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Abstract
Protein dynamics play a crucial role in protein
biological functions and properties, and their tra-
ditional study typically relies on time-consuming
molecular dynamics (MD) simulations conducted
in silico. Recent advances in generative model-
ing, particularly denoising diffusion models, have
enabled efficient accurate protein structure predic-
tion and conformation sampling by learning distri-
butions over crystallographic structures. However,
effectively integrating physical supervision into
these data-driven approaches remains challeng-
ing, as standard energy-based objectives often
lead to intractable optimization. In this paper,
we introduce Energy-based Alignment (EBA), a
method that aligns generative models with feed-
back from physical models, efficiently calibrat-
ing them to appropriately balance conformational
states based on their energy differences. Exper-
imental results on the MD ensemble benchmark
demonstrate that EBA achieves state-of-the-art
performance in generating high-quality protein
ensembles. By improving the physical plausibil-
ity of generated structures, our approach enhances
model predictions and holds promise for applica-
tions in structural biology and drug discovery.

1. Introduction
Understanding protein dynamics is a critical yet complex
challenge in the study of protein functionality and regula-
tion. Protein structures transition between multiple confor-
mational states across varying spatial and temporal scales,
influencing their biological roles. Traditionally, molecu-
lar dynamics (MD) simulations have been the predominant
computational tool for investigating the dynamic behavior
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of biological molecules. These simulations evolve Newto-
nian equations of motion for an entire system of particles,
with accelerations determined by pre-defined force fields
(physical energy functions). However, capturing biologi-
cally relevant transitions, such as folding and unfolding,
often requires simulations spanning micro- to millisecond
timescales (Lindorff-Larsen et al., 2011), which is computa-
tionally prohibitive, often requiring hundreds to thousands
of GPU days depending on system size.

Recently, researchers have turned to deep generative models,
particularly denoising diffusion models, to reframe this prob-
lem as a conditional generation task (Arts et al., 2023; Lu
et al., 2024b; Jing et al., 2024a; Zheng et al., 2024). These
models learn from structure databases such as the Protein
Data Bank (PDB) and predict plausible conformations con-
ditioned on specific inputs, such as amino acid sequences.
While these data-driven approaches generate structurally
valid candidates, they do not explicitly model thermody-
namic properties. A more proper formulation of the problem
is equilibrium sampling (Noé et al., 2019), which aims to
sample conformation ensembles from the Boltzmann distri-
bution over states. This approach is crucial for accurately
modeling protein ensembles and capturing thermodynamic
stability. However, it remains highly intractable, as it re-
quires the generative models to not only produce plausible
candidates but also match the underlying energy landscape.
Existing amortized sampling methods (Bengio et al., 2021;
Zhang & Chen, 2021; Richter & Berner, 2023; Lahlou et al.,
2023) also struggle to scale to the general protein structures
that typically consist of thousands of atoms.

To address these challenges, we introduce Energy-based
Alignment (EBA), a framework that integrates diffusion
models with physical feedback for improving protein en-
semble generation. Our approach bridges the gap between
purely data-driven conditional generation and physics-based
simulations by incorporating fine-grained force field feed-
back via a scalable learning objective. Specifically, we
fine-tune a pretrained all-atom denoising diffusion model
to align generated conformational states with underlying
physical energy landscapes. Within this alignment frame-
work, the model interacts with force fields as an external
environment, receiving feedback to refine its generative pro-
cess. Through the EBA alignment, the diffusion model
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learns to balance different conformational states, resulting
in more physically consistent protein conformation ensem-
bles. We validate our approach on the ATLAS MD ensemble
dataset (Vander Meersche et al., 2024) and demonstrate that
the EBA-aligned diffusion model achieves state-of-the-art
performance compared to previous generative models by
incorporating physical feedback. The proposed method pro-
vides a novel pathway for integrating generative modeling
with traditional simulations, presenting promising opportu-
nities for protein dynamics research and drug discovery.

2. Preliminaries
Notations. A protein consisting of L residues is charac-
terized by its amino acid sequence c = (c1, c2, . . . , cL) ∈
|V|L, where V denotes the vocabulary of 20 standard amino
acids and L is the number of residues. The protein structure
is described by the 3D positions of its constituent atoms,
x = (x1, x2, . . . , xN ) ∈ RN×3, encompassing all the heavy
atoms (excluding hydrogen) of backbone and side-chains.

Molecular dynamics. Molecular dynamics (MD) simu-
lations operate by evolving an entire particle system over a
simulation time T > 0, governed by the physical dynamics
dxi = pi/mi dτ , where p ∈ RN×3,mi ∈ R represents
the momentum and the mass for each atom in the system.
Given a force field (energy function) E : RN×3 → R, the
momenta field can be updated according to the Newtonian
equation of motion: dpi = −∇xi

E(x) dτ . Using an in-
tegrator like Verlet (Verlet, 1967) or Langevin dynamics
(with thermostat), the position and momenta are iteratively
updated at each time step, producing a simulation trajectory
that converges to the Boltzmann distribution.

Diffusion generative models. Diffusion generative mod-
els (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2020) aim to model data distributions using a diffusion pro-
cess described by a (Gaussian) Markov chain of forward
distribution: q(xt|x0, c) = N (xt|αtx0, σ

2
t I), where t ∈

[0, T ] is the time step and αt, σt > 0 are the noise schedul-
ing functions. The reverse (generative) process also assumes
Markov structure pθ(x0:T ) =

∏T
t=1 pθ(xt−1|xt) and the

estimated posterior can be written as (Rombach et al.,

2022), pθ(xt−1|xt) = N (xt−1|µθ(xt, t), σ
2
t|t−1

σ2
t−1

σ2
t
I),

where the parameterized mean µθ(xt, t) =
αt|t−1σ

2
t−1

σ2
t

xt +

αt−1σ
2
t|t−1

σ2
t

xθ(xt, t), σ2
t|s = σ2

t − α2
t|sσ

2
s and αt|s = αt/αs

for s < t. Following Ho et al. (2020), the denoising objec-
tive can be expressed as:

L = Ex0∼DEt∼U(0,T ),xt∼q(xt|x0)

[
ω(λt)∥ϵ− ϵθ(xt, t)∥22

]
,

(1)
where ϵ ∼ N (0, I), λt ≜ α2

t /σ
2
t is a signal-to-noise ratio

(SNR) and ω > 0 is the loss reweighting function.

Reinforcement learning from human feedback. Rein-
forcement Learning from Human Feedback (RLHF) repre-
sents a canonical example of the alignment problem. The
goal of RLHF is to align a generative model pθ(x|c) to
maximize the reward rθ(x, c) which is provided by a model
parameterized by θ, while being constrained by a reference
distribution pref(x|c) (α > 0 is the regularization factor):

max
pθ

Epθ(x)

[
rθ(x, c)

]
− αDKL (pθ(x|c)||pref(x|c)) . (2)

Prior work (Peters & Schaal, 2007; Peng et al., 2019;
Rafailov et al., 2024) has shown that this objective has a
closed-form solution:

pθ(x|c) =
1

Z
pref(x|c)erθ(x,c)/α, (3)

where Z =
∑

x pref(x|c)e
r(x,c)

α is the partition function.
Accordingly, the reward function can be written as:

rθ(x, c) = α log
pθ(x|c)
pref(x|c)

+ α logZ. (4)

Direct Preference Optimization (DPO) (Rafailov et al.,
2024) has demonstrated that when the reward model is opti-
mized using the Bradley-Terry (BT) model p(xw ≻ xl|c) =
σ(rθ(x

w, c)− rθ(xl, c)), the RL problem in Eq. (2) is sim-
plified to supervised learning on pairwise preference data:

LDPO(θ) = −E(c,xw,xl)∼D

log σ

(
α log

pθ(x
w|c)

pref(xw|c)
− α log

pθ(x
l|c)

pref(xl|c)

)
,

(5)
where σ(·) is the sigmoid function.

3. Method
In this section, we introduce Energy-based Alignment
(EBA), a novel physics-informed learning objective for im-
proving conformation ensemble generation. EBA leverages
the underlying Boltzmann distribution by aligning a model’s
learned distribution with energy-induced probability ratios,
while circumventing the need to explicitly compute the in-
tractable partition function. Instead, it employs an energy-
weighted classification-like objective over a stochastic mini-
batch combination of conformational states, ensuring that
physically meaningful energy terms directly guide the align-
ment process. We further demonstrate the connection be-
tween EBA and DPO, providing an alternative view of the
alignment problem our method optimizes.

3.1. Energy-based Alignment

Given an amino acid sequence (or multiple sequence align-
ment, MSA) as condition c, our goal is to conditionally
sample the protein conformation ensemble {xi} that be-
longs to c from the target Boltzmann distribution induced
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Figure 1. Motivation behind the proposed Energy-based Alignment (EBA). To align the generative model to adhere to the Boltzmann factor
across different conformational states, we employ a stochastic approximation of the partition function which simplifies the intractable Z
over all possible states to a finite summation, enabling efficient learning from physical energy while maintaining training scalability.

by some potential energy function E(x; c) ∈ R, that is,
pB(x|c) = e−βE(x;c)/Z, where β ≜ 1/kBT is the tem-
perature factor and Z ≜

∑
x e

−βE(x;c). However, di-
rectly sampling from such distribution is intractable due to
the non-trivial partition function (or normalizing constant)
Z ≜

∑
x e

−βE(x;c) which requires the sum (or integration)
over all possible conformation states in the high-dimension
space. An relevant concept is the Boltzmann factor, which
describes the ratio of probabilities of two states xi and xj

as a function of energy difference: pB(xi|c)
pB(xj |c) = e−β∆Eij

where ∆Eij = E(xi; c) − E(xj ; c). This dependence on
∆Eij ensures that the Boltzmann factor is invariant to shifts
in absolute energy values, which is particularly important
for generative model training since energy scales can vary
significantly with the number of atoms in the protein. Lever-
aging ∆Eij enables us to construct learning objectives that
effectively incorporate energy feedback, capturing the rela-
tive stability of states within the conformation ensemble.

Suppose that pθ(x|c) = e−αEθ(x;c)/Z(α > 0) is a learn-
able probabilistic model parameterized by Eθ, then we can
optimize the model by minimizing the Kullback-Leibler
(KL) divergence against the target Boltzmann distribution
via the cross-entropy:

DKL(pB(x|c)∥pθ(x|c)) =
∑
i

pB(x|c) log
(
pB(x

i|c)
pθ(xi|c)

)
=
∑
i

pB(x
i|c) log pB(xi|c)−

∑
i

pB(x
i|c) log pθ(xi|c)

= −
∑
i

pB(x
i|c) log pθ(xi|c)−H(pB ; c)

= −
∑
i

e−βE(xi;c)∑
j e

−βE(xj ;c)
log

(
e−αEθ(x

i;c)∑
j e

−αEθ(xj ;c)

)
+ Const,

(6)

where H(pB ; c) ≡ −
∑

i pB(x
i|c) log pB(xi|c) is the en-

tropy of the target distribution which is constant w.r.t. θ.
Direct optimization of Eq. (6) is intractable due to the sum-
mation over all possible conformational states. We approx-
imate it by considering a stochastic finite subset of K rep-
resentative states {xi}Ki=1 from some proposal distribution
p∗, such as reference MD simulations or generative models.
Then we rewrite the first term in Eq. (6) as:

LEBA(θ) = −E(c,{xi})∼p∗[
K∑
i=1

e−βE(xi;c)∑K
j=1 e

−βE(xj ;c)
log

e−αEθ(x
i;c)∑K

j=1 e
−αEθ(xj ;c)

]
, (7)

which we refer to as the Energy-based Alignment (EBA) ob-
jective. EBA enables stochastic optimization via mini-batch
sampling, where the finite-state approximation in Eq. (7)
preserves the Boltzmann factor within each mini-batch. This
ensures that the probability ratio between any two states xi

and xj , remains proportional to their energy difference, i.e.,
pθ(x

i|c)
pθ(xj |c) = e−α∆Eij . Consequently, EBA approximately
aligns the model’s learned distribution with the target Boltz-
mann distribution while preserving the probability ratio.

3.2. EBA for Diffusion Models

Eq. (7) presents a general form where Eθ(x; c) is not specif-
ically defined. To adapt this objective for diffusion models,
we stipulate Eθ(x; c) in terms of the probability distribu-
tion pθ(x|c). Suppose that the diffusion model is specified
with forward q(x1:T |x0) and parameterized pθ(x0:T ). We
here explore an efficient form of objective for diffusion
models under the EBA framework as follows. To begin
with, we consider the basic form of energy function by
using the negative log-likelihood: Eθ = − log pθ(x|c),
where the logZ is omitted because it is constant w.r.t.
x. For diffusion models, there exist a chain of latents
x1:T and we alter the energy to be on the whole chain:
−Epθ(x1:T |c) log pθ(x0:T |c). Then we can factorize the
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Figure 2. Illustration of model architecture and EBA pipeline for energy-weighted preference fine-tuning. Starting from an input sequence
and its MSA, residue-level embeddings are pre-computed and conditioned to guide the all-atom diffusion. At each step, K reference
structures (e.g., K = 3) with the same sequence are sampled from the dataset, and their energies E are evaluated. The denoising error is
measured by aligned distance as in Eq. (14), and combined with E into the EBA-diffusion loss.

joint distribution with the reverse decomposition for pθ,
i.e., −pθ(xT )−

∑T
t=1 Epθ(xt,xt−1|x0,c) log pθ(xt−1|xt, c).

Since the prior pθ(xT ) is typically chosen as a stan-
dard Gaussian, the first term becomes a constant. How-
ever, to optimize the EBA objective containing the
above decomposition, we have to sample the latents ac-
cording to pθ(xt,xt−1|x0, c), which in practice is in-
tractable because of the expensive simulation of the re-
verse process. Therefore, we substitute the reverse pro-
cess of pθ(x1:T |x0) with the forward kernel (Wallace
et al., 2024), and the energy function now becomes
−
∑T

t=1 Eq(xt|x0,c)Eq(xt−1|x0,t) log pθ(xt−1|xt, c). Due
to the introduction of forward q(·), we amend with an en-
tropy term and have the final definition of energy function:

Eθ(x; c) ≜

−
T∑

t=1

Eq(xt|x0)

(
Eq(xt−1|x0,t)[log pθ(xt−1|xt, c)] +Ht(q)

)
=

T∑
t=1

Eq(xt|x0)(DKL[q(xt−1|x0,t)∥pθ(xt−1|xt, c)]) (8)

where Ht(q) ≜ −Eq(xt−1|x0,t)q(xt−1|x0,t) denotes the
(self) entropy of posterior defined by forward kernel. Intu-
itively, the energy function is defined by the KL-divergence
terms according to the decomposition of the reverse process.

By plugging Eq. (8) back into Eq. (7), we further leverage
the fact that the log-sum-exp (LSE) function is convex and
therefore apply Jensen’s inequality to push out the expecta-
tion (summation), leading to the following upper bound after
some algebra (see Appendix A.1 for detailed derivation):

L(θ) ≤ −E(c,{xi
0}K

i=1)∼D,t∼U(0,T ),xi
t∼q(xi

t|xi
0)

K∑
i=1

e−βE(xi;c)∑K
j=1 e

−βE(xj ;c)
log

e−αTDKL[q(x
i
t−1|x

i
0,t)∥pθ(x

i
t−1|x

i
t,c)]∑K

j e−αTDKL[q(x
j
t−1|x

j
0,t)∥pθ(x

j
t−1|x

j
t ,c)]

(9)

Because both q(xt−1|x0,t) and pθ(xt−1|xt, c) can be pa-
rameterized by gaussian distribution, we thus substitute the
KL divergence with the denoising term, setting the weight-
ing function ω(λt) as constant, we obtain our EBA objective
for diffusion as follows:

LEBA-Diffusion(θ) = −E(c,{x}K
i=1)∼D,t∼U(0,T ),xi

t∼q(xi
t|xi

0)

K∑
i=1

e−βE(xi;c)∑K
j=1 e

−βE(xj ;c)
log

e−αT (∥ϵi−ϵθ(x
i
t,t,c)∥

2
2)∑K

j=1 e
−αT (∥ϵj−ϵθ(x

j
t ,t,c)∥2

2)
.

(10)

3.3. DPO as a Special Case of EBA

Note that the derivation of the EBA objective in Eq. (7)
is independent of the form of energy function Eθ(x; c).
A notable alternative parametrization is the negative log-
likelihood ratio between the training model pθ(x|c) and
a reference model pref(x|c) (e.g., a frozen checkpoint of
the pre-trained model): Eθ(x; c) = − log pθ(x|c)

pref(x|c) . Using
this parametrization, DPO emerges as a special case of
EBA when K = 2 and low temperature (i.e., β → ∞).
Without loss of generality, consider a pair of samples

4



Aligning Protein Conformation Ensemble Generation with Physical Feedback

x1,x2 s.t. E(x1, c) < E(x2, c):

LEBA-DPO(θ) =

− E(c,x1,x2)

2∑
i=1

e−βE(xi;c)∑2
j=1 e

−βE(xj ;c)
log

e
α log

pθ(xi|c)
pref(x

i|c)∑2
j=1 e

α log
pθ(xj |c)
pref(x

j |c)

= −E(c,x1,x2) log
e
α log

pθ(x1|c)
pref(x

1|c)

e
α log

pθ(x1|c)
pref(x

1|c) + e
α log

pθ(x2|c)
pref(x

2|c)

(β →∞)

= −E(c,x1,x2) log σ

(
α log

pθ(x
1|c)

pref(x1|c)
− α log

pθ(x
2|c)

pref(x2|c)

)
,

(11)

which is equivalent to Eq. (5). This derivation demonstrates
that EBA reduces to a DPO objective when sampling two
states and ignoring energy differences between states. Fol-
lowing Wallace et al. (2024), we also derive the DPO varia-
tion of EBA for diffusion models in Appendix A.2.

Algorithm 1 Fine-tuning Diffusion Model with EBA
Require: Pre-trained denoising network xθ, conformation

dataset D = {(c,x0)} with sequence conditions c and
corresponding structures x0, energy function E(x; c),
inverse temperature factors α, β, the number of time
steps T , learning rate γ.

1: while not converged do
2: Sample (c,x0) from D
3: Let x1

0 ← x0

4: Randomly retrieve K − 1 samples (ci,xi
0) ∼ D

s.t. ci = c (i = 2, . . . ,K)
5: Calculate energy E(xi

0; c) for each i = 1, . . . ,K
6: Calculate mini-batch Boltzmann weights:

w(xi
0) =

e−βE(xi
0;c)∑K

j=1 e
−βE(xj

0;c)

7: for each candidate i = 1, . . . ,K do
8: Sample timestep t ∼ Uniform(0, T )
9: Add noise xi

t ∼ q(xi
t|xi

0)
10: Forward denoising network xθ(x

i
t, t)

11: Calculate the aligned loss Li
total(θ) in Eq. (14)

12: end for
13: Calculate EBA loss according to Eq. (10)

LEBA-Diffusion = −
K∑
i=1

w(xi
0) log

e−Li
total∑K

j=1 e
−Lj

total

14: Update parameters: θ ← θ − γ∇θLEBA-Diffusion
15: end while
16: Return fine-tuned denosing network xθ.

3.4. All-atom Diffusion with AlphaFold

We base our conditional generative model on the Al-
phaFold3 architecture (Abramson et al., 2024), which en-
codes sequence information through its MSA Module and
PairFormer into conditioning embeddings, followed by an
all-atom diffusion module to iteratively refine atomic coor-
dinates from a noise distribution into clean conformations.
AlphaFold3 explicitly models atom coordinates in the pro-
tein structure, rather than relying on coarse-grained rigid
frames for backbone atoms and internal torsion angles for
side chain atoms which can be hindered to capture subtle
structural variations and alternative conformations. Adopt-
ing all-atom modeling architecture enables a more direct
representation of conformational degrees of freedom and
facilitates accurate integration of physical feedback.

3.5. Structural Alignment-based Objective

From the derivation of objective in Eq. (10), the stan-
dard mean squared error (MSE) or L2 loss L(θ) = ∥ϵ −
ϵθ(x

j
t , t)∥22 is commonly used to minimize the difference

between predictions and ground truth. However, this MSE
term may be suboptimal for protein conformation genera-
tion. The input condition (amino acid sequences) is SE(3)-
invariant1, meaning it does not differentiate between roto-
translational variants of the target protein, which can nega-
tively affect the training efficiency. Therefore, we consider
the following SE(3)-invariant losses for EBA fine-tuning:

Rigid aligned MSE. To ensure that the loss remains in-
variant to global rotational and translational differences, we
first align the predicted atomic coordinates to the ground
truth structure using the Kabsch’s algorithm. This align-
ment minimizes the root-mean-square deviation (RMSD) by
applying an optimal rotation and translation. The MSE loss
is then computed on the aligned coordinates of all atoms,
allowing the model focuses on meaningful conformational
changes rather than arbitrary positional offsets:

LAligned MSE =
1

N

N∑
l=1

∥Align(x̂0,x0)l − x0,l∥22, (12)

where Align(x̂0,x0), aligns the predicted coordinates x̂0

to the ground truth coordinates x0 ∈ RN×3 , and N is the
number of atoms in the structure (l = 1, . . . , N).

Smooth LDDT. While alignment-based MSE ensures
structural consistency in Cartesian space, it does not ex-
plicitly capture inter-atomic relationships that are important
for protein geometry. To address this, we additional intro-
duce an auxiliary loss term based on the pairwise distances.

1A function f is said to be SE(3)-invariant if its output remains
unchanged under arbitrary rigid transformations (i.e., rotations and
translations): f(Rx+ t) = f(x),∀R ∈ SO(3), t ∈ R3.
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Table 1. Statistical metrics on MD ensemble benchmark of ATLAS test set (N = 250 following Jing et al. (2024a)) where the median
across all test targets is reported. The runtime is reported as GPU second required per sample averaged on all test targets. The best result
is highlighted in bold, while the second-best result is underlined.

Full Distilled 32 48 64 256 MDGen Pre-train EBA-DPO EBA

Pairwise RMSD r ↑ 0.48 0.48 0.03 0.12 0.22 0.15 0.48 0.43 0.59 0.62
Global RMSF r ↑ 0.60 0.54 0.13 0.23 0.29 0.26 0.50 0.50 0.69 0.71
Per-target RMSF r ↑ 0.85 0.81 0.51 0.52 0.51 0.55 0.71 0.72 0.90 0.90

Root mean W2-dist. ↓ 2.61 3.70 6.15 5.32 4.28 3.62 2.69 3.22 2.43 2.43
↪→ Trans. contrib. ↓ 2.28 3.10 5.22 3.92 3.33 2.87 - 2.47 2.05 2.03
↪→ Var. contrib. ↓ 1.30 1.52 3.55 2.49 2.24 2.24 - 1.89 1.20 1.20
MD PCA W2-dist. ↓ 1.52 1.73 2.44 2.30 2.23 1.88 1.89 1.78 1.20 1.19
Joint PCA W2-dist. ↓ 2.25 3.05 5.51 4.51 3.57 3.02 - 2.47 2.08 2.04
% PC-sim > 0.5 ↑ 44 34 15 18 21 21 - 28 38 44

Weak contacts J ↑ 0.62 0.52 0.40 0.40 0.37 0.30 0.51 0.23 0.63 0.65
Transient contacts J ↑ 0.41 0.28 0.23 0.26 0.27 0.27 - 0.25 0.38 0.41
Exposed residue J ↑ 0.50 0.48 0.34 0.37 0.37 0.33 0.29 0.29 0.68 0.70
Exposed MI matrix ρ ↑ 0.25 0.14 0.14 0.11 0.10 0.06 - 0.01 0.35 0.36

GPU sec. per sample 70 7 0.2

Metrics / Methods
AlphaFLOW-MD MSA subsampling Ours

Predicting
flexibility

Distributional
accuracy

Ensemble
observables

Runtime 4 0.9

Specifically, for each structure, we apply the Smooth LDDT
loss (Abramson et al., 2024) which is defined as:

LSmooth LDDT =

1

4

meanl ̸=m

∑4
k=1 σ(δk −∆Di,j)1{Dgt

,i,j < 15 Å}
meanl ̸=m1{Dgt

,i,j < 15 Å}
,

(13)

where ∆Di,j ≜ abs(Dpred
i,j − Dgt

,i,j) ∈ RN×N , Dpred =

Dist(x̂0) ∈ RN×N andDgt = Dist(x0) ∈ RN×N represent
the pairwise distance matrices of predicted and ground truth
structures, and σ(·) indicates the sigmoid function. This
term penalizes deviations in pairwise distances, encouraging
the preservation of local and global structural features.

The final denoising training loss is a weighted combination
of the two components above:

Ltotal = λmseLAligned MSE + λlddtLSmooth LDDT. (14)

λmse, λlddt ≥ 0 are hyperparameters that control the relative
importance of the aligned MSE and smooth LDDT terms.
Putting it together, we compute the MSE term in Eq. (10)
by Eq. (14), which ensures both structural alignment and
geometric accuracy and enables the model to better cap-
ture biologically relevant conformations. EBA fine-tuning
procedure for diffusion models is detailed in Algorithm 1.

4. Experiments
4.1. Setup

To demonstrate the effectiveness of the proposed fine-tuning
pipeline, we evaluate the protein ensemble generation task

on the ATLAS dataset (Vander Meersche et al., 2024) follow-
ing the benchmark in Jing et al. (2024a). For baselines, we
mainly compare our methods against: AlphaFold2 (Jumper
et al., 2021) with MSA subsampling (Del Alamo et al.,
2022), AlphaFlow (Jing et al., 2024a) and MDGen (Jing
et al., 2024b). We follow the evaluation metrics introduced
in Jing et al. (2024a) and classify them as below:

• Flexibility correlation (↑): the pearson correlation
r of the pairwise RMSD, global root-mean-square-
fluctutation (RMSF) and per-target RMSF.

• Distributional accuracy: Root mean of 2-Wasserstein
distance (W2-dist) and its translation and variance con-
tribution (↓), MD PCAW2-dist (↓), joint PCAW2-dist
(↓); the percentage of samples with PC-sim > 0.5 (↑).

• Ensemble observables (↑): the Jaccard similarity J
of the weak contacts, transient contacts, and exposed
residue as well as the Spearman correlation ρ of the
exposed mutual information (MI) matrix.

4.2. Training Pipeline

We adopt Protenix (Chen et al., 2025) as AlphaFold3 archi-
tecture implementation and initialize the model with the pre-
trained parameters from the released weights. No template
input is used across our study. The ATLAS trajectories are
pre-processed by parsing, following Jing et al. (2024a), and
by applying the training data pipeline in the open-sourced
Protenix codebase. We fine-tune the pre-trained DIFFUSION
MODULE in two stages including supervised fine-tuning and
physical alignment, with the parameters of other modules
frozen.
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Stage 1: Supervised Fine-tuning. In the first stage, the
pre-trained model is adapted via fine-tuning to the ATLAS
simulated trajectories (Vander Meersche et al., 2024). AT-
LAS provides diverse ensembles of protein conformations
generated via all-atom MD simulations. During this phase,
the model is trained to minimize the vanilla diffusion loss.
This fine-tuning stage enables the diffusion to coarsely adapt
to the data distribution over conformational space sampled
by the MD simulators across different targets.

Stage 2: Physical Alignment. The second stage employs
the EBA alignment to align the diffusion with physical en-
ergy feedback. We use (1) Direct Preference Optimization
(EBA-DPO) that leverages energy-agnostic preference pairs
(binary win-lose pairs) to align the model’s predictions,
emphasizing conformational states with favorable energy
profiles; (2) the proposed EBA objective to account for
the energy difference ∆E between multiple conformational
states weighted by physical energies. To make training more
efficient, we collect the ATLAS training set and annotate
their potential energy off-policy with local minimization.
The detailed protocol can be found in Appendix C.

In practice, we also observed that E(x) varies significantly
with protein size (the number of residues or atoms), making
the energy-informed training unstable due to large variance
in the objective. Inspired by Naganathan & Muñoz (2005),
which shows that the folding time scales with the number of
residues (with an exponent of 0.5), we introduce a sample-
specific regularization factor L0.5 to normalize the energy.
Concretely, we rescale by multiplying β with 1/L0.5 for
each sample, where L denotes the number of residues in x.

4.3. Benchmark on Molecular Dynamics Ensembles

We evaluate the models to emulate the conformation ensem-
bles of ATLAS MD simulation dataset (Vander Meersche
et al., 2024), which includes three replicas of 100ns produc-
tion trajectories of 1390 protein targets in total. We strictly
follow the experimental settings as well as the data split
in Jing et al. (2024a) and sample 250 predictions per test
target using different models. Baseline evaluations are taken
from the original tabular results in Jing et al. (2024a) and
Jing et al. (2024b). As shown in Table 1, our methods con-
sistently outperform baseline models as well as seeing an
improvement than EBA-DPO (an implementation of DPO
within our framework), where we setK = 2 for EBA model
to make fair comparison with DPO. The EBA model shows
significant improvement in exposed residue J and the ex-
posed MI matrix ρ, along with high RMSF correlation r.
This suggests that our model captures collective long-range
dynamics by exposing buried residues to solvent, as a phys-
ically plausible behavior where other baselines perform
poorly. As an illustration, we visualize the sampled ensem-
bles for the test target 6uof A following Jing et al. (2024a)

and plot the Cα-RMSF against the residue index in Figure 3.

Table 2. Ablation results on MD ensemble benchmark of ATLAS
test set (Jing et al., 2024a) for EBA with different number of
candidate samples K in mini-batch during alignment training.

Metrics K = 2 K = 3 K = 5

Pairwise RMSD r ↑ 0.62 0.61 0.62
Global RMSF r ↑ 0.71 0.71 0.72
Per-target RMSF r ↑ 0.90 0.90 0.89

Root mean W2-dist. ↓ 2.43 2.42 2.40
↪→ Trans. contrib. ↓ 2.03 2.02 2.05
↪→ Var. contrib. ↓ 1.20 1.18 1.25
MD PCA W2-dist. ↓ 1.19 1.18 1.16
Joint PCA W2-dist. ↓ 2.04 2.04 2.15
% PC-sim > 0.5 ↑ 44 39 43

Weak contacts J ↑ 0.65 0.65 0.65
Transient contacts J ↑ 0.41 0.41 0.39
Exposed residue J ↑ 0.70 0.69 0.70
Exposed MI matrix ρ ↑ 0.36 0.37 0.34

Iteration per step (s) 4.3 5.4 7.8
Avg. GPU memory (GB) 12.0 13.9 16.3

4.4. Ablation Study

To assess the impact of the size K of mini-batch on the
performance of EBA during fine-tuning, we further conduct
an ablation study on the MD ensemble benchmark of the
ATLAS test set. Table 2 presents the results for varying
values ofK, demonstrating the robustness of our mini-batch
EBA objective Eq. (10). Note that large K is at the cost of
increased computational overhead, as the model’s forward
pass scales linearly with K. Also, we investigate the effect
of λ and η, scaling factors for noise and backward step size
respectively, on the quality of generated ensemble in Fig. 4.

Additionally, we conduct a simple profiling on different
K(= 2, 3, 5) regarding the training speed and GPU memory
utilization. The DDP parallelism and 4× A100 40GB GPUs
are used for this benchmarking. As shown in Table 2, the
increase of K does not introduce heavy memory overhead,
while the iteration step grows in a quasi-linear trend.

4.5. Discussion

Our approach outperform existing methods in MD ensemble
generation based off AlphaFold3’s direct atomic interaction
modeling, which reduces the need for coarse-graining or in-
ternal coordinates while allowing for more precise capture of
fine-grained conformational changes. Beyond data-driven
training, the model is fine-tuned with physical feedback,
ensuring that learned structures are not only statistically
plausible but also physically consistent. Especially, through
EBA, we align the model to (approximately) emulate the
Boltzmann distribution, enhancing its capability to generate
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thermodynamics-consistent ensembles. Our adaptation ef-
fectively bridges neural and physical methods as a promising
framework for protein conformation ensemble generation.

Importantly, although the derivation sums over onlyK mini-
batch samples, EBA is not designed to approximate the
intractable partition function Z in Eq. 3 (which is beyond
the scope of this paper), since doing so introduces non-
negligible truncation error. Rather, the EBA objective lever-
ages the Boltzmann factors, i.e., the relative weights among
conformations within each sampled mini-batch, which re-
main invariant to the batch size and adhere to partial knowl-
edge derived from the Boltzmann distribution.

5. Related work
Protein conformation generation. Unlike structure pre-
diction (Jumper et al., 2021) aiming to identify a single,
most-likely folded structure, protein conformation genera-
tion focuses on sampling an ensemble of physically plau-
sible states that capture the underlying energy landscape.
Boltzmann generator (Noé et al., 2019) leverages normaliz-
ing flows to approximate the Boltzmann distribution by train-
ing on simulation data. Arts et al. (2023) applies the diffu-
sion model to capture such distribution over coarse-grained
protein conformations. EigenFold (Jing et al., 2023) adopts
a generative perspective on structure prediction, enabling the
generation of multiple structures given an input sequence.
Str2Str (Lu et al., 2024b) introduces a score-based sampler
trained exclusively on PDB data, framing conformation gen-
eration in a structure-to-structure paradigm. DiG (Zheng
et al., 2024) trains a conditional diffusion model on both
PDB and in-house simulation data. ConfDiff (Wang et al.,
2024) incorporates the energy- and force-guidance during
the reverse process of diffusion to enhance the accuracy of
conformation generation. AlphaFlow (Jing et al., 2024a)
repurposes the AlphaFold2 model into a denoising network
via flow matching. ESMDiff (Lu et al., 2024a) fine-tunes
the protein language model ESM3 using discrete diffusion
to produce protein conformations. Finally, MDGen (Jing
et al., 2024b) attempts direct generation of MD trajectories
by modeling them as time-series of protein structures.

Alignment methods for generative models. Aligning
generative models with desired objectives is becoming in-
creasingly important. The Reinforcement Learning from
Human Feedback (RLHF) framework optimizes models via
RL using human preference rewards and has been widely ap-
plied in tasks like machine translation (Kreutzer et al., 2018),
summarization (Stiennon et al., 2020), and instruction fol-
lowing (Ouyang et al., 2022). RLHF has also been applied
for alignment of text-to-image diffusion models (Black et al.,
2023; Fan et al., 2024). However, RL-based fine-tuning
faces significant challenges in stability and scalability. Di-
rect Preference Optimization (Rafailov et al., 2024) mit-

Figure 3. (Top) Structure ensembles for the target 6uof A in AT-
LAS test set with RMSF correlation r labeled. (Bottom) Cα-
RMSF versus the residue index (N → C terminus from left to
right).

igates these issues by directly optimizing for the optimal
policy via re-parameterization of an implicit reward model.
This approach has been extended beyond language model-
ing: Diffusion-DPO (Wallace et al., 2024) for text-to-image
generation, ABDPO (Zhou et al., 2024) for antibody design
using Rosetta energy (Alford et al., 2017), and ALIDIFF
(Gu et al., 2024) and DECOMPDPO (Cheng et al., 2024)
for molecular optimization in structure-based drug design.

Remarks: Our method differs from existing approaches
above by adopting a more general-form objective, being
grounded in physically meaningful motivations, addressing
a different task and demonstrating superior performance.

6. Conclusion and Limitations
Conclusion. In this study, we introduced a physics-
inspired alignment framework, namely EBA, for protein
ensemble generation. EBA leverages energy feedback to
refine the pre-trained diffusion models based on the Boltz-
mann factor between different conformational states. Our
approach effectively bridges structure data with physical
signal, enabling scalable and physically grounded model
alignment. Built upon AlphaFold3, the fine-tuned diffu-
sion model demonstrates the effectiveness of the proposed
EBA by benchmarking on the ATLAS MD dataset. Results
underscore the potential of incorporating physical energy
supervision into the data-drive models, advancing more
accurate and thermodynamically consistent ensemble gen-
eration. Our method opens new avenues for applications in
modern drug discovery and biomolecular simulations.

Limitations. Despite its advantages, our approach has
several limitations. First, since the base model, AlphaFold3,
is originally designed for folding, its fine-tuned variant may
not be readily well-suited for modeling long-timescale dy-
namics (Lindorff-Larsen et al., 2011). Second, the accu-
racy of the employed energy (force fields) needs further
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Figure 4. Evaluation performances versus different values of infer-
ence hyperparameters including scaling factors for noise λ and
and backward step size η during diffusion sampling (N = 250).

improvement, as their precision falls short of quantum-level
single-point energy calculations. Third, our current study
is restricted to generating single-chain protein ensemble.
Finally, we have solely implemented and evaluated EBA
within the diffusion framework, leaving open the exploration
of alternative generative models. Future work will focus
on addressing these limitations by extending to broader
biomolecular systems, incorporating quantum-level energy
calculation, and exploring more alignment implementations.
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A. Theoretical Results
A.1. Proof of Equation 9

For simplicity, we denote the decomposed negative KL-divergence term −DKL[q(x
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where t is the index of time step and j is the sample index. Let w(xi) ≜ e−βE(xi;c)∑K
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Firstly, we rewrite the left-hand side by expanding the log:
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For the denominator term:
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t |x

j
0)

F (xj ,t)
,

we notice that this is the log-sum-exp (LSE) function. Apply the Jensen’s inequality for with convexity of the LSE function
and we can pull the summation and expectation outside:

log

K∑
j=1

e
∑

t Ex
j
t∼q(x

j
t |x

j
0)

[F (xj ,t)]
≤

T∑
t=1

Exj
t∼q(xj

t |x
j
0),∀j

log

K∑
j=1

eF (xj ,t).

Thus, the left-hand side satisfies:

− log
e
∑

t Ex
j
t∼q(x

j
t |x

j
0)

[F (xi,t)]∑
j e

∑
t Ex

j
t∼q(x

j
t |x

j
0)

[F (xj ,t)]
≤ −

T∑
t=1

Exj
t∼q(xj

t |x
j
0),∀j

log
eF (xi,t)∑
j e

F (xj ,t)
.

Because the Boltzmann weights are strictly positive,
∑K

i=1 w(xi) is a convex linear combination, following the inequality
above and thus we have:

−E(c,{x}K
1 )∼D

K∑
i=1

w(xi) log
e
∑

t Exi
t∼q(xi

t|x
i
0)

F (xi,t)∑K
j e

∑
t Ex

j
t∼q(x

j
t |x

j
0)

,F (xj ,t)
≤ −E(c,{x}K

1 )∼D

T∑
t=1

K∑
i=1

Exi
t∼q(xi

t|xi
0),∀i

[
w(xi) log

eF (xi,t)∑K
j eF (xj ,t)

]
.

The inequality is now proved.
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A.2. Derivation for EBA-DPO-Diffusion

To address the intractability of pθ(x|c) for diffusion models, Wallace et al. (2024) has derived an ELBO objective for
diffusion DPO. We provide a brief summary of their derivation here and refer the readers to Wallace et al. (2024) for the
complete details.

The diffusion ELBO for the objective in Eq. 11 is:

LEBA-DPO-Diffusion(θ) ≤ −E(c,{x}K
1 )∼D,t∼U(0,T ),xi

t∼pθ(xi
t|xi

0,c)
log σ

(
α log

pθ(x
1
t−1|x1

t , c)

pref(x1
t−1|x1

t , c)
− α log

pθ(x
2
t−1|x2

t , c)

pref(x2
t−1|x2

t , c)

)
.

(16)

The reverse process pθ(x1:T |x0) can be further approximated by the forward process q(x1:T |x0):

LEBA-DPO-Diffusion(θ) =− E(c,{x}K
1 )∼D,t∼U(0,T ),xi

t∼q(x
i
t|xi

0)
log σ(−αT (

DKL[q(x
1
t−1|x1

t ,x
i
0)∥pθ(x1

t−1|x1
t , c)]− DKL[q(x

1
t−1|x1

t ,x
i
0)∥pref(x

1
t−1|x1

t , c)]

− DKL[q(x
2
t−1|x2

t ,x
i
0)∥pθ(x2

t−1|x2
t , c)] + DKL[q(x

2
t−1|x2

t ,x
i
0)∥pref(x

2
t−1|x2

t , c)])). (17)

With some algebra, the loss simplifies to:

LEBA-DPO-Diffusion(θ) =− E(c,{x}K
1 )∼D,t∼U(0,T ),xi

t∼q(x
i
t|xi

0)
log σ(−αT (

∥ϵ1 − ϵθ(x1
t , t, c)∥22 − ∥ϵ1 − ϵref(x

1
t , t, c)∥22 − ∥ϵ2 − ϵθ(x2

t , t, c)∥22 + ∥ϵ2 − ϵref(x
2
t , t, c)∥22)).

(18)

In practice, we combine α and T into a single hyperparameter, denoted as T . Similar to EBA-Diffusion in Algorithm 1, the
MSE terms are computed by Eq. 14.

A.3. Further Discussion on the Learning Objective

Here we show the optimization of DKL(p
K
B ||pKθ ) regarding parameters θ in Eq. 6 will finally converge to a minimizer of

DKL(pB ||pθ) in the following sense. Suppose the θ is a global minimizer of DKL(p
K
B ||pKθ ) w.r.t. ∀{xj}Kj=1 ∼ pB . Let

K = 2, ∀xi, xj , we have pKB = pKθ , which implies that (a, b > 0):

exp(−bE(xi))/ exp(−bE(xj)) = exp(−aEθ(x
i))/ exp(−aEθ(x

j)) (19)

Then we see −b[E(xi)− E(xj)] = −a[Eθ(x
i)− Eθ(x

j)], or equivalently

Eθ(x
i) =

b

a
E(xi) + [Eθ(x

j)− b

a
E(xj)],∀i, j

Note that by marginalizing j, we see that

Eθ(x
i) =

b

a
E(xi) + Const,∀i

Finally we plug in, ∀xi,

pθ(x
i) = exp(−aEθ(x

i))/Z = exp(−a( b
a
E(xi) + Const))/Z = exp(−bE(xi))/Z ′ = pB(x

i),

or pθ(x) = pB(x). This indicates that model alignment according to Boltzmann factor can also provide useful guidance
towards the underlying Boltzmann distribution: when the equality Eq. 19 holds for any pair of xi, xj , then we immediately
have pθ ≡ pB .
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B. Additional Experimental Results
In this section, we additionally incorporate more reports as comparison to give interested readers better overview of our
methods as shown in Table S1. Results of ConfDiff (Wang et al., 2024) and BioEmu (Lewis et al., 2024) are obtained
by performing inference pipeline using code and checkpoints from their official repositories. For the ConfDiff, we use
the checkpoint named OpenFold-r3-MD which was finetuned on the ATLAS dataset (Wang et al., 2024). Notably, the
proposed EBA consistently outperformed the pre-trained and the Stage2-SFT checkpoints (after two stages of supervised
fine-tuning, see Section 4.2), which demonstrates the proposed EBA objective provides additional knowledge from the
energy landscape beyond the maximizing likelihood training.

Table S1. Supplementary comparison on MD ensemble benchmark of ATLAS test set following Jing et al. (2024a) where the median
across all test targets is reported.

Full Distilled AlphaFold ConfDiff BioEmu Pre-train Stage2-SFT EBA

Pairwise RMSD r ↑ 0.19 0.19 0.10 0.59 0.46 0.43 0.57 0.62
Global RMSF r ↑ 0.31 0.33 0.21 0.67 0.57 0.50 0.69 0.71
Per-target RMSF r ↑ 0.76 0.74 0.52 0.85 0.71 0.72 0.89 0.90

Root mean W2-dist. ↓ 3.60 4.23 3.58 2.76 4.32 3.22 2.58 2.43
↪→ Trans. contrib. ↓ 3.13 3.75 2.86 2.23 4.04 2.47 2.15 2.03
↪→ Var. contrib. ↓ 1.74 1.90 2.27 1.40 1.77 1.89 1.28 1.20
MD PCA W2-dist. ↓ 1.51 1.87 1.99 1.44 1.97 1.78 1.29 1.19
Joint PCA W2-dist. ↓ 3.19 3.79 1.58 2.25 3.98 2.47 2.13 2.04
% PC-sim > 0.5 ↑ 26 33 23 35 51 28 42 44

Weak contacts J ↑ 0.55 0.48 0.23 0.59 0.33 0.23 0.63 0.65
Transient contacts J ↑ 0.34 0.30 0.28 0.36 - 0.25 0.43 0.41
Exposed residue J ↑ 0.49 0.43 0.32 0.50 - 0.29 0.67 0.70
Exposed MI matrix ρ ↑ 0.20 0.16 0.02 0.24 0.07 0.01 0.35 0.36

Metrics / Methods
ESMFLOW-MD Ours

Predicting
flexibility

Distributional
accuracy

Ensemble
observables

C. Implementation Details
Rigid align. Algorithm 3 describes the rigid alignment procedure used for atomic protein structures during loss calculation,
which follows the Kabsch algorithm with reflection consideration. Notably, the structural alignment is in practice performed
by transforming the ground truth structure to match the predicted structure, allowing gradients to propagate correctly during
optimization, i.e.,xref ← x̂.

Diffusion inference. During inference, Algorithm 2 outlines the diffusion module sampling procedure, which iteratively
refines an initial conformation drawn from a Gaussian distribution. At each step, a randomly sample rigid transformation
is applied, followed by the standard denoising step using a learned diffusion module. In Algorithm 2, N is the Gaussian
distribution; the USO(3) indicates the uniformly distribution rotations in three dimensions and is implemented using the
scipy.spatial.transform.Rotation.random. We use γ0 = 0.8, γmin = 1.0, Nstep = 20, λ = 1.75, η =
1.25 as the default hyperparameters for sample diffusion across all finetuned and aligned models; for pre-trained model, we
keep the default λ = 1.5, η = 1.5 since we find that the change of scaling factors will yield significantly worse results for
diffusion module without fine-tuning. The inference noise scheduler also has the same configuration as Abramson et al.
(2024), i.e., smax = 160.0, smin = 4× 10−4, p = 7 and σdata = 16.

Training data. For training, we follow the dataset splitting of Jing et al. (2024a) for ATLAS. Specifically, we download
the ATLAS MD trajectories, which comprises 1,390 proteins selected for structural diversity based on ECOD domain
classification. This results in train / validation / test splits of 1,266 / 39 / 82 MD ensembles, with the rest excluded due to
excessive sequence length (Jing et al., 2024a) . The conformation are stratified sampled from the production trajectories with
an interval as 1ns (per 100 frames in the original saving frequency). We combine the three replicas as the final ensemble with
300 structures per target. The multiple sequence alignments (MSA) for each target are downloaded from the pre-computed
deposit in Protenix training data (Chen et al., 2018). For the energy-based alignment fine-tuning, we employ an off-policy
strategy where energy labels are assigned by scanning the entire training dataset using a force field prior to loading the
data for model training. This allows us to efficiently decouple data processing from model updates to accelerate training.
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Algorithm 2 Inference of Diffusion Module (Algo. 18 in Abramson et al. (2024))

Require: Features f∗; embeddings sinputs
i , semb

i , zemb
ij ; noise schedule [c0, c1, . . . , cT ]

Require: Hyperparameter: γ0 = 0.8, γmin = 1.0, noise scale λ = 1.5, step scale η = 1.25
1: xl ∼ c0 · N (0, I3) // Initialization
2: for cτ ∈ c1, . . . , cT do
3: xl ← xl −meanlxl // Center coordinates
4: R ∼ USO(3), t ∼ N (0, I3)
5: xl ← R · xl + t,∀l // Apply roto-translate
6: γ ← γ0 if cτ > γmin else 0
7: t̂← cτ−1(γ + 1)

8: ϵl ← λ
√
t̂2 − c2τ−1 · N (0, I3)

9: xnoisy
l ← xl + ϵl

10: xdenoised
l ← DiffusionModule(xnoisy

l , t̂, sinputs
i , semb

i , zemb
ij , f∗)

11: δl ← (xnoisy
l − xdenoised

l )/t̂
12: dt← cτ − t̂
13: xl ← xnoisy

l + η · dt · δl
14: end for
15: Return xl

Algorithm 3 Structure Rigid Align (Kabsch-Umeyama Algorithm)
Require: xl,x

ref
l

1: µ, µref ← 1
N

∑
l xl,

1
N

∑
l x

ref
l

2: xl,x
ref
l ← xl − µ,xref

l − µref

3: U, V ← torch.svd(
∑

l x
ref
l ⊗ xl)

4: R← UV
5: if torch.linalg.det(R) < 0 then

6: F ←

1 0 0
0 1 0
0 0 −1


7: R← UFV
8: end if
9: xalign

l ← Rxl + µ

10: Return xalign
l

15



Aligning Protein Conformation Ensemble Generation with Physical Feedback

Alternatively, an on-policy strategy could be used, where conformations are generated dynamically during training, with
energy calculated on the fly. Such an approach would necessitate maintaining a replay buffer to store and reuse past samples,
enabling more adaptive training based on real-time model predictions. We leave this exploration for future work.

Backbone model. We adopt PROTENIX (Chen et al., 2025), a PyTorch implementation of AlphaFold3, as the backbone
architecture. For all ATLAS training targets, we pre-computed the PairFormer embeddings (a collection of s input,
s trunk, z trunk) using Ncycle = 10. During training and inference, we activate only the input embedder and diffusion
module while leaving other components, such as the MSA module, PairFormer, Distogram head and confidence heads
frozen. Additionally, no template module or template-based input is used in our study. During training, the atom coordinates
are properly permuted to match the best alignment with ground truth structure (Chen et al., 2025).

Supervised fine-tuning (SFT). Before performing EBA alignment, the pre-trained diffusion model is first fine-tuned
using the standard score matching objective (Ho et al., 2020). The parameter optimization is performed with the Adam
optimizer (Kingma & Ba, 2014), using a learning rate of 0.001, β values of (0.9, 0.95), and a weight decay of 1×10−8. The
learning rate follows an ExponentialLR schedule with a warm-up phase of 200 steps and a decay factor γ of 0.95 applied
every 50k optimizer steps. We set λMSE = 1.0 and λLDDT = 1.0 in Eq. (14). During training the noise level is sampled
from σdatae

−1.2+1.5·N (0,1) as the default setting with σdata = 16. In each optimizer step, we clip the gradient norm by
10. The SFT process consists of two stages: in the first stage, input structures with more than 384 residues are randomly
cropped to a fixed size of 384. For cropping, half of the time, contiguous (on sequence) cropping is used, while the other
half employs the spatial cropping (Abramson et al., 2024). Random rigid augmentation is applied during diffusion training
with an internal diffusion batch size of 32. In the second stage, the cropping size is increased to 768, and random rigid
augmentation is applied with a reduced internal batch size of 16. In both stages, conformation samples are uniformly drawn
from the training dataset without any sample weighting. The training was conducted with NVIDIA A100 GPUs.

Alignment fine-tuning. As an alignment baseline, the EBA-DPO is implemented within the EBA framework by setting
K = 2 and replacing the softmax with sigmoid function as in Wallace et al. (2024). The binary preference label is annotated
by selecting the sample with smaller energy in the mini-batch as “win” while the other as “lose”. The reference model is
selected to be the SFT model with all parameters frozen. For EBA, we follow the same optimizer and scheduler as SFT stage
but use a smaller base learning rate of 1.0× 10−7. To reduce the variance of gradient during training, we accumulate the
gradient per 16 steps and also clip the norm by 10. We set the energy temperature factor β = 1/L0.5 where L is the protein
length of the current mini-batch of samples, and the combined model temperature factor αT = 50 . The (internal) diffusion
batch size is set to be 8 during alignment. To obtain a batch of sequence-coupled samples, we first sample a single structure
(c,x) uniformly from the alignment dataset, then we retrieve using the corresponding sequence c against the dataset for
additional K − 1 sample with the same sequence c (uniformly sample from the dataset). Similar to SFT, we set λmse = 1.0
and λlddt = 1.0 as the structural loss weights. Similarly, experiments were run on NVIDIA A100 GPUs.

Energy annotation. To evaluate the potential energy E of protein structures for preference fine-tuning, we adopted the
OpenMM suite (Eastman et al., 2023) and CHARMM36 (Best et al., 2012) force field with GBn2 model (Nguyen et al.,
2013) for protein solvation. Each protein structure was fixed by the PDBFixer to add hydrogen atoms and neutralized with
Na+/Cl− ions at a concentration of 150mM. We then perform energy minimization with tolerance as 10 kJ /(mol · nm)
until converge. The energy (unit in kJ / mol) after minimization was assigned to each structure. To calculate the Boltzmann
weight, we adopted kB = 8.314 × 10−3 kJ/(mol · K) and set the temperature to be 300K (room temperature). Note
that our energy evaluation does not perfectly reproduce the ATLAS simulation protocol, which uses GROMACS v2019.4
(Abraham et al., 2015) with the CHARMM36m force field (Huang et al., 2017) in an explicit TIP3P water environment.
Since protein–solvent interactions can significantly contribute to the overall potential energy, using explicit water for energy
annotation can introduce large variance in energy estimates and is far less efficient in computation. Future work may consider
quantum-level single-point energy evaluation using density functional theory (DFT) methods, semi-empirical methods (such
as GFN2-xTB (Bannwarth et al., 2019)) or even ab initio computational methods suitable for protein structure, which we
believe is more promising since they are more accurate and less affected by solvent.

Runtime profiling. The MD ensemble generation runtime in Table 1 for baselines models (Jing et al., 2024a;b) and EBA
are benchmarked on NVIDIA A100 GPUs. The training iteration per step and memory profiling in Table 2 are calculated
based on 4× A100 GPUs as wall clock time and per-device memeory consumption, respectively.
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