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Abstract: Sensor failure is common when robots are deployed in the real world,
as sensors naturally wear out over time. Such failures can lead to catastrophic
outcomes, including damage to the robot from unexpected robot behaviors such
as falling during walking. Previous work attempted to address this problem by
recovering missing sensor values from the history of states or by adapting learned
control policies to handle corrupted sensors through fine-tuning during deploy-
ment. In this work, we propose training reinforcement learning (RL) policies
that are robust to sensory failures. We use a multimodal encoder designed to ac-
count for these failures and a training strategy that randomly drops a subset of
sensor modalities, similar to missing observations caused by failed sensors. We
conduct evaluations across multiple tasks (bipedal locomotion and robotic manip-
ulation) with varying robot embodiments in both simulation and the real world to
demonstrate the effectiveness of our approach. Our results show that the proposed
method produces robust RL policies that handle failures in both low-dimensional
proprioceptive and high-dimensional visual modalities without a significant in-
crease in training time or decrease in sample efficiency, making it a promising
solution for learning RL policies that are robust to sensory failures.
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Figure 1: Motivating Example: When the left-shin sensor of the bipedal robot Cassie fails, a
simple shut down operation leads it to topple down (middle) as opposed to our RME trained policy
(right) which continues to walk similarly to the scenario with no sensory failure (left).

1 Introduction

Sensory failure in robots is both pervasive and unavoidable. What should a robot do next when it
has detected a sensory failure or corruption? A shut down action is one option that an agent could
afford; however, doing so safely for dynamical systems with complex robot morphology in uncertain
terrains is a challenging control task in its own right. A straightforward option that cuts power to the
motors could result in hazardous behavior, causing harm to the robot itself and other entities in the
environment. For instance, the bipedal robot shown in a Figure 1 (middle) immediately falls down
when power is cut during a squatting motion.

In such a scenario where the robot detects a sensory failure, one would like the robot to function
to the best of its abilities and not collapse. For instance a robot failing in a warehouse would
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cause disruptions to the operations. Additionally, consequences of such failures can be exacerbated
for robots deployed for critical rescue operations [1] or in scenarios where immediate repair is
unavailable [2]. Hence, it is crucial to have robots that are robust to sensor failures to help mitigate
the risk of catastrophic outcomes and provide best-effort control until repairs can be made.

Several works have attempted to address the lack of sensory robustness from various perspectives.
From a classical control viewpoint, robust model predictive control (MPC) has been thoroughly
examined [3, 4]. For example, a common approach to managing sensor corruptions as demonstrated
in [5], involves incorporating an additional feedback controller to address the deviations caused by
the corruption. On the learning end, [6, 7, 8] adopt a continual learning setup where the control
policy of the robot is adapted explicitly to the missing sensor during deployment, and [9, 10, 11]
impute the missing values of the sensors from the history of states. The above proposed works try to
address this issue after the control policy is trained by either adapting the policy or training another
model to correct the values of the missing sensors (imputation networks).

Instead of addressing this issue in a post hoc manner, this work aims to train reinforcement learning
(RL) control policies that are robust to sensory failures, enabling the robot to function without further
fine-tuning or adaptation during deployment. As an example, we demonstrate this phenomenon in
an experiment with Cassie the bipedal robot for the task of blind walking in Figure 1. When a
standard walking policy trained with RL [12] is deployed on the robot with a broken left-shin, a
native shut down operation leads to Cassie falling down (middle). However, when the policy takes
into account such a failure we barely observe a difference in gaits of the walking policy (right). In
this work, we focus on the setting where sensor failures are presumed to already be detected and
develop best-effort policies that are robust to this loss of information.

To achieve this, we propose a straightforward multimodal encoder and incorporate a simple modal-
ity dropout schema where we randomly drop a subset of sensors during training so that the resulting
policy is robust to missing sensors during test time. Further, we also extend this idea to multiple
high-dimensional modalities such as multiview RGB and depth images in robotic manipulation and
demonstrate its effectiveness for model-based and model-free reinforcement learners. In contrast to
prior work on learning masked multimodal visual features in model-based RL [13, 14], our approach
includes both low- and high-dimensional sensor modalities, does not require modality reconstruc-
tion, and results in a policy that can operate on arbitrary subsets of modalities during deployment.

Our experiments demonstrate that the proposed approach is effective across multiple robot embod-
iments, diverse tasks (tabletop pick & place, mobile manipulation, and bipedal locomotion), and
even in sim2real deployment of a highly-dynamic bipedal robot. For most tasks, our approach in-
curs only a minimal increase of wall-clock training time and decrease in sample-efficiency – making
it an easy-to-implement, efficient, and effective strategy to produce policies robust to sensor failure.

2 Related Works

Sensor value imputation. One common technique to deal with missing modalities is to predict
them. This is a well studied problem in databases [9], machine learning [15, 16, 17, 18, 19] and
model predictive control (MPC) [5, 3, 4]. In RL from high-dimensional sensory inputs such as
RGB images, InformedDreamer [11] proposed to predict privilege modalities from latent state –
however, one major drawback of this approach as noted in [20], is that not all privilege information
is predictable from a set of input modalities. On similar lines [21] also proposed to predict linear and
angular velocity for autonomous vehicles in the context of off-road robot driving. They also observe
that predicting high-dimensional modalities in multi-modal world models can be difficult and lead
to blurry outputs in RGB images and lidar maps.

Handling missing modalities: Another line of works attempted to learn to generate state rep-
resentations robust to missing modalities without recovering them explicitly. For instance, [22]
introduces CCM to address the sensor corruption problem in RL for images and force sensors. CCM
trains an multimodal encoder that is flexible with respect to missing modalities by representing
a latent state distribution as a product of per-modality distributions. However, proprioceptive
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observations are never corrupted in [22] and their experiments were limited to a single peg-in-hole
setting with only single-modality failures.

[23] proposed a Sensor Dropout (SD) strategy for training an RL agent for autonomous driving, in
which, instead of randomly dropping neurons as in standard dropout, they randomly select modali-
ties and zero out their features. They employ an MLP to fuse the modality features. While an MLP
is a suitable architecture for lower numbers of modalities, we find that its performance can suffer
for higher numbers of modalities, as shown in our experiments in Section 8.11. Additionally, this
method was demonstrated with only three modalities on a single task with a 2-d action space. In con-
trast, we perform a wide range of experiments ranging from four high dimensional modalities (im-
ages and depth maps) and up to seven low-dimensional sensors with multiple complex action spaces
(6-d for Walker, 10-d for bi-pedal walking, 7-d for manipulation, 13-d for loco-manipulation tasks).

Multimodal policies. Another way to address the availability of multiple sensors is using mut-
limodal policies – policies trained on multiple inputs. Different observations may provide comple-
mentary information that is helpful for the agent to achieve its task – for example robotic manip-
ulators are more sample-efficient when provided with first-person RGB inputs via a wrist camera
[24]. Cross-modal policies that operate on multiple modalities [25, 26, 27] have been successful in
achieving fine grained manipulation, but they end up fusing the representations from each modality,
making it infeasible to function when a subset of modalities is missing.

RPT [28] has investigated learning pre-trained representations for robot learning from a dataset of
trajectories. In particular, they employ a masking mechanism where a subset of modalities are
masked out and are predicted from the rest. However, this work differs from ours in two aspects: (a)
their primary goal was to learn transferable pretrained representations for robotic tasks, and (b) RPT
includes losses that encourage explicit reconstruction of missing modalities which is shown to be
detrimental to performance [20] and we find the same. MUTEX [29] uses multiple modalities like
text instructions, video demos, speech and image goals along with robot states to train a policy that is
robust to missing modalities. However, all multi-modal transformer based models such as MUTEX
are limited to imitation learning where access to high fidelity video demonstrations are assumed.
Our work focuses primarily on reinforcement learning policies where the agent has to learn the
behavior from trial-and-error where transformer based encoders have been empirically shown to be
unstable [30]. For more related works, please refer to Section 8.1.

3 Preliminaries

We pose our problem as an infinite-horizon Partially Observable Markov Decision Process
(POMDP) [31] defined (S,A, T ,R,O). S represents the complete state space, which is usually
not accessible to the robot. The observation space, O = O1 ×O2...×Om is a set of m sensory ob-
servations or modalities1 such as proprioceptive state, multi-view RGB or depth images. A ∈ Rd is
a d-dimensional continuous action space, T : O×A → O is the transition function, and R : O → R
is the reward function. The goal of the agent is to learn a policy π : O → A that maximizes the ex-
pected sum of discounted rewards; maxπ Eπ[

∑∞
t=1 γ

tR(st)], where γ ∈ [0, 1) is the discount factor.

While in principle, our proposed encoder design can be applied to any model-based or model-free
method, we show experiments on model-based TD-MPC2 [32] and model-free PPO [33] agents.

TD-MPC2. TD-MPC2 has shown strong results across diverse robotic environments. Like many
other model-based RL algorithms, it consists of (a) world model training and (b) policy learning.

World model learning. While most existing model-based methods such as Dreamer [34, 35, 36] learn
a generative model of the world through supervision that includes a state reconstruction loss, TD-
MPC2 learns an transition dynamic using supervision from rewards and TD-learning [37] alone.

1In this work, we interchangeably use sensors and modalities.
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Specifically, the TD-MPC2 world model consists of the following components:
Representation: zt = hϕ(ot, ot−1, ot−2)
Dynamics: ẑt = fϕ(zt−1, at−1)
Reward: r̂t = Rϕ(zt)
Value: q̂t = Qϕ(zt, at)
Policy prior: ât = πp(zt)

(1)

where o and a are the observations and actions and z is the learned latent which is further used to
obtain a policy. Denoting the cross-entropy loss as CE and the stop-gradient operator as sg, the
world model is trained using the following objective:

L(ϕ) = E
(s,a,r,s′)0:T∼B

[ T∑
t=0

λt
(
∥ẑt − sg(hϕ(ot, ot−1, ot−2))∥22︸ ︷︷ ︸

latent
consistency

+CE(r̂t, rt)︸ ︷︷ ︸
reward

prediction

+CE(q̂t, qt)︸ ︷︷ ︸
value

prediction

)]
(2)

where the expectation is over samples from a reply buffer B collected under πp. The latent consis-
tency term ensures the predicted latent ẑt is similar to the embedding obtained by the representation
network hϕ for the real observation at time t. The remaining terms encourage the predicted reward
r̂t and value q̂t match a discrete regression encoding [38, 36] of the true reward rt and TD-estimated
value qt = rt + Q̄(ẑt, p(ẑt)), where Q̄ is the exponential moving average of Qϕ [39].

Policy learning. TD-MPC2 trains the policy prior p with the maximum entropy RL [40] objective:

Lp(ϕ) = E
(s,a)0:T∼B

[
H∑
t=0

λt [αQ(zt, πp(zt))− βH(πp(at | zt))]

]
(3)

where zt is given by equation (1). While training with the objective Lp, only network parameters
of πp are updated. TD-MPC2 employs gradient-free model predictive control via Model Predictive
Path Intergral (MPPI) [41] that samples actions using rollouts from the learned world model. For
more details, we refer the reader to the TD-MPC2 paper [32].

PPO. For model-free agents trained with PPO [33], a policy network π(zt) is optimized by using
a clipped objective function to limit the magnitude of policy updates to maximize the expected
discounted return directly, which is predicted by a learned critic c(zt) that is trained to estimate the
value function simultaneously.

4 Learning Policies Robust to Sensor Failure

To support learning policies that perform well in the face of sensor failures, we focus on design-
ing representation encoder networks that are flexible to the number of input modalities and corre-
sponding modality dropout training strategies that encourage strong policy performance even when
individual modalities are unavailable. Our resulting Robust Multi modal Encoder (RME) is sim-
ple to integrate with existing model-based and model-free algorithms, accommodates failures in
both high-level (visual) and low-level (proprioceptive) sensors, and demonstrates similar (or better)
sample-efficiency and wall-clock training time compared to single-modality baselines. The design
of RME is straightforward and shows strong robustness to sensor failures when paired with modality
dropout during training – in both simulated and real robotic deployments.

Robust Multimodal Encoder (RME). Our RME model consists of a multimodal transformer and
individual modality encoders (as shown in Figure 2).

Multimodal Transformer. A common choice when combining multiple modalities in other domains
is to use transformers [42] as used in [43, 44, 45]. Though widely used as sequence models, trans-
formers without positional encoders operate as order-invariant set functions and offer a flexible way
to retain or remove modalities simply by excluding them from the input set. Considering M modal-
ities o(1), ..., o(M) and corresponding modality encoders f (1), ..., f (M) which map each modality to
a d-dimensional observation encoding, we can write the multimodal transformer as the function TF,

h(1), ..., h(M), h(CLS) = TF
(
f (1)(o(1)) + e(1), ..., f (m)(o(m)) + e(m), e(CLS)

)
, (4)
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Figure 2: Robust Multimodal Encoder (RME): We propose a simple, yet effective modification to
learn robust representations within existing RL frameworks. 1 We consider each robot sensor as a
modality that can be potentially missing during deployment. 2 The proposed RME architecture con-
sists of both low-dimensional proprioceptive inputs as well as high dimensional image inputs that are
encoded using appropriate encoders (MLP, CNNs) and fed into a transformer. We employ different
dropout mechanisms for low and high dimensional modalities. 3 Given the proprioceptive (or any
other low-dimensional) input, we append a mask vector where 1/0 indicate the presence/absence of
the sensor respectively. 4 For high-dimensional modalities, we simply drop the modality shaded in
gray while training.

where e(m) is a d-dimensional learned modality type embedding akin to those used in multimodal
models [46] and e(CLS) is a learned input that is always present to aggregate information across
modalities [47]. When using the RME in model-based or model-free methods, we use the output
vector h(CLS) as the representation encoding of the input modalities. In practice, individual modali-
ties might be represented via multiple vectors, for instance representing visual modalities via many
patches as done in vision transformer-based encodings [48, 49]. However, in this work, we con-
sider only the single vector case to reduce computational costs from processing long sequences with
transformers and to provide a uniform interface for all considered sensor modalities.

We note that the transformer-based image autoencoder from [14] has a similar structure for
multi-view visual representation learning in MBRL – taking patch-based encodings of either single-
or multi-view observations. However, [14] trains this model independently and then uses the feature
encoder as representation for separate multi- or single-view policies; not producing a policy that is
capable of adapting to sensor failure at runtime. In practice, many combinations of failed sensors
are possible and learning independent policies for each is a costly solution.

Encoding Visual Sensors. For high-dimensional sensors such as RGB or depth images, we can
accommodate any encoder f that summarizes the image as a vector. For ease of comparison, we
retain the image encoding network from TD-MPC2 [32] consisting of four conv layers with ReLU
activations. The final spatial feature volume is flattened into a 512-dim vector. Each visual modality
instantiates a different parameterization of this architecture.

Accommodating Low-Dimensional Sensors. Proprioceptive states o(p) are typically comprised of
a combination of K low-dimensional sensors such as IMUs and joint encoders where each sensor
o
(p)
k ; k ∈ K is a {2-7}–dimensional real valued vector. In early experiments, we found treating each

sensor as an independent input to the multimodal transformer (analogous to the visual features) was
highly unstable for policy training. To overcome this while still allowing for individual sensors to
fail, we adopt a different strategy for proprioception inputs. Specifically, for every sensor o(p)k , we
have a corresponding binary mask M(p)

k which is set to 0 if a sensor is dropped out, or otherwise
to 1. These masks are concatenated [o(p),M(p)

1 ,M(p)
2 , ...,M(p)

K ], that is fed to a single modality
encoder (f (MLP)) to obtain our representation for proprioception.

Modality Dropout. When sampling a training batch, we randomly drop a subset of the M sensor
modalities. Specifically, we select a random subset of modalities with random size 1 to M-1. We
then drop out sensors from the subset individually with probability p. This scheme ensures that at
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least one modality always remains. Implicit in this method is the assumption that the remaining
modalities are sufficient for the policy to reason about correct actions.

5 Experiments

The following experiments study three key questions: How robust is RME to proprioceptive sensory
failures for locomotion tasks (Sec. 5.1)? Can RME scale with multiple high-dimensional modalities
such as RGB & depth images and maintain its robustness to sensory failures during deployment
(Sec. 5.2)? And can a control policy trained with RME transfer to the real world (Sec. 5.3)?

5.1 Sensor failures in robotic proprioceptive states

Experimental setting. We first consider tasks where individual sensors in the proprioceptive states
of the robot encounter a sensory failure. We consider two different embodiments shown to the left
of Figure 3 – Walker from the DMControl suite [50] and a bipedal robot, Cassie. For Walker, we
show results on four different tasks {Walk, Run, Walk-back and Run-back} and for Cassie, we
show results on walking. For walker, we consider 7 sensors – {torso, thigh (r/l), leg (r/l)

and foot (r/l)} where l and r indicate left or right. For Cassie, we consider 4 sensors – {tarsus
(l/r) and shin(l/r) encoders}. In all our experiments, we do not drop any sensors that are part
of the action space or are required by the underlying controller – in other words, the sensors that
are dropped are non-actuated sensors. Baseline Walker policies are trained with TD-MPC2 whereas
Cassie uses the model-free PPO algorithm [33] as in prior work [51]. For each, we present results
when replacing the representation encoder with our RME model and training with modality dropout.
For baseline policies, we set failed sensors to values of 0 during inference – essentially performing
a fixed in-distribution imputation. We also show results from an imputation baseline where failed
sensor values are predicted from a history of 10 previous states using a trained 3 layer MLP with
LayerNorm [52] and Mish activation [53]. The final layer is a linear transformation without any
activations. For fairness, the imputation network is trained on transitions from the replay buffer
collected during RME+{TD-MPC2 / PPO} training. For Walker, we consider 200k transitions and
for Cassie we train the imputation network on 1B transitions in simulation.

Results. We consider single sensor failures and report the sensor failure that causes the minimum
(largest impact) and maximum (smallest impact) return for the task as well as the mean return over
sensor failure conditions. For context, baseline policies without sensor failures achieve returns of
900-950 for Walker and 320-350 for Cassie. From results in Figure 3 (left), we observe that RME
maintains comparably high average returns across different tasks and sensor failures. The simple
imputation by zeros strategy sometimes leads to performant policies when the failed sensor does
not seem relevant to the learned policy (e.g., left-foot in Walker (Walk) max), but is catastrophic
in the worst cases (e.g., min returns 5-20x lower than max for Walker). Using learned imputation
narrows this variance while raising mean performance – achieving lower max and higher min returns
– but still underperforms. For the more complex Cassie robot, zeros imputation fails to produce a
viable policy entirely and learned imputation suffers significant reductions as well compared to RME.
We hypothesize that errors in learned imputation may have compounding effects if predicted sensor
values drive the policy to out-of-distribution states where the imputation network is less well trained.

5.2 Sensor failures in high-dimensional modalities

Experimental setting. We also consider sensor failures in the context of robotic manipulation
for high dimensional modalities such as images. Specifically, we conduct robotic manipulation
experiments in simulation on the Maniskill2 [54] benchmark and consider first- and third person
RGB and depth images as additional modalities. We consider three pick & place tasks (PickCube,
StackCube, PickYCB) and two mobile manipulation tasks (OpenDrawer, OpenCabinet).

We consider both Easy settings where only single modalities (e.g., first-person depth) are dropped
and Hard settings where all but one modalities are dropped. We report results for Easy in the
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Figure 3: (left) Robustness of RME to sensory failures in proprioception: We compare policies trained via pro-
prioceptive masking mechanism 3 against imputation baselines. We find that RME based policy is significantly
robust to sensory failures. (right) Robustness towards modality dropout during deployment (Hard:) We test
MMWM against others with only one of {RGB/Depth images} along with robot’s proprioception. We report
the mean,min,max success rates averaged over 3 seeds. The sensor is of the format (RGB Color (C)/Depth
(D) - Third Person (TP)/First Person (FP)) as marked below the numbers. ■ indicates the mean and indicates
the max/min values.

supplementary and Hard in Figure 3 (right). For these experiments, we consider the following
baselines:

– TD-MPC2: As an upper bound, we consider a TD-MPC2 trained policy with all modalities for
each task and report performance without any sensor failure in the table.

– Informed TD-MPC2: Inspired by InformedDreamer [11], we augment TD-MPC2 to reconstruct
missing modality observations. Specifically, we have decoders for each modalities that take in
the latent z to decode back the missing observations. The decoders are jointly trained using
mean-squared error loss. To be consistent with RME, we apply modality dropout during training.

– RME w/o Modality Dropout: We also consider using our RME encoder without applying modality
dropout – training with all modalities and then simply removing failed sensors at inference time.

Results. Figure 3 (right) shows results for the Hard scenario of only one high dimensional modality
(along with proprioception). Note that (sensor) annotations for max and min refer to the retained
sensor. In all tasks, RME significantly outperforms the Informed TD-MPC2 baseline (nearly 2x mean
success rates across tasks) and the ablation without modality dropout. We find that RME retains
approximately 70-80% of the policy performance without sensor failure on average. For pick &
place tasks (first three rows), we observe that RME w/o Modality Dropout performs uniformly poorly
– resulting in policies that rely on cross-modal information that generalize poorly to sensor failure.
For Informed TD-MPC2 and RME, we find consistent trends that retaining third-person cameras
leads to stronger performance than first-person. We provide detailed results for each modality in the
supplementary.

5.3 Sensor failure in Sim2Real policy transfer

Experimental setting. We show Sim2Real transfer of a RME based policy on Cassie in blind lo-
comotion. We test the robustness of our policy against failure of four joint encoders {left shin,
right shin, left tarsus, right tarsus}. Each of these sensors measures the angular position and
velocity of their respective joint links. We train a robust model-free RME policy with PPO [33] and
RME (denoted as RME-PPO), where we use proprioceptive masking as described above (Fig. 2). The
RME takes in a 38-dimensional proprioceptive state as input and the policy outputs a 10-dim action.
We train the policy with domain randomization [51] and single contact reward as proposed in [12].
We train the policy in two stages of 500M steps each. In the first stage, we train with dynamics
randomization and in the second stage we introduce random external forces to train a robust policy
for Sim2Real transfer. Please find more details in the supplementary.

Evaluation Protocol: For evaluation of the policy in the real world, we test the commandability
of Cassie which measures how well the policy follows a given the user command. Concretely,
we evaluate on two metrics – commandability in linear direction (linear) which measures how
much time it take for Cassie to cover a distance of 8 feet (2.43 meters) at 0.25 m/sec speed, and
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Sensor failed
Commandability
x-direction (sec)

Commandability
Angular drift (sec)

Base Policy
(No Sensor Failure)

RME-PPO
(Ours)

Base Policy
(No Sensor Failure)

RME-PPO
(Ours)

None 7.96 ±0.08 10.07 ±1.41 25.04 ±0.46 25.1 ±0.51

left-shin ✗ 9.25 ±1.35 ✗ 25.21 ±0.48

left-tarsus 12 ±2.43 7.75 ±0.61 30.00 ±1.24 25.80 ±0.65

right-shin ✗ 9.21 ±1.4 ✗ 25.41 ±0.64

right-tarsus 13 ±1.40 8.11 ±0.12 32.46 ±0.51 26.85 ±0.35

both-shin ✗ 8.73 ±1.75 ✗ 25.44 ±0.73

all 4 senors ✗ 7.65 ±0.04 ✗ 25.37 ±0.46

Table 1: Commandability of Cassie: We evaluate
how well Cassie responds to input linear velocity (x-
direction) and angular velocity (turn-rate). Values
averaged over 2 trials for each entry of the table.
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Figure 4: Sample-Efficiency of RME We observe either
comparable (bipedal locomotion) or even increase in
sample-efficiency when compared to certain modalities
(eg. Stack Cube; third-person cam). Shaded areas are
95% bootstrapped CIs over 3 seeds.

commandability in angular direction (angular) that measures how much time it takes Cassie to
rotate 360◦ (at a fixed position) at 15 degrees/sec. For a well trained policy, the time for linear travel
should be around 9.72 sec and time for rotation should be around 24 sec.

Results. Based on the results in Table 1, we observe that in most instances where a sensor has
failed, the original base policy with fixed value imputation of 0, fails to walk and topples. In
contrast, RME not only consistently walks without falling but the linear and angular commandability
is close to the optimal time even when all the four sensors fail, showcasing the robustness that RME
provides. We provide additional videos in the supplementary material.

6 Discussion and Limitations

Sample-efficiency, wall-clock time, and trainable parameters of RME: The additional parameters
that RME adds on top of TD-MPC2 are those for the multimodal transformer (2-layer, 4-head) – an
increase from a base 5M trainable parameters to 7.2M. Averaging over all RME+TD-MPC2 models
presented in this work, adding RME increases wall-clock runtime of training by 72%; however,
Walker skews this substantially and the average drops to 27% if it is excluded. In terms of sample ef-
ficiency, we find little difference in the model-free experiment on Cassie, (Fig. 4). While in the case
of robotic manipulation, we observe that the sample-efficiency of RME-TDMPC2 is either compara-
ble (third-person cam) or even better than individual modalities (first-person-cam) for StackCube.
We note that having all modalities in the case of StackCube is not as sample-efficient as RME, poten-
tially due to state over-specification problem [55]. These increases in wall-clock time and reductions
in sample-efficiency are a trade-off for significantly increased robustness to missing modalities.

Limitations: A key assumption of our work is that the agent knows which sensors have failed or
are corrupted, which in itself is a challenging problem [56] that is beyond the scope of this work.
Another limitation of our work is that the proposed dropout mechanism in RME assumes that the
agent can correctly predict actions with the information from remaining modalities after dropout
during training – which may not always be true and could cause difficulties in policy learning.

7 Conclusion

In this work, we investigate the effectiveness of RL agents in the presence of sensor failure during
robot manipulation and locomotion tasks. Our findings indicate that RL policies trained with a
standard multimodal encoder do not generalize well to various sensor failure scenarios. To address
this issue, we propose RME, a multimodal encoder design incorporating additional information about
missing modalities as input and a training strategy based on modality dropout. Our encoder design is
compatible with both low- and high-dimensional input modalities. Experimental results, conducted
in both simulation and on a real-world bipedal robot Cassie, demonstrate that RL policies trained
with the proposed encoder and training strategy maintain effectiveness even under severe sensor
failure scenarios, significantly outperforming the baseline RL policies.
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8 Appendix

8.1 Additional Related Works

Handlind Missing modalities. Another work [57] trains hierarchical RNNs, where the low level
RNN handles individual modalities and the higher level RNN handles the fused representation from
the individual modality representations. Although their approach, in theory, can work with more than
2 modalities, they restrict all their experiments to two modalities, and it is non-trivial whether the
extension to multiple modalities would work well with a large number of sensors because multiple
modality representations are fused via concatenation in an RNN, similarly as in an MLP network
used in [23].

Large Multimodal policies: Octo [58] and RT-X [59] models train a large multi-modal policies
that are capable of handling multiple robotic embodiments, action spaces. These large transformer
based models are trained using the causal masking. However, all such transformer based models are
limited to imitation learning where access to high fidelity video demonstrations are assumed.

Model based RL (MBRL). A sample-efficient way to train learnable control policies is via model-
based RL, which learns the model of the environment [60] and uses it for policy learning [61, 62].
In the case of high-dimensional modalities such as images, a popular approach is to learn the en-
vironment dynamics in a compact latent space that is supervised using rewards [63, 32] and image
reconstruction [64, 65, 34, 66]. Recently, Scaffolder [20] proposed learning two dynamics mod-
els—one for privileged inputs and another for the target modalities—and distilling representations
from the former. Similarly, TWIST [67] also proposed distilling the teacher world model to the
student world model as a means for efficient Sim2Real transfer. For multiple modalities, both these
methods require the number of dynamics models to increase linearly with the number of modali-
ties, in contrast to our work, which aims to learn a compact abstraction from various modalities and
develop a single dynamics model. More importantly, unlike our method, these models would not
generalize to situations where some of the input modalities fail.

8.2 Details of robotic environments

We consider 5 tasks (four from DM Control suite [50] and one task on Cassie-walking [51]) for the
low dimensional proprioceptive sensory failure, 5 tasks for high-dimensional modality failures from
the ManiSkill2 [54] suite as shown in Figure 5. The dimensionality of the observation space and
action space is mentioned in Table 2.

Walker walkWalker walkbackWalker run Walker runback Cassie Walking

Bipedal 
Locomotion

tasks

Stack Cube Pick YCBPick Cube Open Door Open Cabinet

Robotic 
Manipulation

tasks

Figure 5: Tasks – We consider 5 bi-pedal locomotion tasks (top) and 5 robotic manipulation tasks
(bottom). We test the low-dimensional sensory failures (e.g., the robot’s proprioception) in the
locomotion task suite and the high-dimensional sensory failures (e.g., cameras) in the manipulation
task suite.

8.3 Details on Cassie bipedal walking experiment

Setting: We consider sensory failures in 4 joint links of Cassie, a bipedal robot. Specifically, we
simulate the failure in shin and tarsus links on both the legs. We train the policy following the
reward function design in [12] and train the model in 2 stages. The first stage considers dynamics
and environment state variable randomization, and the second stage involves learning a robust policy
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Task Observation dim Observation type Action dim
Walker-Walk 24 Proprioception 6
Walker-Run 24 Proprioception 6
Walker-WalkBack 24 Proprioception 6
Walker-RunBack 24 Proprioception 6
Cassie-Walk 39 Proprioception 10

Pick Cube (64× 64× 3) RGB & Depth (TP, FP) 4
Pick YCB (64× 64× 3) RGB & Depth (TP, FP) 7
Stack Cube (64× 64× 3) RGB & Depth (TP, FP) 4
Open Door (128× 128× 3) RGB & Depth (TP, FP) 11
Open Drawer (128× 128× 3) RGB & Depth (TP, FP) 11

Table 2: State and Action spaces of each task in the locomotion and manipulation suite.

8 feet (2.43 meters)

Figure 6: Measuring Commandability of locomotion policy on Cassie (left) commadability in the
x-direction and (right) angular drift

under random external forces (of 30N) with a probability of 0.1 acting on Cassie. We follow this
training procedure from [12]. Each of the stages is trained for 500M steps each.
Metrics: It is important to measure a set of quantifiable metrics to measure the progress in real-world
robot deployments. For this we adopt two metrics from [12] that measure the commandability of the
robot in x-direction and angular drift. The evaluation setup is shown in Figure 6.
Commandability in x-direction. We consider a distance of 8 feet (or 2.43 meters) as shown in Figure
6 and command Cassie to travel at a speed of 0.25 m/s. For a near-optimal policy, it takes about
9.72 seconds. We then measure how long it takes for an RME based policy to travel the distance and
report it in Table 1.
Commandability to measure angular drift. We consider a circular region with a diameter of 50cm
and initialize Cassie at the center of the circle (center of Cassie is defined as the mid-point of line
joining the feet of Cassie as shown by the in Figure 6). We command an angular speed of 15
degree/s and measure the time taken to complete a single rotation (360◦). We consider the trial
successful if the center of Cassie is withing 10 cm from the circumference of the circle. For an
optimal policy it takes 24 seconds and we compare this against RME based policy with sensory
failures to see how much additional time it takes for our policy (Table 1).

8.4 Architecture Details

RME multimodal transformer: For the base TD-MPC2 model (5M parameters), the multimodal
transformer consists of 2 encoder blocks – each consisting of multi-head attention (MHA) and
feedforward network [42]. We consider 16 heads for MHA module. The input to the transformer is
the encodings from each modality and the [CLS] token which are all of 512 dimensions each.We
also generate fixed 512 dimensional modality type embeddings and add them to the corresponding
modality encodings. The hidden dimension of the feedforward network in each encoder block of
transformer is 256.
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The output of the RME is the output of the attention layer on the [CLS] token attending to the other
input tokens of the transformer, which produces a 512-dimensional latent vector. This is the input to
the policy. The policy network for TD-MPC2 is implemented as a 3-layer MLP network with SiLU
activation, and for model-free PPO training of Cassie it is implemented as a 2-layer LSTM[68]
network.

Imputation Network: For the locomotion tasks, we consider a 3 layer MLP with LayerNorm [52]
and Mish activation function [53] with the final output layer as linear layer. We train one imputation
network for predicting each proprioceptive sensor value for 200 epochs with a learning rate chosen
from {1e-5, 5e-5, 1e-4}. The network parameters are optimized by Adam [69] and the transitions
from the replay buffer of RME are used to train the network with a 80-10-10 (train-val-test) split.

Decoder architecture for Informed TD-MPC2 baseline. We use the decoder structure from [36].
We show the architecture in Table 3.

Layer Channels Kernel Size Norm/Activation
ConvTranspose2d 512 2 LayerNorm/SiLU()
ConvTranspose2d 256 2 LayerNorm/SiLU()
ConvTranspose2d 128 4 LayerNorm/SiLU()
ConvTranspose2d 32 4 LayerNorm/SiLU()
ConvTranspose2d 3 2 LayerNorm/SiLU()
Sigmoid() - - -

Table 3: Decoder Architecture for Informer-TDMPC2 baseline.

8.5 Additional results for sensor failures in high-dimensional modalities (Easy)

In this section, we present the results for sensory failures in high-dimensional modalities where only
one of the modalities is dropped during evaluation. Specifically, for all tasks either the RGB or the
depth modalities from the first-person (FP) or the third-person (TP) cameras are dropped out. Since
only one of the modality is dropped, we denote this setting by Easy as compared to only operating
on a single modality (Hard) as shown in Table ?? of the main paper.

Task Base Policy
(No Sensor Failure)

Informed
TD-MPC2

RME
(w/o Modality Dropout)

RME
(Ours)

max
(sensor)

min
(sensor)

mean max
(sensor)

min
(sensor)

mean max
(sensor)

min
(sensor)

mean

PickCube 1.0 ±0
0.79 ±0.17

(C-FP)
0.69 ±0.15

(D-FP)
0.72 ±0.05 0.30 ±0.10

(C-FP)
0.10 ±0.03

(C-TP)
0.17 ±0.11 0.91 ±0.06

(D-FP)
0.80 ±0.20

(D-TP)
0.86 ±0.05

PickYCB 0.83 ±0.30
0.65 ±0.08

(C-FP)
0.60 ±0.19

(C-TP)
0.62 ±0.02 0.40 ±0.11

(D-TP)
0.07 ±0.01

(C-TP)
0.18 ±0.14 0.75 ±0.01

(D-TP)
0.81 ±0.06

(D-FP)
0.79 ±0.04

StackCube 0.96 ±0.05
0.74 ±0.13

(C-FP)
0.51 ±0.21

(D-FP)
0.72 ±0.10 0.31 ±0.18

(C-FP)
0.02 ±0.03

(D-TP)
0.15 ±0.14 0.89 ±0.09

(C-FP)
0.71 ±0.20

(C-TP)
0.82 ±0.07

OpenDrawer 0.81 ±0.20
0.73 ±0.11

(C-FP)
0.69 ±0.18

(C-TP)
0.70 ±0.01 0.27 ±0.05

(D-TP)
0.09 ±0.01

(D-FP)
0.19 ±0.09 0.80 ±0.11

(D-TP)
0.77 ±0.08

(C-FP)
0.79 ±0.01

OpenDoor 0.76 ±0.30
0.66 ±0.10
(C-TP&D-FP)

0.61 ±0.05
(C-FP)

0.65 ±0.02 0.40 ±0.08
(C-TP)

0.11 ±0.27
(D-FP)

0.28 ±0.13 0.81 ±0.23
(D-FP)

0.73 ±0.08
(C-TP)

0.77 ±0.04

Table 4: Robustness towards modality dropout during deployment (Easy). We test MMWM against
others by removing one of {RGB/Depth images}. We report the mean,min,max success rates
averaged over 3 seeds. The sensor is of the format (RGB Color (C)/Depth (D) - Third Person
(TP)/First Person (FP)) as marked below the numbers.

Results: We show the results for the Easy scenario in Table 4. Not surprisingly, we observe that
removing only one modality during evaluation leads to better performance across all baselines. How-
ever, there still remains a considerable gap between Informed TD-MPC2 and RME. Additionally, for
the case of RME w/o Modality Dropout, we observe that even removal of a single modality can have
huge impacts with a relative 357% drop in performance compared to RME. For the Easy scenario,
the RME has a relative increase of 18.1% compared to Informed TD-MPC2 baseline.
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Figure 7: Ablation study on instability of using low-dimensional sensors as direct input to trans-
former

8.6 Wall-clock time

In Table 5, we present the wall-clock running time on a single NVIDIA Quadro RTX 8000 GPU.
The increase in relative wall-clock time because of addition of RME is 27% when we don’t include
the Walker tasks. Adding the walker tasks skews the results to a relative 72% increase in the wall-
clock time. However, the Walker tasks take the least amount of time to learn (3 hours), so the impact
of such an increase is not significant in practice.

Task TD-MPC2 ↓ RME ↓
Walker 1 3.1
Cassie 70 70.1

PickCube 13 20
StackCube 25 32

Table 5: Wall-clock training time in (hrs).

8.7 Ablation: Stability of Transformer as opposed to Masking MLP for low-dimensional
proprioceptive inputs

As mentioned in Section 4, we observed that, to accommodate low-dimensional sensors such as
proprioception, treating each low-dim sensor as an independent input after encoding via MLP led
to instability in training. We show one such result in Table 7 on Walker Walk, where only 1 seed
for a transformer with 16 heads in the multi-head attention led to a successful policy. Remaining
4 seeds as well as all seeds for 8 and 4-head transformer layer led to no successful training. TThis
could be potentially due to the difficulty of converting a small-dimensional vector, such as the one
in proprioceptive input, into a meaningful 512 dimensional modality encoding vector via MLP. This
also can add redundant dimensions in the latent space, slowing down the transformer’s training

8.8 Compounding errors in imputation

We additionally analyze how the error of the imputation network behaves as a function of time
steps. Specifically, for the imputation baseline in Cassie simulation, we plot the mean-squared error
between the predicted missing sensor values and the ground truth value. The imputation network is
trained to predict the current timestep’s value based on a history of the previous 10 timesteps.
Observation: We observe that the initial 5-10 timestep predictions of the imputation network are
accurate. However, the prediction quickly worsens around t=15-20. Visually, this corresponds to
Cassie finding it hard to balance its legs on the ground and after this point, it tries to maintain
its balance before falling onto the ground in about 250 timesteps. We hypothesize that states that
correspond to this peak in the plot are potentially underexplored in the replay buffer on which the
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imputation network was trained – hence causing a compounding effect in the imputation prediction
values, and thus causing the robot to fail.

Left Tarsus Right ShinLeft Shin

Figure 8: Imputation error as a function of time steps (on horizontal axis).

8.9 Network dropout

We performed three additional experiments to evaluate the robustness of network dropout towards
missing modalities. For this, we experiment with Dropout [70] for low-dimensional modalities and
for high dimensional modalities we perform SpatialDropout [71] as well as DropBlock[72]. During
inference, for all the experiments, dropout is turned off. We show the results for these experiments
in Figure 9.
Network dropout for low-dimensional sensors: We perform experiments with dropout rates of 0.2
and 0.5. With a dropout rate of 0.2, we find that the robustness of the policy to missing sensors did
increase compared to the base policy with zero-imputation (Figure ??), however with a rate of 0.5,
we found that the models struggled to learn a good policy. Hence, we observe a significant drop in
the performance as shown in Figure 9 (left). We hypothesize that 0.5 is too high of a dropout rate
for the encoder to obtain a meaningful representation to the policy.
Network dropout for high-dimensional modalities: We perform two kinds of network dropout
for the CNN layers – SpatialDropout [71] which drops entire features by zeroing out them and
DropBlock [72] that drops a contiguous block of features. While in general, we find that BlockDrop
performs slightly better than SpatialDropout, performance of both is still lags far behing RME as
shown in Figure 9 (right).

8.10 Including imputation baselines during training

In Section 5.1 we presented results for imputation where the imputation model was trained post-
policy training using the replay buffer collected by the RL algorithm during training. In this section,
we present two additional results on Walker environment where the (a) zeros-imputation and (b)
learned-imputation models are part of the policy training loop.

Specifically, for (a), we perform zero-imputation and feed the representation obtained by the encoder
to the policy and for (b), we trained the imputation network simultaneously and used the predictions
of the imputation network to feed to the policy. We show the results of this experiment in Figure
10. We observe that while compared to post hoc accommodation, imputation models trained in the
RL policy training improves the robustness of the policy to sensor failures, it still lags significantly
behind an RME type architecture.

One important thing to note is that the maximum return for all the baselines, especially for Walk and
Walk backwards is on par or even better than RME and we consistently notice that this is because of
the Right Foot sensor which when dropped in testing leads to a decent policy –making us infer that
the right foot sensor for the simulated Walker task is potentially redundant.
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Figure 9: Comparison against network dropout: We perform Dropout[70] for encoder networks in
Walker tasks and SpatialDropout [71] and DropBlock[72] for manipulation tasks and observe con-
sistently that all these network dropout strategies lead to a sub-optimal performance when compared
to RME. ■ indicates the mean and indicates the max/min values.

Figure 10: Imputation during training: We perform
both zeros-imputation and learned imputation as a
part of the RL policy training and observe that while
the performance of including them in training loop is
better than imputation post policy training, the impu-
tation methods still lag behind in their performance
compared to RME. ■ indicates the mean and indi-
cates the max/min values.

Figure 11: Ablation of RME without transformer We
observe an average improvement of 93% across three
robotic manipulation tasks of RME when compared to
a policy that is trained without transformer encoder.
■ indicates the mean and indicates the max/min
values.

8.11 Ablation without RME with sensor dropout

Another experiment we performed was to test the effectiveness of the proposed RME’ transformer
structure. Instead of using a transformer as done in RME, we used an MLP network with modality
feature masking to indicate missing modalities as an encoder, similar to [23]. We present our results
for robotic manipulation experiments in Figure 11. As expected, this is clearly better than training
RME without any modality dropout during training; however, we find that this is still less performant
compared to the proposed RME encoder+dropout (with an average increase of 93% success rate),
indicating the benefit of using a transformer based architecture.

8.12 Effect of history and memory in imputation baseline

In our imputation baselines, our imputation network takes in past 10 timesteps of the state of the
robot and predicts the next state. The imputation network was trained by randomly sampling 10
consecutive states from the replay buffer and using that to predict the next (11th) state. During
the inference, we have access to the history of ground truth state information that we get from
the environment (except for the masked sensor) which is the input to the imputation network. We
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Figure 12: Effect of history length and memory for imputation model: We
compare RME against different models of imputation network with different
lengths of history (10, 50) as well as an LSTM network. We do not observe
significant differences between different learned imputation baselines, al-
beit the average performance of the LSTM network is slightly better. ■
indicates the mean and indicates the max/min values.

Figure 13: Imputation
error as a function of
time steps (on horizon-
tal axis). We find
that the LSTM archi-
tecture for imputation
network does incur a
high error slightly later
than an MLP with 10/50
timesteps history.

further experiment with (a) higher history length of 50 and (b) an LSTM [68] architecture to see if
this extended history leads to better robustness under sensor failures. As we showed in Section 8.10
that including the imputation in the RL policy loop performs better than post hoc imputation, we
perform these experiments under that configuration.

As shown in Figure 12, we find no significant difference between different levels of history for
imputation networks. The LSTM architecture for the imputation model performs slightly better on
average in terms of returns, however its overall performance is still behind RME. As mentioned in
Section 5.1, we hypothesize that this may be because the errors in learned imputation may have
compounding effects if predicted sensor values drive the policy to out-of-distribution states where
the imputation network is less well trained.

Further, we also extend the imputation error analysis on the new imputation models (History=50
steps and LSTM) as shown in Figure 13. We find that the LSTM model does incur a high error
albeit at a slightly later timestep than the MLP model trained on history of 10 or 50 steps history.
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