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Abstract
Mobility-on-demand (MoD) systems represent
a rapidly developing mode of transportation
wherein travel requests are dynamically handled
by a coordinated fleet of vehicles. Crucially, the
efficiency of an MoD system highly depends on
how well supply and demand distributions are
aligned in spatio-temporal space (i.e., to satisfy
user demand, cars have to be available in the cor-
rect place and at the desired time). When mod-
elling urban mobility as temporal sequences, cur-
rent approaches typically rely on either (i) a spa-
tial discretization (e.g. ConvLSTMs), or (ii) a
Gaussian mixture model to describe the condi-
tional output distribution. In this paper, we argue
that both of these approaches could exhibit struc-
tural limitations when faced with highly complex
data distributions such as for urban mobility densi-
ties. To address this issue, we introduce recurrent
flow networks which combine deterministic and
stochastic recurrent hidden states with conditional
normalizing flows and show how the added flexi-
bility allows our model to generate distributions
matching potentially complex urban topologies.

1. Introduction
With the growing prevalence of smart mobile phones in our
daily lives, companies such as Uber, Lyft, and DiDi have
been pioneering Mobility-on-Demand (MoD) and online
ride-hailing platforms as a solution capable of providing a
more efficient and personalized transportation service. No-
tably, an efficient MoD system could allow for reduced idle
times and higher fulfillment rates, thus offering a better user
experience for both driver and passenger groups. The effi-
ciency of an MoD system highly depends on the ability to
model and accurately forecast the need for transportation,
such to enable service providers to take operational deci-
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sions in strong accordance with user needs and preferences.
However, the complexity of the geo-spatial distributions
characterizing MoD demand requires flexible models that
can capture rich, time-dependent 2d patterns and adapt to
complex urban geographies (e.g. presence of rivers, irregu-
lar landforms, etc.).

Historically, dynamic Bayesian networks (DBNs), such as
hidden Markov models (HMMs) and state space models
(SSMs) (Durbin & Koopman, 2001), have characterized
a unifying probabilistic framework with illustrious suc-
cesses in modelling time-dependent dynamics. Advances in
deep learning architectures however, shifted this supremacy
towards the field of Recurrent Neural Networks (RNNs).
At a high level, both DBNs and RNNs can be framed as
parametrizations of two core components: 1) a transition
function characterizing the time-dependent evolution of a
learned internal representation, and 2) an emission function
denoting a mapping from representation space to observa-
tion space. Recently, evidence has been gathered in favor of
combinations bringing together the representative power of
RNNs with the consistent handling of uncertainties given by
probabilistic approaches (Chung et al., 2015; Fraccaro et al.,
2016; Krishnan et al., 2016; Karl et al., 2017). The core
concept underlying recent developments is the idea that, in
current RNNs, the only source of variability is found in the
conditional emission distribution (i.e. typically a unimodal
distribution or a mixture of unimodal distributions). Most
efforts have therefore concentrated in building models capa-
ble of effectively propagating uncertainty in the transition
function of RNNs.

In this paper, we build on these recent advances by shifting
the focus towards more flexible emission functions. We
suggest that the traditional treatment of output variability
through the parametrization of either (i) unimodal (or mix-
tures of unimodal) distributions, or (ii) discretized repre-
sentations of naturally-continuous distributions, may act as
a bottleneck in cases characterized by complex data distri-
butions, such as the ones observed in urban mobility. We
propose the use of Conditional Normalizing Flows (CNFs)
(Winkler et al., 2020) as a general approach to define ar-
bitrarily expressive output probability distributions under
temporal dynamics. On one hand, we model the temporal
variability in the data through a transition function com-
bining stochastic and deterministic states, on the other, we
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Figure 1. Graphical model of the operations defining the RFN: a) transition function defined in Eq. (1) and Eq. (2); b) emission function
as in Eq. (3) and Eq. (4); c) inference network using Eq. (5); d) overall RFN graphical model. Shaded nodes represent observed variables,
while un-shaded nodes represent either deterministic (diamond-shaped) or stochastic (circles) hidden states. For sequence generation, a
traditional approach is to use ut = xt−1.

propose to use this mixed hidden representation as a condi-
tioning variable to capture the output variability with a CNF.
We call this model a Recurrent Flow Network (RFN).

To summarize, the main contributions of this paper are
twofold: first, we propose a probabilistic neural generative
model which is able to combine deterministic and stochastic
temporal representations with the flexibility of normalizing
flows in the conditional output distribution. Second, we
showcase how our model is able to represent fine-grained
urban mobility patterns on several real-world tasks, which
could drastically impact downstream decision making pro-
cesses in current mobility systems.

2. Recurrent Flow Networks
In this section, we define the generative model pθ and in-
ference network qφ characterizing the RFN for the purpose
of sequence modelling1. RFNs explicitly model temporal
dependencies by combining deterministic and stochastic lay-
ers. The resulting intractability of the posterior distribution
over the latent states z1:T , as in the case of VAEs (Kingma &
Welling, 2014; Rezende et al., 2014), is further approached
by learning a tractable approximation through amortized
variational inference. The schematic view of the RFN is
shown in Fig 1.

Generative model As in the case of the SRNN (Fraccaro
et al., 2016), the transition function of the RFN interlocks
an SSM with an RNN:

ht = fθh(ht−1, ϕ
extr
τ (ut)) (1)

zt ∼ N (µ0,t,diag(σ
2
0,t)), (2)

with [µ0,t,σ0,t] = fθz(zt−1,ht),

where µ0,t and σ0,t represent the parameters of the con-
ditional prior distribution over the stochastic hidden states

1Code available at https://github.com/
DanieleGammelli/recurrent-flow-nets

z1:T . In our implementation, fθh and fθz are respectively an
LSTM cell and a deep feed-forward neural network, with
parameters θh and θz. In Eq. (1), ϕextr

τ can also be a neu-
ral network extracting features from ut. Unlike the SRNN,
the learned representations (i.e. z1:T , h1:T ) are used as
conditioners for a CNF parametrizing the output distribu-
tion. That is, for every time-step t, we learn a complex
distribution p(xt|zt,ht) by defining the conditional base dis-
tribution p(bt|zt,ht) and conditional coupling layers (Dinh
et al., 2017) for the transformation Tψ as follows:

Conditional Prior:

bt ∼ N (µb,t,diag(σ
2
b,t)), (3)

with [µb,t,σb,t] = fψ(zt,ht)

Conditional Coupling:
bt,d+1:D = xt,d+1:D � exp (sψ(xt,1:d, zt,ht))+

+ tψ(xt,1:d, zt,ht) (4)
bt,1:d = xt,1:d,

In Eq. 4 we assume vectors x and b to be D-dimensional
vectors with d < D. In our implementation, fψ, sψ and tψ
are parametrized by deep neural networks. Together, Eq.
(3) and Eq. (4) define the emission function, enabling the
generative model to result in the factorization p(x, z,h) =∏T
t=1 pθx(xt|zt,ht)pθz(zt|zt−1,ht)pθh(ht|ht−1,ut), where

the emission and transition distributions have parameters
θx, θz, θh, and where we assume that ht follows a delta
distribution centered in ht = fθh(ht−1,ut).

Inference The variational approximation defining the
RFN directly depends on zt−1, ht and xt as follows:

qφ(zt|zt−1,ht, xt) = N (µz,t,diag(σ
2
z,t)), (5)

with [µz,t,σz,t] = ϕenc
τ (zt−1,ht, xt),

where ϕenc
τ is an encoder network defining the parameters of

the approximate posterior distribution µz,t and σz,t. Given
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the above structure, the generative and inference models
are tied through the RNN hidden state ht, resulting in the
factorization given by:

qφ(z1:T |x1:T ) =

T∏
t=1

qφ(zt|zt−1,ht, xt). (6)

In addition to the explicit dependence of the approximate
posterior on xt and ht, the inference network defined in Eq.
(5) also exhibits an implicit dependence on x1:t and h1:t

through zt−1. This implicit dependency on all information
from the past can be considered as resembling a filtering
approach from the state-space model literature (Durbin &
Koopman, 2001). Denoting θ and φ as the set of model and
variational parameters respectively, variational inference
offers a scheme for jointly optimizing parameters θ and
computing an approximation to the posterior distribution by
maximizing the evidence lower bound2 (i.e. ELBO).

3. Experiments
Concretely, we evaluate the proposed RFN on three trans-
portation datasets:

NYC Taxi (NYC-P/D): This dataset is released by the New
York City Taxi and Limousine Commission. We focused on
aggregating the taxi demand in 2-hour bins for the month of
March 2016 containing 249,637 trip geo-coordinates. We
further differentiated the task of modelling pick-ups (i.e.
where the demand is) and drop-offs (i.e. where people want
to go). In what follows, we denote the two datasets as
NYC-P and NYC-D respectively.

Copenhagen Bike-Share (CPH-BS): This dataset contains
geo-coordinates from users accessing the smartphone app
of Donkey Republic, one of the major bike sharing services
in Copenhagen, Denmark. As for the case of New York, we
aggregated the geo-coordinates in 2-hour bins for the month
of August, resulting in 87,740 app accesses.

Models We compare the proposed RFN against various
baselines assuming both continuous and discrete support for
the output distribution. In particular, in the continuous case
(i.e. where we assume to be modelling a 2-dimensional dis-
tribution directly in longitude-latitude space), we consider
RNN, VRNN (Chung et al., 2015) and SRNN (Fraccaro
et al., 2016) models each using two different emission dis-
tributions based on Mixture Density Networks (MDN), as
in (Bishop, 1994). That is, we compare against a GMM out-
put parametrized by Gaussians with either diagonal (MDN-
Diag) or full (MDN-Full) covariance matrix. On the other
hand, when assuming discrete support for the output distri-
bution (i.e. we divide the map into tiled non-overlapping
patches and view the pixels inside a patch as its measure-
ments), we consider Convolutional LSTM (ConvLSTM),
(Shi et al., 2015) which leverage the spatial information en-

2Please refer to the Appendix for the derivation.

Table 1. Test log-likelihood for each task under the continuous
support assumption. For non-deterministic models the approxima-
tion on the marginal log-likelihood is given with the ≈ sign.

Models NYC-P NYC-D CPH-BS
RNN-MDN-Diag 163582 143765 49124
RNN-MDN-Full 164016 146676 50109
VRNN-MDN-Diag ≈ 161345 139964 49231
VRNN-MDN-Full ≈ 162549 143671 49664
SRNN-MDN-Diag ≈ 164830 143719 49331
SRNN-MDN-Full ≈ 164976 147400 49810
RFN ≈ 168734 148291 51100

coded on the sequences by substituting the matrix operations
in the standard LSTM formulation with convolutions.

Results One-step Prediction: In Table 1 we compare test
log-likelihoods on the tasks of continuous spatio-temporal
demand modelling for the cases of New York and Copen-
hagen. We report exact log-likelihoods for both RNN-MDN-
Diag and RNN-MDN-Full, while in the case of VRNNs,
SRNNs and RFNs we report the importance sampling ap-
proximation to the marginal log-likelihood using 30 sam-
ples, as in (Rezende et al., 2014). We see from Table 1 that
RFN outperformes competing methods yielding higher log-
likelihood across all tasks. The results support our claim that
more flexible output distributions are advantageous when
modelling potentially complex and structured temporal data
distributions. To further illustrate this, in Fig. 2, we show
a visualization of the predicted spatial densities (one-step-
ahead) from three of the implemented models at specific
times of the day. Opposed to GMM-based densities, the
figures show how the RFN exploits the flexibility of condi-
tional normalizing flows to generate sharper distributions
capable of better approximating complex shapes such as
geographical landforms or urban topologies (e.g. Central
Park or the sharper edges in proximity of the Hudson river
along the west side of Manhattan).

Multi-step Prediction: In order to take reliable strategic
decisions, service providers might also be interested in ob-
taining full roll-outs of demand predictions, opposed to
1-step predictions. To do so, we generate entire sequences
in an autoregressive way (i.e., the prediction at timestep t
is fed back into the model at t+ 1) and analyze the ability
of the proposed model to unroll for different forecasting
horizons. From a methodological point of view, we are in-
terested in measuring the effect of explicitly modelling the
stochasticity in the temporal evolution of demand opposed
to fully-deterministic architectures. To this regard, in Table
2 we compare the RFN with the most competitive deter-
ministic benchmark (i.e. RNN-MDN-Full). As the results
suggest, the stochasticity in the transition probability allows
the RFN to better capture the temporal dynamics, thus re-
sulting in lower performance decay in comparison with the
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Table 2. Test log-likelihood comparison of RFN and RNN-MDN-
Full for different forecast horizons on the NYC-P task.

Models t+2 t+5 t+10 full (t+90)
RNN-MDN 162891 161065 160099 158922
RFN ≈ 167509 167400 167359 167392

08
:0
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SRNN-MDN-Diag SRNN-MDN-Full RFN

Figure 2. Generated spatio-temporal densities from SRNN-MDN-
Diag, SRNN-MDN-Full and RFN on the NYC-P dataset. The blue
(low) to red (high) log-likelihood heatmaps show models defined
by increasing flexibility (best viewed in color).

fully deterministic RNN-MDN assuming full covariance.

Quantization: As a further analysis, we compare the pro-
posed RFN with a Convolutional LSTM, under the assump-
tion that the spatial map has been discretized in a 64× 64
pixel space described by a Categorical distribution. This
comparison is particularly relevant given the prevalence
of ConvLSTMs in spatio-temporal travel modelling appli-
cations (Petersen et al., 2019; Yuan et al., 2018; Wang
et al., 2018). As previously introduced, the RFN is nat-
urally defined by a continuous output distribution (in prac-
tice parametrized as a normalizing flow), thus, in order to
characterize a valid comparison, we apply a quantization
procedure to obtain a discrete output distribution for the
RFN. In particular, the implemented quantization procedure
can be summarized with the following steps: (i) as in the
continuous case, evaluate the approximated marginal log-
likelihood under the trained RFN at the pixel-centers of a
64×64 grid, (ii) normalize the computed log-likelihood log-
its through the use of a softmax function and (iii) evaluate
the log-likelihood under a Categorical distribution charac-
terized by the probabilities computed in (ii), thus having
values comparable with the output of the ConvLSTM. Ta-
ble 3 compares test log-likelihoods on the task of discrete
spatio-temporal demand modelling. To this regard, when
considering results in Table 3, two relevant observations
must be underlined. First of all, the true output of the RFN
(i.e. before quantization) is a continuous density, thus, its
discretization will, by definition, result in a loss of informa-
tion and granularity. Secondly, and most importantly, the
quantization is applied as post-processing evaluation step,
thus, opposed to the implemented ConvLSTMs, the RFNs
are not directly optimizing for the objective evaluated in
Table 3. In light of this, the results under the discretized
space assumption support even more our claims on the ef-
fectiveness of the RFN to approximate spatially complex

Table 3. Test log-likelihood for each task under the discrete
support assumption. For the RFN, results are given after a
quantization procedure mapping from a continuous 2d space to
the 64× 64 pixel space used to train the ConvLSTMs.

Models NYC-P NYC-D CPH-BS
ConvLSTM -352962 -350803 -112548
RFN (Quantized) -339745 -349627 -110999

distributions. Moreover, the ability of the RFN to model
a continuous spatial density, opposed to a discretized ap-
proach as in the case of ConvLSTMs, has several theoretical
and practical advantages. For instance, RFNs are be able
to evaluate the log-likelihood of individual data points for
anomaly and hotspot detection. Secondly, ConvLSTMs
define a discretized space whose cells might have differ-
ent natural landscape characteristics (e.g. rivers, lakes),
thus effectively changing the dimension of the support in
each bin and making comparisons of log-likelihoods across
pixels an ill-posed question. Furthermore, if for discrete out-
put distributions exploring different levels of discretization
would require to repeatedly train independent ConvLSTM
networks, the post-processing quantization of the RFN al-
lows discretization to be done instantaneously, thus enabling
for fast prototyping and exploration of discretization levels.

4. Related Work
A number of works have concentrated in defining more
flexible emission functions for sequential models (Rasul
et al., 2021; Kumar et al., 2020; Castrejon et al., 2019).
Within this line of research, normalizing flows are used to
either parametrize the emission function for the tasks of
video generation and multi-variate time series forecasting
(Castrejon et al., 2019; Rasul et al., 2021), or to describe
the latent states representing the temporal evolution of the
system (Kumar et al., 2020). However, to the author’s best
knowledge, there is no track of previous attempts for the
task of urban mobility modelling.

Within the transportation domain, traditional approaches
rely on spatial discretizations of the urban topology(Yuan
et al., 2018; Petersen et al., 2019; Wang et al., 2018), which
allow for the prediction of spatio-temporal sequences with
discrete support through e.g. ConvLSTMs (Shi et al., 2015).

5. Conclusions
This work addresses the problem of continuous spatio-
temporal density modelling by proposing the use of
conditional normalizing flows as a general approach to
parametrize the output distribution of recurrent latent vari-
able models. Our experiments focus on real-world data for
the task of urban mobility density modelling. We empiri-
cally show that the flexibility of normalizing flows enables
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RFNs to generate rich output distributions capable of de-
scribing potentially complex geographical surfaces under
both continuous and discrete output distribution assump-
tions. Ultimately, we believe that the ability to estimate
fine-grained distributions of urban mobility represents an
important step towards user-tailored MoD services.
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A. Appendix
A.1. Training

We train each model using stochastic gradient ascent on the evidence lower bound L(θ, φ) defined in Eq. (7) using the
Adam optimizer (Kingma & Ba, 2015), with a starting learning rate of 0.003 being reduced by a factor of 0.1 every 100
epochs without loss improvement (in our implementation, we used the ReduceLROnPlateau scheduler in PyTorch with
patience=100). As in (Sønderby et al., 2016), we found that annealing the KL term in Eq. (7) (using a scalar multiplier
linearly increasing from 0 to 1 over the course of training) yielded better results. The final model was selected with an
early-stopping procedure based on the validation performance. Training using a NVIDIA GeForce RTX 2080 Ti took around
6 hours for CPH-BS and around 9 hours for NYC-P/D.

A.2. Benchmarks

For every model considered under the continuous support assumption, we select a single layer of 128 LSTM cells. The
feature extractor ϕextr

τ in Eq. (1) has three layers of 128 hidden units using rectified linear activations (Nair & Hinton, 2010).
For the VRNN, SRNN and RFN we also define a 128-dimensional latent state z1:T . Both the transition function tθz from
Eq. (2) and the inference network ϕenc

τ in Eq. (5) use a single layer of 128 hidden units. For the mixture-based models,
the MDN emission is further defined by two layers of 64 hidden units where we use a softplus activation to ensure the
positivity of the variance vector in the MDN-Diag case and a Cholesky decomposition of the full covariance matrix in
MDN-Full. Based on a random search, we use 50 and 30 mixtures for MDN-Diag and MDN-Full respectively. The emission
function in the RFN is defined as in Eq. (3) and Eq. (4), where fψ, sψ and tψ are neural networks with two layers of 128
hidden units. The conditional flow is further defined as an alternation of 35 layers of the triplet [Affine coupling layer, Batch
Normalization (Ioffe & Szegedy, 2015), Permutation], where the permutation ensures that all dimensions are processed by
the affine coupling layers and where the batch normalization ensures better propagation of the training signal, as shown in
(Dinh et al., 2017). In our experiments we define ut = xt−1, although ut could potentially be used to introduce relevant
information for the problem at hand (e.g. weather or special event data in the case of spatio-temporal transportation demand
estimation).

On the other hand, under the discrete support assumption, we train a 5-layer ConvLSTM network with 4 layers containing 40
hidden states and 3× 3 kernels (in alternation with 4 batch normalization layers) using zero-padding to ensure preservation
of tensor dimensions, a 3D Convolution layer with kernel 3× 3× 3 and softmax activation function to describe a normalized
density over the next frame (i.e. time-step) in the sequence.

All models assuming continuous output distribution were implemented using PyTorch (Paszke et al., 2017) and the universal
probabilistic programming language Pyro (Bingham et al., 2018), while the ConvLSTMs where implemented using
Tensorflow (Abadi et al., 2015). To reduce computational cost, we use a single sample to approximate the intractable
expectations in the ELBO.

For both New York and Copenhagen experiments we process the data so to discard corrupted geo-coordinates outside the
area of interest. For the taxi experiments, we discarded coordinates related to trips either shorter than 30s or longer than 3h,
while in the bike-sharing dataset, we ensured to keep only one app access from the same user in a window of 5 minutes. In
both cases we divide the data temporally into train/validation/test splits using a ratio of 0.5/0.25/0.25.
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A.3. ELBO derivation

log pθ(x1:T ) = log

∫
pθ(x1:T , z1:T ,h1:T )dz dh

= log

∫
qφ(z1:T |x1:T )

qφ(z1:T |x1:T )
pθ(x1:T , z1:T ,h1:T )dz dh

= logEqφ(z1:T |x1:T )

[
T∏
t=1

pθ(xt|zt,ht)pθ(zt|zt−1,ht)pθ(ht|ht−1,ut)
qφ(zt|zt−1,ht,xt)

]

≥ Eqφ(z1:T |x1:T )

[
T∑
t=1

log pθ(xt|zt,ht) + log pθ(ht|ht−1,ut) + log

(
pθ(zt|zt−1,ht)

qφ(zt|zt−1,ht,xt)

)]
(7)

= Eqφ(z1:T |x1:T )

[
T∑
t=1

log pθ(xt|zt,ht) + log pθ(ht|ht−1,ut)

]

−
T∑
t=1

KL (qφ(zt|zt−1,ht,xt)||pθ(zt|zt−1,ht)) = L(θ, φ)


