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ABSTRACT

In the last few years, due to the broad applicability of deep learning to downstream
tasks and end-to-end training capabilities, increasingly more concerns about po-
tential biases to specific, non-representative patterns have been raised. Many
works focusing on unsupervised debiasing usually leverage the tendency of deep
models to learn “easier” samples, for example by clustering the latent space to
obtain bias pseudo-labels. However, the interpretation of such pseudo-labels is
not trivial, especially for a non-expert end user, as it does not provide semantic
information about the bias features. To address this issue, we introduce “Say My
Name” (SaMyNa), a tool to identify semantic biases within deep models. Un-
like existing methods, our approach focuses on biases learned by the model. Our
text-based pipeline enhances explainability and supports debiasing efforts: appli-
cable during either training or post-hoc validation, our method can disentangle
task-related information and proposes itself as a tool to analyze biases. Evalua-
tion on traditional benchmarks demonstrates its effectiveness in detecting biases
and even disclaiming them, showcasing its broad applicability for model diagno-
sis. When sided with a traditional debiasing approach for bias mitigation, it can
achieve state-of-the-art performance while having the advantage of associating a
semantic meaning to the discovered bias.

1 INTRODUCTION

Class landbirds
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analysis

Figure 1: Our approach, SaMyNa, searches potential spuri-
ous features learned by a model, providing a ranked list of
keywords.

In the past decade, advances in tech-
nology have made it possible to
widely use deep learning (DL) tech-
niques, greatly impacting the com-
puter vision field. By allowing sys-
tems to be trained end-to-end, DL
offers potentially fast model deploy-
ability to solve complex problems,
leading to fast progress and changing
how we perceive and analyze visual
information. Today, deep learning is
applied in various real-world scenar-
ios, such as self-driving cars Zhang
et al. (2022a), medical imaging Yan
et al. (2024), and augmented real-
ity Liu et al. (2020).

These huge possibilities hinder po-
tential pitfalls. One challenge to face
when deploying DL solutions lies in
guaranteeing that the model does not over-rely on specific patterns that are non-representative of
the real-world data distribution Ming et al. (2022); Izmailov et al. (2022). This is key for safety,
fairness, and ethics Tartaglione et al. (2023). To provide a simple example, when deploying solu-
tions in autonomous driving, simple tasks like pedestrian detection might be implicitly solved by
associating specific background elements (like sidewalks or pedestrian crossings) with the presence
of pedestrians. This reliance on environmental cues can act as shortcuts for the network Geirhos
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et al. (2020), leading to poor performance when the context changes, such as when a pedestrian is
crossing a road without a marked crossing lane. DL models, if not discouraged, tend to rely on spu-
rious correlations captured at training time, especially when they are easier to learn than the actual
semantic attributes Nam et al. (2020). We refer to these spurious correlations as biases, and we say
that the model that learned such shortcuts is biased towards them.

In 2021, the European Commission introduced the Artificial Intelligence Act (AI Act) to regulate AI
based on the potential risks it poses Madiega (2021). Like the General Data Protection Regulation
(GDPR) GDPR (2016), the AI Act could set in the next few years a global standard. Ensuring that
DL models avoid spurious biases that could affect their safety, trust, and accountability is not only
essential for user safety but might soon also become a legal requirement.

A massive recent effort has been conducted by the Computer Vision community to try to discourage
the presence of biases. In a nutshell, we can roughly distinguish three main research lines: (i) su-
pervised, where the labels of the bias are provided Barbano et al. (2023); Hong & Yang (2021); (ii)
bias-tailored, where a hint on what the potential bias might be is provided prior to training, and an
ad-hoc model is deployed to capture it Bahng et al. (2020b); Wang et al. (2019); (iii) unsupervised,
where biases are guessed directed within the vanilla-trained model Nam et al. (2020); Nahon et al.
(2023); Creager et al. (2021); Li et al. (2022). When deploying a DL solution in the wild, the latter
line of research appears to be the best fit, as detailed information about bias is almost surely missing.
Although some solutions already exist in this context Kim et al. (2024); Nam et al. (2020); Nahon
et al. (2023); Ji et al. (2019), there is still a gap in the literature related to the problem of naming
a specific bias affecting a DL model, providing natural language descriptors that can be directly
interpretable by a human. Existing solutions either start from a predefined set of attributes Eyuboglu
et al. (2022); Wiles et al. (2023) or explicitly require the availability of a validation set known to con-
tain bias-conflicting samples Kim et al. (2024), and requires to perform computationally expensive
operations such as captioning the entire validation set, which may be unavailable or made up of only
aligned samples. Our method is effective by using only the training set, relaxing the assumptions of
existing works (e.g. Kim et al. (2024)), thus setting a first step towards mining specific model biases
in realistic scenarios. Unlike approaches that discover biases in the dataset, our focus is oriented
on naming the biases captured by the model under exam. We mine the specific features in common
with these samples and we associate semantic (textual) meaning to them. From this, an expert user
(or prospectively a certifier software) can search and discriminate whether the learned feature is a
bias or rather a feature for the system (Fig. 1). Through “Say My Name” (SaMyNa), we aim at
providing a tool that enhances explainability for the DL model’s learned features, on top of which,
if necessary, any state-of-the-art debiasing approach can be used to sanitize the model.

Our contributions are here summarized at a glance.

• We propose a tool able to potentially give a name to biases in DL models. We propose a
pipeline where the whole process is text-based; contrary to end-to-end approaches, all the
intermediate steps of our approach are humanly readable and interpretable (Sec. 3.2).

• Within our approach, we can focus on potential biases by disentangling specific work
domains where the model is also tested by using the embedding space of a text encoder
(Sec. 3.2.4).

• Our approach is usable both at training and at inference time. For the former, we propose a
simple yet effective strategy to mine biases directly on the training set (Sec. 3.1).

• We test our approach on well-known setups, finding the biases acknowledged by the com-
munity (Sec. 4.3.1). Besides, we also test on ImageNet-A, distinguishing cases where a bias
exists and where, on the contrary, the issue is not bias-related (Sec. 4.3.2). This demon-
strates the broad applicability of SaMyNa even for more general DL model diagnosis, and
after bias discovery (Sec. 3.1) and naming (Sec. 3.2) when coupled with a standard debias-
ing strategy, can attain debiasing results in line with the state-of-the-art (Sec. 4.4), with the
big plus of assigning semantic meaning to the discovered bias.

2 RELATED WORKS

The problem of bias and model debiasing has been widely explored in recent years, within three
main frameworks, differing from how or if bias knowledge is explored for mitigating model depen-
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dency on bias: supervised, bias-tailored, and unsupervised.
Supervised Debiasing. Supervised methods require explicit knowledge of the bias, generally in the
form of labels, indicating whether a sample presents a certain bias or not. One of the most typical
approaches consists of training an explicit bias classifier, trained on the same representation space
as the target classifier, in an adversarial way, forcing the encoder to extract unbiased representa-
tions Alvi et al. (2018); Xie et al. (2017). Alternatively, bias labels can be exploited to identify
pre-defined groups, training a model to minimize the worst-case training loss, thus pushing the
model towards learning biased samples Sagawa* et al. (2020). Another possibility is represented
by regularization terms, which aim at achieving invariance to bias features Barbano et al. (2023);
Tartaglione et al. (2021).
Bias-Tailored Debiasing. Bias-tailored approaches usually rely on some kind of knowledge about
the bias nature. For example, if the bias is textural, then custom architectures can be designed to be
more sensitive to textural information. For example, Bahng et al. (2020a) propose ReBias, where
a custom texture bias-capturing model is designed using 1x1 convolutions. A similar approach is
followed by Hong & Yang (2021), where a BagNet-18 Brendel & Bethge (2019) is used as a bias-
capturing model.
Unsupervised Debiasing. Differently from the previously described approaches, unsupervised de-
biasing methods do not assume any prior knowledge of the bias, facing a more realistic situation
where bias is unknown. Nam et al. Nam et al. (2020) propose LfF, where a vanilla bias-capturing
model is trained with a focus on easier samples (bias-aligned), using the Generalized Cross-Entropy
(GCE) loss Zhang & Sabuncu (2018), while a debiased network is trained by giving more impor-
tance to the samples that the bias-capturing model struggles to discriminate. Ji et al. Ji et al. (2019)
propose an unsupervised clustering method that learns representations invariant to some unknown or
“distractor” classes in the data, by employing over-clustering. A set of unsupervised methods relies
on the assumption that bias-conflicting samples are likely to be misclassified by a biased model Kim
et al. (2022a); Liu et al. (2021). In Liu et al. (2021) a model is trained for a few epochs and then
used in inference on the training set, considering misclassified samples as bias-conflicting and vice-
versa. The debiasing is then performed by up-sampling the predicted bias-conflicting samples. In
Kim et al. (2022a) the training set is split into a fixed number of subsets, training a model on each of
them. Then, the trained models are ensembled into a bias-commmittee and the entire training set is
fed to the committee, proposing that debiasing can be performed using a weighted ERM, where the
weights are proportional to the number of models in the ensemble misclassifying a certain sample.
Similarly to Nahon et al. (2023), we are able to identify during the training of a vanilla model in
which moment the bias is potentially best fitted by the model, with the advantage of working directly
at the output of the same model instead of mining the information in its latent space. This comes
both with computational advantages (given that the latent space is typically higher dimensional) and
with better interpretability of the outcome, given that we work in the model’s output space.
Bias Naming. Recently, methods exploiting natural language and vision-language models to iden-
tify and mitigate bias have been proposed Eyuboglu et al. (2022); Kim et al. (2024); Zhang et al.
(2023). Zhang et al. Zhang et al. (2023) introduce a method capable of determining subsets of
images with similar attributes systematically misclassified by a model (i.e., error slices) and a rec-
tification method based on language. However, it starts from a pre-defined set of attributes, thus
hindering the possibility of discovering completely unknown and multiple biases. Eyuboglu et al.
(2022) exploits a cross-modal embedding space to identify error slices, providing natural language
predictions of the identified slices. Wiles et al. Wiles et al. (2023) propose a method for automati-
cally determining a model’s failures, exploiting large-scale vision-language models and captioners
to provide interpretable descriptors of such failures in natural language. In Kim et al. (2024), the au-
thors propose to extract class-wise keywords representative of bias, later used for model debiasing,
exploiting group-DRO Sagawa* et al. (2020) on the identified groups. In this work, a CLIP score
is defined using the similarity between extracted keywords and correctly and misclassified samples
(class-wise) and used to find the keywords associated with a bias. In D’Incà et al. (2024), the authors
use large-language models and text prompts for bias discovery in text-to-image generative models.
Differently from the previously cited works, we introduce an unsupervised method for diagnosing a
model dependency on bias for image classification tasks, that can either be performed during or after
training and only exploits task-related knowledge to provide a transparent analysis on the potential
hidden biases captured by the model.
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3 METHOD

In this section, we present our proposed method SaMyNa to identify potential spurious correlations
learned by the model under analysis (Sec. 3.2). Our method can be plugged to perform model
diagnosis either at training time or at test: for the first case, we also present an approach to identify
at which point to mine a potential bias for the target model (Sec. 3.1).

3.1 MINING MODEL’S BIASES

Consider a supervised classification setup (having C target classes), where we learn from a dataset
Dtrain containing N input samples (x1, . . . ,xN ) ∈ X , each with a corresponding ground truth
label (ŷ1, . . . , ŷN ) ∈ Y . A deep neural network M, trained for t iterations, produces an output
distribution yt,n ∈ RC over the C classes, for each input xn (typically, the activation of the last
layer is a softmax). The network is trained to match the ground truth label ŷn by minimizing a loss
function such as cross-entropy.

If any bias is present in the training set, however, the learning process could drive the model towards
the selection of spurious features Sagawa* et al. (2020); Nam et al. (2020); Bahng et al. (2020a),
resulting in misclassification errors. Recent findings show that it is possible to identify the moment
when the model best fits the bias in the training set Nahon et al. (2023). We will formulate here the
problem of identifying, at training time, when the trained model maximally fits a potential bias.

We say that M misclassifies the n-th sample at the t-th learning iteration if ŷn ̸= argmax(yt,n).
Focusing on this example, we know that by minimizing the loss function we aim at increasing the
value of the ŷn-th component yt,n(ŷn) (while decreasing all the others). Inspired by the Hinge loss
function Rosasco et al. (2004), we can define a per-sample distance metric telling us how far the
n-th sample is from being correctly classified:

dt,n =

{
max(yt,n)− yt,n(ŷn) if argmaxn(yt,n) ̸= ŷn
0 otherwise. (1)

Intuitively, the higher equation 1 is, the most Mt is confident in misclassifying n. We are interested
in finding the iteration t∗ such that the model most confidently misclassifies a pool of samples:

t∗ = argmax
t

1∑
n δ̄[ŷn − argmaxn(yt,n)]

∑
n

dt,n, (2)

where δ is the Kronecker delta and δ̄ = 1 − δ. When reaching t∗, the most informative samples
are the misclassified ones: given that the model is most confident in misclassifying them, then the
model has clearly learned some spurious features. Differently from prior works Nahon et al. (2023)
speculating that misclassified samples embody a bias (with the goal of applying debiasing methods),
our goal is to understand why these samples are misclassified, ultimately providing an end user of
the system the possibility to acknowledge the presence of a bias. For the model Mt we will split the
training dataset in a pool of correctly classified samples Dcorrect

train and misclassified Dmisclass
train . Examples

of vanilla model’s output softmax distribution during training can be found in the Supp. Material.

3.2 BIAS NAMING

We present here SaMyNa, our bias naming approach starting from a trained model M from which
we aim to run our bias naming tool. Fig. 2 proposes an overview of the main pipeline we used,
consisting of the following steps:

1. Samples subset selection. Given that the objective of our proposed method is to identify
biases learned by M, we are allowed to propose a subset of most representative samples
for a given target class (Sec. 3.2.1).

2. Samples captioning. Once the samples are selected, a multimodal LLM captioning tool is
used to extract a textual description of each sample (Sec. 3.2.2).

3. Keywords selection. Starting from the computed captions, we mine keywords in common
from the textual description of the samples within the same learned class (Sec. 3.2.3).
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Figure 2: Pipeline for SaMyNa. Given a model, we can tell on either Dtrainor Dval what are the
correctly (with green border) and the incorrectly (red border) classified samples. Amongst these,
we first perform a sample subset selection looking at the latent space of the model under analysis
and choosing through k-medoids the most representative samples for the learned class. Then, we
employ a captioner to get a textual description of these samples. Among these descriptions, we
identify recurrent keywords and, in parallel, working in the latent space of a text encoder, we extract
the mean description for the learned classes, cleansed from common features within the dataset.
We finally compare this representation with the embedding of the keywords, identifying learned
correlations aside from the target.

4. Learned class embedding. Starting from a textual description of the samples, we can ex-
tract the shared information between the correctly classified samples and the incorrectly
classified ones: this will constitute the embedding for a potential bias (Sec. 3.2.4).

5. Keywords ranking. The embedding of the learned class is compared with the embedding
of recurrent keywords in the captions and we get a ranking for the keywords most aligned
with the learned class (Sec. 3.2.5).

3.2.1 SAMPLES SUBSET SELECTION

Given M, for a given target class c, we extract the pool of correctly classified samples Dcorrect(c) and
samples misclassified as c Dmisclass(c).1 Provided that M clusters both Dcorrect(c) and Dmisclass(c)
together, our hypothesis is that these two share a common set of features, behind which we might
find a bias. In the typical deployment scenario, the correctly classified examples are abundant, and,
for instance, M projects them in a very narrow neighborhood of its latent space. We build on top
of this observation and run a k-medoid algorithm to reduce the cardinality of correctly classified
samples. Our long-range objective will be indeed to capture the set of features that are correctly
learned by the model, and k-medoids is a natural choice to have a good coverage of the latent space
for M.

3.2.2 SAMPLES CAPTIONING

At this point, we will generate captions from the selected samples. To do this, we use a pre-trained
multimodal large language model that takes as input both a prompt and an image. The choice of
the prompt is kept generic and asks to generate a textual description of the content of the image,
providing some context of the target task. We decided to employ a large-scale image captioner in all
our experiments, given that biases might hide in the subtle characteristics of the provided images.

3.2.3 KEYWORDS SELECTION

From the captions obtained in the previous step (Sec. 3.2.2), we select recurrent keywords. First, we
perform some NLP standard processing, consisting of lower-case conversion, remotion of non-letter

1please note that we have dropped the “train” subscript from the D partitioning as this pipeline will work
equally well also when using a validation set.
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or digit characters, and stop-words removal. Each caption is word-level tokenized Bird et al. (2009),
and every token is considered a potential keyword. Then, we count the frequencies of the obtained
keywords within the same class c. Lastly, we filter out the keywords appearing in the captions of less
than the fmin fraction of samples. The remaining keywords are aggregated and constitute a keywords
proposal pool Ψ.

3.2.4 LEARNED CLASS EMBEDDING

In parallel to keywords selection, we aim at having a representation for the learned class, disentan-
gled from the specific domain M is trained to. To do this, we work in the embedding space of a
pre-trained text encoder. From the generated captions we obtain, for each class c, the embedding ma-
trices Ecorrect(c) ∈ R|Dcorrect(c)|×Z and Emisclass(c) ∈ R|Dmisclass(c)|×Z , where Z is the dimensionality
of the embedding vectors. Our goal here is to calculate the embeddings E∗(c) ∈ RZ semantically
representing the learned representation of the class c. Not only that, we would like to disentangle
this from the features in common to all the classes learned from the model, given that M could be
trained (and tested) to fit a specific domain, which in such a specific case would not constitute a bias
but rather a feature. For this, we first calculate the average embedding E(c) for a specific learned
class:

E(c) =

∑|Dcorrect(c)|
i=1

∑|Dmisclass(c)|
j=1 [Ecorrect

i (c) + Emisclass
j (c)]

2 [|Dcorrect(c)| · |Dmisclass(c)|]
. (3)

E(c) will now contain all the common features of the class c. However, it will also contain some in-
formation shared in the entire dataset (for example common characteristics of the different classes).
From this, we can extract the embedding without the shared information from the dataset through:

E∗(c) = E(c)− 1

C

C∑
i=1

E(i). (4)

The intuition of this approach originates from the arithmetic and semantic properties of natural
language latent spaces Mikolov et al. (2013). To provide a realistic example, consider the task of
gender recognition from facial pictures, in which the hair color is a spurious correlation. E(c) might
contain features related to concepts such as “blonde” and “face”. As we are only interested in the
former, computing E∗(c) is an effective solution to filter out the shared information “face”.

3.2.5 KEYWORDS RANKING

Now, we are ready to compare the embedding of each keyword with E∗(c) using the cosine similar-
ity:

s(ψ, c) = sim[ψembed, E∗(c)], ψ ∈ Ψ, (5)

where ψembed is the embedding of the keyword in the same latent space used to calculateE∗(c). This
tells us how much the concept is embodied by the proposed keywords. Based on the ranking, we will
obtain a set of keywords that correlate with the learned class c, and others that become decorrelated
as they embody some knowledge shared through all the classes (as filtered in equation 4). For this,
we introduce a hyper-parameter tsim > 0 that thresholds the relevant keywords for the learned class
c, based on the similarity score. Finally, as post-processing, we filter all the keywords related to the
ground-truth target class the model was aiming at learning: the final ranking we obtain embodies
the set of features that correlate with the learned class c, from which an end user of the system can
deduce the presence of a bias.

4 EMPIRICAL RESULTS

We provide here the main results obtained. We highlight that, for visualization purposes, all the
figures contain up to the top nine keywords identified by SaMyNa: the full results, along with
the ablation study, are presented in the Supplementary material. For our experiments, we have
employed an NVIDIA A5000 with 24GB of VRAM, except for the captioning step for which we
have employed an NVIDIA A100 equipped with 80GB of VRAM. The source code, attached to the
submission, will be open-sourced upon acceptance of the article.
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Figure 3: Similarity scores for Waterbirds (a) and CelebA (trained on the blonde hair attribute) (b).

4.1 SETUP

Models tested. We tested the most popular architectures benchmarked from the debiasing literature:
ResNet-18 for CelebA and BAR, and ResNet-50 for Waterbirds and ImageNet-A. All the models
are pre-trained on ImageNet-1K, with architecture and weights provided by torchvision. On
ImageNet-A, models are run only in inference, as we are interested in mining biases already existing
in the original pre-trained models, while for all the other experiments we apply the training proce-
dure described in Sec. 3.1. For this step, we train with a batch size of 128 and a learning rate of
0.001 for Waterbirds, as done in Sagawa* et al. (2020); for CelebA, we use a batch size of 256 and
a learning rate of 0.0001, following Nam et al. (2020). For both, we employ SGD with Nestorov
momentum set to 0.9. Finally, for BAR, we employ a batch size of 256 and a learning rate of 0.001,
with Adam as optimizer Kim et al. (2021).
Captioning. For the captioning model, we used LLaVA-NeXT Liu et al. (2024)2 in its 34B config-
uration, quantized in 8 bits. Before feeding our input images to the image captioner, we apply the
default corresponding preprocessing transform, as provided by the huggingface library. The prompts
we used to generate the captions are personalized for each dataset and their length is limited to 300
tokens. All the employed captions can be consulted in the Supplementary material.
Class and keywords embedding. For this part, we used the Sentence-BERT model3 from the
sentence-transformers Reimers & Gurevych (2019) library to generate 384-dimensional embeddings
of the captions. The minimum frequency for the keywords fmin is 15%. For the correctly classified
samples, we set k = 10 and tsim is set to 0.2.

4.2 DATASETS

Before we present the results obtained with our bias naming pipeline, we briefly describe the datasets
employed in this study: Waterbirds Sagawa* et al. (2020), CelebA Liu et al. (2015), BAR Nam et al.
(2020), and ImageNet-A Hendrycks et al. (2021).
Waterbirds. Waterbirds is an image dataset introduced in Sagawa* et al. (2020) to test the robust-
ness of optimization methods against distribution shifts. The associated task is to classify the habitat
of bird species, divided into waterbirds and landbirds. In the training set, though, 95% of waterbirds
are associated with a water background, and 95% of landbirds are set on land. Only 5% of the two
classes’ samples are presented with an opposite background. This results in a potentially strong
spurious relation between the target label and the background.
CelebA. CelebA Liu et al. (2015) is one of the most popular datasets of face images, depicting
celebrity individuals with multiple samples per subject and equipped with extensive annotations re-
garding roughly 40 attributes, encompassing several face and style characteristics. Regardless of its
popularity, it is notoriously affected by several biases Nam et al. (2020); Barbano et al. (2023). In
this work, we analyze the task of classifying whether a person has blond hair or not, for which the
attribute female is not uniformly represented, but spuriously correlated with the blond class.
BAR. Biased Action Recognition (BAR) is an action recognition dataset crafted by Nam et al. in
Nam et al. (2020). The target classes of BAR (Climbing, Diving, Fishing, Racing, Throwing, Vault-
ing) present a strong bias towards the setting where they are performed. For instance, the large

2https://huggingface.co/llava-hf/llava-v1.6-34b-hf
3https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L12-v2
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Figure 4: Similarity scores for the BAR dataset.

majority of samples from the class Racing is depicted in a circuit track context, while in the test
set, we can find many off-road settings on which deep classification models fail to generalize. This
dataset does not provide bias group annotations and does not provide a proper validation set, making
impossible to compute a Worst Group accuracy.
ImageNet-A. ImageNet-A is a collection of 7,500 real-world images sharing the same category of a
200-class subset of ImageNet, onto which deep models systematically fail to output the correct pre-
diction. Originally introduced in Hendrycks et al. (2021) for testing adversarial model robustness, it
is also commonly adopted in the context of model bias Bahng et al. (2020b); Kim et al. (2022b).

4.3 BIAS DISCOVERY

Our empirical validation on bias discovery is here divided into naming the bis during training
(Sec. 4.3.1) and naming it post-hoc, at inference (Sec. 4.3.2). In Sec.4.4 we provide a description of
how our keywords can be used to perform bias mitigation.

4.3.1 NAMING THE BIAS AT TRAINING TIME

We begin by discussing the results of our bias naming pipeline when applied in a model’s training
process on Waterbirds, CelebA, and BAR.
Waterbirds. The barplot in Fig. 3a shows the candidate bias keywords for Waterbirds, alongside
their relative similarity value. We can observe how the obtained keywords are mainly related to the
background information (tree and forest for landbirds; sea and ocean for waterbirds). Most
importantly, the top keywords display high similarity values, indicating a high correlation with their
class targets. We deduce that the model suffers from a bias about image backgrounds, which indeed
is the case for Waterbirds. It is also worth noticing how the top similarities differ among the two
classes. We hypothesize two possible factors causing it: (i) model bias towards sea is stronger than
the one towards tree, as it is constituted by simpler visual patterns, easier to learn for the network;
(ii) the landbirds class has a much larger population, thus allowing for the bias on this class to be
averaged over more instances than the waterbirds case.
CelebA. In analyzing the possible biases of our vanilla model on CelebA (see Fig. 3b), we find
that the top-1 keyword for both classes represents a gender: male/man for class not blonde (with
similarity ≈ 0.4), and woman for class blonde (similarity of 0.49). Additionally, we find among
the blonde class, keyword terms typically associated with gender stereotypes, such as makeup and
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Figure 5: Similarity scores for the crayfish, rhinoceros beetle, stick insect and cockroach classes
from ImageNet-A.

lipstick, with moderately high similarity. This suggests that the vanilla model is not only biased
regarding the classification task but also incorporates unfair features, arising from societal biases
reflected in the training data.
BAR. Bar presents a more challenging situation, due to the complete absence of bias group anno-
tations. Regardless, the output of our approach still provides insights about the biases captured by
the model. In the training class climbing, scenes where the subject is ascending on rocks, are overly
represented, and thus the vanilla model has wrongfully learned to rely on the presence of rocky
backgrounds. This is reflected by the top three keywords in Fig. 4 (cliff, rock and rocks),
all having similarities above 0.4. Similar considerations can be made on the other classes: pitch,
batter, glove suggest an even stronger bias for the class throwing towards a specific sport, base-
ball, which is also the second most correlated keyword. The same can be said for scuba in the
diving class. Keywords for other classes show slightly lower maxima. Still, we can measure rele-
vant correlations with the presence of cars and circuit races for racing, as well as boats and water
(e.g. rivers, sea) for fishing. Complete outputs of the keyword extraction process are available
in the Supp. Material.

4.3.2 NAMING THE BIAS AT INFERENCE TIME

To evaluate the capabilities of our method in describing potential biases at inference time, we design
a dedicated experiment involving ImageNet-A. In particular, we are interested in finding specific
model failures and extracting an interpretable set of keywords that can guide an expert practitioner
to tackle them. With this aim, we first build an evaluation set as the union of the whole ImageNet-A
dataset with the samples in the validation set of ImageNet-1K sharing the same 200 categories of
ImageNet-A. Then, we run the model in inference over this dataset, collecting Dcorrect and Dmisclass

directly without any additional training. In this experiment, we are not interested in finding dataset-
wise biases, but rather in assessing the behavior of our approach in specific and challenging real-
world scenarios. Hence, we derive a specific case study from the systematic model confusion ob-
tained from its predictions, which could hide the presence of a possible model bias. Another analysis
describing more general DL diagnosing features is provided in the Supplementary Material, while
here we limit the discussion to the model bias perspective.

Our key study (see Fig. 5) involves a subset of four classes: crayfish, rhinoceros beetle, stick insect,
and cockroach. Samples (correctly or incorrectly) classified as crayfish are often placed in a setting
depicting plates, tables, or people eating, thus the bias reflected by the keywords meal and food.
Moreover, crab probably suggests the inability of the model to distinguish between the two closely
related species. At the same time, for the classes stick insect and rhinoceros beetle, several samples
show the creature being held in a person’s hand, often in a vegetation setting (hence the keywords
hand, thumb, ..., plants, foliage). From these observations, we validate the presence of
a possible bias among these classes, for which the source of error is not caused only by the fine-
grained nature of these categories. Additional insights from our analysis of ImageNet categories
can be found in the Supp. Material, including some analysis involving transformer-based Vision
Models.

4.4 MITIGATING THE DISCOVERED BIAS

Starting from the keywords that were extracted to describe potential bias affecting the classification
model, we here validate if the attributes suggested by SaMyNa can be leveraged to improve our
network’s generalization capabilities.
Setup. After bias identification and naming (SaMyNa), we exploit a pre-trained CLIP model as a

9
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Method No Val.Set
in Bias-Id

Unsup. Bias
Named

CelebA (Hair Color) Waterbirds BAR
Average Worst Group Average Worst Group Average

LISA Yao et al. (2022) – ✗ ✗ 92.40 89.30 91.80 89.20 –
GroupDRO Sagawa* et al. (2020) – ✗ ✗ 92.90± 0.20 88.90± 2.30 93.50± 0.30 91.40± 1.10 –

George Sohoni et al. (2020) ✗ ✓ ✗ 94.60 54.90± 1.90 95.70 76.20± 2.00 –
JTT Liu et al. (2021) ✗ ✓ ✗ 88.10 81.50± 1.70 89.30 83.80± 1.20 68.53± 3.29
CNC Zhang et al. (2022b) ✗ ✓ ✗ 89.90 88.80± 0.90 90.90 88.50± 0.30 –
B2T+GDRO Kim et al. (2024) ✗ ✓ ✓ 93.20 90.40± 0.90 91.50 90.70± 0.30 –
ERM ✓ ✓ ✗ 94.90 47.70± 2.10 97.30 62.60± 0.30 51.85± 5.92
LfF Nam et al. (2020) ✓ ✓ ✗ 84.24 81.24± 1.38 91.20 78.00 62.98± 2.76
DebiAN Li et al. (2022) ✓ ✓ ✗ 84.00 52.90± 4.70 – – 69.88± 2.92
SaMyNa (ours) + GDRO ✓ ✓ ✓ 92.20± 0.01 90.60± 0.08 91.20± 0.04 90.70± 0.01 71.30± 0.07

Table 1: Performance of GDRO Debiasing on top of our bias naming pipeline. Column Unsup.
indicates if the method uses ground truth bias information. Best results for unsupervised debiasing
methods are highlighted in bold. No Val.Set in Bias-Id highlights if the method does not rely on a
validation set for inferring subgroups or bias-attributes (green tick, ✓) or it assumes having one (red
cross, ✗). Bias Named indicates if the method extracts semantic names of found bias attributes. BAR
lacks worst-group accuracy due to the absence of bias annotations. Average refers to the unbalanced
test accuracy.

zero-shot classifier Radford et al. (2021) to infer the alignment of each sample towards the bias-
keyword(s) of its target class or not. As a result, we obtain subgroup pseudo-labels, which can then
be leveraged in a state-of-the-art supervised debiasing algorithm (e.g. GroupDRO Sagawa* et al.
(2020)). For each dataset, we employ the following approach: given a training sample (xi, yi),
and the set of keywords found for its class yi, we use CLIP’s image and text encoders to obtain its
embeddings zimg and ztxt. A bias label is then computed for each sample by just annotating if the
zero-shot classification from CLIP corresponds to a bias-keyword from its class or not. Finally, we
plug our set of pseudo-labels in GroupDRO and measure the obtained test performances. In this
stage, we employ the same hyperparameters used in the GroupDRO original implementation for
CelebA and Waterbirds. For BAR, we set the learning rate and weight decay to 5× 10−4 and 10−3

respectively, with a batch size of 128. Group adjustment is set to zero, and α is set to 0.5.
Results. Table 1 outlines the obtained results. Here, we categorized existing work according to
two main factors: (i) Unsupervised (Unsup.), i.e. if the method does not use ground truth bias
information (✓) or it does (✗); (ii) No Val.Set in Bias-Id, to better highlight whether bias information
inference relies on the usage of a validation set with bias annotations. Our semantic bias discovery-
based approach outperforms all the unsupervised methods not employing semantic information. To
the only other work that mines bias-attributes in terms of text keywords (B2T+GDRO), we are still
the best in terms of worst-group accuracy, while being in line concerning average accuracy (but with
more stable results, as indicated by the lower standard deviation). Notably, both our method and
B2T rely on GroupDRO for the final bias mitigation step, therefore our advantage has to be imputed
on a finer semantic bias discovery. Additionally, our method does not rely on any validation set (e.g.
BAR does not have one), and the amount of image captions we require is quite limited, thanks to the
exemplar-mining step described in Sec. 3.2.1, whereas B2T directly captions the entire validation
sets of each analyzed benchmark (For further comparisons with B2T, refer to Sec. G of the Suppl.
Material). This feature allows our Bias-Discovery method to be employed in scenarios where bias
annotations are not present at all, as in BAR.

5 CONCLUSION

In this work, we presented “Say My Name” (SaMyNa), a tool designed to identify and address
biases within deep learning models semantically. Unlike similar methods that generate bias pseudo-
labels without clear semantic information, SaMyNa offers a text-based pipeline that enhances the
explainability of the bias extraction process from the model. Our approach, validated on well-
known benchmarks, proved its effectiveness by both providing the keywords encoding the bias and
assigning an interpretable score telling how much the model under analysis is biased to the found
attribute. SaMyNa proposes itself not only as a post-hoc analysis tool: through its bias mining
approach, it can determine the specific moment the model might be fitting a bias, for which there is
in principle no need for a validation set to mine and name the bias. SaMyNa’s ambition is to self-
establish as a foundational tool in making deep learning models more transparent and fair, offering
practical solutions for the scientific community and end-users alike.
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Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013 conference of the north american chapter of the
association for computational linguistics: Human language technologies, pp. 746–751, 2013.

Yifei Ming, Hang Yin, and Yixuan Li. On the impact of spurious correlation for out-of-distribution
detection. In Proceedings of the AAAI conference on artificial intelligence, volume 36, pp. 10051–
10059, 2022.

Ron Mokady, Amir Hertz, and Amit H. Bermano. Clipcap: Clip prefix for image captioning, 2021.
URL https://arxiv.org/abs/2111.09734.
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SUPPLEMENTARY MATERIAL

A ANOTHER CASE STUDY FOR IMAGENET-A: nails VS mushrooms
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Figure 6: Similarity scores for the nails and fungi classes from ImageNet-A.

Besides the study provided in Sec. 4.3.2 of the main paper, we present here another case study on the
ImageNet-A dataset, comparing two other critical classes: nails and mushrooms. Indeed, also for
this case, the tested ResNet-50 model presents a big error between these two classes: is there a bias
involved? Running our SaMyNa (Fig. 6), we observe that indeed there is a big correlation towards
certain concepts for the nails class; however, these hardly resemble biases, but rather features of the
target class. Indeed, we can easily imagine that concepts like metal, frame, or rusted can be
easily associated with the target nails class. At this point, where is this big confusion arising from?
The answer comes from a visual inspection of the samples, wherein multiple cases the shape factor
of the two classes is extremely similar (both show a bulge on top and a thinner body underneath),
making the classification task harder. In this case, we deduce that the model simply was unable to
properly fit the two classes because of a lack of samples in the training set.

B ABLATION STUDY

B.1 ABLATIONS ON THE BIAS MINING STEP
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Figure 7: Output distributions Waterbirds target class from the ResNet-50 trained on Waterbirds at
early stages (epoch 1, left), at extraction time t∗ (epoch 6, center) and in the final stage (epoch 10,
right).

In this section, we provide visualizations on the output distributions on the Waterbirds target when
training a ResNet-50 on Waterbirds in the same setup as described in Sec. 4.1. Fig. 7 proposes
visualizations of the output distributions for the bias-target aligned samples in blue (waterbirds and
sea landscape), and bias-target conflicting samples in orange (waterbirds and ground landscape),
in three different moments of the training: in the early stages (at t = 1, on the left, where t is
the training epoch), at the chosen bias extraction time t∗ (t = 6, at the center) and in the final
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stages (t = 10, on the right). We recall that the entire bias extraction process happens directly
on the training set Dtrain and does not require the employment of a validation/test set. We observe
here that, at extraction time, there is an evident separation between bias-aligned and bias-conflicting
samples, and we are able to confidently isolate the most biased among the conflicting samples (the
orange distribution having a larger population below the random guess threshold). This does not
hold in case the extraction time is delayed, with the bias-conflicting distribution not exhibiting a
peak anymore.

B.2 ABLATION ON BIAS NAMING

B.2.1 ABLATION ON TEXT EMBEDDERS

Embedding Model Target Keyword (value)

DistilRoberta

Landbirds tree (0.26647)

Waterbirds
marine (0.39470), ocean (0.36495), seagull (0.34526), coastal
(0.34340), boat (0.33371), beach (0.33185), sea (0.31782), shore-
line (0.30433), sandy (0.24345), waves (0.21502)

All-MiniLM-L12-v2

Landbirds
tree (0.34342), forest (0.31474), trees (0.30727), shrubs
(0.28954), foliage (0.28264), vegetation (0.25404), branch
(0.25149), leaves (0.21209)

Waterbirds

sea (0.41955), ocean (0.37026), boat (0.35566), tide (0.34441),
seagull (0.32581), flight (0.28337), waves (0.28000), coastal
(0.27740), shoreline (0.25667), lake (0.23938), beach (0.23500),
marine (0.22872)

MPNET

Landbirds
tree (0.38796), trees (0.32103), forest (0.30468), shrubs
(0.25183), foliage (0.21930), branch (0.21547), bamboo
(0.20619)

Waterbirds

sea (0.39526), ocean (0.33487), beach (0.33385), shoreline
(0.33176), waves (0.32562), lagoon (0.31923), coastal (0.30199),
boat (0.26389), marine (0.24594), seagull (0.22533), water
(0.20007)

NOMIC

Landbirds small (0.24587), forest (0.21252), branch (0.20939)

Waterbirds

sea (0.29738), ocean (0.28037), shoreline (0.27531), waves
(0.27215), beach (0.25334), coastal (0.24178), tide (0.23727),
seagull (0.22728), boat (0.22523), lagoon (0.21229), lake
(0.20453), marine (0.20336)

AlBERT

Landbirds
tree (0.39055), branch (0.34739), trees (0.34374), forest
(0.32672), shrubs (0.29123), vegetation (0.28895), foliage
(0.28274), bamboo (0.25158), left (0.21710), leaves (0.21549)

Waterbirds

beach (0.41926), ocean (0.39030), sea (0.38636), shoreline
(0.35808), waves (0.35194), tide (0.34131), coastal (0.33961),
marine (0.30102), sandy (0.28278), midflight (0.27492), boat
(0.27448), seagull (0.25469), water (0.24652), lagoon (0.22010),
flight (0.20572)

Table 2: Ablation study on Waterbirds, where we analyze the impact of employing a diverse encoder
for SaMyNa.

In this subsection, we are interested in tasting SaMyNa with more diverse models for the textual
embedding, in an attempt to check the generality of the proposed approach. We provide, in Tab. 2,
the results obtained with five other popular textual embedding models. From our results, we can
clearly see that when employing any of the tested models we are able to find back the two typical
biases from waterbirds. We observe though that bigger encoders provide higher similarity scores
(MPNET and AlBERT) , while smaller ones show lower scores, typically for the bias associated
with landbirds. We can explain this to the higher complexity of capturing more diverse features
associated with ground environments rather than maritime ones, requiring a higher capacity from
the encoder. This pushes us to use, in the agnostic setup where we place ourselves, to use a large
generic encoder.
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B.2.2 ABLATION ON fmin

We propose here, in Tab. 3, the results we obtain for varying values for the hyperparameter fmin,
i.e. the minimum frequency with which a keyword has to appear so that it can be considered as a
possible output. What is possible to observe is that the higher fmin the fewer and fewer keywords
will be selected, and at some point, one class will be wrongfully marked as not holding a bias (with
fmin = 0.60). On the other hand, when not employing filtering at all (fmin = 0), a lot of more fine-
grained classes like coniferous or brownish arise. We find the chosen threshold (fmin = 0.15)
a fair compromise. As a sanity check, we also observe no change in the score for the remaining
keywords.

fmin = 0.0

Landbirds Waterbirds

tree 0.36 sea 0.53
shrubs 0.35 ocean 0.51
forest 0.34 beach 0.45
branch 0.33 waters 0.43
deciduous 0.33 shoreline 0.42
foliage 0.33 shore 0.41
branches 0.32 sailing 0.40
twigs 0.32 aquatic 0.40
trees 0.32 harbor 0.39
stalks 0.31 tide 0.39
forested 0.31 ship 0.38
plants 0.30 pier 0.38
plant 0.30 coastal 0.37
wooded 0.30 beachfront 0.37
leafy 0.29 coastline 0.36
woodland 0.27 water 0.33
vegetation 0.26 sailboat 0.32
brownishgray 0.24 marine 0.32
coniferous 0.24 boat 0.31
greenery 0.23 submerged 0.31
leafless 0.23 pond 0.30
brownishgrey 0.23 lagoon 0.29
leaves 0.22 waves 0.28
grasses 0.22 vessel 0.28
brownish 0.21 swimming 0.28
stalk 0.21 motorboat 0.27

midflight 0.27
boathouse 0.27
lake 0.27
wake 0.26
wave 0.26
flying 0.26
boating 0.26
dock 0.25
river 0.25
reef 0.25
watermark 0.23
cranes 0.23
gliding 0.22
fish 0.22
seagulls 0.22
hull 0.20
flight 0.20

fmin = 0.1

Landbirds Waterbirds

tree 0.36 sea 0.53
shrubs 0.35 ocean 0.51
forest 0.34 beach 0.45
branch 0.33 shoreline 0.42
foliage 0.33 shore 0.41
branches 0.32 tide 0.39
trees 0.32 coastal 0.37
stalks 0.31 water 0.33
forested 0.31 marine 0.32
plants 0.30 boat 0.31
wooded 0.30 submerged 0.31
vegetation 0.26 lagoon 0.29
coniferous 0.24 waves 0.28
greenery 0.23 midflight 0.27
leaves 0.22 lake 0.27

river 0.25
flight 0.20

fmin = 0.15

Landbirds Waterbirds

tree 0.36 sea 0.53
shrubs 0.35 ocean 0.51
forest 0.34 beach 0.45
branch 0.33 shoreline 0.42
foliage 0.33 tide 0.39
trees 0.32 coastal 0.37
vegetation 0.26 water 0.33
greenery 0.23 marine 0.32
leaves 0.22 boat 0.31

lagoon 0.29
waves 0.28
midflight 0.27
lake 0.27
flight 0.20

fmin = 0.30

Landbirds Waterbirds

forest 0.34 ocean 0.51
branch 0.33 beach 0.45
trees 0.32 coastal 0.37
leaves 0.22 water 0.33

waves 0.28
midflight 0.27
lake 0.27
flight 0.20

fmin = 0.45

Landbirds Waterbirds

branch 0.33 water 0.33
waves 0.28
flight 0.20

fmin = 0.60

Landbirds Waterbirds

water 0.33

Table 3: Ablation study on Waterbirds, where we analyze the impact of the threshold for the fre-
quency for the found keywords (fmin).

B.2.3 ABLATION ON k

We present here the ablation on k, that selects the cardinality of aligned and conflicting samples
per class. Fig. 8 reports the study for 5 most occurring keywords in the cases under exam, while
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Figure 8: Ablation study on Waterbirds, where we analyze the impact of k that selects the cohort of
images to extract keywords from.

the full results are later reported in Table 23. In the general case, we observe that for lower values
of k the similarity score is in general lower, evidencing that the information extraction process is
less accurate due to a general lack of information (and in general variety). This trend is particularly
evident in more generic keywords like forest, trees, and beach. Finer-grained keywords like
foliage and waves show a more irregular trend due to the specific sample selection. Overall
we find that a fair compromise between performance and complexity is given by the intermediate
k = 10 for which some keywords like trees reach a high value standing constant for higher values
of k. We highlight that maintaining k at bay reduces the number of comparisons to perform, given
that they grow quadratically.

B.2.4 ABLATION ON tsim

In this ablation study, we provide an example of the keywords resulting from SaMyNa when not
employing any thresholding on the minimum similarity values for the found keywords. In Tab. 4,
we provide the full output only for landbirds, due to the excessive length of the unfiltered output.
However, this is not an issue because SaMyNa, when applied to binary classification, possesses
a mathematical property that guarantees symmetrical keyword rankings for the two classes. Con-
sequently, the keyword ranking for waterbirds is simply the inverse of the ranking for landbirds.
Nevertheless, we provide the full list of the resulting keywords as a text file, available in the sup-
plementary materials zip archive (keywords ablation tsim.txt). From an analysis of the
emerging keywords, we observe three interesting intervals of values. High similarity values indicate
those concepts that correlate well specifically with the learned class (filtered from the target class)
and are those presented in the paper. Concepts whose similarity is close to zero are not correlated:
indeed, we can find keywords like long, muted, and given that are neutral concepts. Interest-
ingly, we can also identify concepts like background and environment that are super-classes
of the two biases. This confirms that SaMyNa works properly since it puts itself in the best spot to
best discriminate the two biases. Finally, the third region is for negatively correlated concepts (anti-
correlated), where we easily find the concepts correlated with the other class (waterbirds) given that
we are in a binary classification task.

B.2.5 ABLATION ON fmin, tsim , AND K

In this ablation study, we show the compound effect of the fmin, tsim, and K hyperparame-
ters. By setting fmin = 0, tsim = −1 we effectively disable filtering. We also set K = 50
since it is the maximum value of K we tried, and will produce more captions, and, by exten-
sion, more keywords. Tab. 5 shows the results for both classes of Waterbirds. Due to space
constraints we show only the top keywords. The total number of keywords ranked for each
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Use of tsim Keyword (value)

tsim = −1 (Landbirds)

tree (0.36349), shrubs (0.35333), forest (0.34249), branch (0.33068), foliage (0.32688), trees

(0.31639), vegetation (0.25899), greenery (0.23251), leaves (0.22270), rounded (0.17975),

bamboo (0.16404), green (0.16104), nature (0.14898), species (0.14680), brown (0.14534),

small (0.13999), black (0.13964), gray (0.13468), natural (0.12627), habitat (0.12563), yel-

low (0.12454), bird (0.11301), patch (0.11042), perched (0.10776), soft (0.10717), neck

(0.10514), lush (0.10440), slightly (0.09828), trunks (0.09826), standing (0.09586), color

(0.09571), colors (0.09523), dark (0.09419), darker (0.09084), feet (0.09080), wildlife

(0.08827), turned (0.08459), looking (0.07803), facing (0.07712), ecosystem (0.07514),

palette (0.07354), lighter (0.07160), orange (0.07136), lighting (0.07126), position (0.06891),

left (0.06699), markings (0.06692), positioned (0.06294), vibrant (0.05924), beak (0.05871),

slender (0.05838), round (0.05730), side (0.05356), calm (0.05190), bright (0.04925), ver-

tical (0.04921), pointed (0.04911), ground (0.04846), short (0.04838), red (0.04834), floor

(0.04783), suggests (0.04622), blue (0.04544), tones (0.04530), passerine (0.04368), area

(0.04230), plumage (0.04097), surrounding (0.04089), thin (0.03906), fallen (0.03622), gives

(0.03523), birds (0.03506), main (0.03480), predominantly (0.03343), distinctive (0.03313),

setting (0.03305), features (0.03300), giving (0.03169), found (0.03098), elements (0.03031),

light (0.02905), type (0.02880), structures (0.02876), tall (0.02846), covered (0.02709),

tail (0.02559), open (0.02540), feathers (0.02521), eyes (0.02402), appears (0.02250), sug-

gesting (0.02136), indicating (0.02100), consists (0.02100), scattered (0.01934), wingtips

(0.01928), gently (0.01406), subject (0.01349), might (0.01296), reflects (0.01232), possi-

bly (0.01221), peaceful (0.01160), tranquil (0.01087), thriving (0.01059), sense (0.00703),

presence (0.00641), tranquility (0.00393), tropical (0.00369), characterized (0.00365), sug-

gest (0.00195), muted (0.00093), back (0.00062), seems (-0.00001), legs (-0.00070), near (-

0.00084), towards (-0.00113), background (-0.00193), effect (-0.00199), eye (-0.00500), point

(-0.00510), likely (-0.00543), providing (-0.00555), bare (-0.00591), given (-0.01045), envi-

ronment (-0.01051), deep (-0.01359), visible (-0.01432), right (-0.01460), either (-0.01469),

moment (-0.01475), could (-0.01496), long (-0.01563), dense (-0.01603), across (-0.01712),

large (-0.01920), fully (-0.02127), focal (-0.02175), appear (-0.02263), creating (-0.02425),

shows (-0.02666), healthy (-0.02720), cloudy (-0.02783), prominent (-0.02938), various (-

0.03056), conditions (-0.03063), camera (-0.03170), photo (-0.03228), viewer (-0.03262),

head (-0.03315), buildings (-0.03439), composition (-0.03512), overall (-0.03523), day (-

0.03579), depicts (-0.03646), midst (-0.03986), daytime (-0.04005), focus (-0.04202), along (-

0.04251), typical (-0.04274), taking (-0.04317), sunny (-0.04389), drawing (-0.04575), blurred

(-0.04678), foreground (-0.04908), activity (-0.04970), contrast (-0.05024), wings (-0.05129),

landscape (-0.05249), surroundings (-0.05353), packed (-0.05497), white (-0.05643), beauty (-

0.05706), movement (-0.05968), weather (-0.06107), image (-0.06449), one (-0.06574), atten-

tion (-0.06792), captured (-0.06949), taken (-0.06966), extended (-0.06995), scene (-0.07093),

view (-0.07824), clearly (-0.08422), atmosphere (-0.08640), mix (-0.08732), food (-0.08997),

body (-0.09025), serene (-0.09172), similar (-0.09231), distance (-0.09281), backdrop (-

0.09946), clouds (-0.10134), dynamic (-0.10504), surface (-0.10775), captures (-0.11025),

overcast (-0.11541), world (-0.12448), sky (-0.12458), picturesque (-0.12616), horizon (-

0.14756), clear (-0.15543), sandy (-0.15546), landing (-0.17462), seagull (-0.19202), flight

(-0.20084), lake (-0.26879), midflight (-0.27087), waves (-0.28129), lagoon (-0.28892), boat

(-0.31066), marine (-0.31538), water (-0.32785), coastal (-0.37410), tide (-0.38738), shoreline

(-0.41605), beach (-0.45110), ocean (-0.51175), sea (-0.52685)

Table 4: Ablation study on Waterbirds, where we analyze the impact of the threshold for the simi-
larity score (tsim) for the class landbirds.

class is 1547 and the full result can be consulted in the supplementary materials zip archive
(keywords ablation all hyperparams.txt).
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C SAMYNA ON AN UNBIASED DATASET

0.2 0.3 0.4 0.5
s(k,c)

plumage

feathers

Landbirds

0.2 0.3 0.4 0.5
s(k,c)

seagull

coastal

sea

Waterbirds

Figure 9: Ablation study on Waterbirds, where we balance the two classes, a-priori removing the
bias.

We propose here a study on a virtually balanced version of the Waterbirds dataset. Fig. 9 reports
the results in a graphical form, while Tab. 22 in a later section reports the numerical values. While
we should have a-priori removed the bias by balancing the dataset, resulting in a general, massive
reduction of the similarity scores, we still observe some mild correlations arising, especially for
the waterbirds class. Specifically, besides the seagull keyword evidencing a (potential) higher
presence of seagulls in the data split, we still see some concepts like coastal and sea correlating
with the learned class. This is expected: given that these features are easy to learn, the model
still captures them, but the low similarity score indicates that it does not heavily rely on them.
This shows that, despite balancing the dataset, some biased features can still permeate through the
model, depending on how easy they are to capture. This further motivates our work, focusing on
model debiasing rather than dataset debiasing. The presence of plumage of feathers keywords
for landbirds indicates a potential feature for this specific class, and the very low correlation does
not pose a big bias threat.

D BIAS DISCOVERY ON VISION TRANSFORMER MODELS

We present here a study on two popular pre-trained Vision Transformers architectures: ViTb-16 and
Swin-V2. Tab. 6 reports the outcome of SaMyNa for the classes crayfish, rhinoceros beetle, stick
insect and cockroach of ImageNet-A. Despite the potential of generalization for these architectures,
we are still able to observe, although with different magnitudes, some biases. Regarding ViTb-16,
the class crayfish is still associated with meal and cockroach is associated with floor: interest-
ingly the impact of hand for the stick insect is heavily reduced compared to the ResNet model,
while with the introduction of sliding windows it goes back up for Swin-V2. In general, we no-
tice that these architectures, although still suffering from bias, are less prone to it, probably due to
finer training enhanced by larger parametrization combined with the self-attention mechanism they
embody.

E VISUAL FEEDBACK

For visualization purposes only, SaMyNa can leverage a visual encoder instead of a text encoder
to identify the part of the image where the potential bias is located. To do this, we adopt the same
strategy described in Sec. 3.2.4 to generate the learned class embeddingsE∗(c) directly using image
embeddings generated with CLIP’s visual encoder Radford et al. (2021)4. We can then compare
E∗(c) with the embeddings of patches from the image we want to analyze. Fig. 10a and Fig. 10b
highlight (in red) that the most salient feature is the tree for the landbird, while it is the sea for
the waterbird: the model under exam does not focus on the birds but rather on the background,
coherently with what we have observed in Sec. 4.3.1.

4https://huggingface.co/sentence-transformers/clip-ViT-L-14
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(a) Image classified as landbird: the bias feature is in the tree’s branches.

(b) Image classified as waterbird: the bias feature is the sea.

Figure 10: Bias heatmaps generated with SaMyNa using CLIP’s vision encoder Radford et al. (2021)
on Waterbirds.
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Class Keyword (value)

Landbirds

forest (0.37326), foliage (0.37124), shrubs (0.36617), deciduous (0.35358), tree (0.35058),

forested (0.34944), twigs (0.34178), stalks (0.33679), wooded (0.33528), plants (0.33146),

leaf (0.33143), woodland (0.32835), plant (0.32778), trees (0.32101), branch (0.31242), leafy

(0.30757), vegetation (0.30122), fern (0.29482), ferns (0.29417), pine (0.29382), branches

(0.29285), jungle (0.28948), woodpecker (0.28427), evergreens (0.28349), lilies (0.26924),

evergreen (0.26723), grasses (0.26579), flora (0.26248), garden (0.26248), brownishblack

(0.25752), brownishgray (0.25395), coniferous (0.25326), twig (0.25266), leaves (0.24210),

brownishgrey (0.24178), leafless (0.23821), lichen (0.23721), cultivated (0.23228), meadow

(0.23000), undergrowth (0.22943), driftwood (0.22929), brownish (0.22868), greenery

(0.22802), greenishblack (0.22562), stalk (0.22101), bark (0.21466), grove (0.21376), greyish

(0.20718), blackbird (0.20627), wood (0.19627), redwoods (0.19363), wildflower (0.19303),

greenishbrown (0.19213), moss (0.19205), trunk (0.19026), grayishbrown (0.18905), green-

ishyellow (0.18752), seeds (0.18637), bamboolike (0.17961), stripe (0.17889), stripes

(0.17887), squirrel (0.17485), reddishbrown (0.17260), rounded (0.17222), yellowishgreen

(0.17070), green (0.16889), hunting (0.16734), trail (0.16718), grass (0.16713), greenish

(0.16563), stem (0.16458), grassland (0.16286), brown (0.16143), bamboo (0.16072), habi-

tat (0.15888), fence (0.15749), grayishblack (0.15692), wooden (0.15679), bloom (0.15548),

species (0.15385), broadleafed (0.15363), yellowishbrown (0.15172), rural (0.15167), lin-

ing (0.15158), foraging (0.15140), greenishblue (0.15121), shaded (0.15096), yellowish

(0.14973), grayish (0.14877), crouching (0.14802), striped (0.14795), pouch (0.14582), ruffled

(0.14575), songbird (0.14521), songbirds (0.14500), biodiversity (0.14497), agile (0.14429),

ears (0.14411), litter (0.14373), nature (0.14291), cracks (0.14155), nesting (0.13882), flowers

(0.13817)

Waterbirds

sea (0.57176), ocean (0.56346), seas (0.54325), beach (0.50411), seaside (0.49274), water-

craft (0.45897), waters (0.45848), seascape (0.45239), shoreline (0.44961), shore (0.44412),

tide (0.44050), coast (0.43822), coastal (0.42281), maritime (0.41680), aquatic (0.41262), pier

(0.40740), sailing (0.40685), beachfront (0.40225), harbor (0.39950), coastline (0.39708),

ships (0.37315), marina (0.37144), water (0.36510), ship (0.35923), waves (0.34343), wa-

terfront (0.34084), marine (0.32861), sails (0.31933), boats (0.31620), sailboat (0.31366),

wave (0.31221), floating (0.30932), lagoon (0.30155), submerged (0.29920), swim (0.29753),

bay (0.29548), wet (0.29291), pond (0.29052), whale (0.28699), swimming (0.28541), surf-

board (0.28261), wake (0.27740), boat (0.27665), midflight (0.27397), cliffs (0.27336),

fish (0.27117), dock (0.27024), reef (0.26725), glide (0.26585), lake (0.26331), vessel

(0.25468), sand (0.25399), river (0.25284), flying (0.25184), seagulls (0.24805), boathouse

(0.24752), pacific (0.24669), cranes (0.24276), watermark (0.24022), surfing (0.23908), fluid

(0.23850), pool (0.23368), docked (0.22785), motorboat (0.22620), seagull (0.22198), boat-

ing (0.21686), soaring (0.21171), hull (0.21147), coral (0.21051), island (0.20324), strait

(0.20151), skyline (0.19948), sandy (0.19563), gliding (0.19526), paddleboarding (0.19393),

jetty (0.18614), float (0.18407), lakeside (0.18301), islands (0.17514), seabirds (0.17263),

flight (0.17119), midair (0.17063), landing (0.17029), clear (0.16458), dive (0.16369), horizon

(0.16368), waterfowl (0.15734), docking (0.15089), extreme (0.15039), seabird (0.14445),

screensaver (0.14153), ripples (0.14057), picturesque (0.13896), whimsy (0.13849), damp

(0.13590), inflated (0.13585), floats (0.13464), motion (0.13384), immersed (0.13378), flow-

ing (0.13237), mirrorlike (0.13182), cityscape (0.13109), fly (0.13057), air (0.13029), white-

capped (0.12935), balloon (0.12932), overcast (0.12896), soars (0.12856), world (0.12841)

Table 5: Ablation study on Waterbirds, where we analyze simultaneously the impact of tsim, fmin,
and K. Filtering is disabled by setting tsim = −1 and fmin = 0. We use K = 50 to generate more
captions and, as a consequence, more keywords.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Tested architecture Target Keyword (value)

ViTb-16

Crayfish crab (0.41234), meal (0.36249), crustacean (0.27688), food
(0.26259), plate (0.20828)

Rhinoceros Beetle insect (0.26927), tree (0.26825),

Stick Insect
plant (0.43678), garden (0.34558), leaves (0.32101), greenery
(0.26056), tree (0.23140), thumb (0.23000), hand (0.22839),
green (0.22577), grasshopper (0.22324), cricket (0.21173),

Cockroach

floor (0.33605), dark (0.32662), debris (0.28657), darker
(0.26946), lighting (0.25669), black (0.24747), markings
(0.23064), color (0.21767), surface (0.21696), colors (0.21068),
insect (0.20682)

Swin-V2 B

Crayfish lobster (0.56152), crab (0.42682), aquatic (0.34159), water
(0.23999)

Rhinoceros Beetle darkcolored (0.25085), greenery (0.24698), park (0.24086), black
(0.23795), colors (0.20523), color (0.20430), nature (0.20135)

Stick Insect plant (0.32613), hand (0.32460), finger (0.27872), garden
(0.26617), leaves (0.25800), greenery (0.21344)

Cockroach floor (0.28899), shadows (0.22149), insect (0.21984), debris
(0.20011)

Table 6: Testing pre-trained Vision Transformer architectures on crayfish, rhinoceros beetle, stick
insect and cockroach classes from ImageNet-A.
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Keywords ClipCap LLaVA 34b
old/oldest 0.04% 2.00%

middle-age/middle-aged 0.00% 4.50%
young/youngest 0.86% 10.0%

blond/blonde 0.02% 49.0%
smile/smiling/smiles 1.89% 58.0%

tie 0.05% 2.00%
eyeglasses/glasses/sunglasses 0.69% 3.00%

beard 1.70% 4.50%
mustache 0.25% 3.50%
makeup 1.27% 61.0%

man/male 9.26% 22.0%
woman/female 2.21% 71.5%

hat/hats 0.84% 2.00%
earring/earrings 0.02% 14.5%

necklace 0.02% 8.50%

Table 7: The table shows the percentage of captions that contain keywords related to CelebA at-
tributes, both for ClipCap and LLaVA-34B. As can be seen, LLaVA-34B is able to capture much
more attributes from CelebA’s images. Thus, ClipCap is not suitable for detecting biases other than
“man” on CelebA.

F COMPARISON OF DIFFERENT CAPTIONERS

We perform a comparison between different captioners, notably with ClipCap (Mokady et al., 2021)
as it has been recently used by related works (Kim et al., 2024). First of all, we are interested in eval-
uating whether ClipCap can be used to detect biases on CelebA, and how it compares to LLaVA-34b.
For this, we report in Tab. 7 the percentage of captions that contains keywords related to CelebA’s
attributes. As can be seen, ClipCap detects these concepts very rarely, except for “man”, which
is detected in 10% of the images. LLaVA-34b, on the other hand, detects these keywords much
more frequently, for example it detects “man” in 22% of the images, while “woman” is detected in
71.5% of the images (totaling 93.5% detection for gender related keyword, compared to ClipCap’s
11.47%). This is a consequence of ClipCap’s short captions, that cannot capture enough information
from the images. ClipCap’s caption are 9 words long on average, while LLaVA’s are 137 words long
on average. Finally, we show a qualitative comparison of ClipCap’s and LaVA’s caption in Tab. 8
and Tab. 9.
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Image ClipCap LLaVA-34B
actor with a weight of kg and a feet
size of 9 in favorite outfit & cloth-
ing style.

The image is a close-up portrait of
a woman with fair skin and light-
colored hair. Her hair is styled
in a side-swept manner, with some
strands falling over her forehead.
She has a neutral expression on her
face and is looking directly at the
camera. The woman is wearing
makeup, including eyeliner and lip-
stick, which accentuates her fea-
tures. She has a small earring visi-
ble in her left ear. The background
of the image is plain and does
not provide any additional context
about the location or setting. The
lighting on the subject is soft and
even, highlighting her facial fea-
tures without creating harsh shad-
ows. The style of the image sug-
gests it could be from a red carpet
event or a formal photoshoot, given
the subject’s attire and the profes-
sional quality of the photograph.

actor was a popular actor and co-
median.

The image is a portrait-style photo-
graph of a man. He appears to be
middle-aged with short, dark hair
and a fair complexion. The man is
wearing a patterned shirt with hor-
izontal stripes in various colors, in-
cluding red, white, and black. He
has a slight smile and is looking
directly at the camera. The back-
ground is a solid, light blue color,
providing a neutral backdrop that
contrasts with the subject. There
are no visible texts or distinguish-
ing marks on the image that pro-
vide additional context or informa-
tion about the location or the iden-
tity of the man. The style of the
image is straightforward and seems
to be a standard headshot or por-
trait commonly used for identifica-
tion or promotional purposes.

Table 8: Comparison of captions generated by ClipCap and LLaVA-34B on CelebA. The images to
caption were selected randomly.
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Image ClipCap LLaVA-34B
actor is the face of beauty. The image is a close-up portrait

of a woman with a soft, natu-
ral appearance. She has long,
wavy blonde hair that falls over her
shoulders. Her facial features are
symmetrical, with a straight nose,
full lips, and clear skin. Her eyes
are a light color, possibly blue or
green, and she is looking directly
at the camera with a gentle expres-
sion. The woman’s makeup is sub-
tle, enhancing her natural beauty
without appearing overly dramatic.
The background of the image is
a solid, neutral color, providing
a clean and uncluttered backdrop
that allows the focus to remain
on the woman. The lighting in
the photograph is soft and even,
which contributes to the gentle and
approachable look of the subject.
There are no visible texts or lo-
gos in the image, and the style of
the photograph suggests it could
be used for a variety of purposes,
such as a professional headshot, a
beauty advertisement, or a personal
portrait. The image does not pro-
vide any additional context about
the location or setting, as the focus
is solely on the woman’s face and
upper body.

actor with her hair in a bob. The image is a close-up portrait of
a woman with a smiling expres-
sion. She has short, dark hair and is
wearing makeup that includes dark
eyeliner and eyeshadow, as well as
what appears to be a light founda-
tion or powder on her face. Her
lips are slightly parted, and she is
looking directly at the camera. The
woman is wearing a black garment
that is not fully visible in the frame.
The background is blurred, but it
suggests an indoor setting with ar-
chitectural features such as arches
and what might be a stone or brick
wall. The lighting on the subject
is bright, highlighting her features
and the contours of her face. The
style of the image is a standard por-
trait with a focus on the subject’s
face and expression. There are no
visible texts or logos in the image.

Table 9: Comparison of captions generated by ClipCap and LLaVA-34B on CelebA. The images to
caption were selected randomly.
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Method Captioning Time (LLAVA 34B)
SaMyNa (K=1) 17 minutes
SaMyNa (K=5) 86 minutes
SaMyNa (K=10) 3 hours
SaMyNa (K=25) 7 hours
SaMyNa (K=50) 14 hours

B2T 60 days

Table 10: Comparison of captioning runtime between SaMyNa (for different values of K) and
B2T using LLaVA-34B on CelebA. B2T must caption the whole validation set of CelebA, which is
composed of about 19k images, while SaMyNa uses bias-mining to select a sample of K ∗ C ∗ 2
images, where C is the number of classes. By default, SaMyNa uses K = 10, for a total of 40
samples on CelebA.

G COMPARISON WITH B2T

In this section, we provide a more in-depth comparison with the B2T algorithm proposed by
Kim et al. (2024). B2T is relevant to our work, as it shares the same goal of extracting human-
interpretable descriptions of potential biases affecting visual models. The key differences between
SayMyNa and B2T can be summarized as follows:

• SayMyNa does not require a validation set for bias discovery, in contrast to B2T;

• SayMaNa can extract few candidate exemplars directly from the training set thanks to the
Bias Mining step.

This represents a key aspect in unsupervised bias discovery and mitigation, as in a realistic scenario
a validation set comprising conflicting samples is rarely available (like in BAR or BFFHQ). Besides,
B2T requires captioning the entire validation set in order to extract relevant biases from conflicting
samples. In contrast, SayMyNa is much more efficient and allows for the usage of larger and more
accurate captioners such as LLaVa-34B (see Sec. F for a comparison between ClipCap and LLaVa-
34B).

Why B2T cannot leverage better captioners while SayMyNa can The quality of extracted key-
words directly depends on the quality of the captioner. B2T is forced to employ smaller and quicker
captioners such as ClipCap, which, however, provides less accurate captions when compared to
models such as LLaVa-34B. Tab 10 shows the time required for SaMyNa and B2T on the CelebA
dataset using LLaVa-34B on an NVIDIA A40 equipped with 48 GB, tested on batch size 5.

Why B2T requires a full validation set and SayMyNa does not To showcase of B2T requires
a large enough validation set in order to extract accurate keywords, we compare the keywords ex-
tracted by SayMaNa and B2T with varying sample size. The results are presented in Tab. 11. We
highlight cases in which the relevant keyword was ranked higher than the other method. The results
clearly show that our method, which leverages the bias mining step, is consistently more accurate
than B2T in extracting the right keywords. Furthermore, keep in mind that B2T keywords need
to be inverted as reported in the original paper (e.g. woman → man), thus for K=1, B2T actually
predicts the opposite bias. This is straightforward for a binary attribute such as CelebA’s gender, but
not obvious when more than two biases are present in the training set. For completeness of results,
we report the full ranking of both algorithms for all values of K, in Tab. 12 (K=1), Tab. 13 (K=5),
Tab. 14 (K=10), Tab. 15, Tab. 15, and Tab. 16.

Difference in keyword filtering An important novelty of SayMyNa is that it can find an embed-
ding vector that represents the bias of the model in a certain class. This embedding vector is found
by doing arithmetic operations between the embeddings of the captions as explained in the paper.
This means that we solve the problem of synonyms. In B2T there is a heavy filtering step before the
ranking of the keywords that uses the YAKE keyword extraction algorithm. YAKE does not take
into account the semantics of words, which means that it may filter out synonyms if they do not reach
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Class Method Expected K=1 K=5 K=10 K=25 K=50

Blond B2T man woman (6th) N/A N/A N/A N/A
SaMyNa woman N/A woman (6th) woman (1st) woman (5th) woman (1st)

Not Blond B2T woman N/A woman (5th) woman (3rd) woman (5th) woman (4th)
SaMyNa man male (1st) male (1st) man (1st) man (1st) man (1st)

Table 11: Comparison between SaMyNa and B2T using the same captioner (LLaVA-34B) and using
an equally sized subsample of CelebA’s validation set. The number of sample images is K ∗ 4. For
B2T we selected K random images for the correctly classified, and K for the incorrectly classified
examples of each class. For SaMyNa we use our subsampling algorithm. B2T’s expected answer
is the opposite of SaMyNa’s. We show the position in the ranking of gender keywords. For both
algorithms, the default filtering method is used, except for SaMyNa, where we don’t filter the target
class since it’s also not filtered by B2T. As can be seen, SaMyNa detects the bias for “not blond”
every time, while for the “not blond” class fails only for K = 1. B2T on the other hand detects the
bias for the “not blond” class 4 times out of 5 with worse ranking positions than SaMyNa, while for
the “blond” class it never detects the bias, and for K = 1 it’s answer is the opposite of the expected
answer.

Blond (B2T) Blond (SaMyNa) Not blond (B2T) Not blond (SaMyNa)

Keyword CLIP Score Keyword Cosine Similarity Keyword CLIP Score Keyword Cosine Similarity

wavy 1.844 earrings 0.27081 blonde hair 1.594 male 0.32069
fair complexion 1.781 makeup 0.26793 grass 0.24336

close-up 1.609 blonde 0.21713 subject 0.23409
close-up photograph 1.5625 lipstick 0.20272 environment 0.21606
neutral expression 1.375 eyeshadow 0.20149 camera 0.21347

woman 1.078 capturing 0.21132
complexion 0.7344 mood 0.20288
lips slightly 0.4688

complexion and long 0.375
lips slightly parted 0.375

hair 0.2812

Table 12: Full keyword rankings of B2T and SaMyNa for the results shown in Tab. 11 with K = 1.
As can be seen, while SaMyNa fails for the “blond” class, it detects keywords that still make sense
like “makeup”, “earrings”, and “lipstick”, which are usually associated with woman. While B2T
fails in a worse way, since it’s answer is the polar opposite of the expected one (it should answer
male). B2T also fails for the “not blond” class.

Blond (B2T) Blond (SaMyNa) Not blond (B2T) Not blond (SaMyNa)

Keyword CLIP Score Keyword Cosine Similarity Keyword CLIP Score Keyword Cosine Similarity

provide additional context 0.5938 blonde 0.38934 wavy blonde hair 4.734 male 0.30272
provide 0.5625 makeup 0.34895 wavy blonde 3.922 man 0.27394

distinguishing 0.5 mascara 0.33196 blonde 3.719 shirt 0.20739
additional context 0.4844 lipstick 0.31817 blonde hair 3.64

context 0.4688 eyeliner 0.31324 woman 1.844
texts 0.3125 woman 0.29510 wearing makeup 1.3125

distinguishing marks 0.2656 eyeshadow 0.24667 eyeliner 1.297
additional 0.1562 shadows 0.24538 eyes 1.125

provide additional 0.1406 hair 0.23935 makeup 1.078
style 0.03125 face 0.22412 camera 0.9062

head 0.20731 expression 0.703
styled 0.20134 long 0.578

directly 0.5156
wearing 0.2188

hair 0.0

Table 13: Full keyword rankings of B2T and SaMyNa for the results shown in Tab. 11 with K = 5.
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Blond (B2T) Blond (SaMyNa) Not blond (B2T) Not blond (SaMyNa)

Keyword CLIP Score Keyword Cosine Similarity Keyword CLIP Score Keyword Cosine Similarity

eyeliner 0.9688 woman 0.39947 wavy blonde hair 3.594 man 0.45820
wearing makeup 0.4844 blonde 0.34301 blonde hair 2.938 male 0.39175

photograph 0.03125 mascara 0.24959 woman 1.828
makeup 0.24877 light-colored hair 1.359
lipstick 0.22272 close-up 0.01563
eyeliner 0.20065

Table 14: Full keyword rankings of B2T and SaMyNa for the results shown in Tab. 11 withK = 10.

Blond (B2T) Blond (SaMyNa) Not blond (B2T) Not blond (SaMyNa)

Keyword CLIP Score Keyword Cosine Similarity Keyword CLIP Score Keyword Cosine Similarity

visible texts 1.0 blonde 0.45956 wavy blonde hair 3.766 man 0.40512
close-up photograph 0.7656 makeup 0.32295 blonde 3.547

provide additional context 0.6406 mascara 0.32257 blonde hair 3.438
directly 0.5938 lipstick 0.30535 blonde hair styled 3.438

additional context 0.5156 woman 0.30441 woman 1.594
portrait-style photograph 0.4062 eyeliner 0.24918 wearing makeup 0.797

fair 0.4062 hair 0.22028 makeup 0.672
face 0.1875 eyeshadow 0.20621 fair skin 0.3906

eyes 0.2812
hair styled 0.2344

styled 0.2344
portrait 0.2188

Table 15: Full keyword rankings of B2T and SaMyNa for the results shown in Tab. 11 withK = 25.

Blond (B2T) Blond (SaMyNa) Not blond (B2T) Not blond (SaMyNa)

Keyword CLIP Score Keyword Cosine Similarity Keyword CLIP Score Keyword Cosine Similarity

close-up photograph 0.8438 woman 0.42156 wavy blonde hair 4.0 man 0.47463
visible texts 0.797 blonde 0.39872 blonde hair 3.5 shirt 0.20972
photograph 0.6875 mascara 0.29177 blonde 3.406
expression 0.5 lipstick 0.29163 woman 1.375

additional context 0.4531 makeup 0.26443 wearing makeup 0.7188
provide additional context 0.4375 makeup 0.5625

visible 0.3594 close-up 0.1875
person 0.2812 eyeliner 0.1719

texts or distinguishing 0.2656 fair 0.1562
provide additional 0.25 hair 0.0781

distinguishing marks 0.1875
style 0.1875

wearing 0.1406
face 0.03125

Table 16: Full keyword rankings of B2T and SaMyNa for the results shown in Tab. 11 withK = 50.
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a certain frequency threshold individually. Conversely, our method does a very lightweight filter-
ing of keywords before ranking, removing only very rare keywords that may result from captioning
mistakes. After this lightweight filtering, we work entirely in the embedding space of the text em-
bedder, which can account for all the synonyms and construct an embedding vector that represents
the bias itself semantically. Keyword embeddings are then compared to the bias embeddings and
ranked according to cosine similarity, our heavy filtering is done after ranking by setting a similarity
threshold. Evidence of B2T’s filtering being too heavy is found in the full keyword rankings for the
class “not blond” of CelebA in the supplementary material of B2T, where the keyword “woman”
does not survive filtering and does not appear in the ranking. In particular, B2T selects the top 20
best keywords according to YAKE before ranking, while we discard keywords that do not appear in
at least 15.

Symmetraical keywords ranking Additionally, our algorithm has the interesting mathematical
property that for binary classification datasets, the ranking for one bias class is symmetrical with
respect to the other class (because the two bias embedding vectors point in opposite directions, so
the cosine similarity will give opposite scores).

SayMyNa can be applied on images In Sec. E, we show the possibility of SayMyNa to work on
other modalities without involving text. We use image embeddings instead of caption embeddings
to produce the embedding vectors that represent the biases, and then we rank image patches instead
of keywords according to the similarity of the patch to the bias embedding and we display this as
a heatmap. This is a further novelty of SayMyNa with respect to B2T, showing that the underly-
ing mechanism is fundamentally different (B2T only works with CLIP-like models and needs both
images and text).

H OUTPUTS OF SAMYNA

In this section, we provide the detailed output of our bias naming process for the experiments de-
scribed in the main paper. We report the obtained keywords alongside their associated cosine sim-
ilarity, in decreasing order of value, for Waterbirds (Tab. 17), CelebA (Tab. 18), BAR (Tab. 19),
ImageNet-A (Tab. 20 and 21), on a completely balanced version of Waterbirds (Tab. 22) and for the
ablation study on k (Tab. 23).

Landbirds Waterbirds

Keyword Cosine Similarity Keyword Cosine Similarity

tree 0.37119 sea 0.55190
forest 0.36188 ocean 0.53744
trees 0.35160 beach 0.43492

forested 0.35120 waters 0.41526
foliage 0.34351 shoreline 0.39085
branch 0.31807 shore 0.37826
stalks 0.31405 coastal 0.37666

vegetation 0.26898 water 0.31551
leaves 0.23139 boat 0.29067

midflight 0.28737
waves 0.27717
seagull 0.26215
lagoon 0.24614
flight 0.22423
lake 0.20760

Table 17: Similarity scores for the Waterbirds dataset.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Not blonde Blonde

Keyword Cosine Similarity Keyword Cosine Similarity

man 0.40964 woman 0.48667
male 0.38960 makeup 0.25876

lipstick 0.23692
eyeshadow 0.20672

Table 18: Similarity scores for the CelebA dataset.
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Climbing Diving Fishing Racing Throwing Vaulting

Keyword Cosine Similarity Keyword Cosine Similarity Keyword Cosine Similarity Keyword Cosine Similarity Keyword Cosine Similarity Keyword Cosine Similarity

cliff 0.52706 scuba 0.57237 boat 0.45474 cars 0.37512 pitch 0.55673 midair 0.41947
rock 0.44902 underwater 0.54212 river 0.45005 car 0.35930 baseball 0.52524 jump 0.40536
rocks 0.40822 submerged 0.38070 sea 0.42662 track 0.32670 pitcher 0.50494 pole 0.33902
steep 0.35067 coral 0.28247 ocean 0.38038 stadium 0.26144 batter 0.48165 high 0.31889
backpack 0.32901 depths 0.27969 lake 0.35662 speeds 0.24373 player 0.47083 suspended 0.31659
rocky 0.32047 ocean 0.25977 water 0.34019 batter 0.23747 mound 0.42858 athleticism 0.31222
rugged 0.25324 sea 0.25319 marine 0.29564 competitive 0.23413 glove 0.41766 bar 0.27459
jagged 0.24785 wetsuit 0.24872 waves 0.27669 speed 0.22976 athlete 0.40207 outstretched 0.25279
adventurous 0.21917 swimming 0.24449 coral 0.24126 competition 0.22619 playing 0.39830 agility 0.24972
trail 0.21789 marine 0.23934 underwater 0.23954 asphalt 0.22051 sports 0.39558 upward 0.24567
strength 0.21506 water 0.22909 wetsuit 0.21871 baseball 0.21841 sport 0.38070 athletic 0.23762
exploring 0.21200 rocks 0.21742 pitch 0.21645 field 0.36654 athlete 0.22750
nature 0.21199 divers 0.21735 team 0.20312 elbow 0.36480 casting 0.20631
ascending 0.21090 rocky 0.20966 uniform 0.20134 ball 0.35208 prowess 0.20590
adventure 0.20970 scuba 0.20206 pitcher 0.20080 athletic 0.35054 highstakes 0.20370
expedition 0.20443 game 0.34915 arched 0.20291

team 0.31384 sky 0.20140
athleticism 0.30591
arm 0.28327
stadium 0.27959
jersey 0.26615
main 0.25232
action 0.25062
arms 0.24658
activity 0.24016
striking 0.23857
outstretched 0.23707
position 0.23591
uniform 0.23211
serving 0.22028
actions 0.21900
focused 0.21649
skill 0.21620
foreground 0.21460
center 0.21259
stands 0.21227
emphasizes 0.20999
physical 0.20860
catch 0.20644
emphasizing 0.20625
overall 0.20215
agility 0.20136

Table 19: Similarity scores for the BAR dataset.
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Crayfish Rhinoceros Beetle

Keyword Cosine Similarity Keyword Cosine Similarity

crab 0.39954 forest 0.27621
meal 0.31551 black 0.24731
crustacean 0.28440 branch 0.20823
food 0.23936 stands 0.20675
sandy 0.20224

Stick Insect Cockroach

Keyword Cosine Similarity Keyword Cosine Similarity

hand 0.41610 insect 0.29116
thumb 0.39488 creature 0.27834
finger 0.36924 darkcolored 0.27402
touch 0.33881 beetle 0.26163
plant 0.31364 dark 0.24713
plants 0.30637 flattened 0.24523
foliage 0.28583 grasshopper 0.24468
garden 0.27045 crustacean 0.22505
field 0.22898 darker 0.22500
leaves 0.21886 floor 0.21054
forest 0.21871 black 0.20142
holding 0.21059
grasshopper 0.20454

Table 20: Similarity scores for the crayfish, rhinoceros beetle, stick insect and cockroach classes
from ImageNet-A.

Nails Mushrooms

Keyword Cosine Similarity Keyword Cosine Similarity

metal 0.37880 plants 0.25968
frame 0.27216 foliage 0.22674
rusted 0.25972 orange 0.20766
wooden 0.23891
weathered 0.23700
wall 0.22942
snake 0.20548
black 0.20246

Table 21: Similarity scores for the nails and mushrooms (fungi) classes from ImageNet-A.

Landbirds Waterbirds

Keyword Cosine Similarity Keyword Cosine Similarity

plumage 0.21741 seagull 0.25743
feathers 0.20849 coastal 0.24091

sea 0.22931

Table 22: Ablation study on a completely balanced version of Waterbirds.
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k = 1 k = 5 k = 10 k = 25 k = 50

Landbirds Waterbirds Landbirds Waterbirds Landbirds Waterbirds Landbirds Waterbirds Landbirds Waterbirds

tree: 0.27± 0.01 cranes: 0.34± 0.01 foliage: 0.37± 0.02 ocean: 0.46± 0.01 tree: 0.37± 0.01 sea: 0.54± 0.01 tree: 0.36± 0.01 sea: 0.58± 0.02 foliage: 0.37± 0.00 sea: 0.56± 0.01
branches: 0.21± 0.00 lake: 0.31± 0.02 shrubs: 0.35± 0.02 beach: 0.37± 0.01 forest: 0.35± 0.02 ocean: 0.51± 0.00 forest: 0.36± 0.01 ocean: 0.56± 0.02 forest: 0.37± 0.01 ocean: 0.55± 0.01

brown: 0.19± 0.13 lagoon: 0.31± 0.01 forest: 0.34± 0.03 water: 0.34± 0.01 trees: 0.33± 0.03 beach: 0.44± 0.02 foliage: 0.36± 0.01 beach: 0.49± 0.02 trees: 0.33± 0.01 beach: 0.50± 0.01
trees: 0.18± 0.13 water: 0.27± 0.01 stalks: 0.33± 0.02 coastal: 0.32± 0.02 branch: 0.33± 0.00 coastal: 0.38± 0.01 trees: 0.33± 0.01 coastal: 0.43± 0.02 branch: 0.31± 0.00 shore: 0.44± 0.00

colors: 0.17± 0.12 sea: 0.26± 0.18 tree: 0.33± 0.03 lake: 0.30± 0.02 vegetation: 0.27± 0.02 water: 0.34± 0.02 branch: 0.31± 0.01 water: 0.37± 0.02 vegetation: 0.29± 0.00 water: 0.36± 0.01
leaves: 0.16± 0.12 pier: 0.25± 0.18 trees: 0.32± 0.03 shore: 0.26± 0.18 leaves: 0.24± 0.03 waves: 0.28± 0.00 vegetation: 0.27± 0.01 waves: 0.32± 0.01 leaves: 0.25± 0.01 waves: 0.33± 0.01
black: 0.13± 0.10 shoreline: 0.25± 0.17 vegetation: 0.28± 0.02 waves: 0.24± 0.00 shrubs: 0.23± 0.16 shoreline: 0.28± 0.20 plants: 0.21± 0.15 lake: 0.29± 0.02 shrubs: 0.24± 0.17 lake: 0.27± 0.01

foliage: 0.09± 0.13 crane: 0.21± 0.00 leaves: 0.28± 0.02 pond: 0.23± 0.16 foliage: 0.22± 0.15 midflight: 0.28± 0.00 forested: 0.11± 0.15 seagull: 0.27± 0.01 plants: 0.22± 0.15 midflight: 0.27± 0.01
forests: 0.09± 0.12 ship: 0.15± 0.21 branch: 0.27± 0.01 lagoon: 0.19± 0.13 stalks: 0.21± 0.15 shore: 0.27± 0.19 branches: 0.10± 0.14 midflight: 0.26± 0.01 forested: 0.11± 0.15 seagull: 0.15± 0.11

seagull: 0.15± 0.10 plants: 0.22± 0.15 sea: 0.16± 0.22 forested: 0.12± 0.17 lake: 0.27± 0.03 branches: 0.10± 0.14 shore: 0.16± 0.22 branches: 0.10± 0.14 shoreline: 0.15± 0.21
ocean: 0.13± 0.18 greenishbrown: 0.16± 0.12 seagull: 0.15± 0.11 greenery: 0.08± 0.11 boat: 0.22± 0.15 pond: 0.11± 0.15
vessel: 0.12± 0.18 greenery: 0.16± 0.11 shoreline: 0.14± 0.19 greenishbrown: 0.08± 0.11 pond: 0.21± 0.15

Table 23: Ablation study on Waterbirds, where we analyze the impact of the number of selected examples on the found keywords (k) and their respective similarity
values.
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