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ABSTRACT

In this paper, we propose conjugate energy-based models (CEBMs), a new class
of energy-based models that define a joint density over data and latent variables.
The joint density of a CEBM decomposes into an intractable distribution over data
and a tractable posterior over latent variables. CEBMs have similar use cases as
variational autoencoders, in the sense that they learn an unsupervised mapping
from data to latent variables. However, these models omit a generator network,
which allows them to learn more flexible notions of similarity between data points.
Our experiments demonstrate that conjugate EBMs achieve competitive results in
terms of image modelling, predictive power of latent space, and out-of-domain
detection on a variety of datasets.

1 INTRODUCTION

Deep generative models approximate a data distribution by combining a prior over latent variables
with a neural generator, which maps latent variables to points on a data manifold. It is common
to evaluate these models in terms of their ability to generate realistic examples, or their estimated
densities for unseen data. However, an arguably more practical use case for these models is un-
supervised representation learning. If a generator can faithfully represent the data in terms of a
lower-dimensional set of latent variables, then we hope that these variables will encode a set of
meaningful factors of variation that will be relevant to a broad range of downstream tasks.

Guiding a model towards a semantically meaningful representation requires some form of inductive
bias. A large body of work on variational autoencoders (VAEs, Kingma & Welling (2013); Rezende
et al. (2014)) has explored the use of priors as inductive biases. Relatively mild biases in the form
of conditional independence are common in the literature on disentangled representations (Higgins
et al., 2016; Kim & Mnih, 2018; Chen et al., 2018; Esmaeili et al., 2019). More generally, recent
work has shown that defining priors that reflect the structure of the underlying data will lead to rep-
resentations that are easier to interpret and generalize better. Examples include priors that represent
objects in an image (Eslami et al., 2016; Lin et al., 2020b; Engelcke et al., 2019; Crawford & Pineau,
2019b), or moving objects in video (Crawford & Pineau, 2019a; Kosiorek et al., 2018; Wu et al.,
2020; Lin et al., 2020a).

Despite steady progress, work on disentangled representations and structured VAEs still predom-
inantly considers synthetic data sets. The likelihood model in VAEs is typically a neural gener-
ator that is optimized to accurately reconstruct all the examples in the training set. For complex
natural scenes, learning a model that can produce pixel-perfect reconstructions poses fundamental
challenges, given the combinatorial explosion of possible inputs. This is not only a problem for gen-
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Figure 1: Comparison between a VAE and a CEBM. A VAE with a Gaussian or Bernoulli likelihood
has an energy that can be expressed in terms of a Bregman divergence in data space DA∗(x, µθ(z))
between an image x and the reconstruction from the generator network µθ(z). The energy function
in a CEBM can be expressed in terms of a Bregman divergence in the latent spaceDB∗(η(z), µ̃θ(x))
between a vector of natural parameters η(z) and the output of an encoder network µ̃θ(x).

eration, but also from the perspective of the learned representation; a VAE must encode all factors
of variation that give rise to large deviations in pixel space, regardless of whether these factors are
semantically meaningful (e.g. presence and locations of objects) or not (e.g. shadows of objects in
the background of the image).

In this paper, we consider energy-based models (EBMs) as an alternative to VAEs for learning
representations in an unsupervised manner. The general idea of using EBMs for this purpose is
by no means new; it has a long history in the context of restricted Boltzmann machines (RBMs)
and related models (Smolensky, 1986; Hinton, 2002; Welling et al., 2004). Our motivation in the
present work is to design a class of EBMs that retain the desirable features of VAEs, but employ a
discriminative energy function to model data at an intermediate level of representation that does not
necessarily encode all features of an image at the pixel level.

Concretely, we propose conjugate EBMs (CEBMs), a new family of energy-based models in which
the energy function defines a neural exponential family. While the normalizer of CEBMs is in-
tractable, we can nonetheless compute the posterior in closed form when we pair the likelihood with
an appropriate conjugate bias term. Thus, the neural sufficient statistics in a CEBM fully determine
the marginal likelihood and the encoder, thereby side-stepping the need for a generator (Figure 1).

We evaluate CEBMs in experiments that test how well learned representations agree with class labels
(which are not used during training). We show that CEBMs learn a latent space in which neighbors
are more likely to belong to the same class, which translates to increased performance in few-label
downstream classification tasks.

2 BACKGROUND

2.1 CONJUGATE EXPONENTIAL FAMILIES

An exponential family is a set of distributions whose probability density can be expressed as
p(x | η) = h(x) exp

{
〈t(x), η〉 −A(η)

}
, (1)

where h : X → R+ is a base measure, η ∈ H ⊆ RK is a vector of natural parameters, t : X → RK
is a vector of sufficient statistics, and A : H → R is the log normalizer (or cumulant function),

A(η) = logZ(η) =

∫
dx h(x) exp

{
〈t(x), η〉

}
. (2)

If a likelihood belongs to an exponential family, then there exists a conjugate prior that is itself an
exponential family

p(η | λ, ν) = exp
{
〈η, λ〉 −A(η)ν −B(λ, ν)

}
. (3)

The convenient property of conjugate exponential families is that both the marginal p(x | λ, ν) and
the posterior p(η | x, λ, ν) are tractable. If we define λ̃(x) = λ+ t(x), ν̃ = ν+1, then the posterior
and marginal are

p(η | x, λ, ν) = p(η | λ̃(x), ν̃), p(x | λ, ν) = h(x) exp
{
B(λ̃(x), ν̃)−B(λ, ν)

}
. (4)
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2.2 LEGENDRE DUALITY IN EXPONENTIAL FAMILIES

Two convex functions A : H → R+ and A∗ : M → R+ on spaces H ⊆ RK andM ⊆ RK are
conjugate duals when

A∗(µ) := sup
η∈H

{
〈µ, η〉 −A(η)

}
. (5)

When A is a function of Legendre type (see Rockafellar (1970)), the gradients of these functions
define a bijection between conjugate spaces by mapping points to their corresponding suprema

η(µ) = ∇A∗(µ), µ(η) = ∇A(η), (6)

such that we can express A∗(µ) at the supremum as

A∗(µ) = 〈µ, η(µ)〉 −A(η(µ)). (7)

The log normalizer A(η) of an exponential family is of Legendre type when the family is regular
and minimal (H is an open set and sufficient statistics t(x) are linearly independent; see Wainwright
& Jordan (2008) for details). We refer toM as the mean parameter space, since we can express any
µ ∈M as the expected value of the sufficient statistics µ(η) = Ep(x|η)[t(x)].

2.3 BREGMAN DIVERGENCES AND EXPONENTIAL FAMILIES

A Bregman divergence for a function F : M → R that is continuously-differentiable and strictly
convex on a closed setM has the form

DF (µ
′, µ) = F (µ′)− F (µ)− 〈µ′ − µ,∇F (µ)〉. (8)

Well-known special cases of Bregman divergences include the squared distance (F (µ) = 〈µ, µ〉)
and the Kullback-Leiber (KL) divergence (F (µ) =

∑
k µk logµk).

Any Bregman divergence can be associated with an exponential family and vice versa, where
F (µ) = A∗(µ) is the conjugate dual of A(η) (see Banerjee et al. (2005)). To see this, we re-express
the log density of a (regular and minimal) exponential family using the substitution µ = ∇A(η)1,

log p(x | η) = 〈t(x), η〉 −A(η),
=
(
〈µ, η〉 −A(η)

)
+ 〈t(x)−µ, η〉,

= A∗(µ) + 〈t(x)−µ,∇A∗(µ)〉,
= −DA∗(t(x), µ) +A∗(t(x)).

(9)

In other words, the log density of an exponential family can be expressed in terms of a bias term
A∗(t(x)), and a notion of agreement in the form of a Bregman divergence DA∗(t(x), µ) between
the sufficient statistics t(x) and the mean parameters µ. We will make use of this property to provide
an interpretation of both CEBMs and VAEs in terms of Bregman divergences.

3 CONJUGATE ENERGY-BASED MODELS

In this paper we are interested in learning a probabilistic model that defines a joint distribution
pθ,λ(x, z) over high-dimensional data x ∈ RD and a lower-dimensional set of latent variables z ∈
RK . The intuition that guides our work is that we would like to measure agreement between latent
variables and data at a high level of representation, rather than at the level of individual pixels, where
it may be more difficult to distinguish informative features from noise. To this end, we will explore
energy-based models as an alternative to VAEs.

Concretely, we propose to consider models of the form

pθ,λ(x, z) =
1

Zθ,λ
exp

{
− Eθ,λ(x, z)

}
, Eθ,λ(x, z) = −〈tθ(x), η(z)〉+ Eλ(z). (10)

1We here omit the base measure h(x) for notational simplicity.
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In this energy function, θ are the weights of a network tθ : RD → RH , which plays the role of
an encoder by mapping high-dimensional data to a lower-dimensional vector of neural sufficient
statistics. The function η : RK → RH maps latent variables to a vector of natural parameters in the
same space as the neural sufficient statistics. The function Eλ : RK → R serves as an inductive
bias, with hyperparameters λ, that plays a role analogous to the prior.

We will consider a biasEλ(z) in form of a tractable exponential family with sufficient statistics η(z)

Eλ(z) = − log p(z | λ) = −〈η(z), λ〉+B(λ). (11)

We can then express the energy function as

Eθ,λ(x, z) = −〈λ+ tθ(x), η(z)〉+B(λ). (12)

This form of the energy function has a convenient property: It corresponds to a model pθ,λ(x, z) in
which the posterior pθ,λ(z | x) is tractable. To see this, we make a substitution λ̃θ(x) = λ + tθ(x)
analogous to the one in Equation 4, which allows us to express the energy as

Eθ,λ(x, z)=−〈η(z), λ̃θ(x)〉+B(λ̃θ(x))+Eθ,λ(x), Eθ,λ(x) = −B(λ̃θ(x)) +B(λ). (13)

We see that we can factorize the corresponding density pθ,λ(x, z) = pθ,λ(x) pθ,λ(z | x), which
yields a posterior and marginal that are analogous the distributions in Equation 4

pθ,λ(z | x) = p(z | λ̃θ(x)), pθ,λ(x) =
1

Zθ,λ
exp

{
B
(
λ̃θ(x)

)
−B

(
λ
)}
. (14)

In other words, the joint density of this model factorizes into a tractable posterior pθ,λ(z | x) and an
intractable energy-based marginal likelihood pθ,λ(x | λ). This posterior is conjugate, in the sense
that it is in the same exponential family as the bias. For this reason, we refer to this class of models
as conjugate energy-based models (CEBMs).

4 RELATIONSHIP TO VAES

CEBMs differ from VAEs in that they lack a generator network. Instead, the density is fully specified
by the encoder network tθ(x), which defines a notion of agreement 〈λ̃θ(x), η(z)〉 between data and
latent variables in the latent space. As with other exponential families, we can make this notion of
agreement explicit by expressing the conjugate posterior in terms of a Bregman divergence using
the decomposition in Equation 9

Eθ,λ(x, z) = DB∗(η(z), µ̃θ(x))−B∗(η(z)) + Eθ,λ(x). (15)

HereB∗(µ) is the conjugate dual of the the log normalizerB(λ), and we use µ̃θ(x) = µ(λ̃θ(x)) as a
shorthand for the mean-space posterior parameters. We see that maximizing the density corresponds
to minimizing a Bregman divergence in the space of sufficient statistics of the bias.

In Figure 1, we compare CEBMs to VAE in terms of the energy function for the log density of
the generative model. In making this comparison, we have to keep in mind that these models are
trained using different methods, and that VAEs have a tractable density pθ(x, z). That said, the
objectives in both models maximize the marginal likelihood, so we believe that it is instructive
to write down the corresponding Bregman divergence in the VAE likelihood. This likelihood is
typically a Gaussian with known variance, or a Bernoulli distribution (when modeling binarized
images). Both distributions have sufficient statistics t(x) = x. Once again omitting the base measure
h(x) for expediency, we can express the log density of a VAE as an energy

Eθ,λ(x, z) = −〈x, ηθ(z)〉+A(ηθ(z))− log pλ(z) = DA∗(x, µθ(z))−A∗(x)− log pλ(z) (16)

Here A∗(x) is the conjugate dual of the log normalizer A(η), and we use ηθ(z) and µθ(z) to refer to
the output of the generator network in the natural-parameter and the mean-parameter space respec-
tively. To reduce clutter and accommodate the case where a base measure h(x) is needed (e.g. that
of a Gaussian likelihood with known variance), we will introduce the additional shorthands

E(x) = −A(x)−log h(x), Eλ(z) = − log pλ(z). (17)

Then the energy function of a VAE has the form Eθ,λ(x, z) = DA∗(x, µθ(z)) + E(x) + Eλ(z).
Like that of a CEBM, the energy function of a VAE contains a Bregman divergence, as well as two
terms that depend only on x and z. However, whereas the Bregman divergence in CEBM is defined
in the mean-parameter space of the latent variables, that of a VAE is computed in the data space.
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5 INDUCTIVE BIASES

CEBMs have a property that is somewhat counter-intuitive. While the posterior pθ,λ(z | x) in
this class of models is tractable, the prior is in general not tractable. In particular, although the
bias −Eλ(z) is the logarithm of a tractable exponential family, it is not the case that pθ,λ(z) =
exp{−Eλ(z)}. Rather the prior pθ,λ(z) has the form,

pθ,λ(z) =
exp{−Eλ(z)}

Zθ,λ

∫
dx exp{〈tθ(x), η(z)〉}.

In other words, Eλ(z) defines an inductive bias, but this bias is different from the bias in a VAE
(where the prior is always tractable by construction2), in the sense that it imposes only a soft con-
straint on the geometry of the latent space. In principle the bias in a CEBM can take the form of any
exponential family distribution. Since products of exponential families are also in the exponential
family, this covers a broad range of possible biases. For purposes of evaluation in this paper, we
will constrain ourselves to two cases: a spherical Gaussian and a Mixture of Gaussians. We provide
comprehensive derivation in Appendix C.

6 RELATED WORK

Energy-Based Latent Variable Models. The idea of using EBMs to jointly model data and
latent variables has a long history in the machine learning literature. Examples of this class of
models include restricted Boltzmann machines (Smolensky, 1986; Hinton, 2002), deep belief nets
(DBNs, Hinton et al. (2006)), and deep Boltzmann machines (Salakhutdinov & Hinton, 2009). The
idea of extending RBMs in exponential families and exploiting conjugacy to yield a tractable poste-
rior is also not new and has been explored in Exponential Family Harmoniums (Welling et al., 2004).
The models differ from CEBMs in that the they employ a bilinear interaction term x>Wz, which
ensures that both the likelihood p(x | z) and p(z | x) are tractable. In CEBMs, the corresponding
term tθ(x)

>z is nonlinear, which means that the posterior is tractable, but the likelihood is not. We
provide a detailed discussion regarding the connection to this class of models in Appendix A.

EBMs for Image Modelling. Recent work has shown that EBMs with convolutional energy func-
tions can model distributions over images, given their competitive results in image generation (Xie
et al., 2016; Nijkamp et al., 2019a;b; Du & Mordatch, 2019). This line of work typically focuses on
generation and not on unsupervised representation learning as we do here. A line of work, which is
similar to ours in spirit, employs EBMs as priors on the latent space of deep generative models (Pang
et al., 2020; Aneja et al., 2020). These approaches, unlike our work, require a generator. Grathwohl
et al. (2019); Liu & Abbeel (2020) have proposed to interpret a classifier as an EBM that defines
a joint energy function on the data and labels. CEBMs with a discrete bias can interpreted as the
unsupervised variant of this model class. Che et al. (2020) interpret a GAN as an EBM defined by
both the generator and discriminator.

Training EBMs. While we here employ PCD for training, there is a large literature on alternative
methods for training unnormalized models. An alternative class of methods is Noise Contrastive
Estimation (NCE, (Gutmann & Hyvärinen, 2010)) in which we define a noise model and learn
by discriminating between data and noise. An example of this is Gao et al. (2020), where the
authors pretrain a flow that acts as the noise model for training EBMs with NCE. Another popular
approach is score matching (SM, Hyvärinen & Dayan (2005); Vincent (2011); Song et al. (2020);
Bao et al. (2020)), which matches the gradients of log probability density of the model and data
distribution. Lastly, there are adversarial methods for avoiding MCMC sampling during MLE, where
we introduce a variational distribution qφ(x) that is trained alongside the model with a maximin
objective (Grathwohl et al., 2021). We refer the readers to Song & Kingma (2021) for a more
comprehensive study of training methods for EBMs. Note that because CEBMs can marginalize
over z to get the marginal, all of the discussed methods are available for training, and therefore
could be applied in the context of this work.

2The bias in a VAE contains the log prior log pλ(z) and the log normalizer A(ηθ(z)) of the likelihood. In
a CEBM, by contrast, we omit the term Aθ(η(z)) = log

∫
dx exp{〈tθ(x), η(z)〉}, which is intractable, and

hereby implicitly absorb it into its prior.
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Figure 2: Samples from a CEBM trained on MNIST, Fashion-MNIST, SVHN and CIFAR-10.
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Figure 3: (Left) Samples from CIFAR-10 along with the top 2-nearest-neighbors in pixel space, the
latent space of a VAE, and the latent space of a CEBM. (Right) Confusion matrices of 1-nearest-
neighbor classification on CIFAR-10 based on L2 distance in the latent space.

7 EXPERIMENTS

Our experiments evaluate to what extent CEBMs can learn representations that encode meaning-
ful factors of variation, whilst discarding details about the input that we would consider noise. We
begin with a qualitative evaluation by visualizing samples and then demonstrate that learned repre-
sentations align with class structure, in the sense that nearest neighbors in the latent space are more
likely to belong to the same class (Section 7.1). Next, we pre-train the models in an unsupervised
manner, and use the learned representations for a few-label classification task (Section 7.2) and an
out-of-distribution task (Appendix F).

We train CEBMs using presistent contarstive divergence (Tieleman, 2008; Du & Mordatch, 2019)
where we sample from the models using Stochastic Gradient Langevin Dynamics (SGLD, (Welling
& Teh, 2011)). We train our models using 60 SGLD steps, 90k gradient steps, batch size 128, Adam
optimizer with learning rate 1e-4. We refer the readers to Appendix E & I for more training details.

7.1 SAMPLES AND LATENT SPACE

We begin with a qualitative evaluation by visualizing samples from the model (see Figure 2). While
generation is not our intended use case in this paper, such samples do serve as a useful diagnostic,
in the sense that they allow us to visually inspect what characteristics of the data are captured by
the learned representation. We initialize the samples with uniform noise and run 500 SGLD steps.
We observe that the distribution over images is diverse and captures the main characteristics of the
dataset. Sample quality is roughly on par with samples from other EBMs Nijkamp et al. (2019a), al-
though it is possible to generate samples with higher visual quality using class-conditional EBMs Du
& Mordatch (2019); Grathwohl et al. (2019); Liu & Abbeel (2020) (which assume access to labels).

To assess to what extent the representation in CEBMs aligns with classes in each dataset, we look
at the agreement between the label for each data point and the label of its nearest neighbor in the
latent space. In Figure 3, we show samples from CIFAR-10, along with the images that correspond
to the nearest neighbors in pixel space, the latent space of a VAE, and the latent space of a CEBM.
The distance in pixel space is a poor measure of similarity in this dataset, whereas proximity in the
latent space is more likely to agree with class labels in both VAEs and CEBMs.
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Table 1: Average classification accuracy on the test set. We train a variety of deep generative models
on MNIST, Fashion-MNIST, CIFAR-10, and SVHN in an unsupervised way. Then we use the
learned latent representations to train logistic classifiers with 1, 10, 100 training examples per class,
and the full training set. We train each classifier 10 times on randomly drawn training examples.

MNIST Fashion-MNIST CIFAR-10 SVHN
Models 1 10 100 full 1 10 100 full 1 10 100 full 1 10 100 full

VAE 42 85 92 95 41 63 72 81 16 22 31 38 13 13 16 36
GMM-VAE 53 86 93 97 49 68 79 84 19 23 33 39 13 14 23 56
BIGAN 33 67 85 91 46 65 75 81 18 30 43 52 11 20 42 56

IGEBM 63 89 95 97 50 70 79 83 16 26 33 42 10 16 35 49
CEBM 67 89 95 97 52 70 77 83 19 30 42 53 12 25 48 70
GMM-CEBM 67 91 97 98 52 70 80 85 16 29 42 52 10 17 39 60

In Figure 3 (right), we quantify this agreement by computing the fraction of neighbors in each class
conditioned on the class of the original image. We see a stronger alignment between classes and the
latent representation in CEBMs, which is reflected in higher numbers on the diagonal of the matrix.
On average, a fraction of 0.38 of the nearest neighbors are in the same class in the VAE, whereas
0.45 of the neighbors are in the same class in the CEBM. This suggests that the representation in
CEBMs should lead to higher performance in downstream tasks.

7.2 FEW-LABEL CLASSIFICATION

To evaluate performance in settings where few labels are available, we train logistic classifiers using
the learned latent features (trained in an unsupervised manner) with 1, 10, 100 training examples per
class, as well as the full training set. We evaluate our model for both of the inductive biases discussed
in Section 5 and Appendix C: the spherical Gaussian (CEBM) and the mixture of Gaussian (GMM-
CEBM). We compare our models against the IGEBM Du & Mordatch (2019), a standard VAE with
the spherical Gaussian prior, GMM-VAE (Tomczak & Welling, 2018) where the prior is a mixture
of Gaussians (GMM), and BIGAN Donahue et al. (2016). IGEBM does not explicitly have latent
representations. To resolve this, we extract the features from the last layer of the encoder for IGEBM.

We report the classification accuracy on the test set in Table 1. Overall CEBMs achieve a higher
accuracy compared to VAEs in particular for CIFAR-10 and SVHN where the pixel distance is
not good measure for similarity. Moreover, we observe that CEBMs outperform IGEBMs, which
suggests that the inductive bias in a CEBM can increase performance for downstream tasks. The
prformance of BIGANs is competitive, and we suspect that the reason is that, silimiar to CEBMs,
BIGANs also do not define a likelihood that measure similarity at the pixel level. We also observe
that the CEBM with the GMM inductive bias does not always ourtperform the one with standard
Gaussainn inductive bias, wich we supect is due to GMM-VAE being more diffuclt to converge.

8 CONCLUSION

We introduced CEBMs; a new family of energy-based models that define a joint energy function over
both the data and latent variables. This joint distribution factorizes into an intractable energy-based
marginal likelihood, which can be trained using standard methods for EBMS, and a tractable poste-
rior, which serves to maps input data to a low-dimensional latent representation. This factorization
allows us to directly optimize the marginal likelihood of the data, while at the same time imposing an
inductive bias on the latent space. Experimental results for this class of models are encouraging; we
observe a closer agreement between unsupervised representations and class labels, which translates
into improvements in downstream classification tasks relative to VAE-based baselines.
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A CONNECTION TO EXPONENTIAL FAMILY HARMONIUMS

As mentioned in Section 6, there is a long history of incorporating latent variables in EBMs, partic-
ularly in the context of restricted Boltzmann machines (RBMs) (Smolensky, 1986; Hinton, 2002),
deep belief nets (Hinton et al., 2006), and deep Boltzmann machines (Salakhutdinov & Hinton,
2009). Moreover, the idea of formulating EBMs into the exponential family is also not new; Welling
et al. (2004) proposed a new class of models called Exponential Family Harmoniums (EFHs) by
extending RBMs into the exponential family. In this Section, we discuss the connection between
our approach to these models. Concretely, we show that EFHs can be recovered a special case of
CEBMs.

For observed variable x and latent variable z, the energy of an RBM is defined as

ERBM
θ (x, z) = −〈x>θxz, z〉 − 〈x, θx〉 − 〈z, θz〉, (18)

where θx ∈ RD, θz ∈ RK , and θxz ∈ RD×K . In RBMs, the conditional distributions pθ(x|z) and
pθ(z|x) are both tractable which means that during contrastive divergence, we can sample x ∼ pθ(x)
using Gibbs sampling.

EFHs extend these models into the exponential family by incorporating the sufficient statistics of x
and z in the energy,

EEFH
θ (x, z) = −〈tx(x)>θxz, tz(z)〉 − 〈tx(x), θx〉 − 〈tz(z), θz〉, (19)

where tx(·) and tz(·) are the sufficient statistics for variables x and z respectively. Welling et al.
(2004) show that this energy function yields the following conditional distributions:

Likelihood pθ(x|z) = exp
{
〈tx(x), θ̃x〉 −A(θ̃x)

}
, θ̃x = θx + θxztz(z), (20)

Posterior pθ(z|x) = exp
{
〈tz(z), θ̃z〉 −B(θ̃z)

}
, θ̃z = θz + θxztx(x), (21)

where θ̃x and θ̃z are the canonical parameters, and A(·) and B(·) are the log normalizer of the
models pθ(x|z) and pθ(z|x) respectively. Given that both conditional distributions are tractable,
EFHs have the same advantage as RBMs: We can use a Gibbs sampler for sampling x ∼ pθ(x).
CEBMs can be considered an extension of EFHs. In Equation 10, we recover the energy function
for an EFH by setting

tθ(x) = [tx(x)
>θxz, 〈θx, tx(x)〉], η(z) = [tz(z), 1], Eθ(z) = −〈tz(z), θz〉. (22)

Perhaps the most crucial difference between CEBMs and EFHs (and other RBM-based models)
is the non-linearity relationship between the observed and latent variables. The non-linearity in
tθ(·) has the benefit of providing the flexibility to learn more complex structures in the data. This
modelling choice however comes with a cost. In CEBMs, while the posterior is still tractable, the
likelihood model is not. As a consequence, we lose the ability to use Gibbs sampling to sample x ∼
pθ(x). However, given that our motivation here is not to generate high quality samples at test time
but to learn good representations representations, we believe giving up the ability to easily sample
x in order to learn more complex structures while keeping the posterior tractable is an appropriate
trade-off.

B DERIVATION OF PRIOR AND LIKELIHOOD IN A CEBM

B.1 PRIOR

pθ,λ(z) =

∫
dx

1

Zθ,λ
exp{−Eθ,λ(x, z)} (23)

=
1

Zθ,λ

∫
dx exp{−Eθ,λ(x, z)} (24)

=
1

Zθ,λ

∫
dx exp{〈tθ(x), η(z)〉 − Eλ(z)} (25)

=
exp{−Eλ(z)}

Zθ,λ

∫
dx exp{〈tθ(x), η(z)〉} (26)
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Energy Type Model Energy

Eθ(x) IGEBM (Du & Mordatch, 2019) fθ(x)

Eθ(x, y) JEM (Grathwohl et al., 2019) −fθ(x)[y]
HDGE (Liu & Abbeel, 2020)

Eθ(x, z) RBM (Smolensky, 1986) −〈x>θx,z, z〉 − 〈x, θx〉 − 〈z, θz〉
EFH (Welling et al., 2004) −〈t(x)>θx,z, t(z)〉 − 〈t(x), θx〉 − 〈t(z), θz〉
VAE (Kingma & Welling, 2013) −〈x, µθ(z)〉+A(ηθ(z)) + E(z)
GAN (Che et al., 2020) Dθ(x) + E(z)
CEBM (this paper) −〈tθ(x), η(z)〉+ E(z)

Eθ(x, y, z) GMM-VAE (Tomczak & Welling, 2018) −〈x, µθ(z, y)〉+A(ηθ(z, y)) + E(z, y)
GMM-CEBM (this paper) −〈tθ(x), η(y, z)〉+ E(y, z)

Table 2: Comparison of energies in generative models. The functions fθ(·), ηθ(·), and tθ(·) are
typically deep neural networks (DNNs). In EBMs defined on only the data space (type Eθ(x)) such
as IGEBM, the DNN outputs a scalar value fθ(x) : RD → R. In EBMs defined on the data space
as well as labels (type Eθ(x, y)) such as JEM, the DNN outputs a vector of length L corresponding
to the number of classes fθ(x) : RD → RL. In GAN, Dθ(x) refers to the discriminator.

B.2 LIKELIHOOD

pθ,λ(x|z) =
pθ,λ(x, z)

pθ,λ(z)
(27)

=

1
Zθ,λ

exp{−Eθ,λ(x, z)}
exp{−Eλ(z)}

Zθ,λ

∫
dx exp{〈tθ(x), η(z)〉}

(28)

=

exp{−Eλ(z)}
Zθ,λ

exp{〈tθ(x), η(z)〉}
exp{−Eλ(z)}

Zθ,λ

∫
dx exp{〈tθ(x), η(z)〉}

(29)

=
exp{〈tθ(x), η(z)〉}∫
dx exp{〈tθ(x), η(z)〉}

(30)

C TWO SPECIAL CASES FOR INDUCTIVE BIASES

In this work we will consider two special cases for inductive bias:

1. Spherical Gaussian. As a bias that is analogous to the standard prior in VAEs, we consider a
spherical Gaussian with fixed hyperparameters (µ, σ) = (0, 1) for each dimension of z ∈ RK ,

Eλ(z) = −
∑
k

(
〈η(zk), λ〉 −B(λ)

)
.

Each term has sufficient statistics η(zk) = (zk, z
2
k) and natural parameters

λ =

(
µ

σ2
,− 1

2σ2

)
=

(
0,−1

2

)
.

The marginal likelihood of the CEBM is then

pθ,λ(x) =
1

Zθ,λ
exp

{∑
k

(
B(λ̃θ,k(x))−B(λ)

)}
,

where λ̃θ,k(x) = λ+ tθ,k(x) and the log normalizer is

B(λ̃k) = −
λ̃2k,1

4λ̃k,2
− 1

2
log(−2λ̃k,2).
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2. Mixture of Gaussians. In our experiments, we will consider datasets that are normally used
for classification. These datasets, by design, exhibit multimodal structure that we would like to see
reflected in the learned representation.In order to design a model that is amenable to uncovering this
structure, we will extend the energy function in Equation 10 to contain a mixture component y

Eθ,λ(x, y, z) = −〈tθ(x), η(y, z)〉+ Eλ(y, z).

As an inductive bias, we will consider a bias in the form of a mixture of L Gaussians,

Eλ(y, z) = −
∑
k,l

I[y = l]
(
〈η(zk), λl,k〉 −B(λl,k)

)
.

Here z ∈ RK is a vector of features and y ∈ {1, . . . , L} is a categorical assignment variable. The
bias for each component l is a spherical Gaussian with hyperparameters λl,k for each dimension
k. Again, using the notation λ̃θ,l,k = λl,k + tθ,l,k(x) to refer to the posterior parameters, then we
obtain an energy

Eθ,λ(x, y, z) = −
∑
k,l

I[y = l]
(
〈η(zk), λ̃l,k〉 −B(λl,k)

)
.

We then define a joint probability over data x and the assignment y in terms the log normalizerB(·),

pθ,λ(x, y) =
1

Zθ,λ
exp

{∑
k,l

I[y = l]
(
B(λ̃l,k)−B(λl,k)

)}
,

which then allows us to compute the marginal pθ,λ by summing over y. We optimize this marginal
with respect hyperaparameters λl,k as well as the weights θ.

D BACKGROUND ON ENERGY-BASED MODELS

An EBM (LeCun et al., 2006) defines a probability density for x ∈ RD via the Gibbs-Boltzmann
distribution

pθ(x) =
exp {−Eθ(x)}

Zθ
, Zθ =

∫
dx exp{−Eθ(x)}.

The function Eθ : RD −→ R is called the energy function which maps each configuration to a scalar
value, the energy of the configuration. This type of model is widely used in statistical physics, for
example in Ising models. The distribution can only be evaluated up to an unknown constant of
proportionality, since computing the normalizing constant Zθ (also known as the partition function)
requires an intractable integral with respect to all possible inputs x.

Our goal is to learn a model pθ(x) that is close to the true data distribution pdata(x). A common
approach for achieving this objective is to minimize the Kullback-Leibler divergence between the
data distribution and the model, which is equivalent to maximizing the expected log-likelihood

L(θ) = Epdata(x)[log pθ(x)] = Epdata(x)[−Eθ(x)]− logZθ. (31)

The key difficulty when performing maximum likelihood estimation is that computing the gradient
of logZθ is intractable. A common strategy is to express this gradient as an expectation with respect
to pθ(x),

∇ logZθ = Epθ(x′) [−∇θEθ(x
′)] , (32)

which means that the gradient of L(θ) has the form:

∇θL(θ) = −Epdata(x)[∇θEθ(x)] + Epθ(x′)[∇θEθ(x
′)].

This corresponds to maximizing the probability of samples x ∼ pdata(x) from the data distribution
and minimizing the probability of samples x′ ∼ pθ(x′) from the learned model.

Contrastive divergence methods Hinton (2002) compute a Monte Carlo estimate of this gradient. Es-
timating this gradient however requires samples from the model x′ ∼ pθ(x′), whereas this density is
intractable. A common method for generating samples from EBMs is Stochastic Gradient Langevin
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Dynamics (SGLD, Welling & Teh (2011)), which initializes a sample x′0 ∼ p0(x
′) and performs a

sequence of gradient updates with additional injected noise ε,

x′i+1 = x′i −
α

2

∂Eθ(x
′)

∂x′
+ ε , ε ∼ N(0, α). (33)

SGLD is motivated as a discretization of a stochastic differential equation whose stationary distri-
bution is equal to the posterior. It is correct in the limit i→∞ and α→ 0, but in practice will have
a bias.

The initialization x′0 is crucial because it determines the number of steps needed to converge to a
high-quality sample. For this reason, EBMs are commonly trained Nijkamp et al. (2019a); Du &
Mordatch (2019); Grathwohl et al. (2019) using persistent contrastive divergence (PCD, Tieleman
(2008)), which initializes some samples from a replay buffer B of previously generated samples.

E TRAINING CEBMS

Hyperparameters. In CEBMs and VAEs, we choose the dimension of latent variables to be 128.
For CEBMS, We found that the optimization becomes difficult with smaller dimensions. We train
our models using 60 SGLD steps where we initialize samples from the replay buffer with 0.95
probability, and initialize from uniform noise with 0.05 probability. We train all the models with 90k
gradient steps, batch size 128, Adam optimizer with learning rate 1e-4. When doing PCD, we used
a reply buffer of size 5000. We set the α in the SGLD teps to be 0.075. Similar to Du & Mordatch
(2019), we found it useful to add some noise to the image before encoding. In our experiments, we
used Gaussian noise with σ2 = 0.03. We used 50 GMM components for GMM-VAE and 10 GMM
components for GMM-CEBM.

Training Stability. As observed in previous work Du & Mordatch (2019); Grathwohl et al. (2019),
training EBMs is challenging and often requires a thorough hyperparameters search. We found
that the choices of activation function, learning rate, number of SGLD steps, and L2 regularization
(proposed by Du & Mordatch (2019)) will all affect training stability. Models regularly diverge
during training, and it is difficult to perform diagnostics given that log pθ,λ(x) cannot be computed.
As suggested by Nijkamp et al. (2019a), we found checking the difference in energy between data
and model samples can help to verify training stability. In general we also observed a trade-off
between sample quality and the predictive power of latent variables in our experiments. We leave
investigation of the source of this trade-off to future work, but we suspect that this is because SGLD
has more difficulty converging when the latent space is more disjoint.

Nijkamp et al. (2019a;b) performed a comprehensive analysis of convergence of PCD in recent
EBMs for images, where they study a variety of factors such as MCMC chain initialization, network,
and optimizer. They identify that a key factor for diagnosing these models is the difference between
the energy of positive and negative samples. Many of these findings were helpful during the training
and evaluation of EBMs in our work.

F OUT-OF-DISTRIBUTION DETECTION

EBMs have formed the basis for encouraging results in out-of-distribution (OOD) detection Du &
Mordatch (2019); Grathwohl et al. (2019). While not our focus in this paper, OOD detection is an
additional benchmark that helps evaluate whether a learned model accurately characterizes the data
distribution. In Table 3, we report results in terms of two metrics. The first is the area under the
receiver-operator curve (AUROC) when thresholding the log marginal log pθ,λ(x). The second is
the gradient-based score function proposed by Grathwohl et al. (2019). CEBMs results for OOD
detection in most cases improve upon VAE and IGEBM baselines.

G VISULAIZATION OF LATENT SPACE
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Table 3: AUROC scores in OOD Detection. We use log pθ(x) and ‖∇x log pθ(x)‖ as score func-
tions.The left block shows results of the models trained on F-MNIST and tested on MNIST, E-
MNIST, Constant (C); The right block shows results of the models trained on CIFAR-10 and tested
on SVHN, Texture and Constant (C).

Fashion-MNIST CIFAR-10
log pθ(x) ‖∇x log pθ(x)‖ log pθ(x) ‖∇x log pθ(x)‖

MNIST E-MNIST C MNIST E-MNIST C SVHN Texture C SVHN Texture C

VAE .50 .39 .09 .61 .57 .01 .42 .58 .41 .38 .51 .37
IGEBM .35 .36 .90 .78 .82 .96 .45 .31 .64 .33 .17 .62
CEBM .37 .34 .90 .82 .89 .98 .47 .32 .66 .31 .17 .54
GMM-CEBM .56 .56 .92 .56 .80 .95 .55 .30 .62 .40 .23 .62

Figure 4: Latent space of a CEBM (the inferred means) visualized with UMAP McInnes et al. (2018)
trained on MNIST.

H CONFUSION MATRICES FOR 1-NN CLASSIFICATION

We perform 1-nearest-neighbor classification task for MNIST, Fashion-MNIST, SVHN, CIFAR10.
We compute the L2 distance in the latent space of VAE, IGEBM and CEBM, and also in pixel space.
We visualize the confusion matrices
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(d) CIFAR10

I MODEL ARCHITECTURES

CEBMs employ an encoder network tθ(x) in the form of 4-layer CNN (which is proposed by Ni-
jkamp et al. (2019a)), followed by an MLP output layer. We choose the dimension of latent variables
to be 128 to be in CEBMs. We use the same architecture for the encoder of a VAE and the encoder
of a BIGAN. Table 4, Table 5, Table 6, and Table 7 show the architectures used for CEBM, IGEBM,
VAE and BIGAN, respectively.
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Table 4: Architecture of CEBM and GMM-CEBM

(a) MNIST and Fashion-MNIST.

Encoder
Input 28× 28× 1 images
3× 3 conv. 64 stride 1. padding 1. Swish.
4× 4 conv. 64 stride 2. padding 1. Swish.
4× 4 conv. 32 stride 2. padding 1. Swish.
4× 4 conv. 32 stride 2. padding 1. Swish.
FC. 128 Swish.
FC. 2× 128

(b) CIFAR10 and SVHN.

Encoder
Input 32× 32× 3 images
3× 3 conv. 64 stride 1. padding 1. Swish.
4× 4 conv. 128 stride 2. padding 1. Swish.
4× 4 conv. 256 stride 2. padding 1. Swish.
4× 4 conv. 512 stride 2. padding 1. Swish.
FC. 1024 Swish.
FC. 2× 128

Table 5: Architecture of IGEBM

(a) MNIST and Fashion-MNIST.

Encoder
Input 28× 28× 1 images
3× 3 conv. 64 stride 1. padding 1. Swish.
4× 4 conv. 64 stride 2. padding 1. Swish.
4× 4 conv. 32 stride 2. padding 1. Swish.
4× 4 conv. 32 stride 2. padding 1. Swish.
FC. 128 Swish.
FC. 128 Swish. FC. 1

(b) CIFAR10 and SVHN.

Encoder
Input 32× 32× 3 images
3× 3 conv. 64 stride 1. padding 1. Swish.
4× 4 conv. 128 stride 2. padding 1. Swish.
4× 4 conv. 256 stride 2. padding 1. Swish.
4× 4 conv. 512 stride 2. padding 1. Swish.
FC. 1024 Swish
FC. 128 Swish. FC. 1

Table 6: Architecture of VAE and GMM-VAE

(a) MNIST and Fashion-MNIST.

Encoder Decoder

Input 28× 28× 1 images Input z ∈ R128 latent variables
3× 3 conv. 64 stride 1. padding 1. ReLU. FC. 128 ReLU. FC. 3× 3× 32 ReLU.
4× 4 conv. 64 stride 2. padding 1. ReLU. 4× 4 upconv. 32 stride 2. padding 1. ReLU.
4× 4 conv. 32 stride 2. padding 1. ReLU. 4× 4 upconv. 64 stride 2. padding 1. ReLU.
4× 4 conv. 32 stride 2. padding 1. ReLU. 4× 4 upconv. 64 stride 2. padding 0. ReLU.
FC. 128 ReLU. FC. 2× 128. 3× 3 upconv. 1 stride 1. padding 0

(b) CIFAR10 and SVHN.

Encoder Decoder

Input 32× 32× 3 images Input z ∈ R128 latent variables
3× 3 conv. 64 stride 1. padding 1. ReLU. FC. 128 ReLU. FC. 4× 4× 512 ReLU.
4× 4 conv. 128 stride 2. padding 1. ReLU. 4× 4 upconv. 32 stride 2. padding 1. ReLU.
4× 4 conv. 256 stride 2. padding 1. ReLU. 4× 4 upconv. 64 stride 2. padding 1. ReLU.
4× 4 conv. 512 stride 2. padding 1. ReLU. 3× 3 upconv. 64 stride 2. padding 1. ReLU.
FC. 1024 ReLU. FC. 2× 128. 3× 3 upconv. 1 stride 1. padding 1
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Table 7: Architecture of BIGAN for MNIST and Fashion-MNIST.

(a) MNIST and Fashion-MNIST.

Discriminator
Input 28× 28× 1 images
3× 3 conv. 64 stride 1. padding 1. BN. LeakyReLU.
4× 4 conv. 64 stride 2. padding 1. BN. LeakyReLU.
4× 4 conv. 32 stride 2. padding 1. BN. LeakyReLU.
4× 4 conv. 32 stride 2. padding 1. BN. LeakyReLU.
FC. 128 LeakyReLU.
256. FC 128 LeakyReLU. FC. 1. Sigmoid.

Generator Encoder

Input z ∈ R128 latent variables Input 28× 28× 1 images
4× 4 upconv. 64 stride 1. padding 1. BN. ReLU. 3× 3 conv. 64 stride 1. padding 1. BN. LeakyReLU.
4× 4 upconv. 64 stride 2. padding 1. BN. ReLU. 4× 4 conv. 64 stride 2. padding 1. BN. LeakyReLU.
3× 3 upconv. 32 stride 2. padding 1. BN. ReLU. 4× 4 conv. 32 stride 2. padding 1. BN. LeakyReLU.
4× 4 upconv. 32 stride 2. padding 1. BN. ReLU. 4× 4 conv. 32 stride 2. padding 1. BN. LeakyReLU.
4× 4 upconv. 1 stride 2. padding 1. Tanh. FC. 128 LeakyReLU. FC. 2× 128.

(b) CIFAR10 and SVHN.

Discriminator
Input 28× 28× 1 images
3× 3 conv. 64 stride 1. padding 1. BN. LeakyReLU.
4× 4 conv. 128 stride 2. padding 1. BN. LeakyReLU.
4× 4 conv. 256 stride 2. padding 1. BN. LeakyReLU.
4× 4 conv. 512 stride 2. padding 1. BN. LeakyReLU.
FC. 128 LeakyReLU.
256 FC 128 LeakyReLU. FC. 1. Sigmoid.

Generator Encoder

Input z ∈ R128 latent variables Input 28× 28× 1 images
4× 4 upconv. 512 stride 2. padding 1. BN. ReLU. 3× 3 conv. 64 stride 1. padding 1. BN. LeakyReLU.
4× 4 upconv. 256 stride 2. padding 1. BN. ReLU. 4× 4 conv. 128 stride 2. padding 1. BN. LeakyReLU.
4× 4 upconv. 128 stride 2. padding 1. BN. ReLU. 4× 4 conv. 256 stride 2. padding 1. BN. LeakyReLU.
4× 4 upconv. 64 stride 2. padding 1. BN. ReLU. 4× 4 conv. 512 stride 2. padding 1. BN. LeakyReLU.
4× 4 upconv. 3 stride 2. padding 1. Tanh. FC. 128 LeakyReLU. FC 2× 128.
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