0.1
CQL
CQL-SC
LIFT
LIFT-SC
SAC + Offline Data

(b) 500 Episodes OPO with d = 5

Figure 18: Experiments in frot.
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(a) 100 Episodes OPO with d = 2
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(b) 500 Episodes OPO with d = 5

Figure 19: Experiments in fregrot.
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(a) 100 Episodes OPO with d = 2
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(b) 500 Episodes OPO with d = 5

Figure 20: Experiments in fsin.
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(a) 100 Episodes OPO with d = 2
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(b) 500 Episodes OPO with d = 5

Figure 21: Experiments in fsqrt.
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