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ABSTRACT

Achieving precise alignment between user intent and generated visuals remains
a central challenge in text-to-visual generation, as a single attempt often fails
to produce the desired output. To handle this, prior approaches mainly scale the
visual generation process (e.g., increasing sampling steps or seeds), but this quickly
leads to a quality plateau. We argue that this limitation arises because the prompt,
crucial for guiding generation, is kept fixed. To address this, we propose Prompt
Redesign for Inference-time Scaling, coined PRIS, a framework that adaptively
revises the prompt during inference in response to the scaled visual generations.
The core idea of PRIS is to review the generated visuals, identify recurring failure
patterns across visuals, and redesign the prompt accordingly before regenerating
the visuals with the revised prompt. To provide precise alignment feedback for
prompt revision, we introduce a new verifier, element-level factual correction,
which evaluates the alignment between prompt attributes and generated visuals
at a fine-grained level, achieving more accurate and interpretable assessments
than holistic measures. Extensive experiments on both text-to-image and text-to-
video benchmarks demonstrate the effectiveness of our approach, including a 15%
improvement on VBench 2.0. These results highlight that jointly scaling prompts
and visuals is key to fully leveraging scaling laws at inference-time.

1 INTRODUCTION

Generative models (Comanici et al., 2025; Labs, 2024; Wan et al., 2025) have achieved remarkable
progress across various domains, including language, image, and video domains, demonstrating strong
capabilities in modeling complex data distributions. In the visual domain, denoising models (Ho
et al., 2020; Lipman et al., 2023) conditioned on textual prompts now allow users to generate high-
quality images and videos directly from natural language descriptions. However, as prompts become
more intricate, such as requiring compositional structures in images or motion dynamics, camera
movements, and causal relationships in videos, it becomes increasingly challenging to produce
outputs that fully align with the prompt in a single attempt.

Recent work addresses this shortfall in text-visual alignment by allocating additional compute at
inference time (i.e., inference-time scaling). These approaches typically scale the visual generation
either by increasing the compute budget for decoding a single candidate from a prompt (Ma et al.,
2025), or by generating multiple candidates for the same prompt to produce a diverse pool of visual
outputs (Kim et al., 2025a;b; He et al., 2025). However, they primarily focus on scaling visual parts
while keeping the input prompt fixed. This creates a key bottleneck because many generation errors
arise from ambiguous or incomplete prompts, and scaling visuals conditioned on a suboptimal prompt
offers limited benefit since the prompt provides essential guidance for conditional generation.

In parallel, another line of work (Brade et al., 2023; Wang et al., 2024b; Datta et al., 2024; Hao et al.,
2023) focuses on ensuring that the model interprets prompts in alignment with the user’s intent. These
methods typically rewrite the user input prompt to produce model-preferential outputs or enable
prompt exploration at inference time based on a single output. While such refinements improve
how well a generative model interprets text, they operate solely in the text domain, and adjustments
are confined to individual samples. In other words, these approaches do not adapt the prompt in
conjunction with visual scaling, where recurring generative failures or consistent patterns emerge
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(a) Quantitative scaling behaviors at inference time

 Misalignment Patterns
: no laces

1.0 2.0 3.0

NFEs (1e3)

“A shoe with no laces, 
standing alone”

Original Prompt

“… laceless sneaker smooth surface... 

absence of fastening threads…, simplicity”

Revised Prompt Scale Visuals w/ Revised Prompt (Ours) 

Scale Visuals Alone (Previous)

⋯

(b) Qualitative scaling behaviors at inference time

Figure 1: Our prompt redesign scales with compute, while fixed-prompts plateau. Given a
user-provided text prompt, scaling visuals alone with a fixed prompt at inference time often leads to
early performance plateaus, especially for unseen rewards (see orange lines), and repeatedly produces
outputs with only partial prompt coverage even as compute increases. In contrast, scaling visuals
alongside our redesigned prompts yields progressively improved generations and substantially higher
prompt-adherence scores as compute increases for both given and unseen rewards (see blue lines).

when scaling visual outputs. As a result, they miss the opportunity to jointly scale both the prompt
and the visuals for improved text-visual alignment.

Contributions. To address these limitations, we extend inference-time scaling beyond visuals to the
text prompt, proposing Prompt Redesign for Inference-time Scaling (PRIS). PRIS diagnoses early
failures and injects fine-grained feedback into subsequent generations to revise prompts. Instead
of passively waiting for a high-scoring sample, PRIS identifies recurring failure patterns across
generated visuals and adaptively revises the prompt to emphasize the under-addressed aspects while
preserving the original intent. By doing so, in contrast to fixed-prompt inference-time scaling, which
quickly plateaus in prompt adherence, even with more compute (see orange line in Figure 1a), PRIS
leverages compute effectively by scaling prompts and visuals jointly, thereby following the scaling
law and achieving sustained improvements in text-visual alignment (see blue line in Figure 1a).

To identify failure patterns for prompt revision, PRIS relies on fine-grained verification of each
visual. For this purpose, we develop Element-level Factual Correction (EFC), an interpretable and
descriptive verifier to examine the generated visuals, built on a multimodal large language model
(MLLM) (see Figure 2). When assessing the alignment between the visuals and the prompt, EFC
first decomposes the prompt into disjoint semantic elements and verifies each against a caption of
the generated visual, framing every element as a textual hypothesis. This text-to-text comparison
mitigates the affirmative bias common in MLLM-based text-visual question answering (Fu et al.,
2025; Bai et al., 2024; Han et al., 2024), thus improving verification accuracy. We further introduce
a benchmark pairing each prompt with multiple generated visuals, some fully aligned, others only
partially so. On this dataset, EFC consistently distinguishes ground-truth visuals from plausible but
misaligned distractors, significantly outperforming prior alignment-measuring verifiers.

Building on our new verifier, we conduct extensive experiments showing that EFC-guided prompt
redesign, PRIS, is key to leveraging scaling laws. Our approach consistently improves text-visual
alignment without sacrificing visual quality, achieving a 7% gain on GenAI-Bench for text-to-image
and a 15% gain on VBench2.0 for text-to-video, by identifying recurring failure patterns and refining
prompts accordingly. In addition, since PRIS is complementary to existing inference time scaling
methods, which mainly focus on scaling visuals, integrating our approach further enhances text-visual
alignment. Moreover, the strong performance of EFC underscores its broader potential as a versatile
and interpretable tool for selecting text-aligned visual outputs, and our benchmark further provides
the first systematic evaluation of verifiers for inference-time scaling, enabling direct measurement of
their ability to detect fine-grained misalignment that limits scaling efficiency.

2 RELATED WORK

Scaling inference-time compute in visual generation. Despite recent progress driven by pow-
erful denoising architectures (Ho et al., 2020; Lipman et al., 2023), producing faithful outputs in
text-to-visual generation remains challenging, particularly for complex prompts. Since outputs from
these models are determined jointly by the initial noise, the sampling trajectory, and the prompt, this
motivates inference-time scaling methods that allocate additional compute to exploring favorable
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noise seeds and trajectories. Typical strategies include increasing decoding steps for a single sample
to improve quality, or generating multiple candidates (Ma et al., 2025), often with advanced algo-
rithms (Kim et al., 2025a;b) that expand the search space. Here, learned reward models (Liu et al.,
2025a; Zhang et al., 2025) provide a scalar alignment score for each sample and serve as verifiers that
select the best among N generated samples (Best-of-N ; BoN). Selection can be performed either on
the final outputs, as in BoN, or during sampling, as in Search-over-Paths (Kim et al., 2025a;b; He
et al., 2025), which iteratively resamples and propagates high-reward candidates along the denoising
trajectory and often outperforms naı̈ve BoN since high-reward outputs cluster in local regions of the
sample space. However, all of these methods operate under a fixed prompt, expanding only the visual
search space and discarding earlier low-scoring generations. We take a different view: rather than
treating these earlier generations as expendable, we revisit and analyze them, and more importantly,
redesign the prompt alongside visual scaling to provide stronger guidance for subsequent generations.

Prompt design in text-to-visual generations. Prompt design is a critical component of text-
conditioned generation that serves not merely as a pre-processing step (Zheng et al., 2025) but
as a means to improve model comprehension, output quality, and adherence to the input description.
Since the prompt itself guides the generation, even different phrasings of the same user intent can
produce markedly different outputs. Yet, crafting effective prompts remains challenging, often requir-
ing tedious trial-and-error. To address this, recent approaches (Brade et al., 2023; Wang et al., 2024b;
Datta et al., 2024; Hao et al., 2023; Hei et al., 2024) propose systems that interactively help users
explore alternative phrasings or automatically rewrite prompts, reducing reliance on naı̈ve iterations.
These methods, however, depend on human involvement (Brade et al., 2023; Wang et al., 2024b) or
do not explicitly target text adherence in the context of inference-time scaling (Datta et al., 2024; Hao
et al., 2023; Hei et al., 2024). This gap is critical: scaling visuals alone often reproduces recurring
failure patterns without improving adherence, even with more compute. This highlights the need
for prompt refinement strategies that address failures across samples, rather than noisy per-sample
revisions. Therefore, in this work, we design prompts specifically for inference-time scaling with the
goal of increasing adherence as compute grows. Our method applies to both T2I and T2V generation,
extending beyond prior work that has focused primarily on T2I generations.

Chain-of-thought and reasoning. Incorporating chain-of-thought (CoT) reasoning into visual
generation has emerged as a promising paradigm for improving image quality through iterative
reflection and guidance (Wang et al., 2025a; Jiang et al., 2025; Liao et al., 2025; Guo et al., 2025;
Zhuo et al., 2025). Recent works pursue this direction via unified models (Tian et al., 2025) that
combine visual understanding and generation and jointly optimize large language models with
multimodal objectives and generation-specific losses. In contrast, we integrate off-the-shelf MLLMs,
without additional training, into existing visual generation pipelines. Unlike unified models, these
visual generators lack reasoning capabilities to refine themselves for prompt planning and reflective
refinement. Thus, the central challenge we address is how to bridge MLLM reasoning with visual
generative models to enable diagnostic feedback and effective intervention.

3 PRIS: PROMPT REDESIGN FOR INFERENCE-TIME SCALING

This section begins with our key observations that motivate the explicit consideration of prompts with
visual feedback in inference-time scaling (Section 3.1). Next, we introduce our new verifier, which
provides fine-grained feedback on generated visuals (Section 3.2), and finally present our verifier-
guided prompt redesign strategy to improve prompt fidelity in inference-time scaling (Section 3.3).

3.1 MOTIVATION FOR PROMPT ADJUSTMENT IN INFERENCE-TIME SCALING

Prior inference-time scaling methods treat noise and trajectory as the primary levers of search, keeping
the prompt fixed. However, the prompt is an equally critical determinant of the final output and
remains underexplored in inference-time scaling. This raises the question: can the prompt be adapted
during inference to better align with user intent? We observe that generated samples reveal visual
misalignment patterns: some elements are consistently satisfied, while others are consistently missed.
For example, in Figure 1b, when scaling with the intent “a shoe with no laces, standing alone,” the
element “a shoe” is consistently achieved, yet laces still appear in every output. See Appendix A for
broader examples across image and video prompts. These observations motivate revising the prompt
to target recurring misalignments rather than blindly scaling visuals under a suboptimal prompt.
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Element-level Factual Correction

Original prompt: “A little bird made of a 
fresh orange bursts out of a whole orange”

1. Decompose an original prompt 
into semantic elements

E1. A whole orange is present.
E2. The bird is crafted from a fresh orange.
E3. The orange appears intact 
       before the bird bursts out.
E4. The bird is initially inside the orange.
E5. The bird bursts out of the orange 
       at the end.

Common Failure: E2. The bird is crafted from a fresh orange.

Revised Prompt: ”… the whole orange splits open, revealing … the its peel forming delicate wings and a tiny beak. 

The bird, crafted entirely from the orange's segments and rind, emerges gracefully, its body composed of juicy pulp and seeds. 
Each feather-like fold of the peel …, showcasing its fresh, citrusy texture. The bird flutters its wings,… taking flight…"

Step 3. Identify Common Failures and Revise the Prompt

E1 Contradiction
E2. Contradiction
E3. Entailment
E4. Entailment
E5. Entailment

Verification of 𝐶2

E1. Entailment
E2. Contradiction
E3. Entailment
E4. Entailment
E5. Entailment

Verification of 𝐶1

E1 Entailment 
E2. Contradiction
E3. Entailment
E4. Entailment
E5. Contradiction

Verification of 𝐶𝑘

Step 2. Select Top-k Samples Achieving the Most Elements

⋯

Step 4. Re-generate Using the Revised Prompt and Selected Best Seeds

𝐷𝑀+2 from the 𝑠𝑒𝑒𝑑 of 𝐶2𝐷𝑀+1 from the 𝑠𝑒𝑒𝑑 of 𝐶1 𝐷𝑁  from the 𝑠𝑒𝑒𝑑 of 𝐶𝑘

⋯

𝐷1 from 𝑠𝑒𝑒𝑑1 𝐷2 from 𝑠𝑒𝑒𝑑2

⋯

Step 1. Assess Initial Visuals with Element-level Verifier

𝐷𝑀 from 𝑠𝑒𝑒𝑑𝑀

(a) Element-level Factual Correction (EFC) (b) Prompt Redesign at Inference-time Scaling (PRIS)

Captioning NLI Follow-up QA

2. Verify elements fulfillment 
in visuals via factual correction

MLLM

Figure 2: Overview of Prompt Redesign for Inference-time Scaling (PRIS), which leverages
diagnostic feedback from our verifier EFC to revise prompts during inference based on generated
visuals. EFC decomposes prompts into semantic elements and verifies each element for fine-grained
text-visual alignment (left). Guided by the EFC, PRIS proceeds as follows (right): Step 1 reviews
initial generations with EFC; Step 2 selects top-k successful samples and identifies recurring failures;
Step 3 redesigns the prompt to emphasize common failures; and Step 4 regenerates visuals with the
revised prompt and top-k seeds. The process can be iterated by returning from Step 4 to Step 2.

3.2 ELEMENT-LEVEL ALIGNMENT ASSESSMENT BETWEEN PROMPT AND VISUALS

Our goal is to identify recurring misalignments between the original prompt and generated visuals,
such as missing elements, incorrect causal relations, or disordered temporal motions, by reviewing
the current set of generations. This requires a fine-grained visual verifier that, for each generated
visual, evaluates which prompt attributes are satisfied or missed, since single-scalar alignment scores
from previous verifiers (Lin et al., 2024; Liu et al., 2025a) cannot reveal such detail. To this end,
we introduce Element-level Factual Correction (EFC), a new verifier that provides fine-grained and
interpretable text-visual assessments using an MLLM without additional training. See Figure 2 (a)
for an overview; further illustrations of EFC are provided in Appendix B.

Break down the prompt for precise element-level assessment. Holistic evaluation of prompt
alignment often obscures precise verification. As prompts grow more complex and nuanced, it
becomes increasingly difficult to determine which attributes are properly addressed and which are
overlooked. To address this, EFC first decomposes the original prompt p into a set of verifiable atomic
semantic elements p = {p1, p2, ..., ps}, where each element pi corresponds to a distinct element.
Here, atomic facts are extracted according to predefined semantic categories, such as image-level
elements covering object presence, properties, and spatial arrangement, and motion-level elements
covering object motion, camera movement, scene transitions, and temporal ordering. Then, EFC
classifies each pi as either {core, extra}. The core elements are objective, factual, and essential to the
intent of the prompt, while the extra elements are more subjective or stylistic, so they are often flexibly
interpreted. This classification is later used to prioritize generated samples during final scoring.

Factual correction to precisely assess element-level alignment. After decomposing the prompt
into multiple elements, EFC performs factual correction on each element by evaluating it against
each generated visual D to determine whether the element is accurately realized. Instead of direct
visual question answering (VQA), EFC first generates a caption for D in natural language, then infers
the relationship between each element pi and the caption of D. This step is formulated as a natural
language inference (NLI) task: if the caption semantically supports the element, the relationship is
labeled as entailment; if the caption contradicts the element, it is labeled as contradiction; and if the
caption does not provide sufficient information to confirm the element, the label is neutral.

For any element pi initially classified as neutral, such as when the caption omits or ambiguously
describes it, EFC generates an open-ended question qi that restates pi without binary framing and
queries the question qi with the visual D. The free-form response is then re-evaluated against pi in a
second NLI step, and the element is relabeled as either entailment or contradiction. We propose a
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Table 1: Quantitative results of T2I on
GenAI-Bench. ∗ denotes results with stan-
dard prompt expansion; BoN denotes “Best
of N” visual samples. Bold shows the best.

Method
VQA-
Score

(Given)

DA-Score
w. BLIP2-VQA

(Unseen)

Aesthetic
Quality

(Unseen)

FLUX.1-dev 0.718 0.681 5.764
+BoN 0.783 0.682 5.761
+PRIS 0.854 0.707 5.765
FLUX.1-dev∗ 0.769 0.695 5.824
+BoN∗ 0.829 0.710 5.820
+PRIS∗ 0.853 0.713 5.841

Revised prompt: “A baby elephant ... reaches toward water ... massive hippo glides nearby ... ”
Original prompt: “A hippopotamus in the water is bigger than a baby elephant by the river.”

FLUX.1-dev BoN PRIS FLUX.1-dev* BoN* PRIS*

Revised prompt: “... a single silver fork gleams, standing out among wood.”
Original prompt: “.. both the spoons and plates are made of wood, only the fork is not.”

FLUX.1-dev BoN PRIS FLUX.1-dev* BoN* PRIS*

Figure 3: Qualitative comparisons of T2I generation.
∗ denotes results with standard prompt expansion.

text-text verification approach, rather than direct yes/no VQA, because it achieves higher accuracy by
mitigating confirmation bias and consistently providing interpretable descriptions, whereas binary
VQA often omit such information. Detailed ablations are reported in Section 4.3 and Appendix B.

Prioritize core elements in final scoring. After factual correction, we obtain verification results C
for each visual. EFC then assigns a score based on the number of elements labeled as entailment in
C. Core elements are prioritized because they are objective, factual, and less open to subjective inter-
pretation, making them essential for faithfully capturing the prompt’s intent. If multiple candidates
achieve the same core accuracy, extra elements are used to further determine the ranking.

3.3 EFC-GUIDED PROMPT REDESIGN FOR INFERENCE-TIME SCALING

We propose a prompt redesign framework, PRIS, which revises the prompt using feedback from our
verifier EFC, which provides fine-grained and interpretable assessments of text-visual alignment. By
pinpointing where alignment breaks down in earlier visual outputs, PRIS incorporates diagnostic
signals into subsequent generations, guiding them toward higher fidelity to the prompt.

• Step 1. Generation and verification. PRIS first generates M candidate visual samples and
evaluates the fulfillment of elements {p1, p2, . . . , ps} for each sample using our verifier EFC
(Section 3.2), obtaining verification results for each sample (C1 through CM ).

• Step 2. Select the top-k best-performing samples. PRIS then selects the top-k samples that
collectively cover the largest number of elements, with ties resolved using the scalar score from
a learned reward model (Lin et al., 2024; Liu et al., 2025a) trained on human-preference datasets.
This ensures that the selected candidates better reflect human-preferred outputs.

• Step 3. Identify misalignment patterns and revise the prompt. Within the selected subset,
PRIS identifies common failures, defined as elements whose success probability is below 50%
within the top-k samples. Based on feedback from EFC about common failures, PRIS revises
the original prompt p into a revised prompt p′ that explicitly reinforces overlooked elements
while preserving those already well addressed. This targeted refinement encourages subsequent
generations to focus more effectively on underrepresented elements. If no common failures are
observed (i.e., every element has a success probability above 50% within the subset), we instead
treat the prompt itself as the refinement target to encourage exploration of prompt variations.

• Step 4. Regenerate with the revised prompt and selected noise conditions. Using the revised
prompt p′, we regenerate N −M samples initialized from the noise latents (seeds) of the top-k
samples. If k < (N −M), PRIS produce multiple revised prompts by varying their phrasing.
Since certain noise conditions yield better alignment for specific prompt types (Zhou et al., 2025;
Ahn et al., 2024; Qi et al., 2024), reusing these seeds better preserves earlier successes than
random initialization. After regeneration, we verify and rank the samples with our verifier EFC.

While the generation-prompt revision-regeneration loop can be repeated, in our main experiments we
apply it once, as this already provides sufficient gains; further analysis is presented in Section 4.4.
Within PRIS, EFC-guided prompt redesign leverages prior failures to refine prompts and exploit
favorable noise configurations. By treating partially correct generations as informative feedback
rather than discarding them, PRIS makes more effective use of generator compute and improves
output fidelity, thereby bridging the reasoning capabilities of MLLMs and visual generation.
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Table 2: Quantitative comparisons of T2V generation on VBench-2.0. ∗ denotes results obtained
using the standard prompt expansion, and bold indicates the best results. We use N = 20 samples
for Wan2.1-1.3B (small) and N = 10 for Wan2.1-14B (large), which can lead to the smaller model
achieving higher scores due to the larger number of samples.

Category Method Relationship
Dynamic Spatial

Attribute
Dynamic

Understanding
Motion Order

Interaction
Human Composition Average

& Creativity
Controllability

Wan2.1-1.3B∗ 35.56 46.67 52.87 74.44 48.33 51.57
+BoN∗ (N = 20) 43.33 53.33 51.72 90.00 50.2 57.73 ↑ +6.16

+PRIS∗ (N = 20) 43.33 73.33 68.97 90.00 51.6 65.45 ↑ +13.88

Wan2.1-14B∗ 50.00 48.89 43.33 78.89 47.18 53.66
+BoN∗ (N = 10) 46.67 56.67 60.00 80.00 49.23 58.51 ↑ +4.85

+PRIS∗ (N = 10) 60.00 73.33 66.67 90.00 54.23 68.85 ↑ +15.19

Category Method Motion
Camera

Rationality
Motion Mechanics Material Thermotics Average

& Physics
Commonsense

Wan2.1-1.3B∗ 41.38 38.10 75.00 75.38 86.25 63.22
+BoN∗ (N = 20) 37.93 35.71 84.00 73.91 81.48 62.61 ↓ −0.61

+PRIS∗ (N = 20) 51.72 50.00 80.00 78.26 70.37 66.07 ↑ +3.46

Wan2.1-14B∗ 36.67 40.00 83.33 77.78 79.49 63.45
+BoN∗ (N = 10) 43.33 43.33 86.36 80.77 76.92 66.14 ↑ +2.69

+PRIS∗ (N = 10) 43.33 53.33 86.36 88.46 76.92 69.98 ↑ +6.53

Initially expanded prompt: “A person is… gently turning on a desk lamp… twist the lamp's switch… newly lit lamp casts warm light…”

Bo
N

 
(W

an
 2

.1
-1

4B
)

PR
IS

 
(W

an
 2

.1
-1

4B
)

Original short prompt: “A person is turning on the desk lamp.”

Revised prompt: “A young… hand resting gently on the base of a desk lamp… the person twists the switch, and the warm glow gradually illuminates the space… as the lamp 
turns on… background remains softly blurred… the transition from darkness to light emphasizes the calming effect… warmly lit room…”

Figure 4: Quantitative comparisons on T2V generation. Our revised prompt elaborates on previous
failures by emphasizing causal order, ensuring the lamp turns on immediately when touched.

4 EXPERIMENTS

We comprehensively evaluate PRIS and EFC for inference-time scaling. First, we study the effect of
prompt redesign under a fixed compute budget (Section 4.1). Next, we analyze the scaling behavior of
PRIS by expanding the generator’s compute budget or iteratively revising prompts, and examine its
integration with visual scaling algorithms originally designed for fixed prompts (Section 4.2). Finally,
we assess the ability of EFC and existing verifiers to select the best-quality sample from mid-quality
candidates (Section 4.3) and conduct ablations on both PRIS and EFC (Section 4.4).

4.1 EFFECT OF PRIS ON INFERENCE-TIME ALIGNMENT AND VISUAL QUALITY

We study the effect of prompt redesign on output quality under a fixed compute budget, defined as the
number of function evaluations (NFE). For detailed experimental setups, please refer to Appendix C.

Experimental setup. For the MLLM verifier, we use Qwen2.5-VL (Bai et al., 2025) with prompt
instructions for each process described in Section 4.3, without additional training. We compare with
Best-of-N (BoN) (Ma et al., 2025), which generates N samples at once and selects the best, while
our method generates half of them (setting M = ⌊N/2⌋), revises the prompt with feedback, and
regenerates the rest using the revised prompt and top-k seeds. We set k = ⌈N/4⌉, thereby producing
two revised prompt variants for the remaining N −M samples. We also include standard prompt
expansion (Wan et al., 2025) (denoted as ∗) to contrast with our failure-aware revisions. For generator
selection, we first measure base fidelity using embedding similarity between the generated caption
and the original prompt (Wang et al., 2023), retaining only models with sufficiently high scores and
excluding those with substantially weaker prompt adherence.

For T2I generation, we use FLUX.1-dev (Labs et al., 2025) on GenAI-Bench (Li et al., 2024) with
320 sampled prompts (20% of the total) to avoid redundancy. For the guidance reward, we use
VQA-Score (Lin et al., 2024). For held-out evaluation, we use DA-Score (Singh & Zheng, 2023)
to assess fine-grained prompt adherence, and LAION (2024) to evaluate the aesthetic quality of the
generated images. NFE is set to 2000 (N = 20, 50 denoising steps, classifier-free guidance (Ho &
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Bo
N

PR
IS

͞��ďƌĂǀĞ�ďŽǇ 1) not wearing a helmet is 
2) climbing a 3) tall tree͟

NFEs (1e3)

2.01.0 3.0

Figure 5: Qualitative examples with in-
creasing inference-time compute. PRIS
generates progressively taller trees while
satisfying all attributes, whereas BoN con-
sistently misses some.

Table 3: Quantitative results for iterative prompt re-
finement with increasing inference-time compute. It-
eratively revision prompts consistently improves reward
scores by addressing common failures, and the gains even
generalize to unseen rewards. In contrast, fixed prompts
often saturate and fail to transfer.

Method NFEs
(1e3)

VQA-
Score

(Given)

DA-Score
w. BLIP2-VQA

(Unseen)

Aesthetic
Quality

(Unseen)

Initial (w.o. revision) 0.5 0.736 0.679 5.756

Initial (w.o. revision) 1.0 0.764 0.684 5.766
1st revision 1.0 0.834 0.703 5.755

Initial (w.o. revision) 1.5 0.776 0.683 5.751
2nd revision 1.5 0.849 0.705 5.740

Salimans, 2022)=3.5). For T2V, we use Wan2.1-1.3B/14B (Wan et al., 2025) with VideoAlign (Liu
et al., 2025a) as guidance, and evaluate on VBench2.0 (Zheng et al., 2025) across four dimensions:
controllability, creativity, commonsense, and physical plausibility. NFE is set to 2000 (N = 20, 50
steps, cfg=6) for Wan2.1-1.3B and 1000 (N = 10, 50 steps, cfg=6) for Wan2.1-14B.

Experimental results on T2I generation. We present results in Table 1, Figure 3, and Appendix D.
As shown in Table 1, our approach PRIS consistently outperforms all baselines across metrics.
Notably, it yields substantial gains in prompt adherence while maintaining comparable aesthetic
quality. Even against the standard prompt expansion variant (denoted as ∗), our method achieves
significantly higher scores. These results suggest that prompt expansion is most effective when guided
by visual feedback, rather than by adding arbitrary details as in standard prompt expansion. The
qualitative results in Figure 3 further support this claim, showing that PRIS exhibits a stronger ability
to handle complex, compositional prompts compared to BoN. For the top row in Figure 3, after
identifying layout specification as a challenge in the initial outputs, our method revises the prompt to
emphasize layout-related details. Likewise, for the prompt “fork not made of wood” (bottom row in
Figure 3), where BoN still produces wooden forks due to the negation, our method explicitly instructs
the model to generate “silver forks,” thereby resolving the misunderstanding.

Experimental results on T2V generation. Our method delivers substantial improvements in prompt
alignment for T2V generation, as shown in Table 2, Figure 4, and further examples in Appendix D.
PRIS achieves gains of +13.88% and +15.19% in the Controllability and Creativity categories for
the small and large models, respectively. This significantly surpasses BoN∗, which applies standard
prompt expansion at initialization without visual feedback on where to focus. Specifically, the largest
gains appear in Dynamic Attribute and Motion Order Understanding, which require sequential
reasoning (e.g., “A then B,” “A transitioned to B”). Here, PRIS identifies failures in the initial outputs
and revises prompts to clarify how sequences should unfold, emphasizing the parts that previously
failed. Qualitative examples, including revised prompt in Figure 4, illustrate these improvements.
Beyond these categories, PRIS also improves Commonsense and Physics by +3.46% and +6.53%,
respectively. A notable exception is Thermotics, where performance drops slightly due to the reward
model overfitting to exact numeric values rather than broader physical plausibility. Finally, while
Zheng et al. (2025) suggests that camera motion is largely determined by base model capacity, our
results show that refining prompts to specify how camera motion should unfold in conjunction with
other scene elements can still yield measurable improvements.

4.2 SCALING BEHAVIORS OF PRIS

PRIS scales with increasing NFEs. We provide both quantitative and qualitative evidence that PRIS
scales with increasing NFEs, whereas a fixed prompt quickly saturates and fails to scale (Figures 1
and 5). In Figure 1a, BoN, which relies on fixed prompts, shows monotonic gains in guidance (seen)
rewards, but its held-out performance saturates beyond 1e3 NFEs. In contrast, PRIS continues to
improve, achieving higher accuracy even under held-out evaluation. Figures 1b and 5 confirm this
trend qualitatively. In Figure 1b, BoN repeatedly generates “shoe with laces,” whereas PRIS revises
the prompt to realize “shoe without laces,” improving alignment as compute increases. Similarly, in
Figure 5, our method produces progressively taller trees while satisfying all attributes, even at smaller
budgets, whereas BoN repeatedly fails to follow the prompt by generating a boy wearing a helmet.
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Table 4: Quantitative results of integrating
PRIS with T2I visual scaling methods on
GenAI-Bench. Bold shows the best.

Method
VQA-
Score

(Given)

DA-Score
w. BLIP2-VQA

(Unseen)

Asthetic
Quality

(Unseen)

SDXL 0.639 0.652 5.759
+BoN 0.649 0.663 5.810
+DAS 0.657 0.671 5.819
+DAS w/ PRIS 0.700 0.688 5.897
FLUX.1-schnell 0.672 0.676 5.519
+BoN 0.869 0.704 5.497
+RBF 0.922 0.706 5.426
+RBF w/ PRIS 0.936 0.723 5.528

“An animal with legs notably longer than a nearby person’s.”

SDXL BoN SMC SMC with PRIS

“Balls on the table have greater color variety than those on the floor.”

FLUX.1-schnell BoN RBF RBF with PRIS

Figure 6: Qualitative examples of integrating PRIS
with T2I noise-scaling baselines.

Effectiveness of iterative prompt revisions with PRIS. Table 3 evaluates whether iterative revisions,
which update prompts based on newly identified failures, provide benefits beyond a single iteration of
revision. As shown, iterative revision yields consistent improvements across both given and held-out
metrics for prompt adherence while maintaining comparable aesthetic quality. The first update brings
a substantial gain, and the second adds further improvements, suggesting that iterative revision
progressively strengthens alignment. While multiple revisions yield cumulative gains, the first update
already offers a substantial improvement; therefore, we adopt a single refinement step in the main
experiments. Moreover, such gains do not appear without PRIS: simply generating more samples
with increased compute budget leads to saturated performance on unseen rewards. This highlights
that targeted prompt correction is more effective than brute-force visual scaling.

Integration with visual scaling methods beyond BoN. PRIS is complementary to prior visual scaling
methods that expand the sampling space with fixed prompts. These are noise-based strategies that
adjust sampling dynamics, whereas our approach targets prompt-level failures, making it orthogonal
to such methods. To validate this complementarity, we integrate PRIS with two established T2I
methods, DAS (Kim et al., 2025b) and RBF (Kim et al., 2025a), following their original protocols and
evaluating on GenAI-Bench consistent with our main setup. Table 4 and Figure 6 show that integration
yields superior alignment on both given and unseen rewards. Notably, whereas RBF often sacrifices
aesthetics to improve alignment, our approach improves both simultaneously. Qualitatively, Figure 6
further shows that although DAS and RBF alone struggle on difficult prompts, their integration with
PRIS resolves these cases, producing outputs that are both prompt-aligned and visually coherent. Full
experimental details, additional examples, and T2V results are provided in Appendix A.

4.3 EVALUATING THE VERIFICATION ACCURACY OF EFC

We introduce EFC to address the lack of fine-grained evaluation in text-visual alignment, enabling
element-level verification for precise and interpretable assessment. As prompts become more complex,
it is critical to check whether all attributes are satisfied rather than relying on a single opaque score.
However, widely used human preference datasets (Liu et al., 2025a;b; Wang et al., 2024a; He et al.,
2024; Xu et al., 2024) are insufficient: they provide only pairwise judgments and fail to capture
whether a single video fully satisfies the prompt. Moreover, they do not reflect inference-time needs,
where a verifier must pick the best-aligned sample from a diverse pool of mid-quality outputs. To
fill this gap, we construct a benchmark that pairs prompts with both fully aligned (ground-truth)
and partially aligned (distractors) visuals, covering varying degrees of completeness and fidelity.
Additional dataset details and analyses are provided in Appendix B.

Constructing the benchmark. Each prompt is paired with multiple aligned and partially aligned
videos, along with tags indicating reasons for misalignment for the partially aligned cases. Prompts
are drawn from widely used video model demos and from VBench 2.0 (Zheng et al., 2025), yielding
a total of 410 prompts. Candidate videos are generated using diverse state-of-the-art closed- and open-
source models (Google DeepMind, 2025; Kuaishou Technology, 2025; Wan et al., 2025). Several
human annotators mark a video as aligned if it fully satisfies the prompt and provide explanations
when they label it as misaligned. The final label for each video is determined by majority vote.

Evaluation setup and baselines. We evaluate EFC and existing verifiers on our benchmark which
simulates the inference-time scaling setting. As baselines, we consider widely used learned reward
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Table 5: Quantitative results on verifier ac-
curacy in selecting GT visual outputs. Bold
indicates the best results.

Verifier Accuracy

VisionReward (Xu et al., 2024) 0.571
UnifiedReward (Wang et al., 2025b) 0.498
VideoAlign (Liu et al., 2025a) 0.693

Decomposed binary VQA 0.700
PRIS (Ours) 0.763

Table 6: Ablation study of PRIS. # d.e. and # c.f.
denote the numbers of decomposed elements and com-
mon failures, respectively; bold indicates the best.

Task Prompt Revision Avg. # d.e. Avg. # c.f. Score

T2I
w.o. revision

3.5
- 0.783

Per-sample - 0.853
Common-failure 0.72 0.854

T2V
w.o. revision

7.3
- 0.711

Per-sample - 0.619
Common-failure 1.46 0.754

models (Liu et al., 2025a; Xu et al., 2024; Wang et al., 2025b), trained on preference datasets to output
a scalar score per video. We then evaluate EFC itself, which performs zero-shot prompt-adherence
verification using MLLMs (Bai et al., 2025), along with an ablation that removes its factual correction
component. In this ablation, verification is reduced to decomposed visual QA, where each element is
judged independently via QA, and the final score is determined by the number of elements marked
aligned. For all methods, we select the top-scoring video and evaluate against human annotations.

Evaluation results. Table 5 shows that EFC achieves the highest accuracy, significantly surpassing
even VideoAlign, the strongest reward model. Moreover, unlike learned reward models, EFC provides
fine-grained, interpretable reasoning even without training. It also outperforms decomposed VQA,
supporting our design choice of factual correction with text-based verification, consistent with recent
findings that text-based measures are more reliable than direct VQA (Fu et al., 2025; Bai et al., 2024).

4.4 ABLATION STUDY AND ANALYSIS

Effect of prompt redesign based on common failure patterns. We ablate our redesign strategy,
which revises prompts by identifying failure patterns shared across the top-k best-aligned samples.
This directs corrections toward attributes that are systematically hard to generate (e.g., motion or
causal order). As shown in Table 6, common-failure revision consistently outperforms per-sample
revision in both T2I and T2V. Notably, per-sample revision in T2V performs worse than no revision,
as attempting to fix every failure at once dilutes focus on high-probability misalignments and wastes
effort on cases that alternative seeds could easily resolve, ultimately leading to inefficiency. In contrast,
our approach effectively focuses corrections on attributes with a high likelihood of recurring failure.
Furthermore, the number of common failures (c.f. in Table 6) across top-performing seeds supports
our motivation (Section 3.1), confirming that different seeds indeed share recurring failure patterns.

Table 7: Quantitative eval-
uation under matched
computational time.

Task Method NFEs (1e3) Score

T2I BoN 4.0 0.790
PRIS 1.0 0.834

T2V BoN 4.0 0.935
PRIS 2.0 0.964

Compute time analysis. In our experiments, we follow the standard
practice of comparing methods under the same NFEs (Ma et al., 2025;
Kim et al., 2025a). We also evaluate under matched total wall-clock time
(Table 7), including verifiers. Even under this setting, allocating wall-
clock time to our framework is more effective than simply increasing
NFEs for the generator. Although EFC introduces a modest overhead,
mainly from captioning, PRIS achieves substantially larger gains in
prompt adherence. These results indicate that directing wall-clock time
toward verifier-guided prompt revision is more beneficial than spending the same time on brute-force
generation. Please refer to Appendix A for a detailed breakdown of the compute time for verification.

5 CONCLUSION

In this work, we address the overlooked problem of prompt design for inference-time scaling,
complementing prior efforts focused solely on expanding the visual search space while keeping
prompts fixed. We introduce EFC, a zero-shot verifier that provides fine-grained, interpretable text-
visual alignment assessments, and PRIS, an EFC-guided framework that redesigns prompts based
on observed common failures across visuals. By reviewing generated outputs to identify recurring
misalignment patterns, PRIS adaptively revises the prompt based on the visuals. Across both T2I and
T2V generations, our approach delivers significant gains in prompt adherence, demonstrating that
jointly scaling prompts and visuals extends scaling behavior beyond visual-only scaling methods. In
doing so, our contributions bridge MLLM reasoning and visual generative models, establishing a new
direction toward more controllable and high-fidelity text-to-visual generation.
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A ADDITIONAL ANALYSIS

A.1 COMMON FAILURE PATTERNS

Original prompt
: Њ�ϙŜēĺôϙſĖťēϙĲĺϙīÍèôŜϠϙŜťÍĲîĖĲČϙÍīĺĲôЋ
Decomposed elements
1.There is a shoe (core)
2.The shoe has no laces (core)
3.The shoe is standing alone (core)

Common failure patterns
: 2. The shoe has no laces

Original prompt
: ЊOn a wooden table, both the spoons and plates are made of wood, 
only the fork is not made of wood.Ћ

Decomposed elements
1.There is wooden dining table (core)
2.There are spoons present (core)
3.There are plates present (core)
4.There is a fork present (core)
5.The spoons are made of wood (core)
6.The plates are made of wood (core)
7.The fork is not made of wood (core)
8.The spoons, plates, and fork are located on the wooden dining table
Common failure patterns
: 7. The fork is not made of wood

Figure 7: Qualitative examples of recurring misalignments when generating multiple images from
a fixed prompt, with decomposed elements and common failures identified by EFC.
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ڮ ڮ

ڮ ڮ

ڮ ڮ

Original prompt
: ЊThe glass car window changed into a wooden car windowЋ
Decomposed elements
1. A car window is present in the scene (core)
2.The car window initially appears to be made of glass (core)
3.The car window later appears to be made of wood (core)
4.The transformation of the car window occurs sequentially over time (core)
5.The glass car window transforms into a wooden car window (core)

Common failure patterns
: 3. The car window later appears to be made of wood, 
4. The transformation of the car window occurs sequentially over time,
5. The glass car window transforms into a wooden car window

ڮ

Original prompt
: ЊA person is turning on the desk lampЋ
Decomposed elements
1.There is a person in the scene (core)
2.There is a desk lamp on the desk (core)
3.The person is positioned near the desk lamp (extra)
4.The desk lamp is initially turned off (core)
5.The desk lamp has a switch that can be activated (core)
6.�ēôϙŕôŘŜĺĲЍŜϙēÍĲîϙıĺŽôŜϙťĺſÍŘîŜϙťēôϙîôŜħϙīÍıŕϙϼèĺŘôϽ
7.�ēôϙŕôŘŜĺĲЍŜϙċĖĲČôŘŜϙĖĲťôŘÍèťϙſĖťēϙťēôϙīÍıŕϙŜſĖťèēϙϼèĺŘôϽ
8.The desk lamp transitions from being off to on after the person interacts with the switch (core)

Common failure patterns
: 4. The desk lamp is initially turned off,
8. The desk lamp transitions from being off to on after the person interacts with the switch

ڮ

ڮڮ

ڮڮ

Figure 8: Qualitative examples of recurring misalignments when generating multiple videos from
a fixed prompt, with decomposed elements and common failures identified by EFC. We illustrate the
first and the last frame for each generated video.
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A.2 DETAILS OF EFC

We present a detailed overview of the visual verification process in our verifier, EFC. The goal of
this process is to provide fine-grained and interpretable feedback on whether each part of a prompt is
faithfully realized in the generated visuals. Given a prompt and its corresponding outputs (images or
videos), EFC first decomposes the prompt into multiple disjoint semantic elements using a system
prompt. For each element, it also constructs an open-ended question, where the element itself serves
as the expected answer. Next, EFC verifies the fulfillment of these elements in the generated visuals
through factual correction. Instead of relying on visual question answering, our key idea is to perform
text-based comparison between the semantic elements and the visuals. To enable this, EFC first
extracts captions from the generated visuals and then applies natural language inference (NLI) to
classify each element as entailment, neutral, or contradiction. For elements classified as neutral,
where captions are missing or insufficient, EFC uses the previously generated open-ended questions,
applies NLI again to the corresponding answers, and assigns a final label of either entailment or
contradiction. Through this process, EFC not only determines whether the prompt is satisfied, but also
pinpoints which parts of the prompt are faithfully represented and which are contradicted, thereby
enabling accurate and interpretable fine-grained feedback for generated visuals.

Element-level Factual Correction (EFC)

MLLM

Original prompt: 
Њ�ϙīĖťťīôϙæĖŘîϙıÍîôϙĺċϙ
a fresh orange bursts out of a 
ſēĺīôϙĺŘÍĲČôЋ

1. Decompose an original prompt into semantic elements

 Your tasks:
1. Decompose an original 

prompt into semantic 
elements

2. Create open-ended 
questions for each 
element

Elements Questions

E1. A whole orange is present. Q1. What is placed at the start 
of the video?

E2. The bird is crafted from a fresh 
orange.

Q2. What material is the bird 
made from?

E3. The orange appears intact 
before the bird bursts out.

�͒ϟϙ®ēÍťϙĖŜϙťēôϙĺŘÍĲČôЍŜϙèĺĲîĖťĖĺĲϙ
before the bird emerges?

E4. The bird is initially inside the 
orange.

Q4, Where is the bird located at 
the beginning?

E5. The bird bursts out of the 
orange at the end.

Q5. How does the video conclude 
ŘôČÍŘîĖĲČϙťēôϙæĖŘîЍŜϙÍèťĖĺĲϦ

2. Verify elements fulfillment in visuals via factual correction

Caption
�ēôϙŽĖîôĺϙèŘôÍťĖŽôīƅϙťŘÍĲŜċĺŘıŜϙϣϙInitially, the orange ĖŜϙŕĺŜĖťĖĺĲôîϙĺĲϙÍϙſĺĺîôĲϣϙÍŜϙťēôϙŽĖîôĺϙ
progresses, a small white bird emerges from the hollowed-out center of the orange, ϣϙas if it 
has just hatched or taken flight. The bird's delicate feathers contrast sharply with the bright 
orange peelϠϙϣ 

Visual data to verify (e.g., image or video)

MLLM

 Your task: 
Captioning

2-1. Captioning

Video

2-3. Follow-up QA / NLI on Neutral Elements

MLLM

 Your task: QA
Q1. What is placed at the start 

of the video?

partially hollowed 
or carved orange

Final  classification
F1. Contradiction
F2. Contradiction 
F3, F4, F5. EntailmentMLLM

 Your task: 
NLI

MLLM

Initial classification
F1. Neutral ϳ "Whole orange?" Not specified; only "orange" is mentioned.
F2. Contradiction ϳ Clue: "small white bird... feathers contrast sharply with ... orange peel."
F3, F4, F5. Entailment ϳ Supported by the caption's description

1. Caption
2. Facts

MLLM

 Your task: NLI
Classify whether each fact is entailed by, 
contradicts, or is neutral w.r.t the caption

2-2. NLI

Figure 9: Illustration of EFC. The figure illustrates how EFC provides fine-grained, interpretable
verification of prompt adherence. It first decomposes the prompt into semantic elements, then
generates captions from the visuals, and applies factual correction to classify each element as
entailment, neutral, or contradiction. Elements initially labeled neutral (due to missing mentions in
the caption) are reevaluated to decide between entailment and contradiction. This design avoids direct
QA, leading to more accurate verification.

A.3 DETAILS ON INTEGRATION BEYOND BON

This section provides additional details on the integration of our framework with visual scaling
methods, complementing Section 4.2.

Experiments on text-to-image generations. We integrate our approach with two inference-time
scaling methods focused on visuals: DAS (Kim et al., 2025b) and RBF (Kim et al., 2025b). Following
their original experimental protocols, we use SDXL (Podell et al., 2023) for DAS and Flux.1-
schnell (Labs et al., 2025) for RBF. In both settings, we generate a total of 8 samples, divided into
two batches of 4. When combined with our method, the first batch of 4 samples is generated, the
prompt is revised, and another 4 samples are generated, ensuring that the total number of function
evaluations remains equivalent.
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FLUX.1-schnell BoN RBF RBF with PRIS

“A woman not wearing a hoodie in the middle of a group of people wearing hoodies.”

“A little girl is teasing a kitten with a laser pointer, but the cat is not chasing the light spot on the floor.”

“In the gym, everyone is resting except for a child who is still running on the treadmill.”

Figure 10: Qualitative artifact results with RBF. RBF alone often generates visuals where the
prompt text is directly rendered on the image due to reward over-optimization, whereas combining
RBF with our method substantially alleviates this issue.

In addition to Table 4 and Figure 4 in the main manuscript, Figures 11 and 12 demonstrate that our
integrated results achieve substantially better prompt adherence than visual scaling alone, for DAS
and RBF, respectively. This indicates that advanced visual scaling methods can be further enhanced
when combined with scaled prompts.

It is also noteworthy that scaling visuals alone often leads to undesired outcomes caused by reward
over-optimization (see Figure 10). In such cases, the model may even render the textual prompt
itself, since these images achieve artificially high reward scores. For example, Figure 10 shows that
RBF frequently generates images where the prompt text is printed directly. By contrast, our method
mitigates this issue: the revised prompt guides the generator, while the original prompt is used only
for the reward signal. This separation effectively reduces over-optimization artifacts and yields more
faithful generations, even when PRIS is combined with RBF.
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SDXL BoN SMC SMC with PRIS

“A kitchen with a larger quantity of milk than juice.”

“A tissue pack shows two cartoon characters: one in a red dress on the left, one without on the right.”

“Four cupcakes with sprinkles on a plate with two forks.”

“In an early morning park, a man in a grey and white tracksuit is not running.”

”A child not building a sandcastle at the beach.”

“A woman in a wheelchair is taller than the boy next to her.”

Figure 11: Qualitative comparisons when integrating our method with SMC under the same
compute budget. Our approach more faithfully follows the prompt, effectively enabling SMC to scale
visuals.
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FLUX.1-schnell BoN RBF RBF with PRIS

“A clock with no hands to tell the time.”

“A shoe rack without any red pairs of shoes on it.”

“There is a large fish aquarium in the center of the luxurious living room, but there are no fish in it.”

“Two frogs on a lotus leaf in a pond, and the one who is drinking is in front of the one who is not.”

”Four roses in a clear glass vase, all of which are red, and all of which are not open.”

“A teddy dog and a Persian cat watch a burning table, with the teddy dog at a farther distance.”

Figure 12: Qualitative comparisons of RBF integrated with our method under the same compute
budget. Our method adheres more closely to the prompt and further improves RBF’s visual scaling.
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Experiments on text-to-video generations. We integrate our approach with EvoSearch (He et al.,
2025), following its original setup on Wan2.1-1.3B. EvoSearch uses an evolution schedule of [5,
20, 30, 45] and a population schedule of [10, 5, 5, 5], totaling 2,000 NFEs. For integration, we first
generate 10 samples with 50 steps (1,000 NFEs), then allocate the remaining 940 NFEs with [5, 30]
for the evolution schedule and [5, 4] for the population schedule, resulting in 60 fewer NFEs than
EvoSearch. As in the main manuscript, we evaluate on VBench2.0 with VideoAlign as the guiding
reward.

Table 8 and Figure 13 present the quantitative and qualitative results. Unlike EvoSearch, which was
evaluated on relatively simple prompts, our experiments employ more complex ones. In this setting,
EvoSearch scores degrade after scaling, suggesting limited generalization to the unseen reward of
VBench2.0. By contrast, when integrated with our method, it achieves improved average scores on
VBench2.0.

Table 8: Quantitative T2V results on VBench2.0, comparing EvoSearch alone with EvoSearch
integrated with PRIS. EvoSearch fails to generalize to unseen rewards, whereas integration with
PRIS improves performance.

Method Rationality
Motion

Understanding
Motion Order

Attribute
Dynamic Average

Wan2.1-1.3B 38.10 52.87 46.67 45.88
EvoSearch 32.14 51.72 43.33 42.20 ↓ −3.68

EvoSearch + PRIS 53.57 48.28 60.00 53.95 ↑ +8.07

Motion rationality: “A person is opening the window.”

Ev
o
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ar

ch
Ev

o
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w
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IS

Dynamic attributes : “A butterfly’s wing change from yellow to white.”

Ev
o

Se
ar

ch
Ev

o
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ch

w
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h
 P

R
IS

Figure 13: Qualitative examples comparing EvoSearch and EvoSearch+PRIS. In the first case,
EvoSearch fails to change the butterfly’s wing color despite scaling, whereas our method succeeds.
In the second case, EvoSearch depicts the window as already open before the person attempts to open
it, while our method correctly shows the window opening as the person reaches out.

A.4 DETAILED COMPUTATIONAL TIME ANALYSIS

In this section, we provide a detailed breakdown of verification and generation time, complementing
Section 4.4. All measurements are conducted on a single NVIDIA H100 80GB GPU. For images,
generating a single sample resolution (1024, 1024) with Flux.1-dev takes on average 13 seconds,
while verification with our verifier, EFC, requires 41 seconds. This implies that each verification
is computationally equivalent to generating approximately three additional images. To balance this
overhead, we set the number of function evaluations (NFE) to 4000 for BoN and 1000 for our method,
corresponding to 40 and 10 images, respectively (with 50 sampling steps and classifier-free guidance).
For videos, generating an 81-frame sequence at resolution (480, 832) with Wan2.1-1.3B requires 105
seconds on average, while verification takes 100 seconds, approximately equivalent to one additional
video generation. Accordingly, we set the NFE to 4000 for BoN (40 videos) and 2000 for our method
(20 videos), again under 50 sampling steps with classifier-free guidance.
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Our verifier is intentionally built on a pretrained MLLM without task-specific optimization, demon-
strating that strong results can be achieved without additional training. Nonetheless, fine-tuning the
base MLLM remains a promising direction for reducing verification time and improving efficiency.

A.5 PROMPT TRANSFERABILITY AND FUTURE WORK

Original Prompt: A little boy with a ping pong paddle looks 
more excited than a little girl without one.
Revised Prompt: A young boy holding a bright yellow ping pong 
paddle beams with wide eyes and an open smile, while 
nearby, a calm little girl gazes at him with a curious expression, 
her hands resting by her side.

Original Prompt Revised Prompt

Original Prompt Revised Prompt

Original Prompt: In a classroom, the clock is not on the wall

Revised Prompt: In a classroom, the clock is placed on a 
polished wooden desk, its round face softly illuminated, while 
the walls remain unadorned, free of any other timepieces.

Figure 14: Qualitative example of prompt transferability. Prompts revised for Flux1.dev are
applied to Firefly Image 4 Ultra. By clarifying vague instructions, specifying object presence and
absence, and reinforcing contextual cues, the revised prompts yield visuals with stronger adherence
compared to those generated from the original prompts.

We observe that our revised prompts are not only effective for the original generator but also
transferable to other models, demonstrating their generalizability. This stems from the fact that our
revisions resolve ambiguities in the original prompts, making them more precise and robust. Although
different generators may specialize in certain aspects, such as producing fine-grained details or
maintaining object counts, they often exhibit overlapping weaknesses. Addressing these weaknesses
through prompt revision thus benefits multiple models simultaneously.

Figure 14 illustrates this transferability. The prompts originally revised for Flux1.dev are successfully
applied to Firefly Image 4 Ultra. For example, the revised prompts clarify vague or underspecified
instructions (e.g., replacing “not on the wall” with “the clock is placed on a polished wooden desk”),
making object presence and absence explicit (e.g., reformulating “the girl is without a ping pong
paddle” into “her hands resting by her side”), and reinforcing contextual cues.

These findings suggest a promising research direction: fine-tuning LLMs or other prompt-rewriting
systems on pairs of naı̈ve user-provided prompts and failure-focused revisions. By learning systematic
transformations from short, underspecified, and loosely written prompts into precise, detailed, and
effective ones, rather than relying on random expansions, such models could reduce verification costs
and inference-time overhead, accelerating the discovery of high-quality prompts from the outset.

A.6 FUTURE WORK AND LIMITATIONS.

We believe our benchmark opens a new avenue for evaluating verifiers at the attribute level. We also
observe that prompts refined on one model often generalize well to others (see Appendix A). Building
on this insight, future work could explore fine-tuning LLMs or other prompt-rewriting models using
pairs of randomly expanded and failure-focused prompts as training assets, which reduce verification
overhead and inference-time costs, enabling more efficient discovery of effective prompts from the
start.

A.7 THE USE OF LARGE LANGUAGE MODELS

We only utilize Large Language Models (LLMs) to aid and polish our writing. However, they are not
used to the extent that they could be considered contributors or sources of research ideas.
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B BENCHMARK CONSTRUCTION AND EVALUATIONS

B.1 BENCHMARK CATEGORY

Details about benchmark constructions. Existing visual evaluation datasets are mostly limited
to human-preference annotations. While useful for coarse quality assessment, such datasets are
insufficient for our focus: selecting the best-aligned videos from among multiple misaligned can-
didates, which lies at the core of inference-time scaling. To address this limitation, we construct a
new benchmark explicitly tailored for inference-time scaling and use it to evaluate our verifier, its
ablations, and existing baselines. Beyond serving as a testbed for our study, this benchmark also
provides a valuable resource for future research on visual prompt-adherence verification.

In our benchmark, each prompt is paired with multiple generated videos, with at least one ground-truth
(GT) aligned reference and others containing slight misalignments, thereby forming a mid-quality
candidate pool. In total, the benchmark comprises 410 prompts. We collect prompts showcased in
demos of both popular open-source (Wan et al., 2025) and closed-source video models (Google
DeepMind, 2025; Kuaishou Technology, 2025), and categorize them into two broad groups: motion
(120 prompts) and physics (144 prompts). To further enrich the evaluation, we also adopt prompts
from VBench 2.0, spanning three fine-grained motion-related categories: dynamic attributes (47
prompts), motion order (68 prompts), and motion rationality (31 prompts). For each prompt, we
generate videos using multiple text-to-video models (xx, xxx) as well as image-to-video models,
ensuring the inclusion of both GT-aligned and misaligned outputs. Each video is independently
annotated by three human evaluators as GT or non-GT, and the final label is assigned by majority
vote.

Detailed analysis of verifiers on our benchmark per category. In addition to the overall accuracy
reported in Table 5 of the main manuscript, we present per-category accuracy in Table 9. As the
results show, EFC consistently achieves the highest accuracy across all categories. Compared to
the decomposed binary VQA baseline, which shares our decomposition strategy but replaces our
text-to-text verification with binary VQA, EFC yields a substantial performance gain, underscoring
the advantage of our text-based approach over visual QA methods. When compared to learned reward
models (i.e., MLLM-based verifiers fine-tuned on human-preference datasets), including VideoAlign
(the strongest among them and used as our tie-breaker), EFC still maintains a significant lead. Notably,
it achieves this performance without any additional training on preference datasets, but rather through
a systematic zero-shot verification process. Furthermore, we attribute this gap to the fact that reward
models are typically trained on human-preference data, where subtle aspects such as frame quality,
motion smoothness, or stylistic biases often dominate judgments, even when they are not directly
related to prompt adherence. In contrast, EFC focuses explicitly on verifying semantic alignment
with the prompt, making it both more accurate and interpretable.

Table 9: Quantitative results of verifier accuracy per prompt category on our constructed
dataset. Bold indicates the best result.

Method Motion Physics Attributes
Dynamic

Rationality
Motion

Understanding
Motion Order Average

VisionReward (Xu et al., 2024) 0.650 0.569 0.319 0.662 0.452 0.571
UnifiedReward (Wang et al., 2025b) 0.492 0.507 0.298 0.588 0.581 0.498
VideoAlign (Liu et al., 2025a) 0.792 0.660 0.511 0.794 0.516 0.693

Decomposed binary VQA 0.733 0.667 0.617 0.809 0.613 0.700
PRIS (Ours) 0.792 0.764 0.638 0.838 0.677 0.763

While our study focuses on prompt-adherence verification, we believe that our verification framework
can be extended to other important axes of evaluation, such as motion quality, NSFW filtering, and
bias detection, by replacing prompt decomposition with task-specific decomposition strategies. This
flexibility offers promising directions for future research.
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C EXPERIMENTS DETAILS

C.1 DETAILED SETUP

For GenAI-Bench, since many prompts within the same categories (e.g., counting, differentiation,
comparison, negation, universal) are similar but differ only in objects, we randomly subsample 20%
to reduce redundancy. For selecting k, we set k = N//4, as N//2 samples are first generated for
review before prompt revision, and half of them are used as top-performing seeds.

C.2 BASE MODEL SELECTION

To ensure that our study focuses on the effect of prompt redesign in inference-time scaling, we first
measure the degree of prompt adherence across candidate leading open-source video models such as
Wan, LTX, and Hunyuan. This step is necessary because if a model fails to follow the prompt at all,
there is little need to apply prompt redesign. Specifically, we compute the text embedding similarity
between the original prompt and the generated video caption. We use Qwen-32B for captioning
and employ the SentenceTransformer model (intfloat/e5-mistral-7b-instruct) to measure
embedding similarity. We present the similarity score in Table 10.

Table 10: Quantitative results of prompt adherence across different text-to-video models, used to
exclude base models with poor alignment and retain only those with acceptable adherence.

Metric Method Rationality
Motion

Understanding
Motion Order

Attribute
Dynamic Average

VideoAlign
LTX 0.764 -0.153 -0.977 -0.122
Hunyuan 0.904 0.212 -0.775 0.114
Wan 1.475 0.940 -0.397 0.673

Text Similarity
LTX 0.635 0.642 0.600 0.626
Hunyuan 0.678 0.671 0.616 0.655
Wan 0.717 0.702 0.631 0.683

Based on this analysis, we selected Wan as our primary video model, since it demonstrates a
reasonable level of prompt adherence while leaving room for improvement through verification and
redesign. In contrast, models such as LTX and Hunyuan were excluded, as their low adherence made
them unsuitable for evaluating prompt redesign at inference-time scaling, particularly on complex
prompts in VBench2.0 that involve status changes or multiple consecutive events within a single
video.
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D ADDITIONAL QUALITATIVE EXPERIMENTAL RESULTS

D.1 TEXT-TO-IMAGE GENERATION

We provide additional qualitative results beyond Figure 3, demonstrating that our prompt redesign
improves coherence of the final visual outputs under the same NFE budget (2000, as in the main
experiments). Specifically, our method excels on prompt sets with ambiguous attributes, numerical
details, or subtle constraints (e.g., “without,” “greater variety”), effectively elaborating them into
more faithful visual realizations than baselines. We compare the top-scoring outputs generated from
the original GenAI-Bench prompts (Table 15) with those from their expanded variants (marked with
∗, Table 16).

Flux-1.dev BoN PRIS

“A pencil holder with more pens than pencils.”

“A bookshelf with no books, only picture frames.”

“In a bright bedroom, there are no yellow pillows on the bed.”

“In a room, all the chairs are occupied except one.”

“A boy looks at an aquarium with no fish.”

“A mother teaches her two children; the one without a hat looks more frustrated.”

Figure 15: Qualitative comparisons on T2I generation where visual generation is (initially) condi-
tioned on the original prompts.
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For complex prompts, our joint scaling of visuals and prompts more faithfully preserves the intended
semantics within the same compute budget by adaptively revising the prompts, unlike standard prompt
expansion that cannot target and identify the most difficult semantic elements.

Flux-1.dev* BoN* PRIS*

“Two excited elephants to the right of a lost giraffe.”

“A monkey with a backpack is jumping from one smaller three to another larger tree.”

“A farm with a barn that does not shelter any sheep.”

“A bed without the usual cat sleeping on it.”

”The balls on the table have a greater variety of colors than the ones on the floor.”

”The two lay in bed, the long-haired one asleep, the short-haired one still awake.” 

Figure 16: Qualitative comparisons on T2I geneation where visual generation is (initially) condi-
tioned on standard prompt expansion.
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D.2 TEXT-TO-VIDEO GENERATION

In addition to Figure 4, we present additional qualitative top-scoring examples in Figure 17. As
shown, our method more faithfully follows the intent of the original prompt. The final top-scoring
visuals generated with our PRIS demonstrate significantly stronger prompt adherence compared
to baselines. Specifically, BoN often misses key events or produces unnatural temporal order. For
example, it may depict only a single motion (e.g., morphing without differentiating “cleaning the
kitchen” in the 1st visual) or assign different motions to different people (in the 4th visual). BoN
also frequently fails to capture dynamic changes, generating only static states (3rd and 6th visuals).
Furthermore, BoN often does not correctly realize sequential actions, such as repeatedly attempting
to break chocolate pieces, whereas our method generates coherent sequences where the person both
attempts the action and displays the broken pieces (5th visual).

Dynamic attributes: “The glass car window changed into a wooden car window.”
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Camera motion: “Garden, pan-left”
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Motion order understanding: “A person is cleaning the kitchen, then they suddenly start mopping the floor.”
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Dynamic attributes: “The moon changes from silver to yellow.”
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Motion rationality: “A person is breaking a chocolate bar into pieces.”
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Motion order understanding: “A person is working on a project, and then suddenly starts cooking dinner.”
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Figure 17: Qualitative comparisons on T2V generation where visual generation is (initially)
conditioned on standard prompt expansion, with Wan2.1-1.3B (top) and Wan2.1-14B (bottom).
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D.3 MORE VISUALIZATIONS

We include an HTML file to the attached zip file. To explore the generated visuals and comparisons
with baselines alongside their corresponding prompts, please open visuals/index.html in a Chrome
browser (This file is located in the visuals directory within the attached zip file). This visualizes the
generated visuals, including images and videos, in the visuals/resources folder.
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