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Abstract—Learning robot dynamics for real-world environ-
ments is difficult, if not impossible, using a single monolithic
state transition network. A more practical approach, inspired by
sensory-motor hierarchies in the mammalian brain, is to model
complex state transition dynamics as a sequence of simpler dy-
namics, which in turn are modeled using even simpler dynamics,
and so on. We demonstrate the efficacy of such an approach using
Active Predictive Coding (APC), a structured model for learning
hierarchical dynamics and hierarchical policies that is inspired
by the neocortex. APC leverages higher-level abstract states
as priors for generating lower-level transition functions using
hypernetworks. Additionally, APC learns a transition function
for the dynamics between abstract states, leading to a tractable
approach to learning complex dynamics in terms of a hierarchy
of dynamically generated transition functions. We apply our
approach to compositional navigation problems and show its
capability for rapid planning and transfer to novel scenarios.
In both traditional grid-world-style navigation problems as well
as in the more complex Habitat vision-based navigation domain,
APC learns to abstract the transition dynamics of a robot within
and between different rooms in an unsupervised manner. Our
results suggest that APC offers a promising framework for
learning complex robot dynamics using a compositional and
hierarchical approach.

I. INTRODUCTION

Composing existing skills and knowledge to creatively gen-
erate solutions for new and complex problems is a fundamental
attribute of human intelligence. Recent advances in generative
AI and large language models are beginning to demonstrate
attributes of human-like intelligence but fail at simple tasks
like adding a few three digit numbers (Bubeck et al. [6], Ben-
der et al. [5], Schmidhuber [39]) that rely on application
of compositional knowledge. Similar observations hold true
for traditional reinforcement learning (RL) and embodied AI
agents (Lake et al. [27]).

There have been recent advances in hierarchical reinforce-
ment learning with novel neural network architectures ( Hafner
et al. [19], Levy et al. [29], Kulkarni et al. [26]), but a wide gap
still persists when it comes to using structured architectures
for leveraging compositionality for rapid transfer of knowledge
of robot dynamics and skills. These questions motivate us
to ask - what are the fundamental computational principles
behind biological neural networks, that allow them to exhibit
compositional learning? And what would be the key takeaways

from biological architectures for AI algorithms to learn and
exhibit rapid generalization and transfer?

Fig. 1. Learning and Inferring Hierarchical Dynamics. A learnable higher-
level latent state S(2) generates, using a hypernet Hs, a lower-level transition
function fs mapping current input xt and lower-level action at to next input.
Here, the input is an image (taken from the Habitat environment). Active
predictive coding (APC) uses the sequence of prediction errors between the
model prediction and the true output to update and infer in real time the
higher-level latent state S(2) (here, representing an estimate for the current
room). Complex dynamics is abstracted in an unsupervised manner and reused
to model dynamics in other similar situations. Moreover, such abstractions
allow hierarchical planning such as navigating at the level of rooms rather
than using primitive actions, resulting in significant savings.

Predictive coding theories have garnered increasing atten-
tion in recent years as computational models of how the
brain perceives and acts in the real world (Rao and Bal-
lard [35], Friston and Kiebel [12], Keller and Mrsic-Flogel
[24], Jiang and Rao [23]). In predictive coding, different areas
of the neocortex together implement a hierarchical generative
model of the world. Feedback connections from a higher to
a lower level predict lower-level responses, and the prediction
errors propagate via feedforward connections to update higher-
level estimates. While the original formulation of predictive
coding ignored actions, the recently introduced framework of
active predictive coding (APC) [36] recognizes the importance
of using actions for learning and modeling the dynamics of
complex environments.

In Section II, we describe an algorithm to learn state
abstractions, only using random trajectory rollouts of an agent
(Fig. 1). In Section III we present results for abstract state
inference and hierarchical planning. Finally, we present initial



Fig. 2. Inferring higher-level abstract states from lower-level dynamics. (A) A home environment composed of simpler and, possibly repeating 5x5
elements (“rooms”). Gray areas represent walls or regions unreachable by the agent. The rooms are separated to show independent dynamics and an opportunity
for reuse of transition functions between similar rooms (e.g., parts of the bedroom and kitchen). (B) The rooms correspond to reusable local dynamics that
can be abstracted as the higher-level latent state vector s(2) and inferred by APC as the agent accumulates information from interactions with the local
environment. (C) Latent state inference by unrolling the state transition graphical model over time. (D) 2-D TSNE plot of successive updates to a d = 32
dimensional latent state vector as the agent explores a room for τ = 15 time steps. Note the convergence of inference to different parts of the latent space
for different rooms

results from our ongoing work on a scalable APC model
for complex environments like Habitat (Savva et al. [37]).
Additional experiments and results are presented in the sup-
plementary section. To summarize, the main contributions of
this paper are:

1) A new compositional framework for learning complex
dynamics using a hierarchy of simpler transition func-
tions based on hypernetworks and APC.

2) A new approach for learning hypernetworks for generat-
ing transition functions on the fly via prediction errors.

3) A scalable APC architecture geared towards efficient
planning and hierarchical state inference in real-world
robotic environments.

II. HIERARCHICAL TRANSITION DYNAMICS WITH APC

In this section, we demonstrate how state abstractions and
hierarchical transition functions can be learned by considering
a 2-level APC model (Figure 1; Supplementary Figure 8). For
the next two subsections, we assume a general case of top-
down modulation where a hypernetwork generates K weights
w = [w1, w2, ..., wk] for composing a transition function
as a weighted sum of K learnable matrices M. Details
regarding the parameterization and other versions of top-down
modulation can be found in the supplementary section VI.

A. Inference

Consider an agent exploring its environment using actions
defined by an exploration policy π. To make the example more
concrete, assume that the agent is in a home environment made
of rooms (kitchen, bedroom, etc.), as shown in Figure 2(A).
A sequence of observations are generated from the sensory
apparatus of the agent as it explores the environment. We
assume that the underlying states are partially observable,

resulting in a trajectory of observed states and actions over
τ timesteps: Ta∼π = {s0, a0, s1, a1, ..., sτ} 1. Throughout the
paper, we assume that the internal states st are based on
encoded representations of inputs xt (Figure 1) and integrate
historically observed inputs via the recurrent network, a formu-
lation in line with the recent trends in model-based RL (Hafner
et al. [17, 18]). However, in APC, this recurrent network
(implementing the lower-level transition function) is generated
on the fly by the current higher-level abstract state s(2).
Formally, st+1 ∼ P (st+1|st, at, s(2)). Since our hierarchical
transition models are task-independent, the rewards obtained in
any particular task do not directly affect the transition models.
However, in future work, we intend to explore incorporating
reward prediction (in addition to state prediction) at the lower-
level (Hafner et al. [18]).

The inference process involves making updates to beliefs
over what room the agent is located in, i.e.. a kitchen,
bedroom, etc., as evidence accumulates over an episode. This
is formally computed by inferring the abstract high-level
state s(2) based on the minimization of prediction loss using
gradient updates for each lower-level time step t (Equations 1,
2). The graphical model depicting this process is shown in
Figure 2(C). A TSNE plot of s(2) converging over specific
episodes to represent different rooms is illustrated in 2(D).
We investigate properties of the latent s(2) space in Section
III and provide further details in supplementary section VII.

Lt,s(2) = ||ŝ
(1)
t+1 − s

(1)
t+1||22 + λ||s(2)T ||

2
2 (1)

1For convenience and readability of equations, we omit the subscripts and
superscripts for variables throughout the paper, unless necessary: s

(1)
t,T , the

lower-level state at time t and at a higher-level time period T , is replaced
with st. Similarly, the higher-level state s

(2)
T is replaced with s(2), when T

remains constant.



s(2) ← s(2) − η∇s(2)Lt,s(2) (2)

The first term in equation 1 computes the prediction loss. We
typically use a decoder to transform predictions to the original
observation space. The second term is an L2 constraint on
the abstract states which we found to work better in practice.
η = 0.05 is the inference learning rate which is kept higher
than the model learning rates. During the inference process,
no update is made to the model parameters (Supplementary
Figure 8(A)).

B. Learning

Learning the parameters of the hierarchical model is
straightforward (Supplementary Figure 8(B)). After running
the inference process for τ steps, latent states s(2) are frozen
and used as inputs to the hypernetwork. For the same set
of observations used during inference, prediction errors for τ
timesteps are accumulated and the model parameters θH and
θf are updated in an unsupervised manner (here θf are the
basis matrices M for composing transition functions (or RNN
parameters when using an embedding method - Supplementary
Section VI).

Lθ =

τ∑
t=1

||ŝ(1)t+1 − s
(1)
t+1||22 (3)

θH ← θH − ηH∇θHLθ; θf ← θf − ηf∇θfLθ (4)

C. Scaling APC to Complex Environments

Fig. 3. Scaling APC: A scalable version of APC for complex image-based
environments (original formulation in Supplementary Figure 8). The core
idea of using abstract states s(2) to generate/modulate lower-level transition
dynamics fs remains the same. Here, instead of solely relying on prediction
errors, an encoder is used for amortized inference to directly infer the abstract
state. Multi-timestep inputs at the higher level x(2) are lower-resolution
versions (24 x 24 images) of the lower-level inputs xt (64 x 64 images).

Figure 3 depicts a modified version of the hypernetwork
formulation for APC which relies on an RNN with a top-
down embedding input. Prior work (Galanti and Wolf [13]) has
shown that the embedding approach is functionally equivalent
to using a hypernetwork, in that the modularity is emulated
using an embedding vector:

eT = Hθ(s
(2)
T ) (5)

ht = tanh(stW1 + b1 + ht−1W2 + b2 + eTW3 + b3) (6)

ŝt+1 = ReLU(htW4 + b4) (7)

While the original formulation of APC relied on s(2)

updates via backpropagation of prediction errors, here we use

Fig. 4. Results on Habitat: Dynamics abstraction and next state prediction
with s(2) as prior. The scaled APC model (Figure 3) was trained on randomly
generated trajectories from an ego-centric home environment. (A) Rendering
of a home used in our experiments. The render was taken from Matterport
(Chang et al. [7]). The next step predicted model outputs (bottom) and ground
truth reconstruction targets (top) are shown for two different rooms. (B) 2D
and 3D PCA of s(2) vectors for episodes starting at 2 different rooms. With
no training signal apart from dynamics prediction errors, s(2) shows separable
clusters different rooms.

a simple feedforward encoder to directly infer s(2) from a
sequence of image inputs (amortized inference), providing sig-
nificant improvements in training time and parallel processing.

D. Higher level transition model and action abstractions

As discussed above, s(2) abstracts the transition dynamics
at the lower-level (via propagation of prediction errors or an
encoder). Significant efficiencies can be achieved by learning
a transition function between abstract states, allowing higher-
level planning and navigating to any goal in a compositional
environment (Figure 2(A)). To learn to a transition function
between abstract states, we introduce the idea of an abstract
action a

(2)
T (similar to an option in hierarchical RL), which can

be regarded as a latent action vector that generates/modulates
the lower-level policy network (Supplementary Figure 7).
Given abstract actions, we can define a transition dynamics
for higher-level abstract states as P (s

(2)
T+1| s

(2)
T ,a

(2)
T ), or

f
(2)
s . Here T represents timesteps at the higher-level in the

hierarchy. Details regarding action abstractions in APC can be
found in the Supplementary Section VI.

III. EXPERIMENTS AND RESULTS

A. Abstract Transition Space

Supplementary Figure 9(A) shows the inference process for
different gridworld rooms after training the APC dynamics
model. Random trajectories of length τ = 15 are drawn
from different rooms and used for dynamics prediction task.
Accurate estimates can be made in time, as the agent gathers
more evidence. Supplementary Figure 9(B) shows one-shot
inference for three rooms when the model is trained with
shorter episodes of length τ = 5. In the same figure, we also
plot the PCA of final abstract states from 100 episodes for each
environment. This shows that the one-shot inference result is
indeed accurate. This fast inference method is useful for rapid
planning with limited data. Details are in the Supplementary
Section VII.



B. Zero-Shot Transfer to new Environments

A significant benefit of abstracting transition dynamics
into a continuous latent space is in transfer. To illustrate
this, we trained the APC dynamics model with two simple
environments - a vertical and a horizontal hallway. Figure 5
shows the PCA of the higher-level abstract state space with
blue and orange clusters representing the final inferred abstract
states for the environments. We sampled points along the line
joining the cluster centers and used the points as priors to
generate a transition function at the lower level. Next state
predictions were made using the generated function and a
random policy. These predictions were used to reconstruct the
dynamics and hence the environment captured by the transition
function. These new environments (“rooms”) are plotted as
5× 5 grids in Figure 5. These new rooms, which were never
seen by the model, demonstrates how the model can compose
and transfer learned dynamics to new environments.

Fig. 5. Zero shot transfer of dynamics to new environments by interpolating
the abstract states s(2). The dynamics for newly sampled abstract states
(priors) are inferred from a model trained only on Environment 1 and 2
(Note that these rooms have different dynamics in a top-down setting).
The inferred dynamics with interpolated s(2) priors are drawn out as new
environments. This hints that the priors could be learning a smooth space
spanning continuously changing transition functions.

C. Hierarchical RL and Planning

It is well-known that the learnt abstract states, along with
well-defined abstract actions, can reduce the effective search
space of an agent for reinforcement learning and planning,
greatly reducing the complexity of the problem (Nachum et al.

Fig. 6. Planning with APC on the grid world environment. (Left) Rewards
collected over episodes as the goals are changed. RL agents are not robust
to changing goals. (Right) Action steps taken to plan. With abstract actions,
APC can plan exponentially faster due to the reduced sequence length. Figure
taken from [36].

[33]). To demonstrate that this advantage accrues to APC, we
performed simple experiments on a compositional gridworld
environment (Supplementary Figure 11). A simple instantia-
tion of APC’s hierarchical transition model and hierarchical
policy was learnt for this environment. Here, the abstract
actions were assumed to be one of 8 possible subgoals (For
details, refer to Supplementary Section VIII and Rao et al.
[36]). We considered 2 tasks (1) Goal-reaching RL task where
the goals can change at any point in time, and (2) Planning
to reach a fixed goal from increasing distances. The baselines
for these experiments are respectively: (1) A policy gradient
model-free agent and (2) An MPC planner with full access to
the transistion dynamics. Our results (Figure 6) show that APC
is indeed robust to goal changes and can plan faster, as long as
the abstract actions are well defined. Work on learning useful
skills without hand-designed abstract actions (Eysenbach et al.
[10]) is ongoing.

D. State Abstraction in Habitat 2.0

We now show that APC can be scaled to learn abstract
states on realistic environments without using any labeled
data. We use a modified APC model as seen in Figure 3).
Dealing with high-dimensional image inputs require powerful
encoders and decoders. For this experiment, we use a Residual
Autoencoder, resnet18 (He et al. [21]) to encode and decode
64 × 64 RGB and depth images from Habitat 2.0 [37, 43]
(replacing autoencoders with transformer-based ViT (Vaswani
et al. [44], Dosovitskiy et al. [9]) or other architectures is
straightforward). The sequential inputs x(2)

T to the higher level
encoder are resized images. We task the scaled APC to predict
single-step future states, given the current inputs and actions,
and train for 500 epochs. The results are shown in Figure 4.
The model directly infers s(2) from inputs, with clusters for 2
different rooms, showing that state abstractions can be learnt
in complex image-based POMDP environments.

IV. CONCLUSION

This paper presents a new approach to learning transition
dynamics for complex real-world environments based on a
structured heirarchical model called active predictive coding
(APC). APC is inspired by the architecture of the mammalian
cortex and learns a hierarchy of transition functions using self-
supervised learning based on prediction errors and hypernet-
works. We applied APC to both traditional gridworlds and
the more complex Habitat domain and showed that higher-
level latent codes that generate transition dynamics for differ-
ent environments form different clusters in the latent space.
Furthermore, this continuous latent space exhibits a smooth
transformation of transition functions, allowing APC to gener-
ate dynamics for new environments in a compositional manner.
We introduce abstract actions (i.e., options) to allow transition
functions to be learned for higher-level latent state spaces,
giving rise to hierarchical world models. Our results demon-
strate the efficacy of higher-level planning using the APC
model by exploiting learned hierarchical world models and
local reference frames. Our ongoing and future work is focused



on scaling the APC approach to larger-scale environments and
RL benchmarks, and leveraging APC’s compositional structure
and ability to generate new transition functions on the fly to
achieve fast transfer across environments.
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Supplementary Materials
V. RELATED WORK

In this section we briefly present the Active Predictive
Coding (APC) architecture and its motivation in light of related
works. For a more detailed discussion on the topic, please refer
to (Rao et al. [36]). Figure 7 represents a general version
of APC. We discuss the following relevant components in
the model (1) Top-down Modulation, (2) Hierarchical World
Models (3) Hierarchical Policy (4) Reference Frames.

Top-Down Modulation refers to an abstract state, condi-
tioning a function that is usually working at a constrained
spatio-temporal scale. Intuitively, the latent vectors ”abstract”
critical parts of the function representation to re-use learnt
information in novel scenarios. For example, a child learns
to lift a coffee mug and has no problem transferring that
experience to picking up a water bottle. There is evidence
from neuroscience that cortical neurons implement top-down
gain modulation that allow such transfer of learnt behaviors
(Ferguson and Cardin [11]). We propose variants of hyper-
networks (Ha et al. [16], Galanti and Wolf [13]) as potential
candidates to implement such abstractions in APC.

Fig. 7. Components of a 3-level Active Predictive Coding model. Top-
down connections modulate the communication between different levels of
hierarchy. Feedforward connections learn task-invariant transition models and
task-specific policies.

Hierarchical Transition Models: (Ha and Schmidhuber
[15]) introduces world models into model-based RL. Since
then, powerful variants of world models have been successful
at modeling more and more complex environment dynamics
(Hafner et al. [18, 19], Micheli et al. [30]). Yet, the world
models are limited in scope when exposed to novel envi-
ronments. Graph schemas have gained popularity in recent
years as potential computational principles governing complex
functions like abstraction, transfer and planning in the brain
(Guntupalli et al. [14], Moser et al. [32], Whittington et al.
[45]). APC proposes hierarchical world models that learn
abstractions of primitive transitions limited in space and time,

and further learns to transition in the new abstract space
with access to only unsupervised prediction errors. We believe
hierarchical world model is a novel idea and present a concrete
implementation with APC, in Section II.

Hierarchical Policies: Hierarchical Reinforcement Leaning
and action abstractions have been popular since the first for-
mulation of Options (Sutton et al. [42], Barto and Mahadevan
[4], Schmidhuber [38, 39, 40]). With the introduction of deep
neural networks (LeCun et al. [28], Schmidhuber [41]), many
variants of hierarchical and deep reinforcement learning were
developed (Bacon et al. [2], Hafner et al. [19], Kulkarni et al.
[26]). There is also an extensive discussion on abstract states
and actions in (Abel [1]). In similar lines, APC develops the
notion of action abstractions as a sub-goal modulated policy.
These are the blue shaded parts of APC in Figure 7. We
dedicate Section 3.4 to action abstractions and do not discuss
further about this formulation, since it is already dealt in detail,
in (Rao et al. [36]).

Reference Frames: Working with smaller scales of space
and time considerably reduces the complexity of the prob-
lem at hand. Biological agents naturally work with a local
dynamics, constantly context switching between tasks and
dynamics. Humans are exceptional at ignoring non-contextual
noise and focusing their attention on the relevant task. There
is considerable evidence from neuroscience that grid-cells in
the cortex are involved in the implementation of reference
frames that serve this function (Hawkins [20]). Evidence from
(O’Keefe and Dostrovsky [34], Moser et al. [32]) also suggests
that hippocampal and cortical circuits in rats and humans
trigger spatial reference frames used for solving problems
such as navigation and abstract reasoning. Past work has made
attempts to simulate contexts with hard attention models (Mnih
et al. [31]) We provide a plausible concrete implementation of
reference frames in Section 2.

VI. DYNAMICS ABSTRACTION MODELS

A. Top-Down Modulation

For a simple version of hierarchical abstraction of dynamics
using APC, we consider two possible approaches. Both ap-
proaches use an approximation of hypernetworks, which are
neural networks that generate the parameters of other neural
networks (Ha et al. [16]). In our first approach, a hypernet
predicts a weight vector w for combining, using a weighted
sum, a set of learned basis matrices M to generate the state
transition function fs at the lower-level (Jiang and Rao [22]).
Figure 8 shows the parameterization of the APC model.

w = H(s(2)T ) (8)

fs =

K∑
k=1

wkMk (9)

ŝt+1 = ReLU(fs(st, at)) (10)

We also experimented with an embedding approach for top-
down modulation where the hypernetwork predicts a vector



Fig. 8. Top-down modulation with Hypernetworks. (A) During inference, gradient updates to all the model parameters are switched off, except the higher-level
latent code. Next state prediction errors accumulate and modify the latent via the backpropagation algorithm. (B) After running K inference steps, the latents
are frozen and the model parameters are updated. The inputs to the transition function are the current state and action of the agent. This model is motivated
by (Jiang and Rao [22]) .

embedding from the higher-level latent state. The set of matri-
ces M is replaced by an RNN that takes as input the top-down
embedding, the current state and action as inputs and predicts
the next state. In practice, we found that adding additional
decoders after the RNN prediction gave results comparable to
the mixture of matrices method discussed above.

e = Hθ(s
(2)
T ) (11)

ht = tanh(xtW1 + b1 + ht−1W2 + b2) (12)

ŝt+1 = ReLU(htW3 + b3) (13)

Where xt = [e, st, at] is the concatenated input at the lower-
level and [θ,W1:3, b1:3] are the model parameters. Unlike
traditional autoencoders (Kingma and Welling [25], Baldi
[3]), and the scaled APC, this version does not have an
explicit encoder mapping observations to a latent space. The
latent codes, i.e., higher-level states, are directly inferred via
backpropagation of prediction errors during inference (rather
than being used solely for learning as in traditional neural
networks). This is an insight from the purely generative models
used in the brain Rao and Ballard [35], Jiang and Rao [23].

B. Action Abstractions

The action abstractions in APC represent subgoals or sub-
tasks similar to the formulation in (Hafner et al. [19], Schmid-
huber [39], Abel [1]). These abstract actions are tied to
a context dynamics, since a particular action might not be
relevant in all scenarios. For example, ”Open the microwave”
is a valid subgoal if the agent context is kitchen and not when
the context is, say, a conference room. The latent codes for
action abstractions can be learnt by a similar inference process
discussed for state abstractions. For this paper however, we
assume a fixed set of subgoals for each of our local reference
frame dynamics. We leave the subgoal learning with APC as
a future work and instead learn a policy, conditioned on a set
of fixed subgoals represented as one hot vectors. Figure 11
taken from our previous work ( Rao et al. [36]) shows these
learnt policies for subgoals of two 3x3 maze environments.

VII. ADDITIONAL RESULTS: FEW-SHOT INFERENCE OF
ABSTRACT STATES

In this section, we provide experiment details for The
results for the analysis of abstract state inference is shown
in Figure 9. Our experiments with the learnt latent codes s(2)

was focused on studying the nature of the abstract transition
space. This turned out to be useful when transfering learnt
dynamics to novel environments. For our experiment setup, we
collect episodic data for 5 room environments with different
dynamics. The environment dynamics can be changed by
placing the walls in different patterns. The hypernetwork used
is a 4 layer deep neural net with 256 units at each layer. We use
ReLU non-linear activation everywhere unless specified. The
learning rate for inference was kept much higher at η = 0.1,
whereas the learning rate for training both the hypernetwork
and the transition function were ηH = ηf = 0.001. For each
environment, we collect episodes of length τ and feed it to
our APC model. We experiment inference with episodes of
lengths 2, 5, 15, 25 and 50. Typically, longer episodes perform
better since the data available about the environment increases.
For every episode, APC model first infers the latent code,
freezes the final latent code and performs gradient updates
to the model parameters using the prediction errors. Adam
optimizer was used for both inference and training.

To choose a dimension for s(2) ∈ Rd, we run inference and
training for d = [4, 8, 16, 32, 64]. Our intent was to create a
balance between information capacity (neatly clustered latent
codes) and prediction errors. ( Dawid and LeCun [8]) notes
that generative latent variable architectures can collapse if the
latent codes have very high information capacity. In such
cases, the transition function completely ignore the inputs
st, at and learn to essentially push all the necessary informa-
tion into the latent code. In our experiments, we found d = 32
to optimally minimize prediction errors while maintaining
separable latent code clusters. The plots representing latent
codes in this paper are 2-D PCA of s(2) originally in a 32
dimension space unless specified.



Fig. 9. Inferring the 5 x 5 room with partially observable patches. Both
the figures are 2-D PCA of d = 32 dimension latent codes. (A) τ = 10
step inference for different environments trained with episodes of length 10.
(B) One-Shot inference for three different rooms. Final latent codes for 100
random episodes from each environment are also plotted in the background
to validate the one-shot inference. Details in text.

VIII. ADDITIONAL RESULTS: HIERARCHICAL PLANNING
AND FAST TRANSFER TO NEW COMPOSITIONS

We present the results for hierarchical planning from [36] in
Figure 6 and discuss the experiment details here. We choose
two (3 x 3) rooms as seen in the reference Figure 11 and
construct larger environments with them. Abstract actions are
learnt as policies with sub-goals as discussed in Section VI.
Abstract state transitions are learnt by exploring in the envi-
ronment and recording ”higher-level” steps (s

(2)
T , a

(2)
T , s

(2)
T+1)

and learning a transition function in this abstract space. Our
aim with planning is to show the combinatorial advantage APC
has over traditional planning and reinforcement learning that
do not use reference frames. The planning problem with APC
reduces to sequencing abstract actions a(2)T instead of primitive
actions at. With known dynamics model at both higher and
lower levels, APC plans effectively even for long horizon goals
(Figure 6(D)). Equipped with hierarchical world models, APC
agents are also quick at learning to navigate in environments
with changing goals, when compared against traditional RL
agents using actor-critic methods (Figure 6(C)).

Fig. 10. Additional results for zero-shot transfer to new goals. Using
hierarchical world models and planning, APC agent is able to remain robust to
changing goals. Note that when a large compositional environment is changed,
only transitions at the higher level must be re-learnt. Local reference frames
allow transfer of dynamics at the lower level, as seen in previous figures.
Figure taken from ([36]).

Fig. 11. Just 2 different abstract states s(2), (marked with red and yellow
outlines) compose to create a complex looking environment. Here, abstract
actions are subgoals that connect 2 different instantiations of abstract states.
Actions A1,A2,A3 represent policies with goals 1, 2 and 3 in two different
room environment. Given a composition of the rooms, abstract actions could
be sequenced to easily reach any goal. Figure from (([36])).


	Introduction
	Hierarchical Transition Dynamics with APC
	Inference
	Learning
	Scaling APC to Complex Environments
	Higher level transition model and action abstractions

	Experiments and Results
	Abstract Transition Space
	Zero-Shot Transfer to new Environments
	Hierarchical RL and Planning
	State Abstraction in Habitat 2.0

	Conclusion
	Related Work
	Dynamics Abstraction Models
	Top-Down Modulation
	Action Abstractions

	Additional Results: Few-Shot Inference of Abstract States
	Additional Results: Hierarchical Planning and Fast Transfer to new Compositions

