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Abstract

We introduce MABe22, a large-scale, multi-agent
video and trajectory benchmark to assess the qual-
ity of learned behavior representations. This
dataset is collected from a variety of biology
experiments, and includes triplets of interacting
mice (4.7 million frames video+pose tracking
data, 10 million frames pose only), symbiotic
beetle-ant interactions (10 million frames video
data), and groups of interacting flies (4.4 mil-
lion frames of pose tracking data). Accompa-
nying these data, we introduce a panel of real-
life downstream analysis tasks to assess the qual-
ity of learned representations by evaluating how
well they preserve information about the exper-
imental conditions (e.g. strain, time of day, op-
togenetic stimulation) and animal behavior. We
test multiple state-of-the-art self-supervised video
and trajectory representation learning methods to
demonstrate the use of our benchmark, reveal-
ing that methods developed using human action
datasets do not fully translate to animal datasets.
We hope that our benchmark and dataset encour-
age a broader exploration of behavior representa-
tion learning methods across species and settings.

1. Introduction
The study of interacting agents is important for a range of
scientific and engineering applications, from designing safer
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Figure 1. MABe22 consists of animal interactions in laboratory
experiments. We propose a dataset to benchmark representa-
tion learning methods that focus on multi-agent behavior. Our
benchmark includes a large video and trajectory library depicting
interactions of mice, beetles, ants, and fruit flies alongside a large
suite of downstream tasks to measure representation quality. Tasks
differ across model organisms and include the classification of
experimental conditions (e.g. species strain, light cycle, optoge-
netic activations, interaction duration) as well as expert-annotated
actions (e.g. chase, huddle, and sniffs for mice).

autonomous vehicles (Chang et al., 2019), to understand-
ing player behavior in virtual worlds (Hofmann, 2019), to
uncovering the biological underpinnings of neurological dis-
orders (Segalin et al., 2020; Wiltschko et al., 2020). Across
disciplines, there is a need for new techniques to character-
ize the structure of multi-agent behavior with greater preci-
sion, sensitivity, and detail. Traditionally, behavior analysis
models are trained with full supervision (Burgos-Artizzu
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et al., 2012; Hong et al., 2015; Bohnslav et al., 2021), which
subjects users to a heavy burden of video annotation. Efforts
to learn behavioral representations without manual anno-
tation (Berman et al., 2014; Wiltschko et al., 2015; Hsu &
Yttri, 2020; Sun et al., 2021b) promise to bypass this labor
bottleneck, but are difficult to evaluate systematically. To
support the development of learned behavioral representa-
tions, and to better evaluate their performance, we need
benchmark datasets for behavior. These benchmarks should
cover a broad range of experimental conditions, to avoid
overfitting on the statistics of a particular dataset. Further-
more, when representations are learned without supervision,
there is no obvious metric to evaluate the quality of the
representation. Yet, a metric is needed for quantitative com-
parisons. These two challenges inspired our work.

We have collected and curated a large dataset and benchmark
from biology experiments for evaluating learned represen-
tations of social behavior (Figure 1). We chose to focus on
videos of laboratory animals for several reasons:

• Animal behavioral experiments are collected against a uni-
form uninformative background, such as (Segalin et al.,
2020; Eyjolfsdottir et al., 2014; Pereira et al., 2020), and
thus behavior classifiers are forced to focus on the dy-
namic and pictorial cues of the action. In contrast, video
of human behavior, e.g., actions in different sports, are
usually pictorially informative, meaning that the action
itself can be classified from the appearance of a single or
a few frames rather than considering motion over long
periods of time.

• Animal behavior is often recorded under various experi-
mental manipulations that impact the behavior (Figure 1).
Identifying those experimental manipulations provides an
objective task that may be used to evaluate the quality of
a representation. This complements evaluation based on
reproducing human annotations of behavior, which have
shorter temporal structure but can be subjective (Anderson
& Perona, 2014).

• The biologists who provided us with videos of their ex-
periments are engaged in analyzing specific aspects of
the animals’ behavior. Using a given representation to
automate their analysis provides us with an objective
performance criterion that is defined outside the field of
Computer Vision. Evaluation methods based on down-
stream tasks, i.e. tasks where the representation is used
to analyze specific aspects of the signal, have been used
in other domains, e.g. for evaluating visual representa-
tions (Van Horn et al., 2021) or neural mechanistic mod-
els (Schrimpf et al., 2020).

• Our dataset is from real-world neuroscience and evolu-
tionary biology experiments, and progress on this dataset
will enable biologists to use the representations gener-
ated to study how behavior changes as a function of other
experimental variables.

We make three contributions: 1. A large and richly anno-
tated video and trajectory dataset, Multi-Agent Behavior
2022 (MABe22), of social behavior in three species: labora-
tory mice (Mus musculus) triplets, rove beetles (Sceptobius
lativentris) paired with their symbiotic host species or with
other beetles, and vinegar flies (Drosophila melanogaster).
2. A large and diverse set of downstream evaluation tasks
based on the classification of experimental conditions (op-
togenetic activation, animal strain, time-of-day) and expert-
annotated behavior labels. 3. A baseline benchmark of state-
of-the-art self-supervised video and trajectory representa-
tion learning, as well as community-contributed methods
solicited from an open challenge. To the best of our knowl-
edge, our dataset is the first to provide non-annotation-based
downstream tasks from scientific experiments for represen-
tation evaluation (Table 1).

Our dataset and related code is available at:
https://sites.google.com/view/computational-behavior/our-
datasets/mabe2022-dataset.

2. Related Work

Related Animal Datasets. The goal of the MABe22 dataset
is to benchmark representation learning models for behavior
analysis using data from biology experiments. There are
several existing datasets for studying animal social behavior,
including CRIM13 (Burgos-Artizzu et al., 2012), Fly vs.
Fly (Eyjolfsdottir et al., 2014), and CalMS21 (Sun et al.,
2021a). These datasets contain video or pose data from
interacting animals, as well as human-annotated behavior
labels (Table 1); they all focus on a single species and setting.
AnimalKingdom (Ng et al., 2022) is another recent animal
behavior dataset that includes social and nonsocial behavior
from multiple species, but is focused on human annotation-
based action recognition only. Our dataset is unique in that
it defines a range of downstream tasks for each organism;
these tasks are motivated by scientific experiments, with the
goal of to driving scientific discovery in biology.

Related Human Datasets. While animal video datasets
remain comparatively rate, there are many video datasets
designed for work in human action recognition. Human
datasets typically have very different visual characteristics
from animal datasets. Most notably, many human datasets
that are used to benchmark self-supervised video represen-
tation learning, such as Kinetics (Kay et al., 2017), UCF101
(Soomro et al., 2012) and HMDB51 (Kuehne et al., 2011),
contain ’spatially heavy’ visual information that informs
downstream action classification– that is, different actions
have different backgrounds. Because of these differences
in the visual appearance, agents’ actions can be partly dis-
tinguished by these visual features alone, without models
having to learn any temporal features of the agents’ behav-
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Dataset Number of Annotation Action Downstream Sizespecies frequency classes tasks

Kinetics400 (Kay et al., 2017) 1 (human) clip 400 x 306k clips
HMDB (Kuehne et al., 2011) 1 (human) clip 51 x 6776 clips
UCF (Soomro et al., 2012) 1 (human) clip 101 x 13320 clips
Animal Kingdom (Ng et al., 2022) 850 frame 140 x 4.5M frames

CalMS21 (Sun et al., 2021a) 1 frame 7 x 1M frames
+6M unlabelled

Fly vs. Fly (Eyjolfsdottir et al., 2014) 1 frame 10 x 1.5M frames
CRIM13 (Burgos-Artizzu et al., 2012) 1 frame 13 x 8M frames

Our Dataset 4 frame 16 56 15M frames video +
from experiments 14M frames traj

Table 1. Comparison with commonly used, public video and trajectory datasets. While existing datasets can be used for behavioral
representation learning, the downstream evaluation focuses on a single type of task (detection and classification of human-annotated
actions) or a single species. Our benchmark introduces a rich set of downstream analysis tasks that we obtain from scientific experiments
on multiple species.

ior. In contrast, our animal videos are all acquired against
a stationary, neutral background, forcing models to use the
temporal structure of the data to distinguish between actions.

Related Problems in Multi-Agent Behavior. While our
dataset is composed of multi-agent data from biology, there
are also multi-agent behavior datasets from other domains,
such as from autonomous driving (Chang et al., 2019; Sun
et al., 2020), sports analytics (Yue et al., 2014; Decroos
et al., 2018), and video games (Samvelyan et al., 2019;
Guss et al., 2019). These datasets often focus on forecasting,
motion planning, and reinforcement learning, whereas our
dataset is used for tasks from scientific applications, such as
distinguishing animal strains via observed behaviors.

Work in Animal Behavior Analysis. In biology and neu-
roscience, computational models of behavior have the po-
tential to significantly reduce human data annotation efforts,
and to provide more detailed descriptions of the behavior in
question (Anderson & Perona, 2014; Pereira et al., 2020).
Automated characterizations of animal behavior have been
used to study the relationship between neural activity and
behavior (Markowitz et al., 2018), to characterize behavioral
differences between species and between different strains
within a species (Hernández et al., 2020), and to quantify the
effect of functional or pharmacological perturbations (Ro-
bie et al., 2017; Wiltschko et al., 2020). The input to these
models may be video (Bohnslav et al., 2021) or trajectory
data (Sun et al., 2021b; Segalin et al., 2020).

Supervised behavior models have been trained to identify
human-defined behaviors-of-interest (Hong et al., 2015; Se-
galin et al., 2020; Marks et al., 2022; Kabra et al., 2013),
often using frame-by-frame behavior annotations from do-
main experts. Another body of work discovers behaviors
without human annotations, using unsupervised and self-
supervised methods (Berman et al., 2014; Wiltschko et al.,
2015; Hsu & Yttri, 2020; Luxem et al., 2020; Calhoun

et al., 2019) that learn the latent structure of behavioral data.
The learned representation may be continuous (Sun et al.,
2021b), or discrete, such as when discovering behavior mo-
tifs (Berman et al., 2014; Wiltschko et al., 2015; Hsu & Yttri,
2020). There currently does not exist a unified behavioral
representation learning dataset that can compare these mod-
els across a broad range of behavior analysis settings. Here,
we propose MABe 2022 for evaluating the performance of
these representation learning methods.

Work in Representation Learning. Representation learn-
ing for visual (Gidaris et al., 2018; Chen et al., 2020b; Oord
et al., 2018; Kolesnikov et al., 2019; Han et al., 2019) and
trajectory data (Sun et al., 2021b; Zhan et al., 2021) has
been applied to a variety of tasks, such as for image classifi-
cation (Chen et al., 2020b), speech recognition (Oord et al.,
2018), and behavior classification (Sun et al., 2021b). In
these works, many different unsupervised / self-supervised
methods have been developed, employing various pretext
tasks to pre-train a model, such as classifying image ro-
tations (Gidaris et al., 2018), predicting future observa-
tions (Oord et al., 2018), contrastive learning with image
augmentations (Chen et al., 2020b), and decoding program-
matic attributes (Sun et al., 2021b). The quality of learned
representations is often evaluated on downstream tasks.

Behavioral Representation Learning. For behavior anal-
ysis, applications of representation learning include dis-
covering behavior motifs (Berman et al., 2014; Wiltschko
et al., 2015; Hsu & Yttri, 2020; Luxem et al., 2020), iden-
tifying internal states (Calhoun et al., 2019), and improv-
ing sample-efficiency of supervised classifiers (Sun et al.,
2021b). These works use methods such as variational au-
toencoders (Kingma & Welling, 2014), autoregressive hid-
den Markov models (Wiltschko et al., 2015), and Uniform
Manifold Approximation and Projection (UMAP) (McInnes
et al., 2018) to characterize the latent structure of behavior.
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Notably, many groups have proposed methods for unsu-
pervised behavior discovery (Berman et al., 2014; Klibaite
et al., 2017; Wiltschko et al., 2015; Luxem et al., 2020; Hsu
& Yttri, 2020; Marques et al., 2018). These works use dif-
ferent methods to model the temporal structure of behavior,
including wavelet transforms (Berman et al., 2014), autore-
gressive hidden Markov models (Wiltschko et al., 2015),
and recurrent NNs (Luxem et al., 2020), as well as different
methods for segmenting behavior, such as Gaussian mixture
models (Hsu & Yttri, 2020), k-means clustering (Luxem
et al., 2020), and watershed transforms (Berman et al., 2014).
Our goal is to develop a standardized dataset for evaluating
these methods on a common set of behavior analysis tasks.

3. Dataset Design and Collection
We designed and curated MABe22, a multi-agent behavior
dataset for the purpose of studying behavioral representa-
tion learning. Our dataset consists of data from multiple
model organisms in neuroscience/biology: mice, beetles,
and flies. For each dataset, we constructed a collection of
tasks based on real-world scientific applications, including
determining the experimental context of the organisms and
capturing expert-annotated behaviors. There are 72 tasks in
total: 8 for mice, 14 for beetles, and 50 for flies. For the
purpose of establishing a benchmark, we define a ”good”
learned representation of animal behavior that can decode
biologically meaningful hidden labels as well as annotations
by experts. Some tasks apply to all frames of the recording
(e.g. strain of mice), but not all tasks are apply to all frames
(e.g. sniffing, since experts may annotate only a subset of
the videos). More details are available in the datasheet for
our dataset (Appendix B).

The mouse dataset (Section 3.1) consists of 2614 clips of
video and trajectory data (1 minute each at 30 Hz) curated
from longer videos of a triplet of interacting mice over mul-
tiple recording days. The video and trajectory datasets are
from the same clips, and the mice are tracked using (Shep-
pard et al., 2022). We additionally release a larger set of
5336 clips of trajectory data for evaluating community-
contributed methods (only used in Appendix F). The beetle
dataset (Section 3.2) consists of 11536 clips of video (30 sec-
onds each at 30 Hz) curated from paired interactions of rove
beetles (Sceptobius lativentris) with intact or manipulated
members of their symbiotic host species, the velvety tree
ant (Liometopum occidentale), or with other beetle species.
The fly dataset (Section 3.3) consists of 968 clips of tra-
jectory data (30-second clips at 150 Hz) of groups of 8-11
interacting flies, tracked using (Kabra et al., 2022).

3.1. Mouse Triplets

Data Description. The mouse dataset consists of a set of
videos and trajectories from three interacting mice, recorded

from an overhead camera in an open field arena measuring
52cm x 52cm, with a grate located at the northern wall of
the arena giving access to food and water. Animals were
introduced to the arena one by one over the first ten minutes
of recording and were recorded continuously for four days
at a framerate of 30 Hz and a camera resolution of 800
x 800 pixels. Illumination was provided by an overhead
light on a 24-hour reverse light cycle (lights off during the
day and on at night); mice are nocturnal and thus are most
active during the dark. Behavior was recorded using an
IR-pass filter so that light status could not be detected by the
eye in the recorded videos. Animals’ posture was tracked
using a pose estimation model (Sheppard et al., 2022) based
on HRNet (Sun et al., 2019) with an identity embedding
network to track long-term identity.

Tasks. Representations of the mouse dataset are evalu-
ated on 8 tasks that capture information about animals’ ge-
netic background, environment, and expert-annotated be-
haviors. These tasks were selected based on their relevance
to common scientific applications such as identifying the
behavioral effects of differences in animals’ genetic back-
grounds or experimenter-imposed changes in their environ-
ment. We examined capacity of learned representations
to determine animal strain, as well as environmental fac-
tors such as whether room lights were on or off (a proxy for
day/night cycles, which modulate animal behavior). We also
included two tasks to predict the day of the trajectory rela-
tive to the start of recording (animal behavior changes across
days as they habituate to a new environment (Klibaite et al.,
2022)), and the time of day of the trajectory (animal behav-
ior changes over the course of a day, driven by circadian
rhythms). A learned representation of behavior should also
be rich enough to recapitulate human-produced labels of ani-
mals’ moment-to-moment actions. Therefore our evaluation
tasks include the detection of expert-annotated behaviors:
huddling, chasing, face sniffing, and anogenital sniffing. A
detailed description of the tasks is listed in Appendix C.2.

3.2. Beetle Interactions

Dataset description. The beetle dataset consists of a
rove beetle (Sceptobius lativentris) interacting one-on-one
with its host ant (Liometopum occidentale), manipulated
host ant (e.g., with pheromones stripped off) or with other
insects (e.g., a nitidulid beetle). The original experiment
consisted of two-hour interaction trials, from which we ex-
tracted a collection of 30-second clips. These recordings
were made in 8-well behavioral interaction chambers (2cm
diameter circles) in the dark and illuminated with inferred
lights from the side/top. A top-mounted machine vision
camera sensitive to IR light monitored the two-hour behav-
ioral trials at 60 Hz. For this dataset, individual circular
wells were cropped/parsed from the multi-well video and
saved at 800x800 resolution with downsampling to 30 Hz.
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Mouse Triplet

Experimental Context Manually annotated behaviorsSpecies

time of day mouse strain

lightsexperiment day chase huddle face sni� anal sni�

Ant Beetle

grooming exploring idleinteractor type duration

Fly

neuronal subpopulations

optogenetic
manipulation

thermogenetic 
manipulation aggression courtship chase

Figure 2. Summary of tasks and actions in our dataset. Our dataset includes three different species: mice, beetles with an intractor (an
ant or other another beetle), and flies. The mouse dataset has both video and trajectory available, the beetle dataset is video-based, and the
fly dataset is trajectory based. Classification of experimental conditions is used as a performance metric (examples depicted on the left for
each dataset). Additionally, we collected conventionally expert-annotated actions (examples depicted on the right for each dataset), with
frame-by-frame labels, e.g., as ”chase”, ”huddle”, ”face sniff”, and ”anogenital sniff” for mice. Overall, there are 72 behavior analysis
tasks: 8 for mice, 14 for beetles and 50 for flies.

Tasks. The beetle dataset includes tasks based on environ-
mental conditions as well as expert-annotated behaviors.
Labels for environmental conditions include the interactor
type (the species of insect the rove beetle interacts with,
and any experimental manipulations applied) as well as how
long into the two-hour assay the observed clip occurred.
The interactors represent a range of cue types, from the
host organism with which the beetle should interact exten-
sively to other insects that the beetle will likely ignore. We
also provide expert annotations for six behaviors across the
seven different types of one-on-one interactions. Generat-
ing a meaningful representation that extracts information of
interest about the different behaviors adopted by the beetle
in response to these disparate cues is crucial for insight into
how species interact in nature. Details about the interaction
tasks are described in Appendix C.3.

3.3. Fly Groups

Data Description. The fly dataset consists of trajectories
of groups of 8 to 11 vinegar flies (Drosophila melanogaster)
interacting in a 5cm-diameter dish. The trajectories were
derived from 96 videos of length 50k-75k frames, collected
at 1024x1024 pixels and 150 frames per second. The flies’

bodies and wings were tracked using FlyTracker (Eyjolfs-
dottir et al., 2014), and landmarks on the body were tracked
using the Animal Part Tracker (APT) (Kabra et al., 2022)
producing a total of 19 keypoints per tracked animal (details
in Appendix C.1)

As the brain controls behavior, a good representation of
behavior should change with neural activity. Thanks to
its tractable genetics, precise neural activity manipulations
are straightforward in Drosophila. We thus chose to per-
form experiments using optogenetic (light-activated neural
activity via Chrimson) (Klapoetke et al., 2014) and ther-
mogenetic (heat activated, via TrpA) (Robie et al., 2017)
activation of selected sets of neurons. We chose neurons
(and the associated GAL4 lines) previously identified as
controlling social behaviors, including courtship, avoidance
(Robie et al., 2017), and female aggression (Schretter et al.,
2020). For thermogenetic experiments, neural activation is
constant and continuous for the entire video. Our optoge-
netic experiments consisted of activation for short periods of
time at weak and strong intensities interspersed with periods
of no activation. We combined these neural manipulations
with genetic mutations and rearing conditions. Specifically,
we selected populations of flies with the norpA mutation,

5



MABe22: Multi-Species Multi-Task Benchmark for Learned Representations of Behavior

which induces blindness (Bloomquist et al., 1988), and ei-
ther raised groups of flies together or separated by sex.

Tasks. The representations of the fly dataset are evaluated
on a set of 50 tasks. Many of these tasks differentiate which
populations of neurons are activated and how they are ac-
tivated. For example, Task 5 indicates the activation of
courtship neurons targeted by the R71G01 GAL4 line in
groups of 5 male and 5 female flies. Task 31 compares how
neurons were activated – it compares strong and weak acti-
vation of aIPg neurons, which regulate female aggression.
Besides neural activation, tasks also differentiate flies based
on sex, how the flies were raised, which strain they are from,
and genetic mutations. A full list of tasks and the types of
flies used are in Appendix C.1.

Besides biological differences, we also include tasks based
on manual annotations of the flies’ behavior for the fol-
lowing social behaviors: any aggressive behavior toward
another fly, chasing another fly, any courtship behavior to-
ward another fly, high fencing, wing extension, and wing
flick. We annotated behaviors sparsely across all videos
with human experts using JAABA (Kabra et al., 2013), with
the goal of including annotations in a wide variety of flies
and videos.

4. Benchmarking & Methods
We study how well behavioral representations generated by
state-of-the-art self-supervised video representation learn-
ing methods are suited for decoding our hidden downstream
biological tasks and human annotations (Section 4.1). We
also solicit community-contributed methods for video and
trajectory representation learning through an open competi-
tion (Section 4.2). The representation learned by the models
is a mapping from each video frame/trajectory entry to a
lower dimensional vector of fixed size. Here, we assume the
evaluation tasks are hidden during representation learning.
We then use this representation of the data to train a linear
model to classify or regress to target values of the hidden
downstream task (Appendix D).

4.1. Self-supervised Video Representation Learning

Self-supervised video representation learning methods rely
on designing pretext tasks that make use of prior knowledge
about spatial and temporal information in videos to design
pretext tasks such as temporal coherence (Goroshin et al.,
2015), temporal ordering (Misra et al., 2016), the motion of
an object (Agrawal et al., 2015), future prediction (Walker
et al., 2016). Contrastive learning (Chen et al., 2020b; He
et al., 2020) has been used for learning good visual repre-
sentations for instance discrimination. Another line of work
has been introducing methods that solely rely on positive
samples (Grill et al., 2020; Caron et al., 2020). In a recent

comparison, the video version of Bootstrap Your Own La-
tent (BYOL) (Grill et al., 2020) has been shown to perform
very well on the classic human benchmarks (Feichtenhofer
et al., 2021), with increased performance for an increased
number of positive samples.

Masked Visual Modeling. Transformers (Vaswani et al.,
2017) set the state-of-the-art across many AI fields, bridg-
ing language and vision models. Inspired by pretext
tasks for language transformer models, such as masking
in BERT (Devlin et al., 2018), (He et al., 2022) recently
introduced the Masked Auto-Encoder (MAE) for images,
an effective pre-training method, by which an image is
split into patches, and about 70 percent of the patches are
masked. Based on the remaining patches, the task for the
transformer is to reconstruct the masked patches. (Feichten-
hofer et al., 2022; Tong et al., 2022) extended this framework
to video, demonstrating transformers can be effectively pre-
trained by masking 90 percent of the spatio-temporal vol-
ume. MaskFeat (Wei et al., 2022) showed that using HOG
features (Dalal & Triggs, 2005) as reconstruction targets of
masked patches is an effective pre-text task.

4.2. Community-Contributed Methods

In addition to studying state-of-the-art methods, our bench-
marking efforts include community-contributed methods
from an open competition. Our competition was hosted in
two stages, where stage 1 consisted of the trajectory datasets
from mouse and fly, and stage 2 consisted of video datasets
from mouse and beetle. The test sets were private during the
competition phase, and are now released as part of MABe22.
We obtained around 1500 submissions in total at the end
of the competition, and we summarize the top-performing
method for the mouse, fly, and beetle datasets from this
process for both video and trajectory data, with details for
all methods in Appendix Section A.

5. Experiments

We perform a large set of experiments to evaluate the perfor-
mance of representation learning methods on MABe 2022
(Sections 5.1, 5.2). As video representation methods are
more common, we focus on state-of-the-art video represen-
tation learning methods in this section. We additionally
compare both community contributed video and trajectory
representation learning methods. For each video representa-
tion learning method, we perform an ablation study on the
key hyperparameter for the respective method and its effect
on downstream task performance (Sections 5.3, 5.4), as well
as pre-training on human datasets (Section 5.5). Finally,
we present results from community-contributed methods
on all datasets (Section 5.6), with additional results for the
trajectory methods in Appendix F.
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Mouse Triplets Exp. Time of Strain Lights Manual
Day ↓ Day ↓ ↑ ↑ Behaviors↑

ρBYOL (R-50 (Slow Pathway) 8x8 (Feichtenhofer et al., 2021) .0152 .0913 .9997 .9701 0.1832
Maskfeat (MViTv2-S 16x4) (Wei et al., 2022) .0393 .0948 .9925 .7309 0.1627
MAE (ViT-B 16x4) (Feichtenhofer et al., 2022) .0102 .0816 1.0000 .9758 0.2309
(pretrained) ρBYOL (-, R-50 (Slow Pathway) 8x8 .0176 .0910 .9994 .7967 0.2688
(pretrained) Maskfeat (-, MViTv2-S 16x4) .0456 .0889 .9998 .7892 0.1896
(pretrained) MAE (-, ViT-B 16x4) .0218 .0925 1.0000 .9391 0.2301

Ant Beetle Duration Interactor Manual Manual
↓ Type ↑ Behaviors ↑ Behaviors (same) ↑

ρBYOL (50 (Slow Pathway) 8x8 (Feichtenhofer et al., 2021) .0257 .9999 .6178 .6457
Maskfeat (MViTv2-S 16x4) (Wei et al., 2022) .0291 1.0000 .6212 .6574
MAE (ViT-B 16x4) (Feichtenhofer et al., 2022) .0283 1.0000 .6444 .6874
(pretrained) ρBYOL (R-50 (Slow Pathway) 8x8 .0300 .9981 .6967 .7334
(pretrained) Maskfeat (MViTv2-S 16x4) .0297 .9999 .6057 .6463
(pretrained) MAE (ViT-B 16x4) .0300 .9999 .6879 .7077

Table 2. Evaluating self-supervised video representation learning methods. We evaluate representation learning performance using the
linear evaluation protocol on downstream biologically relevant tasks. (pretrained) indicates pre-training on Kinetics400. ↓ indicates MSE
and ↑ indicates F1 score. Mouse manual behaviors consist of chase, huddle, face sniff, anal sniff. Beetle manual behaviors consist of
grooming, exploring, and idle, either for self (beetle) only or with the interactor. Experimental tasks are described in Table 6 and C.3.2.
The best-performing model is in bold.

Mice Triplet Exp. Time of Strain Lights Manual
Day ↓ Day ↓ ↑ ↑ Behaviors↑

MAE Frame .0239 .0886 1.000 .9525 .2020
MAE Cube .0102 .0816 1.000 .9758 .2309
MAE Tube .0072 .0835 1.000 .9846 .2249

Ant Beetle Duration Interactor Manual Manual
↓ Type ↑ Behaviors ↑ Behaviors (same) ↑

MAE Frame .0301 .9999 .6169 .6497
MAE Cube .0283 1.0000 .6444 .6874
MAE Tube .0285 1.0000 .5802 .6351

Table 3. Effect of masking strategy on MAE (Feichtenhofer et al., 2022) performance. We evaluate different masking strategies
(spatiotemporal random/cube, temporal/tube and spatial/frame) on the video datasets of MABe2022. For the mouse dataset cube/tube
masking perform best, whereas for the beetle dataset cube/frame masking perform best. ↓ indicates MSE and ↑ indicates F1 score. The
best-performing model is in bold.

5.1. Evaluation Procedure

From an input sequence of video/trajectory data of N
frames (N = 1800 for mice and 4500 for flies), we evaluate
models that produce learned representations of size N ×D,
where D is the dimensionality of the representations. For
video representation learning models, we use D = 128. For
trajectory methods, we use D = 128 for mice and D = 256
for flies. We then use these feature vectors or embeddings as
inputs for a linear model that is used to classify/regress the
hidden task. We use linear least squares with l2 regularized
(Ridge) classification/regression as model and F1/mean-
squared-error (MSE) as evaluation metrics (See Appendix D
for details).

We evaluate a set of state-of-the-art video representation
learning methods on MABe 2022, including Masked Au-
toencoder (MAE) (Feichtenhofer et al., 2022) with a ViT-B
backbone (Vaswani et al., 2017), MaskFeat (Wei et al., 2022)

with a MViTv2-S backbone (Li et al., 2022) and ρBYOL
(Feichtenhofer et al., 2021) with a SlowFast backbone (Slow
pathway 8x8) (Frankenhuis et al., 2019). We trained each
method on our mice and beetle data, respectively, as well
as used backbones pre-trained on human kinetics 400 (Kay
et al., 2017). For implementation details and hyperparame-
ters see Appendix E.

5.2. Video Representation Results

We compare the performance of video representation learn-
ing methods on the mouse and beetle video datasets (Table
2). We find that the pre-trained ρBYOL (R-50 (Slow Path-
way) 8x8 model performs best for all action recognition
tasks (Manuel Behaviors). For all other downstream tasks
training, a ViT-B 16x4 Masked Autoencoder (MAE) that is
not pre-trained on Kinetics400 generally performs the best.
This top performing MAE architecture uses spatio-temporal
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Mice Triplet Exp. Time of Strain Lights Manual
Day ↓ Day ↓ ↑ ↑ Behaviors↑

2BYOL .0298 .0882 .9994 .9588 .1929
3BYOL .0225 .0906 .9983 .9492 .1733
4BYOL .0152 .0913 .9997 .9701 .1771

Ant Beetle Duration Interactor Manual Manual
↓ Type ↑ Behaviors ↑ Behaviors (same) ↑

2BYOL .0237 1.0000 .5943 .6498
3BYOL .0246 1.0000 .6249 .6549
4BYOL .0257 .9999 .6178 .6457

Table 4. Effect of ρ on BYOL (Feichtenhofer et al., 2021) performance. We evaluated the effect of the number of randomly sampled
positives for ρBYOL. We find that for beetle 3 positive samples consistently have the best performance, while for mice, either 2 or 4
positives perform best depending on the task. ↓ indicates MSE and ↑ indicates F1 score. The best-performing model is in bold.

agnostic masking, which likely performs well due to the
observation that our datasets have very different spatio-
temporal dynamics from each other and even more so from
human datasets. We further discuss this in Section 5.3. We
notice that the model that performs best for human anno-
tated behaviors does not necessarily perform best for our
downstream tasks that are based on experimental conditions.
This indicates that models that pick up features that are most
relevant for human perception and behavior definitions may
not necessarily be the most informative features for other
tasks.

5.3. Effect of Masking Strategy

We explore how different masking strategies (spatiotem-
poral random/cube, temporal/tube and spatial/frame from
MAE (Feichtenhofer et al., 2022)) affect downstream task
performance (Table 3), and we use best performing masking
ratios used in MAE. We find that contrary to (Feichtenhofer
et al., 2022; Tong et al., 2022), where performances for
spatio-temporally agnostic masking (cube) and temporal
masking (tube) are very similar to each other, our perfor-
mance depends on the dataset (mouse or beetle). For the
mouse dataset, cube/tube masking have the best overall per-
formance, while for the beetle dataset, cube performs best
overall. Overall the differences in performance are also
bigger than in (Feichtenhofer et al., 2022; Tong et al., 2022).
This difference in performance for different masking strate-
gies is likely due to the different spatio-temporal structure
of the data, i.e. if the data is more ’temporal heavy’ or more
’spatial heavy’.

5.4. Effect of ρ on BYOL

We performed ρBYOL (Feichtenhofer et al., 2021) with
multiple values of ρ, i.e., the number of temporal clips sam-
pled as positives (Table 4). In (Feichtenhofer et al., 2021),
a larger number of ρ steadily increases downstream task
performance. This is not true for our datasets, where for
mice a value of 2 performs best for 2 tasks and a value of 4

for 2 other tasks. For the beetle dataset, 3 positive samples
achieve the best BYOL performance. This is likely to the
temporally random sampling of positives for BYOL. This
is likely due to the temporally agnostic sampling method
for the clips resulting in positives that are of different ac-
tions (as the actions of the animals can change rapidly over
temporally close frames). Further research is needed on
how the temporal sampling strategy for positives needs to
be adjusted for temporally heavy datasets.

5.5. Transfer Learning from Kinetics400

We evaluated how ρBYOL, Maskfeat, and MAE perform
when pre-trained on kinetics400 (Kay et al., 2017) (Table
2). We find that MAE and Maskfeat training on MABe22
generally performs better than using the pre-trained models.
Interestingly, for ρBYOL we find the opposite, in that the
pre-trained model on Kinetics400 actually performs stronger
than counterpart trained on MABe22. Surprisingly, for
action recognition, it performed stronger than any of the
other models for both mice and beetle data. These results
suggest that for action recognition, transfer learning from
human datasets to animal datasets is possible to a degree.

5.6. Community-Contributed Methods Results

We compare community-contributed methods across all
datasets in MABe22 (Table 5). The best-performing com-
munity methods employ large pre-trained vision models,
variations of contrastive learning (Chen et al., 2020b; He
et al., 2020), trajectory data as additional inputs and hand-
crafted features (See Appendix A.1). Usually, these features
are then concatenated and PCA is performed to produce vec-
tors with the embedding dimension. For the mouse dataset,
we also compared the top trajectory-based method to the
video-based methods on the same data subset. While the
performance of the trajectory model for behavior classifi-
cation is similar to the third-best video-based model, the
performance on all other downstream tasks is worse. This
is likely due to the loss of visual features after transforming
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Mice Triplet Exp. Time of Strain Lights Manual
Day ↓ Day ↓ ↑ ↑ Behaviors ↑

BEiT + Hand-crafting .0093 .0926 1.0000 .9471 .2603
Vision Ensemble .0441 .0922 .9832 .8048 .2750
Multimodal MoCo/SimCLR .0394 .0912 .9902 .7780 .2355

Trajectory-BERT .0932 .0996 .7202 .6729 .2379

Ant Beetle Duration Interactor Manual Manual
↓ Type ↑ Behaviors ↑ Behaviors (same) ↑

BEiT + Hand-crafting .0277 .9977 .6761 .7179
Vision Ensemble .0295 .9636 .6277 .6695
Multimodal MoCo/SimCLR .0262 .9998 .7299 .7577

Fly Group Fly Stimulation, Stimulation, Line Female Manual
Type ↑ Control ↑ Aggression ↑ Category ↑ vs. Male ↑ Behaviors ↑

Trajectory-Perceiver .394 .418 .513 .573 .982 .197
Trajectory-GPT .363 .515 .500 .557 .873 .246

Table 5. Benchmarking the community contributed methods. The best community-contributed methods perform on par or better with
self-supervised video representation learning methods. For mice we also have a trajectory-based method to compare to the video-based
methods directly. We find that the trajectory-based method generally does not perform as well as the video-based methods on the mouse
dataset. For fly task groups, “Fly type” corresponds to tasks 1 to 11, “Stimulation Control” is tasks 12 to 21, “Stimulation Aggression” is
tasks 22 to 36, “Line Category” is tasks 37 to 43, and “Manual Behaviors” is tasks 45 to 50 in Appendix Table 11. ↓ indicates MSE and ↑
indicates F1 score. The best-performing model is in bold.

the video frames to sparse keypoint locations. An inter-
esting direction for future work would be to explore how
these modalities can be best combined. For the fly dataset
(which consists of trajectory data only), we find that using a
Perceiver model (Jaegle et al., 2021) trained on a masked
modeling task works best (See Appendix A.2). The sec-
ond best method is using a GPT (Brown et al., 2020)-like
architecture that generates embeddings from the recurrent
trajectory data of all agents. This method is trained using a
prediction pretext task.

In general, we find that performance is comparable between
community-contributed methods to state-of-the-art video
representation learning methods evaluated in Section 5.2.
We note that community methods did perform better at
learning manual behaviors. This may be due to the hand-
crafted features used in the community-contributed methods,
which has been shown to be effective at encoding domain
knowledge for behavior analysis (Sun et al., 2021b).

6. Discussion and Future Directions
We introduced a novel multi-species multi-task performance
benchmark to evaluate representation learning for social be-
havior from video and trajectory data. The dataset consists
of video and trajectory data captured across three organisms.
The evaluation methods are based on the performance of a
broad palette of tasks that are based on scientific experimen-
tal conditions that are independent of the actions annotated
by human experts. We demonstrate the use of our bench-
mark, and provide a baseline, by evaluating state-of-the-art
self-supervised video-representation learning. Additionally,
we provide results from methods that were part of a recent

competition for learning behavioral representations.

We compare method performance on our benchmark with
pre-training on existing benchmarks using human video
datasets. We find that methods that perform best on human
datasets may not perform the best on our animal datasets.
This is likely because human action datasets contain extra-
neous visual information, whereas our animal datasets min-
imize these visual cues (consistent backgrounds) and thus
behavioral representations need to focus on spatio-temporal
information. This highlights a crucial shortcoming of cur-
rent benchmarks, which may be pushing the community to
develop methods that do not focus on the spatio-temporal
nature of behavior. We hope to encourage evaluation of rep-
resentation learning methods on a broader range of settings
beyond human videos and annotations, in order to facilitate
development of new methods for representation learning
and behavior analysis.
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Wallach, H., Daumé III, H., and Crawford, K. Datasheets
for datasets. arXiv preprint arXiv:1803.09010, 2018.

Geuther, B. Q., Deats, S. P., Fox, K. J., Murray, S. A., Braun,
R. E., White, J. K., Chesler, E. J., Lutz, C. M., and Kumar,
V. Robust mouse tracking in complex environments using
neural networks. Communications biology, 2(1):1–11,
2019.

Gidaris, S., Singh, P., and Komodakis, N. Unsupervised rep-
resentation learning by predicting image rotations. ICLR,
2018.

Goroshin, R., Bruna, J., Tompson, J., Eigen, D., and LeCun,
Y. Unsupervised learning of spatiotemporally coherent
metrics. In Proceedings of the IEEE international confer-
ence on computer vision, pp. 4086–4093, 2015.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P.,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and
He, K. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.
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Appendix for MABe22
Links to access our code and dataset, including code from challenge winners where available, are on our dataset website at
https://sites.google.com/view/computational-behavior/our-datasets/mabe2022-dataset. The sections of our appendix are
organized as follows:

• Section A contains details of community-contributed methods from our open competition.

• Section B contains dataset documentation and intended uses for MABe2022, following the format of the Datasheet for
Datasets(Gebru et al., 2018).

• Section C contains additional dataset details for mouse, fly, and beetle datasets.

• Section D shows the evaluation metrics for MABe2022, namely the F1 score and Mean Squared Error.

• Section E contains additional implementation details of our models.

• Section F provides additional evaluation results on the trajectory data of MABe22 (mouse and fly).

Limitations and next steps. Our dataset is mainly based on three species, and certainly does not saturate the variety of
visually distinctive behavior phenomena that one encounters in the world. Additionally, our dataset includes data from one
lab per species/preparation and results may not translate to nominally identical preparations in other labs. Future work
to incorporate larger amounts of species as well as broader range of tasks can enable benchmark model rankings to be
more predictive of method behavior on novel species and tasks. Additionally, we limited our study of self-supervised video
representation learning models to meaningful but not complete selection of state-of-the-art methods. This gap will be filled
by the community if our benchmark is adopted to evaluate new methods.

Broader impact. While the ”quality” of a learned representation will ultimately depend the downstream use, we provide
a resource for the assessment of representation utility by scoring learned representations on a large array of hidden tasks,
based on common scientific applications. We note that methods that perform best on our benchmark are not guaranteed to
be the best choice for all possible downstream uses of representation learning. Depending on the downstream use, model
developers may want to consider different choices of architecture, learning objective, and dataset to optimize for different
properties of the representation. Our goal is to provide a unified set of tasks across a range of behavior analysis settings
that can enable quantitative comparison of representation learning methods, in order to facilitate research and method
development for representation learning and behavior analysis. Additionally, we value any input from the community on
MABe2022; you can reach us at mabe.workshop@gmail.com.

A. Community-Contributed Methods Descriptions
We document methods from the community from our open challenge, which ran from February to July 2022. The challenge

is available at: https://www.aicrowd.com/challenges/multi-agent-behavior-challenge-2022. We present the top 3 performing
video and trajectory representation learning methods from the challenge winners, for each organism in MABe22. The video
challenge uses the mouse and beetle datasets and the trajectory challenge uses the mouse and fly datasets. All methods
had access to the train and validation sets during development, and the test set was held out (only released after challenge
completion).

The results from the video challenge winners are fully in Section 5 of the main paper. A subset of the trajectory results are
also included in the same section. We note that most of the trajectory-only evaluations are in Section F.

A.1. Video-based methods

A.1.1. BEIT + HAND-CRAFTING

This method uses representations from both the video and trajectory datasets (Figure 3). The three components of the model
are:
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• A large vision transformer model (BEiT (Bao et al., 2021) large, patch-16, 512x512), pre-trained on ImageNet22k (Deng
et al., 2009) at 224x224 pixels and fine-tuned on ImageNet1k at 512x512 pixels. We selected this model as it performs
very well on ImageNet, and is one of the few such models that has been trained on images of size 512x512.

• A SimCLR (Chen et al., 2020b) model, based on the baseline implementation (https://www.aicrowd.com/
showcase/unsupervised-model-simclr-mouse-video-data) but with three important modifications.
First, the baseline augmentations were replaced with a version that used the keypoint annotations to constrain the
random crops. Second, during training not all frames were sampled with equal probability. Instead, frames where the
mice were mobile were sampled with a higher probability than frames where the mice were stationary. This weighting
is intended to compensate for the fact that in some of the clips the mice are stationary (presumably sleeping) throughout
the video, and as a result all the frames from those clips are highly similar. Third, the encoder was changed from
ResNet-18 to ResNet-50, and only one frame was used as input instead of a sequence of frames.

• A number of hand-crafted features, based on the keypoint annotations and used in previous works, such as (Segalin
et al., 2020; Sun et al., 2021b). These features consisted of measurements internal to each mouse (e.g. the distance
between the nose and the tail), measurements that involve each mouse and the cage (e.g. the distance between the
mouse and the nearest corner), and measurements involving more than one mouse (e.g. the distance between two mice
and the area of the triangle formed by the three mice).

These three parts have complementary strengths, i.e., submissions based on each of them individually received high scores
on different tasks. These features: 1024 (BEiT) + 2048 (SimCLR) + 214 (hand-crafted) = 3286 were concatenated for each
frame, before PCA transforming them. We also found that we could improve results by reweighting both frame-wise and
feature-wise before doing the PCA transform. Each frame was weighted by the measure of movement used in SimCLR
training. Each of the three feature blocks was weighted by a numerical factor that was empirically determined. Finally,
we had noticed in an earlier experiment that some tasks benefited from including not only the PCA-transformed BEiT
embedding for each frame, but also some PCA features averaged over the whole sequence. We therefore replaced the last 8
features of the above PCA embedding with the first 8 features from the PCA-transformed BEiT embedding, averaged over
the sequence. For the beetle submission, we simply computed the BEiT features from each frame and reduced them to the
allowed 128 features with a standard PCA transformation.

The code is available at https://github.com/IRLAB-Therapeutics/mabe_2022. For training, we used a
batch size of 76, with an Adam optimizer and an initial learning rate of 3e-4, following a cosine annealing schedule. The
image resolution used for the SimCLR model is 224x224.

A.1.2. VISION ENSEMBLE

This model uses visual features only, extracted from pre-trained vision models (Figure 4). For both parts of the video
challenge, we used an ensemble of pre-trained vision models by concatenating the output feature vectors of ResNet18 (He
et al., 2016) and MobileNetV3-Small (Howard et al., 2019), for which the size of the feature vector is respectively 512
and 574. This results in a vector of size 1086 which is subsequently reduced to size 128 by PCA, which forms the final

Figure 3. BEiT + Hand-crafting Model Overview.
We learn a representation using both video and kepoint
information, by (1) encoding video data through a pre-
trained BEiT model, (2) learning visual representations
using SimCLR, and (3) hand-crafted keypoint features.
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Figure 4. Vision Ensemble Model Overview. This model consists of fea-
tures extracted from two pre-trained vision models, processed using a com-
bination of temporal difference of the features as well as PCA.

embedding for the beetle dataset. For the mouse dataset, we reduced the size from 1086 down to 64, again by PCA.
Subsequently, we concatenated to this the difference of the feature vector from 40 frames in the past and 40 frames in the
future, i.e. a window size of 80. The length of the two concatenated vectors is then 128 and this forms the final representation
for the mouse dataset.

A.1.3. MULTIMODAL MOCO/SIMCLR

To leverage data from different modalities, we design different self-supervised methods for each modality individually
(Figure 5). We leverage three types of features, including visual features from video data, positional features and handcrafted
features from keypoint data. Inspired by MoCo (He et al., 2020), we build a self-supervised framework containing a memory
bank to learn the visual features from video data. We use two types of augmentation strategies. The first augmentation
strategy includes RandomResizeCrop, RandomHorizontalFlip, and RandomVerticalFlip. The second augmentation strategy
includes the temporal difference in addition. As shown in Figure 5, we sample two clips from a video and generate four
views (two views for each clip). In the inference stage, we use the momentum updated encoder for a smooth result.

To learn the positional information of agents, we propose a generative task on keypoints data. Inspired by the MLM (Masked
Language Modeling) (Devlin et al., 2018) task in NLP, we propose the MPM (Masked Point Modeling) task, which is
a frame-level task. The learning objective is to predict the masked keypoint coordinates based on observing unmasked
keypoints. Giving a stream of agent-by-agent keypoint sequences, we randomly mask keypoint tokens at a ratio of by
replacing keypoint tokens with mask tokens [MASK]. We then aggregate positional information from the rest frames with
a vanilla Transformer (Vaswani et al., 2017) encoder. Then a shallow decoder (i.e. a two-layer MLP) is used to predict
the masked keypoint coordinates. We compute the reconstruction loss between the decoder output and original keypoint
coordinates. Following our preliminary exploration, we find the representation generalizes better with MSE regularization
than L1. Besides visual features and positional features encoded by the deep networks, we also utilize handcrafted features
from keypoints data, including distances, angle, and speed.

Beetle Dataset. We use the MoCo-based method to extract visual features from the ant-beetle video data. We first crop the
regions with agents based on the keypoints. We resize images to 224x224 for training and inference. We random sample
2 clips with 7 frames from each video and the temporal stride is 5 frames. We use SGD optimizer and learning rate of
0.0075. The batch size is 128 per GPU and the weight decay is 1e-4. We set K=65536 for the memory bank and T=0.2 for
the NT-Xent loss. We train for total 100k steps. The visual backbone is the pretrained Resnet101 32x8d and the output
dimension is 128.

Mouse Dataset. Different from ant-beetles video data, we utilize SimCLR (Chen et al., 2020b) to extract visual features
from mouse video data. We directly regard other samples in the batch as negative samples instead of constructing a negative
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Figure 5. Multimodal MoCo Model Overview. We
build a MoCo-based self-supervised learning frame-
work composed of a gradient updated encoder and a
momentum updated encoder. This method is used for
the beetle dataset, while a SimCLR-based method is
used to extract features for the mouse dataset.

samples queue and an extra momentum updated encoder. We resize images to 224x224 at training and 256x256 at inference.
We random sample 3 clips with 7 frames from each video and the temporal stride is 12 frames. We use Adam optimizer and
learning rate of 1e-4. The batch size is 64 per GPU and the weight decay is 1e-6. We train for total 100k steps. The visual
backbone is ImageNet-1k pretrained Resnet50 (He et al., 2016) and the output dimension is 128.

The keypoint coordinates of each agent are converted into a token by flatting and normalization, which results in 24-d
input tokens. Then the tokens are fed into the main network. The encoder contains a 24-layer Transformer encoder and a
projection head. Each Transformer layer has 768-d states and 12 masked attention heads. The one-layer projection head
reduces the feature dimension from 768 to 128. At training, we sample 50 consecutive frames for each step. The learning
rate and batch size per GPU are 1e-5 and 32 respectively. We use AdamW optimizer with betas of (0.9, 0.95) and weight
decay of 0.1. We train for total 10k steps and warmup at the first 500 steps. We clip gradients with a norm threshold of
1.0. We do not adjust hyper-parameters. For handcrafted features, we calculate the following three types of features (59-d
altogether): the mouse-mouse, mouses-wall, nose-tail, and nose-nose distances; the neck-base, nose-neck, and head-body
angle of mice; the relative speed of the nose of the mice. We concatenate the above three types of features and reduce the
dimension to 128 by PCA.

The code is available at https://github.com/JiaHeng-DLUT/MABe2022.

A.2. Trajectory-based methods

Our benchmark models learn from sequences of trajectory data and maps this data to a behavioral representation, which can
then be used for a range of downstream tasks. Let D be a set of N unlabelled trajectories. Each trajectory τ is a sequence
of states τ = {(st)}Tt=1 over time, which represents the data for a variable number of agents across a variable number of
timestamps. The state si at timestamp i corresponds to the location and pose of the agents at that time, often represented by
keypoints. Let z be the behavioral representation. In our framework, models can learn from trajectories across time, but
needs to produce a representation at each frame to account for frame-level tasks.

A.2.1. TVAE

The Trajectory Variational Autoencoder (TVAE) is trained in a self-supervised way using trajectory reconstruction (Figure 6).
To start, the keypoints of multiple agents is stacked to form the state at each timestamp si for mouse, whereas the flies are
encoded individually to handle the variable number of flies, and missing flies have zero-filled coordinates. The group fly
embedding is created by concatenating the individual fly embeddings at each frame.

Learning Objective. The TVAE is a sequential generative model that uses trajectory reconstruction as the signal during
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Figure 6. TVAE Model Overview. The
TVAE learns a representation from tra-
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input trajectory. The encoder and decoder
are based on recurrent neural networks.
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Figure 7. T-Perceiver Model
Overview. We first compute
high-dimensional hand-crafted
features (“augmented feature
vector”) from the input trajec-
tory data, then a Perceiver (Jae-
gle et al., 2021) model is trained
to predict features as well as
public labels from the learned
representation.

training. Given previous states, the goal is to train the model to predict the next state. This architecture has previously
been studied to learn trajectory representations in a variety of domains (Co-Reyes et al., 2018; Zhan et al., 2020; Sun et al.,
2021b). We embed the input trajectory using an RNN encoder, qϕ, and an RNN decoder, pθ, to predict the next state. The
TVAE loss is:

Ltvae = Eqϕ

[ T∑
t=1

− log(pθ(st+1|st, z))
]
+DKL(qϕ(z|τ)||pθ(z)). (1)

We use the unit Gaussian as a prior distribution pθ(z) on z to regularize the learned embeddings.

To predict behavioral representations at each frame, we form a sliding window of size 21, using 10 frames before and after
the current frame. The encoder and decoder are based on Gated Recurrent Units with 256 hidden layers. The training uses
the Adam optimizer (Kingma & Ba, 2014) with a batch size of 512 with learning rate 0.0002.

The code is available at https://github.com/AndrewUlmer/MABe 2022 TVAE.
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Figure 8. T-GPT Model Overview. The
T-GPT uses a Transformer architec-
ture (Brown et al., 2020) to predict key-
point coordinates in the next frame, given
a representation learned from past frames.
This prediction task is done both forwards
and backwards in time.

A.2.2. T-PERCEIVER

The T-Perceiver model (Figure 7) has two main steps: (1) we first create a richer representation by augmenting keypoint
coordinates with additional hand-crafted features and (2) then we learn the temporal relationships and extracted the
embedding from a Perceiver model (Jaegle et al., 2021). The model is trained to reconstruct frame-level features from
masked input as well as predict any public tasks.

Hand-crafted feature extraction. The first step transforms the original keypoint features into a high dimensional frame-
level representation of the distances, angles and velocities between the keypoints. Feature extraction was performed
algorithmically resulting in a 456 dimensional vector for the mouse dataset, and a 2112 dimensional vector for the fly dataset.
The fly dataset has larger feature vectors as there were up to 11 individual flies in each frame, and when there were fewer
flies, the vector was padded with zeros. Angles are encoded using (sin(θ), cos(θ)). All features are normalized to have a
mean of 0 and a standard deviation of 1.

Sequence modeling. The second step is to use an unsupervised sequence to sequence (seq2seq) model to combine these
features across frames and map to the desired final embedding dimension. The features are first downsized to the final
embedding size using a two layer fully-connected neural network with an intermediate layer size twice the size of the
respective final embeddings using a 50% dropout rate and the ELU activation function. This sequence of downsized features
are passed through a standard Perceiver model (Jaegle et al., 2021) with the number and dimension of latent vectors equal to
embedding size and a sequence length of 512. For the fly dataset only, every second frame is dropped for computational
reasons due to the high original frame rate.

Learning Objective. During training, a variable number of up to 80% of frames were masked out and there was an
additional linear layer to predict the original unmasked high dimensional features as well as labels from the public train split
containing a subset of the hidden tasks. The model was trained to simultaneously optimize for two tasks: to minimize the
mean square error on the frame-level features and to minimize the cross entropy loss of the label predictions. The first task
was given a weight of 10 compared with the second task. The Adam optimizer (Kingma & Ba, 2014) was used for training
with a learning rate of 0.001.

The code is available at https://colab.research.google.com/drive/13 M6yzF1VQ4STuJsO1at-GWK2 TDGTNV?usp=sharing.

A.2.3. T-GPT

The T-GPT model is inspired by the NSP (Next Sentence Prediction) (Devlin et al., 2019) task from natural language
processing. We instead propose the NFP (Next Frame Prediction) task, which is a frame-level task for predicting the
keypoint coordinates in the next frame based on the observation of the past frames (Figure 8).
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Figure 9. T-PointNet Model
Overview. We combine hand-
crafted features, PCA of pose
keypoints, and PointNet (Qi
et al., 2017) embeddings
as a permutation-invariant
representation of the agents at
each frame.

Giving a stream of frame-by-frame states τ = {(st)}Tt=1, we first aggregate information from past frames with a vanilla
Transformer encoder (Vaswani et al., 2017) f :

zt = f(s1, s2, ..., st) (2)

Then a shallow decoder h (i.e. a two-layer MLP) is used to predict the keypoint coordinates in the next frame:

ŝt+1 = h(zt) (3)

Learning Objective. We compute the reconstruction loss between the decoder output and original keypoint coordinates:

L = MSE(ŝt+1, st+1) (4)

Following our preliminary exploration, we find the representation generalizes better with MSE loss than L1.

We build on the open source implementation of GPT (Brown et al., 2020). First, the keypoint coordinates in each frame are
converted into a token by flatting and normalization, which results in 528-d input tokens. Then the tokens are fed into the
encoder network, with a 24-layer Transformer encoder and a projection head. Each Transformer layer has 768 dimensional
states and 12 masked attention heads. The one-layer projection head reduces the feature dimension from 768 to 256 for flies
and 128 for mice. A two-layer decoder (Linear-LayerNorm-Tanh-Linear) is used to predict the coordinates in the next frame.
In order to only attends to the left context, we use the upper triangular matrix attention mask in each self-attention layer
when training. In the inference stage, these masks are removed to better aggregate contextual features from the past and
future.

At training, we use all the available data and sample 50 consecutive frames each iteration. We randomly flip the coordinates
horizontally with a probability of 0.5. The learning rate and batch size are 1e-5 and 2 respectively, with the AdamW
optimizer (Loshchilov & Hutter, 2017a). To make better use of the training data, we do the NFP task in a bidirectional way
and the corresponding losses are averaged.

The code is available at https://drive.google.com/drive/folders/1zcZ9lqtf0y4OCtfFdA1S7K3beLcXa-3e?usp=sharing

A.2.4. T-POINTNET

We use PointNet (Qi et al., 2017) alongside hand-crafted features and PCA to extract permutation-invariant features from
the keypoint data (Figure 9). As the embedding will be used to train a network for the hidden tasks, its important that
embedding vector remains same even the order of the mice is switched. We note that this model is only applied to the mouse
data, and not to the fly data, where some of the tasks are fly-dependent.

The hand-crafted features used are similar to the ones from (Sun et al., 2021b), and 10 PCA components are computed
for each mice and averaged to generate the group embeddings. Based on the goal of generating permutation-invariant
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Figure 10. T-BERT Model
Overview. The trajectory of
each agent is concatenated and
encoded using BERT (Devlin
et al., 2019), trained on masked
modeling, predicting hand-
crafted features, contrastive
loss, and predicting publicly
available train tasks.

embeddings, we select a PointNet based architecture (Qi et al., 2017), which has been popular for learning patterns in
unordered point cloud datasets. It fundamentally relies on commutative operations like sum, average, max to create
permutation invariant features.

Learning Objective. Each “point” fed into PointNet represents one pair of agents, and the coordinates are hand crafted
features between each pair such as distance, angle, and speed (each 10 dimensions). PointNet is trained using a cosine
similarity loss, where nearby frames in a sequence are treated as positives whereas a random frame chosen from a random
sequence is chosen as negatives. The advantage of this network is that the embedding remain same regardless of the input
order of the agents. The final combined embedding size is 69 dimensions.

We use the vanilla PointNet network as described by authors in (Qi et al., 2017) with a reduced set of parameters and filters.
The original network is designed for point clouds in order of 1000 and in contrast, in this application there are only 6 animal
pairs corresponding to 6 points, thus we reduce the network capacity to prevent overfitting. This model is trained with an
Adam optimizer (Kingma & Ba, 2014) with learning rate 0.005 and batch size 512.

The code is available at https://github.com/Param-Uttarwar/mabe 2022 .

A.2.5. T-BERT

We extend BERT (Devlin et al., 2019) to learn separate embeddings for each agent in the enclosure which are then
concatenated for the group embedding (Figure 10). We train the model using three main tasks: 1) Masked modelling, 2)
hand-crafted feature predictions similar to that of (Sun et al., 2021b), and 3) contrastive learning. This model is only applied
to the mouse dataset.

We sample a window of 80 frames, encoding the keypoints with a linear projection layer. The sequence of keypoints for
each agent is separated by a special learned embedding, similar to a [SEP] token (Devlin et al., 2019). We use three different
kinds of features: 1) Individual-agent features, which are agent specific. 2) Inter-agent, which are features between each pair
of agents. Note that these pairings can be directional. 3) Group features which apply to the entire group. Each feature type
is encoded and their embeddings are added. In the case of inter-agent features, we encode and add each pair.

Masked Modeling. We mask 70% of the input keypoints and features. Because of the high sampling frequency of the
dataset, masked modelling may be trivial through interpolation of nearby frames. We therefore mask spans of the input,
following the same masking scheme as SpanBERT (Joshi et al., 2020). We set the minimum and maximum span length to 3
and 20 respectively and sample lengths according to l ∼ Geo(p = 0.2). The input subsequence is encoded with a stack of
12 transformer self-attention blocks with hidden size 912, followed by a projection onto a 42 dimensional space for the
output embeddings. We apply dropout to these and predict the normalized masked keypoints.

Feature Predictions We predict individual-agent features directly from each output embedding. Inter-agent features are
predicted by taking the output embeddings for the agents in the pair and subtracting them, then regressing the features from
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this pair embedding. We obtain the final representation for the group by concatenating the embeddings for each agent. We
use the group embedding to predict group features and for the final submission. Group embeddings are pooled across frames
using a weighted average to get a single embedding for the entire input sequence. This pooled embedding is then used for
the contrastive task.

Contrastive Task We perform a contrastive learning task by taking two randomly subsequences from the same 1 minute
clip as the positive pair. Negative pairs are created by pairing with other sequences within the batch. We encode the pooled
sequence representation using a 2 layer MLP onto a 42 dimensional space. We take the NT-Xent loss (Chen et al., 2020b)
with τ = 0.1.

Learning Objectives. The task losses are weighted:

L = Lm + 0.8Lx + 0.8Ly + 0.4Lz + 0.05Lc + 0.1Lcl (5)

Where m is masked modelling, x is the individual agent feature prediction task, y is the inter-agent feature prediction task, z
is the group feature prediction task, c is the chases task (public task on mouse dataset) and cl is the contrastive task. 53
individual agent features were computed for each agent, with 13 inter-agent features for pairs, and 1 group feature for all
three mice. Features concerning distances, velocities and accelerations are normalised by mouse length. Angles are encoded
(sin(θ), cos(θ)). We apply rotation, reflection and adding gaussian noise to the keypoints (Sun et al., 2021b), each are
applied with probability p = 0.5. To create frame-level embeddings for a 1 minute sequence, we encode overlapping 80
frame windows of the input using a stride of 40 frames.

An exhaustive hyperparameter search was not possible due to computational constraints, so most parameters were not
tuned. We tested input lengths of 60, 80 and 100 frames and found that 80 was optimal. We split the dataset into training
and validation splits, with 95% and 5% respectively. We train the model for 160 epochs with a batch size of 16. We used
AdamW (Loshchilov & Hutter, 2017a) with a learning rate of 0.00003 and a linear schedule. The model with the lowest
validation loss is chosen.

The code is available at https://github.com/edhayes1/MABe

B. Datasheets

B.1. Mouse Datasheet

Motivation

For what purpose was the dataset created? Was there a specific task in mind? Was there a specific gap that needed to be filled? Please provide a

description.

Automated animal pose estimation has become an increasingly popular tool in the neuroscience community, fueled by the publication of
several easy-to-train animal pose estimation systems. Building on these pose estimation tools, pose-based approaches to supervised or
unsupervised analysis of animal behavior are currently an area of active research. New computational approaches for automated behavior
analysis are probing the detailed temporal structure of animal behavior, its relationship to the brain, and how both brain and behavior
are altered in conditions such as Parkinson’s, PTSD, Alzheimer’s, and autism spectrum disorders. Due to a lack of publicly available
animal behavior datasets, most new behavior analysis tools are evaluated on their own in-house data. There are no established community
standards by which behavior analysis tools are evaluated, and it is unclear how well available software can be expected to perform in new
conditions, particularly in cases where training data is limited. Labs looking to incorporate these tools in their experimental pipelines
therefore often struggle to evaluate available analysis options, and can waste significant effort training and testing multiple systems
without knowing what results to expect.

The Multi-Agent Behavior 2022 (MABe22) dataset is a new set of animal tracking, pose, video, and behavior datasets, intended to serve
as a benchmark dataset for evaluation of unsupervised/self-supervised behavior representation learning and discovery methods. This
datasheet is specific to the Mouse Triplets dataset, which consists of snippets of video and trajectory data from triplets of interacting
mice. Accompanying the data is a collection of 8 ”hidden labels”: for each video frame of the dataset, we provide annotations of animal
strain, time of day, light cycle, and a set of behaviors. These hidden labels can be used to evaluate the quality of learned representations of
animal behavior, by asking how well the information they represent can be decoded from a given representation.
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Who created this dataset (e.g., which team, research group) and on behalf of which entity (e.g., company, institution, organization)?

The MABe22 Mouse Triplets dataset was collected and analyzed in the laboratory of Vivek Kumar at Jackson Labs (JAX), and was
assembled by Ann Kennedy at Northwestern University. Mice were bred and videos of interacting mice were collected by Tom Sproule at
JAX. The video dataset was tracked by Brian Geuther and Keith Sheppard at JAX, with pose estimation performed using a modified
version of HRnet described in (Sheppard et al., 2022). Tracking and video data were screened for tracking quality and segmented into
one-minute ”sequences” by Ann Kennedy. Sequences were manually annotated for four social behaviors of interest by Markus Marks.

Who funded the creation of the dataset? If there is an associated grant, please provide the name of the grantor and the grant name and number.

Acquisition of behavioral data was supported by NIH grants DA041668 (NIDA), DA048034 (NIDA), and Simons Foundation SFARI
Director’s Award (to VK). Curation of data task design was funded by NIMH award #R00MH117264 (to AK) and NSERC Award
#PGSD3-532647-2019 (to JJS).

Any other comments?

None.

Composition

What do the instances that comprise the dataset represent (e.g., documents, photos, people, countries)? Are there multiple types of instances (e.g.,

movies, users, and ratings; people and interactions between them; nodes and edges)? Please provide a description.

The core element of this dataset, called a sequence, consists of raw video, tracked postures, sequence-level experimental conditions, and
hand-scored actions of three mice interacting in a 52 cm x 52 cm arena, filmed from above at 30 Hz. All three mice are adult males from
the same strain, either C57Bl/6J or BTBR. Postures of animals are estimated in terms of a set of twelve anatomically defined ”keypoints”
that capture the detailed two-dimensional pose of the animal. Because the three mice are not easily distinguished, temporal filtering
methods are used to track the identity of animals across frames. Because both of these processing steps are automated, some errors in
pose estimation or swaps of mouse identity do occur in the dataset.

Accompanying each sequence are frame-by-frame annotations for 8 ”hidden tasks” capturing experimental conditions, animal background,
and animal behavior. The 8 hidden tasks for this dataset include four ”sequence-level” tasks where annotation values are the same for all
frames in a one-minute sequence, and nine ”frame-level” tasks where annotation values vary from frame to frame. Descriptions of each
task are provided in Table 12; all behaviors are defined between any given pair of animals.

The core element of a sequence is called a frame; this refers to the posture of the three animals on a particular frame of video, as well as
annotations for the 8 hidden tasks.

How many instances are there in total (of each type, if appropriate)?

This dataset is composed of 2614 one-minute-long sequences filmed at 30 Hz.

Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances from a larger set? If the dataset is a sample,

then what is the larger set? Is the sample representative of the larger set (e.g., geographic coverage)? If so, please describe how this representativeness was

validated/verified. If it is not representative of the larger set, please describe why not (e.g., to cover a more diverse range of instances, because instances were

withheld or unavailable).

The dataset is derived from a larger experiment, in which three mice were allowed to freely interact in an open arena for a period of
four days. To generate the trajectories used for this dataset, we randomly sampled up to five one-minute intervals from each recorded
hour of approximately 12 such four-day experiments. In initial sampling, we observed that during the lights-on phase of the light/dark
cycle the mice spent the majority of the time huddled together sleeping. As this does not generate particularly interesting behavioral
data, we randomly discarded 80% of sampled one-minute intervals in which no substantial movement of the animals occurred, and
replaced these with substitute samples drawn from the same one-hour time period. If after five attempts we could not randomly draw a
replacement sample containing movement, we omitted the trajectory from the dataset. As a result, the dataset contains a higher proportion
of trajectories with movement than is present in the source videos, and a slightly lower proportion of trajectories sampled from the light
portion of the light/dark cycle.

What data does each instance consist of? “Raw” data (e.g., unprocessed text or images) or features? In either case, please provide a description.
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Task Name Type Values Description
Experiment day Sequence 1-4 Mice were filmed interacting for four days after introduc-

tion to a new arena; task is to determine which day a
sequence comes from.

Time of day Sequence 0-1440 Mice show circadian changes in their level of activity; task
is to infer time of day from behavior.

Strain Sequence 0 or 1 Mice are from either C57Bl/6J or BTBR genetic back-
ground. Strain field is 1 for BTBR and 0 for C57Bl/6J.

Lights Sequence 0 or 1 Mice are more active when the lights are off, which occurs
between 6am and 6pm; task is to infer light condition from
behavior.

Chase Frame 0 or 1 A pair of mice moving quickly with one mouse following
close behind the other.

Huddle Frame 0 or 1 Bodies of the mice are in close contact and the animals are
stationary for at least several seconds; can occur between
either pairs or triplets of animals.

Face sniffing Frame 0 or 1 A close-investigation behavior in which the nose of one
mouse is in close contact with the nose or face of another
mouse.

Anogenital sniffing Frame 0 or 1 A close-investigation behavior in which one mouse is
investigating the anogenital area of another, typically with
its nose near the base of the tail or pushed underneath the
hindquarters of the other animal.

Table 6. Format of hidden tasks for mouse dataset.

Each sequence has three elements. 1) Keypoints are the locations of twelve body parts on each mouse: the nose tip, left and right ears,
base of neck, body centroid, base, middle, and tip of tail, and the four paws. Keypoints are estimated using a modified version of HRnet
documented in (Sheppard et al., 2022). 2) Annotations are sequence-level or frame-level labels of experimental conditions or animal’s
actions. Definitions of these annotations are provided in Table 12. The behavior labels were generated using a series of short scripts based
on features of detected animal poses; it is therefore possible that some mis-identification of behaviors occurs.

Note that this dataset does not include the original raw videos from which pose estimates were produced. This is because the objective of
releasing this dataset was to determine the accuracy with which animal behavior could be detected using tracked keypoints alone.

Is there a label or target associated with each instance? If so, please provide a description.

Yes: each annotation (as described above) is provided for every frame in the dataset.

Is any information missing from individual instances? If so, please provide a description, explaining why this information is missing (e.g., because it was

unavailable). This does not include intentionally removed information, but might include, e.g., redacted text.

There is no missing data.

Are relationships between individual instances made explicit (e.g., users’ movie ratings, social network links)? If so, please describe how these

relationships are made explicit.

Each instance (sequence) is to be treated as an independent observation with no relationship to other instances in the dataset. Although the
identities of the interacting animals are the same in some sequences, this information is not tracked in the dataset.

Are there recommended data splits (e.g., training, development/validation, testing)? If so, please provide a description of these splits, explaining the

rationale behind them.

The dataset includes a recommended train/test split which was used for the Multi-Agent Behavior Challenge. Data was randomly split
into training, test, and private-test sets (where the private test set was withheld from challenge evaluation until the end of the competition
period, to avoid overfitting.)
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Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a description.

Pose keypoints in this dataset are produced using automated pose estimation software. The dataset was screened to remove sequences
with poor pose estimation, detected as large jumps in the detected location of an animal, however some errors in pose estimation, missing
keypoints, and noise in keypoint placement still occur. These are most common on frames when the two animals are in close contact or
moving very quickly.

Frame-by-frame annotations of behavior were generated using a series of scripts that were manually tuned by a human expert. Pose
estimation errors can contribute to missed bouts or false positives for behaviors in these annotations.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites, tweets, other datasets)? If it links to or relies on

external resources, a) are there guarantees that they will exist, and remain constant, over time; b) are there official archival versions of the complete dataset (i.e.,

including the external resources as they existed at the time the dataset was created); c) are there any restrictions (e.g., licenses, fees) associated with any of the

external resources that might apply to a future user? Please provide descriptions of all external resources and any restrictions associated with them, as well as

links or other access points, as appropriate.

The dataset is self-contained.

Does the dataset contain data that might be considered confidential (e.g., data that is protected by legal privilege or by doctor-patient confidentiality,

data that includes the content of individuals non-public communications)? If so, please provide a description.

No.

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening, or might otherwise cause anxiety? If so, please

describe why.

No.

Does the dataset relate to people? If not, you may skip the remaining questions in this section.

No.

Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please describe how these subpopulations are identified and provide a description

of their respective distributions within the dataset.

n/a

Is it possible to identify individuals (i.e., one or more natural persons), either directly or indirectly (i.e., in combination with other data) from the

dataset? If so, please describe how.

n/a

Does the dataset contain data that might be considered sensitive in any way (e.g., data that reveals racial or ethnic origins, sexual orientations,

religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government

identification, such as social security numbers; criminal history)? If so, please provide a description.

n/a

Any other comments?

None.

Collection Process

How was the data associated with each instance acquired? Was the data directly observable (e.g., raw text, movie ratings), reported by subjects (e.g., survey

responses), or indirectly inferred/derived from other data (e.g., part-of-speech tags, model-based guesses for age or language)? If data was reported by subjects

or indirectly inferred/derived from other data, was the data validated/verified? If so, please describe how.
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Sequences in the dataset are derived from video of triplets of socially interacting mice in an open arena. Video data was processed to
extract pose estimates and track identity of the animals, and to generate automated annotations of several behaviors of interest, included in
the hidden labels in this dataset.

What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or sensor, manual human curation, software program,

software API)? How were these mechanisms or procedures validated?

Behavioral data was collected in the JAX Animal Behavior System (Beane et al., 2022). Videos were recorded using Basler acA1300-
75gm camera with Tamron 4-12mm lens and 800nm longpass filter, at a framerate of 30Hz and camera resolution of 800 x 800 pixels.
The camera was mounted 105+/-5 cm above the floor of an open field measuring 52cm x 52cm; a grate located at the northern wall of the
arena provides animals access to food and water. Animals were introduced to the arena one by one over the first ten minutes of recording,
and were recorded continuously for four days.

Pose estimation was performed using a modified version of HRnet documented in (Sheppard et al., 2022). Manual annotation of animal
behavior was performed by a trained human expert using the VIA video annotator (Dutta & Zisserman, 2019).

If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic, probabilistic with specific sampling probabilities)?

Repeated from a previous section: to generate the trajectories used for this dataset, we randomly sampled up to five one-minute intervals
from each recorded hour of approximately 12 such four-day experiments. In initial sampling, we observed that during the lights-on phase
of the light/dark cycle the mice spent the majority of the time huddled together sleeping. As this does not generate particularly interesting
behavioral data, we randomly discarded 80% of sampled one-minute intervals in which no substantial movement of the animals occurred,
and replaced these with substitute samples drawn from the same one-hour time period. If after five attempts we could not randomly draw a
replacement sample containing movement, we omitted the trajectory from the dataset. As a result, the dataset contains a higher proportion
of trajectories with movement than is present in the source videos, and a slightly lower proportion of trajectories sampled from the light
portion of the light/dark cycle.

Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and how were they compensated (e.g., how much were

crowdworkers paid)?

Behavioral data collection was performed by graduate student, postdoc, and technician members of the Kumar lab at Jackson Laboratories,
as a part of another ongoing research project studying animal gait and behavior. (No videos or annotations were explicitly generated
for this dataset release.) Lab members are full-time employees of Jackson Labs, and their compensation was not dependent on their
participation in this project. Manual annotation of animal behavior was performed by Markus Marks, who is a full-time employee of
Caltech and whose compensation was also not dependent on participation in this project.

Over what timeframe was the data collected? Does this timeframe match the creation timeframe of the data associated with the instances (e.g., recent

crawl of old news articles)? If not, please describe the timeframe in which the data associated with the instances was created.

Source experiments associated with this dataset were performed in 2019, with pose estimation performed in 2019-2020 and manual
annotation performed in Sept-Nov 2022. This dataset was assembled from December 2022 - March 2023.

Were any ethical review processes conducted (e.g., by an institutional review board)? If so, please provide a description of these review processes,

including the outcomes, as well as a link or other access point to any supporting documentation.

All experiments included here were performed in accordance with NIH guidelines and approved by the Institutional Animal Care and Use
Committee (IACUC) and Institutional Biosafety Committee at Jackson Labs. Review of experimental design by the IACUC follows
the steps outlined in the NIH-published Guide for the Care and Use of Laboratory Animals. All individuals performing behavioral
experiments underwent animal safety training prior to data collection. Animals were maintained under close veterinary supervision.

Does the dataset relate to people? If not, you may skip the remaining questions in this section.

No.

Did you collect the data from the individuals in question directly, or obtain it via third parties or other sources (e.g., websites)?

n/a

Were the individuals in question notified about the data collection? If so, please describe (or show with screenshots or other information) how notice was

provided, and provide a link or other access point to, or otherwise reproduce, the exact language of the notification itself.
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n/a

Did the individuals in question consent to the collection and use of their data? If so, please describe (or show with screenshots or other information) how

consent was requested and provided, and provide a link or other access point to, or otherwise reproduce, the exact language to which the individuals consented.

n/a

If consent was obtained, were the consenting individuals provided with a mechanism to revoke their consent in the future or for certain uses? If so,

please provide a description, as well as a link or other access point to the mechanism (if appropriate).

n/a

Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a data protection impact analysis) been conducted? If so,

please provide a description of this analysis, including the outcomes, as well as a link or other access point to any supporting documentation.

n/a

Any other comments?

None.

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing, tokenization, part-of-speech tagging, SIFT feature

extraction, removal of instances, processing of missing values)? If so, please provide a description. If not, you may skip the remainder of the questions in

this section.

No preprocessing was performed on the sequence data released in this dataset.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support unanticipated future uses)? If so, please provide a link

or other access point to the “raw” data.

n/a

Is the software used to preprocess/clean/label the instances available? If so, please provide a link or other access point.

n/a

Any other comments?

None.

Uses

Has the dataset been used for any tasks already? If so, please provide a description.

Yes: this dataset was released to accompany the 2022 Multi-Agent Behavior (MABe) Challenge, posted here. This competition was aimed
at generating learned representations of animals’ actions using unsupervised or self-supervised techniques.

Is there a repository that links to any or all papers or systems that use the dataset? If so, please provide a link or other access point.

Papers that use or cite this dataset may be submitted by their authors for display on the MABe22 website at
https://sites.google.com/view/computational-behavior/our-datasets/mabe2022-dataset

What (other) tasks could the dataset be used for?

While this dataset was designed for development of methods for representation learning, the annotations can also be used for supervised
learning tasks.
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Is there anything about the composition of the dataset or the way it was collected and preprocessed/cleaned/labeled that might impact future uses?

For example, is there anything that a future user might need to know to avoid uses that could result in unfair treatment of individuals or groups (e.g., stereotyping,

quality of service issues) or other undesirable harms (e.g., financial harms, legal risks) If so, please provide a description. Is there anything a future user could do

to mitigate these undesirable harms?

Occasional errors and identity swaps during pose estimation may impact future use of the dataset for some purposes.

Are there tasks for which the dataset should not be used? If so, please provide a description.

None.

Any other comments?

None.

Distribution

Will the dataset be distributed to third parties outside of the entity (e.g., company, institution, organization) on behalf of which the dataset was

created? If so, please provide a description.

Yes - the full dataset will be made publicly available for download by all interested parties by July 1st, 2023.

How will the dataset will be distributed (e.g., tarball on website, API, GitHub) Does the dataset have a digital object identifier (DOI)?

The dataset is available on the Caltech public data repository at https://data.caltech.edu/records/20186, where it will be retained indefinitely
and available for download by all third parties. The data.caltech.edu posting has accompanying DOI https://doi.org/10.22002/D1.20186.

The dataset as used for the MABe Challenge (lacking hidden task labels) is available for download on the AIcrowd page, located at
(https://www.aicrowd.com/challenges/multi-agent-behavior-challenge-2022/problems/mabe-2022-mouse-triplets-video-data).

When will the dataset be distributed?

Yes - the full dataset will be made publicly available for download by all interested parties by July 1st, 2023.

Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or under applicable terms of use (ToU)? If so, please

describe this license and/or ToU, and provide a link or other access point to, or otherwise reproduce, any relevant licensing terms or ToU, as well as any fees

associated with these restrictions.

The MABe22 dataset is distributed under the CreativeCommons Attribution-NonCommercial-ShareAlike license (CC-BY-NC-SA). The
terms of this license may be found at https://creativecommons.org/licenses/by-nc-sa/2.0/legalcode.

Have any third parties imposed IP-based or other restrictions on the data associated with the instances? If so, please describe these restrictions, and

provide a link or other access point to, or otherwise reproduce, any relevant licensing terms, as well as any fees associated with these restrictions.

There are no third party restrictions on the data.

Do any export controls or other regulatory restrictions apply to the dataset or to individual instances? If so, please describe these restrictions, and

provide a link or other access point to, or otherwise reproduce, any supporting documentation.

No export controls or regulatory restrictions apply.

Any other comments?

None.

Maintenance

Who will be supporting/hosting/maintaining the dataset?
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The dataset is hosted on the Caltech Research Data Repository at data.caltech.edu. Dataset hosting is maintained by the library of the
California Institute of Technology. Long-term support for users of the dataset is provided by Jennifer J. Sun and by the laboratory of Ann
Kennedy.

How can the owner/curator/manager of the dataset be contacted (e.g., email address)?

The managers of the dataset (JJS and AK) can be contacted at mabe.workshop@gmail.com, or AK can be contacted at
ann.kennedy@northwestern.edu and JJS can be contacted at jjsun@caltech.edu.

Is there an erratum? If so, please provide a link or other access point.

No.

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)? If so, please describe how often, by whom, and how

updates will be communicated to users (e.g., mailing list, GitHub)?

Users of the dataset have the option to subscribe to a mailing list to receive updates regarding corrections or extensions of the MABe22
dataset. Mailing list sign-up can be found on the MABe22 webpage at https://sites.google.com/view/computational-behavior/our-
datasets/mabe2022-dataset.

Updates to correct errors in the dataset will be made promptly, and announced via update messages posted to the MABe22 website and
data.caltech.edu page.

Updates that extend the scope of the dataset, such as additional hidden tasks, or improved pose estimation, will be released as new named
instantiations on at most a yearly basis. Previous versions of the dataset will remain online, but obsolescence notes will be sent out to
the MABe22 mailing list. In updates, dataset version will be indicated by the year in the dataset name (here 22). Dataset updates may
accompany new instantiations of the MABe Challenge.

If the dataset relates to people, are there applicable limits on the retention of the data associated with the instances (e.g., were individuals in question

told that their data would be retained for a fixed period of time and then deleted)? If so, please describe these limits and explain how they will be enforced.

N/a (no human data.)

Will older versions of the dataset continue to be supported/hosted/maintained? If so, please describe how. If not, please describe how its obsolescence

will be communicated to users.

Yes, the dataset will be permanently available on the Caltech Research Data Repository (data.caltech.edu), which is managed by the
Caltech Library.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them to do so? If so, please provide a description. Will

these contributions be validated/verified? If so, please describe how. If not, why not? Is there a process for communicating/distributing these contributions to

other users? If so, please provide a description.

Extensions to the dataset will take place through at-most-yearly updates. We welcome community contributions of behavioral data, novel
tracking methods, and novel hidden tasks; these may be submitted by contacting the authors or emailing mabe.workshop@gmail.com.
All community contributions will be reviewed by the managers of the dataset for quality of tracking and annotation data. Community
contributions will not be accepted without a data maintenance plan (similar to this document), to ensure support for future users of the
dataset.

Any other comments?

If you enjoyed this dataset and would like to contribute other multi-agent behavioral data for future versions of the dataset or MABe
Challenge, contact us at mabe.workshop@gmail.com!

B.2. Fly Datasheet

Motivation

For what purpose was the dataset created? Was there a specific task in mind? Was there a specific gap that needed to be filled? Please provide a

description.
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The prospect of discovering structure previously unknown to humans from large datasets has tremendous potential, particularly for
science. However, progress has been inhibited by a lack of common datasets and quantitative evaluation criteria for assessing and
comparing different algorithms. In the field of video-based behavior analysis, there has been a lot of progress in tools for tracking the pose
of people and animals. To make use of these methods in biology, we now need computational methods to probe the temporal structure in
these still large time-series datasets, and learn representations amenable to comparison and further study.

The MABe22 dataset is a new animal behavior dataset, intended to a) serve as a benchmark dataset for comparison of unsupervised or
self-supervised behavior analysis tools, and establish community standards for evaluation of unsupervised techniques, b) highlight critical
challenges in computational behavior analysis, particularly pertaining to unsupervised representation learning, and c) foster interaction
between behavioral biologists and the greater machine learning community. This datasheet is specific to the Fly Group dataset, which
consists of tracking data for a group of 8 to 11 fruit flies with 50 “hidden labels” for evaluating the quality of the learned representation.

Also see MABe22 mouse triplet data sheet (Section B.1) for more details.

Who created this dataset (e.g., which team, research group) and on behalf of which entity (e.g., company, institution, organization)?

The MABe22 fly dataset was created as a collaborative effort between Kristin Branson, Alice Robie, and Catherine Schretter at HHMI
Janelia Research Campus within the labs of Kristin Branson and Gerry Rubin. Fly lines were generated by Gerry Rubin with the help of
the Janelia Fly Core, PTR, and Fly Light project teams. Fly crosses and offspring were set up and collected by Alice Robie and Catherine
Schretter, the behavior rig was developed by Alice Robie and Kristin Branson, and video were recorded by Alice Robie and Catherine
Schretter, with help from Janelia Shared Resources. Analysis was done by Kristin Branson, Alice Robie, and Catherine Schretter, with
help from Adam Taylor. The dataset tasks were designed by Kristin Branson, Alice Robie, and Catherine Schretter.

Who funded the creation of the dataset? If there is an associated grant, please provide the name of the grantor and the grant name and number.

Acquisition of behavioral data was funded by the Howard Hughes Medical Institute.

Any other comments?

None.

Composition

What do the instances that comprise the dataset represent (e.g., documents, photos, people, countries)? Are there multiple types of instances (e.g.,

movies, users, and ratings; people and interactions between them; nodes and edges)? Please provide a description.

The core element of this dataset, called a sequence, captures the tracked postures of ≈ 10 flies over 30s (4,500 frames) on a 5-cm-diameter
domed plate filmed from above at 150Hz.

The core element of a sequence is called a frame; this refers to the posture of all animals on a particular frame of video, as binary
categorization for each of the 50 tasks.

Tasks were based on the genotype, rearing, mutation, and environmental conditions of the flies. Flies from the following genotypes were
assayed: dTrpA1 x pBDPGAL4U (Control) (Robie et al., 2017), dTrpA1 x R71G01 (R71G01) (Robie et al., 2017), dTrpA1 x R65F12
(R65F12) (Robie et al., 2017), 20xCsChrimson x SS36551 (aIPg)(Schretter et al., 2020), NorpA,20xCsChrimson x NorpA;SS36564 (Blind
aIPg), 20x CsChrimson x SS56987 (pC1d)(Schretter et al., 2020), 20x CsChrimson x BPp65AD-x-BPZpGal4DBD (Control 2)(Schretter
et al., 2020), NorpA,20xCsChrimson x NorpA;BPp65AD-x-BPZpGal4DBD (Blind control). Neural populations in CsChrimson flies
were activated by periods of red light illumination from an LED panel below the flies. Neural populations in dTrpA1 flies were activated
by performing the experiments at the permissive temperature for TrpA. In addition, we manually annotated 6 social behaviors sparsely
across the dataset.

How many instances are there in total (of each type, if appropriate)?

Instances for each dataset are shown in Table 7, divided into user train, evaluator train, test 1, and test 2 setss. Number of instances is
reported as frames. As frames within a sequence are temporally contiguous and sampled at 150Hz, they are not statistically independent
observations.

Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances from a larger set? If the dataset is a sample,

then what is the larger set? Is the sample representative of the larger set (e.g., geographic coverage)? If so, please describe how this representativeness was

validated/verified. If it is not representative of the larger set, please describe why not (e.g., to cover a more diverse range of instances, because instances were

withheld or unavailable).
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Category 1 Category 0
Task User train Eval train Test 1 Test 2 User train Eval train Test 1 Test 2

Female vs male 13,808,901 7,696,105 5,155,335 6,452,311 4,470,088 1,744,888 1,338,165 1,562,188
Control 1 1,863,000 729,000 364,491 405,000 11,657,257 5,642,878 4,173,622 5,085,126

Control 1 sex separated 405,000 364,491 405,000 364,500 13,115,257 6,007,387 4,133,113 5,125,626
Control 2 726,798 516,548 287,012 283,151 12,793,459 5,855,330 4,251,101 5,206,975

71G01 2,668,497 769,500 364,509 405,011 10,851,760 5,602,378 4,173,604 5,085,115
Male R71G01 female control 405,008 9 405,000 405,000 13,115,249 6,371,869 4,133,113 5,085,126

R65F12 1,853,994 1,003,505 810,000 764,998 11,666,263 5,368,373 3,728,113 4,725,128
R91B01 1,944,000 729,000 364,500 810,000 11,576,257 5,642,878 4,173,613 4,680,126

Blind control 1,011,001 543,761 236,961 468,234 12,509,256 5,828,117 4,301,152 5,021,892
aIPg 1,166,857 418,714 262,500 520,350 12,353,400 5,953,164 4,275,613 4,969,776
pC1d 520,770 516,990 518,450 518,890 12,999,487 5,854,888 4,019,663 4,971,236

Blind aIPg 955,332 780,360 519,690 544,992 12,564,925 5,591,518 4,018,423 4,945,134
Blind control on vs off 1,011,001 543,761 236,961 468,234 1,094,999 590,239 249,039 503,766

Blind control strong vs off 505,572 272,425 118,314 232,335 1,094,999 590,239 249,039 503,766
Blind control weak vs off 505,429 271,336 118,647 235,899 1,094,999 590,239 249,039 503,766

Blind control strong vs weak 505,572 272,425 118,314 232,335 505,429 271,336 118,647 235,899
Blind control last vs first 169,813 88,736 38,970 78,507 168,405 91,702 39,771 78,048

Control 2 on vs off 726,798 516,548 287,012 283,151 785,202 563,452 306,988 310,849
Control 2 strong vs off 361,015 258,143 143,836 141,922 785,202 563,452 306,988 310,849
Control 2 weak vs off 365,783 258,405 143,176 141,229 785,202 563,452 306,988 310,849

Control 2 strong vs weak 361,015 258,143 143,836 141,922 365,783 258,405 143,176 141,229
Control 2 last vs first 121,560 85,523 48,609 48,081 120,672 86,526 46,849 46,761
Blind aIPg on vs off 955,332 780,360 519,690 544,992 1,042,668 839,630 560,310 589,008

Blind aIPg strong vs off 477,531 389,800 260,930 271,073 1,042,668 839,630 560,310 589,008
Blind aIPg weak vs off 477,801 390,560 258,760 273,919 1,042,668 839,630 560,310 589,008

Blind aIPg strong vs weak 477,531 389,800 260,930 271,073 477,801 390,560 258,760 273,919
Blind aIPg last vs first 159,555 130,120 85,810 90,343 158,332 129,920 87,240 89,876

aIPg on vs off 1,166,857 418,714 262,500 520,350 1,276,633 512,784 277,500 559,650
aIPg strong vs off 598,592 210,374 131,340 259,890 1,276,633 512,784 277,500 559,650
aIPg weak vs off 568,265 208,340 131,160 260,460 1,276,633 512,784 277,500 559,650

aIPg strong vs weak 598,592 210,374 131,340 259,890 568,265 208,340 131,160 260,460
aIPg last vs first 199,900 77,067 44,210 86,860 198,901 76,662 44,120 86,150
pC1 on vs off 520,770 516,990 518,450 518,890 559,230 563,010 561,550 561,100

pC1d strong vs off 258,760 258,370 260,100 257,520 559,230 563,010 561,550 561,100
pC1d weak vs off 262,010 258,620 258,350 261,370 559,230 563,010 561,550 561,100

pC1d strong vs weak 258,760 258,370 260,100 257,520 262,010 258,620 258,350 261,370
pC1d last vs first 86,520 86,760 86,110 86,780 85,320 85,660 87,030 86,490

Any courtship 4,927,499 1,773,014 1,579,509 1,575,009 8,592,758 4,598,864 2,958,604 3,915,117
Any control 4,005,799 2,153,800 1,293,464 1,520,885 9,514,458 4,218,078 3,244,649 3,969,241
Any blind 1,966,333 1,324,121 756,651 1,013,226 11,553,924 5,047,757 3,781,462 4,476,900
Any aIPg 2,122,189 1,199,074 782,190 1,065,342 11,398,068 5,172,804 3,755,923 4,424,784

Any aggression 2,642,959 1,716,064 1,300,640 1,584,232 10,877,298 4,655,814 3,237,473 3,905,894
Any R71G01 3,073,505 769,509 769,509 810,011 10,446,752 5,602,369 3,768,604 4,680,115

Any sex-separated 810,008 364,500 810,000 769,500 12,710,249 6,007,378 3,728,113 4,720,626
Aggression manual annotation 610 972 1,279 890 480 1,092 1,014 1,487

Chase manual annotation 1,496 15,351 5,611 20,810 2,218 51,938 31,232 34,382
Courtship manual annotation 591 743 273 108 3,388 2,979 2,465 1,728
High fence manual annotation 188 157 106 158 751 584 570 629
Wing ext. manual annotation 0 1,594 1,524 3,130 0 13,396 11,728 15,104
Wing flick manual annotation 230 149 95 176 1,740 1,404 840 1,469

Table 7. Number of frames in each split set for each task and category.
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Category 1 Category 0
Task User train Eval train Test 1 Test 2 User train Eval train Test 1 Test 2

Female vs male 426 217 147 179 221 91 67 76
Control 1 50 20 9 10 373 193 136 166

Control 1 sex separated 10 9 10 10 408 202 135 165
Control 2 33 22 11 11 385 189 133 164

71G01 66 20 11 11 359 193 135 166
Male R71G01 female control 11 1 10 10 407 211 134 166

R65F12 45 25 20 18 376 187 126 158
R91B01 49 19 10 20 374 192 134 156

Blind control 44 22 11 22 374 189 133 153
aIPg 54 21 11 22 364 190 133 153
pC1d 22 22 22 22 396 189 122 153

Blind aIPg 44 33 22 22 374 178 122 153
Blind control on vs off 44 22 11 22 52 26 13 26

Blind control strong vs off 24 12 6 12 52 26 13 26
Blind control weak vs off 20 10 5 10 52 26 13 26

Blind control strong vs weak 24 12 6 12 20 10 5 10
Blind control last vs first 8 4 2 4 8 4 2 4

Control 2 on vs off 33 22 11 11 38 26 13 13
Control 2 strong vs off 18 12 6 6 38 26 13 13
Control 2 weak vs off 15 10 5 5 38 26 13 13

Control 2 strong vs weak 18 12 6 6 15 10 5 5
Control 2 last vs first 6 4 2 2 6 4 2 2
Blind aIPg on vs off 44 33 22 22 52 38 26 26

Blind aIPg strong vs off 24 18 12 12 52 38 26 26
Blind aIPg weak vs off 20 15 10 10 52 38 26 26

Blind aIPg strong vs weak 24 18 12 12 20 15 10 10
Blind aIPg last vs first 8 6 4 4 8 6 4 4

aIPg on vs off 54 21 11 22 62 25 13 26
aIPg strong vs off 29 11 6 12 62 25 13 26
aIPg weak vs off 25 10 5 10 62 25 13 26

aIPg strong vs weak 29 11 6 12 25 10 5 10
aIPg last vs first 10 4 2 4 10 4 2 4
pC1 on vs off 22 22 22 22 26 26 26 24

pC1d strong vs off 12 12 12 12 26 26 26 24
pC1d weak vs off 10 10 10 10 26 26 26 24

pC1d strong vs weak 12 12 12 12 10 10 10 10
pC1d last vs first 4 4 4 4 4 4 4 4

Any courtship 120 45 40 37 304 168 106 138
Any control 137 73 41 53 286 140 105 123
Any blind 88 55 33 44 330 156 111 131
Any aIPg 98 54 33 44 320 157 111 131

Any aggression 120 76 55 66 298 135 89 109
Any R71G01 77 20 21 20 348 192 125 156

Any sex-separated 21 10 20 20 397 202 125 156
Aggression manual annotation 11 16 15 17 10 20 17 30

Chase manual annotation 2 23 11 23 4 76 63 65
Courtship manual annotation 5 6 6 2 38 32 34 22
High fence manual annotation 12 17 13 17 23 27 16 18
Wing ext. manual annotation 0 4 8 8 0 52 49 54
Wing flick manual annotation 28 19 16 28 52 40 24 50

Table 8. Number of sequences in each split set for each task and category.
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We used all videos from chosen genotypes and conditions containing at least 9 flies. Frames for manual annotation of behavior were
chosen using JAABA’s interactive system (Kabra et al., 2013) to help find instances of rare behaviors. When cutting a video into sequences,
we chose segments to avoid obvious identity tracking errors (trajectory births or deaths). We left gaps of a randomly chosen length
between .5 and 2s (75 and 300 frames) between sequences.

What data does each instance consist of? “Raw” data (e.g., unprocessed text or images) or features? In either case, please provide a description.

Each sequence has three elements. 1) Tracking features consist of, for each of the ≈ 10 flies, the locations of 19 body parts (left wing
tip, right wing tip, antennae midpoint, right eye, left eye, left front of thorax, right front of thorax, base of thorax, tip of abdomen, right
middle femur base, right middle femur-tibia joint, left middle femur-base, left middle femur-tibia joint, right front leg tip, right middle leg
tip, right rear leg tip, left front leg tip, left middle leg tip, left rear leg tip), information about an ellipse fit to the fly body (Fit ellipse
center, orientation, major and minor axis length), and information about the segmented animal (body and foreground area, image contrast).
Tracking features are estimated using the Animal Part Tracker (APT) and the FlyTracker. Videos have between 9 and 11 flies. All data
are stored as matrices with space for 11 flies, with nan values if there are < 11 flies. 2) Task categories are frame- and fly-wise binary
categorizations for each of the 50 tasks we defined, and will have values 1, 0, or nan, with nan indicating no data (the task is irrelevant or
ill-defined for this frame and fly, or this frame and fly was not manually annotated). For some tasks, all flies in the same frame will have
the same value. For some tasks, all frames will have the same value for the entire sequence, or for long periods of contiguous time.

Is there a label or target associated with each instance? If so, please provide a description.

The annotation field for a given sequence consists of frame- and fly-wise categorizations for each of the 50 tasks. For fly-frames for which
the task is irrelevant or ill-defined, or no manual annotation was made, this label will be missing (indicated by nan). In the MABe22
challenge, these task annotations were kept secret, and used for evaluation purposes, not for training.

Is any information missing from individual instances? If so, please provide a description, explaining why this information is missing (e.g., because it was

unavailable). This does not include intentionally removed information, but might include, e.g., redacted text.

As described above, all data are stored as matrices with space for 11 flies, with nan values if there are < 11 flies. Annotations will be nan
if the task is irrelevant or ill-defined for this frame and fly, or this frame and fly was not manually annotated.

Are relationships between individual instances made explicit (e.g., users’ movie ratings, social network links)? If so, please describe how these

relationships are made explicit.

Each instance (sequence) is to be treated as an independent observation. Some sequence come from the same groups of flies in the same
video. Each sequence is at least 0.5s (75 frames) from another sequence. Frames within a sequence are temporally contiguous, and highly
correlated.

Are there recommended data splits (e.g., training, development/validation, testing)? If so, please provide a description of these splits, explaining the

rationale behind them.

The dataset includes a recommended split into User train (for unsupervised representation learning), Evaluator train (for training evaluator
classifier), Test 1 (for validating the classifier), and Test 2 (for final evaluation score) sets. Each set containing distinct videos and flies.
The splits were designed to provide a roughly consistent, small amount of training data for each task.

Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a description.

Tracking in this dataset are produced using automated tracking software (FlyTracker and APT). In addition, manual annotations of animal
behavior are inherently subjective, and individual annotators show some variability in the precise frame-by-frame labeling of behavior
sequences.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites, tweets, other datasets)? If it links to or relies on

external resources, a) are there guarantees that they will exist, and remain constant, over time; b) are there official archival versions of the complete dataset (i.e.,

including the external resources as they existed at the time the dataset was created); c) are there any restrictions (e.g., licenses, fees) associated with any of the

external resources that might apply to a future user? Please provide descriptions of all external resources and any restrictions associated with them, as well as

links or other access points, as appropriate.

The dataset is self-contained.
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Does the dataset contain data that might be considered confidential (e.g., data that is protected by legal privilege or by doctor-patient confidentiality,

data that includes the content of individuals non-public communications)? If so, please provide a description.

No.

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening, or might otherwise cause anxiety? If so, please

describe why.

No such material; dataset contains only trajectories (no video or images) and text labels pertaining to fly social behaviors.

Does the dataset relate to people? If not, you may skip the remaining questions in this section.

No.

Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please describe how these subpopulations are identified and provide a description

of their respective distributions within the dataset.

n/a

Is it possible to identify individuals (i.e., one or more natural persons), either directly or indirectly (i.e., in combination with other data) from the

dataset? If so, please describe how.

n/a

Does the dataset contain data that might be considered sensitive in any way (e.g., data that reveals racial or ethnic origins, sexual orientations,

religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government

identification, such as social security numbers; criminal history)? If so, please provide a description.

n/a

Any other comments?

None.

Collection Process

How was the data associated with each instance acquired? Was the data directly observable (e.g., raw text, movie ratings), reported by subjects (e.g., survey

responses), or indirectly inferred/derived from other data (e.g., part-of-speech tags, model-based guesses for age or language)? If data was reported by subjects

or indirectly inferred/derived from other data, was the data validated/verified? If so, please describe how.

See above for details on collection process. All data pertains to groups of interacting flies in carefully controlled environments.

What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or sensor, manual human curation, software program,

software API)? How were these mechanisms or procedures validated?

Details of fly genotypes and rearing are above. Flies were recorded in our custom developed behavior rig, which consists of a custom LED
panel for back-illumination for recording in NIR and timed optogenetic activation in red, a custom 5-cm-diameter domed circular dish
designed to reduce interactions with the arena wall and ceiling, a visual surround to isolate the flies, and a camera with an NIR-pass filter
(FLIR Flea3) recording at 1024x1024 at 150Hz. We used data capture software based on the FlyBowlDataCapture system (Robie et al.,
2017) and the Basic Image Acquisition System (BIAS, IORodeo). As described above, manual annotations were made using JAABA.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic, probabilistic with specific sampling probabilities)?

As described above, we included videos with at least 9 flies in them. When cutting a video into sequences, we chose segments to avoid
obvious identity tracking errors (trajectory births or deaths). We left gaps of a randomly chosen length between .5 and 2s (75 and 300
frames) between sequences.

Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and how were they compensated (e.g., how much were

crowdworkers paid)?
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Full-time employees of Janelia’s Shared Resources teams (Fly Core, Fly Light, Media, and Project Technical Resources) were involved in
producing and maintaining flies.

Over what timeframe was the data collected? Does this timeframe match the creation timeframe of the data associated with the instances (e.g., recent

crawl of old news articles)? If not, please describe the timeframe in which the data associated with the instances was created.

Videos associated with this dataset were collected between December 2020 and September 2021. Tracking and annotation was performed
in October 2021 - February 2022.

Were any ethical review processes conducted (e.g., by an institutional review board)? If so, please provide a description of these review processes,

including the outcomes, as well as a link or other access point to any supporting documentation.

No.

Does the dataset relate to people? If not, you may skip the remaining questions in this section.

No.

Did you collect the data from the individuals in question directly, or obtain it via third parties or other sources (e.g., websites)?

n/a

Were the individuals in question notified about the data collection? If so, please describe (or show with screenshots or other information) how notice was

provided, and provide a link or other access point to, or otherwise reproduce, the exact language of the notification itself.

n/a

Did the individuals in question consent to the collection and use of their data? If so, please describe (or show with screenshots or other information) how

consent was requested and provided, and provide a link or other access point to, or otherwise reproduce, the exact language to which the individuals consented.

n/a

If consent was obtained, were the consenting individuals provided with a mechanism to revoke their consent in the future or for certain uses? If so,

please provide a description, as well as a link or other access point to the mechanism (if appropriate).

n/a

Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a data protection impact analysis) been conducted? If so,

please provide a description of this analysis, including the outcomes, as well as a link or other access point to any supporting documentation.

n/a

Any other comments?

None.

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing, tokenization, part-of-speech tagging, SIFT feature

extraction, removal of instances, processing of missing values)? If so, please provide a description. If not, you may skip the remainder of the questions in

this section.

No preprocessing was performed on the sequence data released in this dataset.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support unanticipated future uses)? If so, please provide a link

or other access point to the “raw” data.

n/a
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Is the software used to preprocess/clean/label the instances available? If so, please provide a link or other access point.

n/a

Any other comments?

None.

Uses

Has the dataset been used for any tasks already? If so, please provide a description.

Yes: this dataset was released to accompany the three tasks of the 2022 Multi-Agent Behavior (MABe) Challenge, posted here. In this
challenge, competitors are provided video of multiple interacting animals and tasked with learning a general-purpose, low-dimensional
representation of the video. They upload their learned representations to the evaluation site, which then trained simple linear classifiers on
the set of secret tasks described above, and returns accuracy measures.

Is there a repository that links to any or all papers or systems that use the dataset? If so, please provide a link or other access point.

Papers that use or cite this dataset may be submitted by their authors for display on the MABe22 website at
https://sites.google.com/view/computational-behavior/our-datasets/mabe2022-dataset

What (other) tasks could the dataset be used for?

Besides unsupervised representation learning, this dataset could also be used for supervised representation learning, using the hidden
labels as supervision.

Is there anything about the composition of the dataset or the way it was collected and preprocessed/cleaned/labeled that might impact future uses?

For example, is there anything that a future user might need to know to avoid uses that could result in unfair treatment of individuals or groups (e.g., stereotyping,

quality of service issues) or other undesirable harms (e.g., financial harms, legal risks) If so, please provide a description. Is there anything a future user could do

to mitigate these undesirable harms?

No.

Are there tasks for which the dataset should not be used? If so, please provide a description.

None.

Any other comments?

None.

Distribution

Will the dataset be distributed to third parties outside of the entity (e.g., company, institution, organization) on behalf of which the dataset was

created? If so, please provide a description.

Yes - the full dataset will be made publicly available for download by all interested parties by July 1st, 2023.

How will the dataset will be distributed (e.g., tarball on website, API, GitHub) Does the dataset have a digital object identifier (DOI)?

The dataset is available on the Caltech public data repository at https://data.caltech.edu/records/20186, where it will be retained indefinitely
and available for download by all third parties. The data.caltech.edu posting has accompanying DOI https://doi.org/10.22002/D1.20186.

The dataset as used for the MABe Challenge (lacking hidden task labels) is available for download on the AIcrowd page, located at
(https://www.aicrowd.com/challenges/multi-agent-behavior-challenge-2022/problems/mabe-2022-fruit-fly-groups).

When will the dataset be distributed?
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Yes - the full dataset will be made publicly available for download by all interested parties by July 1st, 2023.

Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or under applicable terms of use (ToU)? If so, please

describe this license and/or ToU, and provide a link or other access point to, or otherwise reproduce, any relevant licensing terms or ToU, as well as any fees

associated with these restrictions.

The MABe22 dataset is distributed under the CreativeCommons Attribution-NonCommercial-ShareAlike license (CC-BY-NC-SA). The
terms of this license may be found at https://creativecommons.org/licenses/by-nc-sa/2.0/legalcode.

Have any third parties imposed IP-based or other restrictions on the data associated with the instances? If so, please describe these restrictions, and

provide a link or other access point to, or otherwise reproduce, any relevant licensing terms, as well as any fees associated with these restrictions.

There are no third party restrictions on the data.

Do any export controls or other regulatory restrictions apply to the dataset or to individual instances? If so, please describe these restrictions, and

provide a link or other access point to, or otherwise reproduce, any supporting documentation.

No export controls or regulatory restrictions apply.

Any other comments?

None.

Maintenance

Who will be supporting/hosting/maintaining the dataset?

The dataset is hosted on the Caltech Research Data Repository at data.caltech.edu. Dataset hosting is maintained by the library of the
California Institute of Technology. Long-term support for users of the dataset is provided by Jennifer J. Sun and by the laboratory of Ann
Kennedy.

How can the owner/curator/manager of the dataset be contacted (e.g., email address)?

The managers of the dataset (JJS and AK) can be contacted at mabe.workshop@gmail.com, or AK can be contacted at
ann.kennedy@northwestern.edu and JJS can be contacted at jjsun@caltech.edu.

Is there an erratum? If so, please provide a link or other access point.

No.

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)? If so, please describe how often, by whom, and how

updates will be communicated to users (e.g., mailing list, GitHub)?

Users of the dataset have the option to subscribe to a mailing list to receive updates regarding corrections or extensions of the MABe22
dataset. Mailing list sign-up can be found on the MABe22 webpage at https://sites.google.com/view/computational-behavior/our-
datasets/mabe2022-dataset.

Updates to correct errors in the dataset will be made promptly, and announced via update messages posted to the MABe22 website and
data.caltech.edu page.

Updates that extend the scope of the dataset, such as additional hidden tasks, or improved pose estimation, will be released as new named
instantiations on at most a yearly basis. Previous versions of the dataset will remain online, but obsolescence notes will be sent out to
the MABe22 mailing list. In updates, dataset version will be indicated by the year in the dataset name (here 22). Dataset updates may
accompany new instantiations of the MABe Challenge.

If the dataset relates to people, are there applicable limits on the retention of the data associated with the instances (e.g., were individuals in question

told that their data would be retained for a fixed period of time and then deleted)? If so, please describe these limits and explain how they will be enforced.

N/a (no human data.)

38

https://creativecommons.org/licenses/by-nc-sa/2.0/legalcode
https://data.caltech.edu/
mailto:mabe.workshop@gmail.com
mailto:ann.kennedy@northwestern.edu
mailto:jjsun@caltech.edu
https://sites.google.com/view/computational-behavior/our-datasets/mabe2022-dataset
https://sites.google.com/view/computational-behavior/our-datasets/mabe2022-dataset


MABe22: Multi-Species Multi-Task Benchmark for Learned Representations of Behavior

Will older versions of the dataset continue to be supported/hosted/maintained? If so, please describe how. If not, please describe how its obsolescence

will be communicated to users.

Yes, the dataset will be permanently available on the Caltech Research Data Repository (data.caltech.edu), which is managed by the
Caltech Library.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them to do so? If so, please provide a description. Will

these contributions be validated/verified? If so, please describe how. If not, why not? Is there a process for communicating/distributing these contributions to

other users? If so, please provide a description.

Extensions to the dataset will take place through at-most-yearly updates. We welcome community contributions of behavioral data, novel
tracking methods, and novel hidden tasks; these may be submitted by contacting the authors or emailing mabe.workshop@gmail.com.
All community contributions will be reviewed by the managers of the dataset for quality of tracking and annotation data. Community
contributions will not be accepted without a data maintenance plan (similar to this document), to ensure support for future users of the
dataset.

Any other comments?

If you enjoyed this dataset and would like to contribute other multi-agent behavioral data for future versions of the dataset or MABe
Challenge, contact us at mabe.workshop@gmail.com!

B.3. Beetle Datasheet

Motivation

For what purpose was the dataset created? Was there a specific task in mind? Was there a specific gap that needed to be filled? Please provide a

description.

Interactions between different animal species constitute a core component of how ecological communities function. How these interactions
work mechanistically promises to provide rich insight for the neuroscience community, as well as critical information on how networks of
organisms operate in nature. Studying these interactions consist of understanding how sensory systems control response to the many
different species an animal will encounter, what simple modules string together to build complex behaviors, how stereotyped are the
behavioral outputs in response to particular stimuli, etc. Most quantitative behavioral data to this point is composed of either solo
organisms, or members of the same species interacting. Our dataset provides behavioral video data of pairs of different species interacting.

The Multi-Agent Behavior 2022 (MABe22) dataset is a new set of animal tracking, pose, video, and behavior datasets, intended to serve
as a benchmark dataset for evaluation of unsupervised/self-supervised behavior representation learning and discovery methods. This
datasheet is specific to the Ant-Beetle Interaction dataset, which consists of video recordings of rove beetles (Sceptobius lativentris)
interacting with velvety tree ants (Liometopum occidentale, a species that rove beetles interact with symbiotically) and with other beetle
species. This data offers a test case for algorithmic approaches to identify and assess the behavior space that these interaction partners
traverse.

Who created this dataset (e.g., which team, research group) and on behalf of which entity (e.g., company, institution, organization)?

The behavioral video data was collected and annotated by Julian Wagner in the lab of Joseph Parker at Caltech. Julian Wagner collected
insects in the Los Angeles National Forest, filmed their interactions, and annotated their behavior in Behavioral Observation Research
Interactive Software (BORIS) (documentation link) by Julian Wagner. Data was parsed into 30 second sections, downscaled, and
pre-processed by Jennifer Sun.

Who funded the creation of the dataset? If there is an associated grant, please provide the name of the grantor and the grant name and number.

Acquisition of behavioral data was supported by Army Research Office MURI award W911NF1910269 (JP) and a US National Science
Foundation CAREER award (2047472) (JP).

Any other comments?

None.

Composition
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What do the instances that comprise the dataset represent (e.g., documents, photos, people, countries)? Are there multiple types of instances (e.g.,

movies, users, and ratings; people and interactions between them; nodes and edges)? Please provide a description.

The core element of this dataset, called a sequence, is one 30-second video of a rove beetle (textitSceptobius lativentris) interacting with
another insect or object. Each video is accompanied by 14 frame- or sequence-level labels describing the species/type of interactor, the
time elapsed since the start of the interaction session, as well as frame-wise manual annotations for six behaviors of interest. Video and
annotations were originally acquired at 60 Hz, and are downsampled to 30 Hz in the released dataset.

How many instances are there in total (of each type, if appropriate)?

The dataset is composed of 11,536 30 second sequences.

Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances from a larger set? If the dataset is a sample,

then what is the larger set? Is the sample representative of the larger set (e.g., geographic coverage)? If so, please describe how this representativeness was

validated/verified. If it is not representative of the larger set, please describe why not (e.g., to cover a more diverse range of instances, because instances were

withheld or unavailable).

The source dataset consists of 2-hour-long videos of rove beetle-interactor pairings, with each video capturing eight such pairings
simultaneously (housed within the wells of an eight-well plate.) The raw video recordings were screened to identify wells that appeared to
have occurrences of multiple types of behavior of interest; manual annotation of animal behavior was performed on this subset of wells. It
is therefore possible that this dataset is biased for videos with higher rates of animal movement than in the full raw video dataset; this was
done to provide a larger number of representative examples of animal behavior.

The 30 second clips comprising each instance in this dataset are extracted from the subset of wells for which annotation was performed.
The extracted sequences included in this dataset are uniformly sampled from the source dataset as follows: first, the video is cropped to
contain only the subject well for which behavior was annotated. Next, starting at the beginning of each video, we discard a randomly
chosen segment of between 0.5 and 2 seconds (75 and 300 frames), then save the following 30-second clip as one dataset instance;
this process is then repeated from the point where the preceding 30-second clip ended, onward through the end of the video. The clips
therefore comprise a representative sample of the annotated ant-beetle interaction experiment.

What data does each instance consist of? “Raw” data (e.g., unprocessed text or images) or features? In either case, please provide a description.

Each instance consists of 30 seconds of raw video data (800x800 resolution and sampled at 30 Hz, i.e. 900 frames of images), accompanied
by eight ”sequence-level” labels of the interactor type and time since start of the interaction, and six ”frame-level” labels which are manual
annotations for the occurrence of various behaviors of interest (i.e. six binary vectors of length 900 indicating the presence or absence of
each behavior on each frame of the video.)

Is there a label or target associated with each instance? If so, please provide a description.

Yes, each instance is associated with a sequence-level label describing the species/object that the beetle is interacting with and a sequence-
level label indicating the time elapsed since the start of the interaction session (between 0 and 4 hours). Each instance is also associated
with six binary frame-wise labels indicating the presence or absence of a set of behaviors of interest.

Is any information missing from individual instances? If so, please provide a description, explaining why this information is missing (e.g., because it was

unavailable). This does not include intentionally removed information, but might include, e.g., redacted text.

There is no missing data.

Are relationships between individual instances made explicit (e.g., users’ movie ratings, social network links)? If so, please describe how these

relationships are made explicit.

Each instance (sequence) is to be treated as an independent observation with no relationship to other instances in the dataset. Although the
identities of the interacting animals are the same in some sequences, this information is not tracked in the dataset.

Are there recommended data splits (e.g., training, development/validation, testing)? If so, please provide a description of these splits, explaining the

rationale behind them.

The dataset includes a recommended train/test split which was used for the Multi-Agent Behavior Challenge. Data was randomly split
into training, test, and private-test sets (where the private test set was withheld from challenge evaluation until the end of the competition
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period, to avoid overfitting.)

Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a description.

The frame-wise annotations of behavior are manually generated by a trained human expert based on visual inspection the behavioral video,
and are done by only one annotator. The initiation point of a particular behavior can be difficult to assess accurately and will be biased by
the style of a given annotator. This makes the start and stop point of some behavioral categories (e.g. where a long grooming bout begins)
more likely to be noisy and subjective to call than, say, the behavioral category in the middle of a protracted bout of a given behavior.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites, tweets, other datasets)? If it links to or relies on

external resources, a) are there guarantees that they will exist, and remain constant, over time; b) are there official archival versions of the complete dataset (i.e.,

including the external resources as they existed at the time the dataset was created); c) are there any restrictions (e.g., licenses, fees) associated with any of the

external resources that might apply to a future user? Please provide descriptions of all external resources and any restrictions associated with them, as well as

links or other access points, as appropriate.

The dataset is self-contained.

Does the dataset contain data that might be considered confidential (e.g., data that is protected by legal privilege or by doctor-patient confidentiality,

data that includes the content of individuals non-public communications)? If so, please provide a description.

No.

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening, or might otherwise cause anxiety? If so, please

describe why.

No.

Does the dataset relate to people? If not, you may skip the remaining questions in this section.

No.

Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please describe how these subpopulations are identified and provide a description

of their respective distributions within the dataset.

n/a

Is it possible to identify individuals (i.e., one or more natural persons), either directly or indirectly (i.e., in combination with other data) from the

dataset? If so, please describe how.

n/a

Does the dataset contain data that might be considered sensitive in any way (e.g., data that reveals racial or ethnic origins, sexual orientations,

religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government

identification, such as social security numbers; criminal history)? If so, please provide a description.

n/a

Any other comments?

None.

Collection Process

How was the data associated with each instance acquired? Was the data directly observable (e.g., raw text, movie ratings), reported by subjects (e.g., survey

responses), or indirectly inferred/derived from other data (e.g., part-of-speech tags, model-based guesses for age or language)? If data was reported by subjects

or indirectly inferred/derived from other data, was the data validated/verified? If so, please describe how.

The raw behavioral videos were collected in a custom recording setup described in the following section. Videos were cropped and
matted to isolate individual interaction wells, annotated by hand for behaviors and then split into the sequences. Sequence-level labels of

41



MABe22: Multi-Species Multi-Task Benchmark for Learned Representations of Behavior

interactor type and time since experiment start are ground-truth information known to the experimenter. Frame-wise labels of subject
behavior are manually scored by a trained human expert; no secondary validation of these annotations was performed.

What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or sensor, manual human curation, software program,

software API)? How were these mechanisms or procedures validated?

Behavioral trials were performed in custom arenas made from 1/8th inch infrared transmitting acrylic (Plexiglass IR acrylic 3143,
https://www.eplastics.com/plexiglass/acrylic-sheets/ir-transmitting) which transmits far red and infrared while blocking visible light.
Arenas consist of a base layer of finely wet-sanded acrylic (to provide texture for beetles to walk on) a layer with eight two-centimeter
round wells, a roof of anti-static acrylic (https://www.mcmaster.com/8774K17/) and a final top of inferred transmitting acrylic. Behavioral
interactions were run at 15 C in a dark incubator with door closed. Arenas were top lit with IR850nm led flood lights. Recordings of
interactions were made using a Flir machine vision camera (BFS-U3-51S5M-C: 5.0 MP) at 60 frames per second with a Pentax 12mm
1:1.2 TV lens (by Ricoh, FL-HC1212B-VG), for 2 hours.

To split multiplexed arena videos into individual wells, we manually set crop parameters for each well in each video, and cropped and
matted the edges using openCV. We annotated videos of individual interaction wells with BORIS (Behavioral Observation Research
Interactive Software (BORIS) user guide — BORIS latest documentation).

If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic, probabilistic with specific sampling probabilities)?

This answer is repeated from an earlier section: the source dataset consists of 2-hour-long videos of rove beetle-interactor pairings, with
each video capturing eight such pairings simultaneously (housed within the wells of an eight-well plate.) The raw video recordings
were screened to identify wells that appeared to have occurrences of multiple types of behavior of interest; manual annotation of animal
behavior was performed on this subset of wells. It is therefore possible that this dataset is biased for videos with higher rates of animal
movement than in the full raw video dataset; this was done to provide a larger number of representative examples of animal behavior.

The 30 second clips comprising each instance in this dataset are extracted from the subset of wells for which annotation was performed.
The extracted sequences included in this dataset are uniformly sampled from the source dataset as follows: first, the video is cropped to
contain only the subject well for which behavior was annotated. Next, starting at the beginning of each video, we discard a randomly
chosen segment of between 0.5 and 2 seconds (75 and 300 frames), then save the following 30-second clip as one dataset instance;
this process is then repeated from the point where the preceding 30-second clip ended, onward through the end of the video. The clips
therefore comprise a representative sample of the annotated ant-beetle interaction experiment.

Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and how were they compensated (e.g., how much were

crowdworkers paid)?

All data was collected and annotated by Julian Wagner, a graduate student in the lab of Joseph Parker, as part of their thesis work studying
social symbiotic beetles. As a full-time employee of the Parker lab, Wagner’s compensation was not dependent on participation in this
project.

Over what timeframe was the data collected? Does this timeframe match the creation timeframe of the data associated with the instances (e.g., recent

crawl of old news articles)? If not, please describe the timeframe in which the data associated with the instances was created.

Video data was collected and annotated over the course of several months in 2021.

Were any ethical review processes conducted (e.g., by an institutional review board)? If so, please provide a description of these review processes,

including the outcomes, as well as a link or other access point to any supporting documentation.

No; because all species studied are invertebrates, these experiments are not subject to monitoring by an institutional review board.

Does the dataset relate to people? If not, you may skip the remaining questions in this section.

No.

Did you collect the data from the individuals in question directly, or obtain it via third parties or other sources (e.g., websites)?

n/a

Were the individuals in question notified about the data collection? If so, please describe (or show with screenshots or other information) how notice was

provided, and provide a link or other access point to, or otherwise reproduce, the exact language of the notification itself.

n/a
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Did the individuals in question consent to the collection and use of their data? If so, please describe (or show with screenshots or other information) how

consent was requested and provided, and provide a link or other access point to, or otherwise reproduce, the exact language to which the individuals consented.

n/a

If consent was obtained, were the consenting individuals provided with a mechanism to revoke their consent in the future or for certain uses? If so,

please provide a description, as well as a link or other access point to the mechanism (if appropriate).

n/a

Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a data protection impact analysis) been conducted? If so,

please provide a description of this analysis, including the outcomes, as well as a link or other access point to any supporting documentation.

n/a

Any other comments?

None.

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing, tokenization, part-of-speech tagging, SIFT feature

extraction, removal of instances, processing of missing values)? If so, please provide a description. If not, you may skip the remainder of the questions in

this section.

The raw behavioral videos are 2448x2048 pixel resolution and are sampled at 60 Hz, viewed from above an arena with 8 individual
circular wells. We split these videos by cropping each well out, and blacking out the edges of the frame outside the focal circle for that
well. Videos were then downsampled to 800x800 pixel resolution, and temporally downsampled to 30 Hz.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support unanticipated future uses)? If so, please provide a link

or other access point to the “raw” data.

The raw two-hour movies with all wells visible are not available.

Is the software used to preprocess/clean/label the instances available? If so, please provide a link or other access point.

Labeling instances was done in BORIS (Behavioral Observation Research Interactive Software (BORIS) user guide — BORIS latest
documentation).

Any other comments?

None.

Uses

Has the dataset been used for any tasks already? If so, please provide a description.

Yes: this dataset was released to accompany the 2022 Multi-Agent Behavior (MABe) Challenge, posted here. This competition was aimed
at generating learned representations of animals’ actions using unsupervised or self-supervised techniques.

Is there a repository that links to any or all papers or systems that use the dataset? If so, please provide a link or other access point.

Papers that use or cite this dataset may be submitted by their authors for display on the MABe22 website at
https://sites.google.com/view/computational-behavior/our-datasets/mabe2022-dataset

What (other) tasks could the dataset be used for?
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While this dataset was designed for development of methods for representation learning, the annotations can also be used for supervised
learning tasks.

Is there anything about the composition of the dataset or the way it was collected and preprocessed/cleaned/labeled that might impact future uses?

For example, is there anything that a future user might need to know to avoid uses that could result in unfair treatment of individuals or groups (e.g., stereotyping,

quality of service issues) or other undesirable harms (e.g., financial harms, legal risks) If so, please provide a description. Is there anything a future user could do

to mitigate these undesirable harms?

No.

Are there tasks for which the dataset should not be used? If so, please provide a description.

None.

Any other comments?

None.

Distribution

Will the dataset be distributed to third parties outside of the entity (e.g., company, institution, organization) on behalf of which the dataset was

created? If so, please provide a description.

Yes - the full dataset will be made publicly available for download by all interested parties by July 1st, 2023.

How will the dataset will be distributed (e.g., tarball on website, API, GitHub) Does the dataset have a digital object identifier (DOI)?

The dataset is available on the Caltech public data repository at https://data.caltech.edu/records/20186, where it will be retained indefinitely
and available for download by all third parties. The data.caltech.edu posting has accompanying DOI https://doi.org/10.22002/D1.20186.

The dataset as used for the MABe Challenge (lacking hidden task labels) is available for download on the AIcrowd page, located at
(https://www.aicrowd.com/challenges/multi-agent-behavior-challenge-2022/problems/mabe-2022-mouse-triplets).

When will the dataset be distributed?

The full dataset will be made publicly available for download by all interested third parties by July 1st, 2023.

Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or under applicable terms of use (ToU)? If so, please

describe this license and/or ToU, and provide a link or other access point to, or otherwise reproduce, any relevant licensing terms or ToU, as well as any fees

associated with these restrictions.

The MABe22 dataset is distributed under the CreativeCommons Attribution-NonCommercial-ShareAlike license (CC-BY-NC-SA). The
terms of this license may be found at https://creativecommons.org/licenses/by-nc-sa/2.0/legalcode.

Have any third parties imposed IP-based or other restrictions on the data associated with the instances? If so, please describe these restrictions, and

provide a link or other access point to, or otherwise reproduce, any relevant licensing terms, as well as any fees associated with these restrictions.

There are no third party restrictions on the data.

Do any export controls or other regulatory restrictions apply to the dataset or to individual instances? If so, please describe these restrictions, and

provide a link or other access point to, or otherwise reproduce, any supporting documentation.

No export controls or regulatory restrictions apply.

Any other comments?

None.

Maintenance
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Who will be supporting/hosting/maintaining the dataset?

The dataset is hosted on the Caltech Research Data Repository at data.caltech.edu. Dataset hosting is maintained by the library of the
California Institute of Technology. Long-term support for users of the dataset is provided by Jennifer J. Sun and by the laboratory of Ann
Kennedy.

How can the owner/curator/manager of the dataset be contacted (e.g., email address)?

The managers of the dataset (JJS and AK) can be contacted at mabe.workshop@gmail.com, or AK can be contacted at
ann.kennedy@northwestern.edu and JJS can be contacted at jjsun@caltech.edu.

Is there an erratum? If so, please provide a link or other access point.

No.

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)? If so, please describe how often, by whom, and how

updates will be communicated to users (e.g., mailing list, GitHub)?

Users of the dataset have the option to subscribe to a mailing list to receive updates regarding corrections or extensions of the MABe22
dataset. Mailing list sign-up can be found on the MABe22 webpage at https://sites.google.com/view/computational-behavior/our-
datasets/mabe2022-dataset.

Updates to correct errors in the dataset will be made promptly, and announced via update messages posted to the MABe22 website and
data.caltech.edu page.

Updates that extend the scope of the dataset, such as additional hidden tasks, or improved pose estimation, will be released as new named
instantiations on at most a yearly basis. Previous versions of the dataset will remain online, but obsolescence notes will be sent out to
the MABe22 mailing list. In updates, dataset version will be indicated by the year in the dataset name (here 22). Dataset updates may
accompany new instantiations of the MABe Challenge.

If the dataset relates to people, are there applicable limits on the retention of the data associated with the instances (e.g., were individuals in question

told that their data would be retained for a fixed period of time and then deleted)? If so, please describe these limits and explain how they will be enforced.

N/a (no human data.)

Will older versions of the dataset continue to be supported/hosted/maintained? If so, please describe how. If not, please describe how its obsolescence

will be communicated to users.

Yes, the dataset will be permanently available on the Caltech Research Data Repository (data.caltech.edu), which is managed by the
Caltech Library.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them to do so? If so, please provide a description. Will

these contributions be validated/verified? If so, please describe how. If not, why not? Is there a process for communicating/distributing these contributions to

other users? If so, please provide a description.

Extensions to the dataset will take place through at-most-yearly updates. We welcome community contributions of behavioral data, novel
tracking methods, and novel hidden tasks; these may be submitted by contacting the authors or emailing mabe.workshop@gmail.com.
All community contributions will be reviewed by the managers of the dataset for quality of tracking and annotation data. Community
contributions will not be accepted without a data maintenance plan (similar to this document), to ensure support for future users of the
dataset.

Any other comments?

If you enjoyed this dataset and would like to contribute other multi-agent behavioral data for future versions of the dataset or MABe
Challenge, contact us at mabe.workshop@gmail.com!

C. Dataset Description Details
C.1. Fly Groups
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C.1.1. EXPERIMENTAL SETUP

Optogenetic experiments used group-housed, mated female flies (4–5 days post eclosion) that were sorted into 10 flies per
vial. Flies were reared in the dark in a 12:12 light-dark cycle incubator (25◦, 50% relative humidity) on standard food
supplemented with retinal (Sigma-Aldrich, St. Louis, MO) (0.2 and mM all trans-retinal prior to eclosion and 0.4 mM
all trans-retinal post eclosion). Control lines, lines labeling cell types involved in the female aggression circuit, and the
CsChrimson effector line were described previously (Schretter et al., 2020; Aso et al., 2014). Blind control and blind
aIPg lines were generated through crossing established lines with a mutation in norpA (Bloomquist et al., 1988) and lines
described previously (Schretter et al., 2020). All experiments were performed during the morning activity peak (ZT0-ZT3).

For thermogenetic experiments, flies were reared in a 12:12 light:dark incubator (22◦C 50% relative humidity) on a standard
molasses food. They were cold anesthetized and sorted into groups of 5 males and 5 females, unless noted as “male71G01
+ female control” and “control sex-separated”. These flies were housed separately in groups of 5 males or 5 females
prior to the experiments. All flies were food deprived on agar media for 24 hours directly before recording. Experiments
were conducted at the permissive temperature for TrpA, 30◦, and 50% relative humidity during the evening activity peak
(ZT8-ZT12). Control lines, the TrpA effector line, and lines labeling cell types involved in courtship or avoidance were
previously described (Robie et al., 2017; Wu et al., 2016).

The circular assay chamber was 50 mm in diameter and 3.5 mm tall, with a domed translucent ceiling coated with
silicon (Sigma Cote, Sigma Aldridge) to prevent upside-down walking and a translucent acrylic floor. The chambers were
illuminated from below with infrared light from custom LED panels and recorded from above with a USB3 camera at 150
fps (Flea3, FLIR) with an 800-nm long-pass filter. Visible white light was present at all times so that the flies could see.

For optogenetic experiments, neurons expressing CsChrimson were activated with 617-nm red light from custom LED panels.
Experiments were run with one of two activation protocols. Protocol 1 consisted of 2 repeats of a 30s (red) lights-off period
then a 30s “strong” lights-on period (7 mW/cm2, pulsed at 30 Hz with on period 10/33 ms), followed by a 30s lights-off
period, then 2 repeats of a 30s lights-off period then a 30s “weak” lights-on period (3 mW/cm2 constant illumination), then
a 30s lights-off period. In total, these videos were 300s (45000 frames) long. Protocol 2 consisted of 3 repeats of a 30s
lights-off period then a 30s “weak” lights-on period (1 mW/cm2, constant) followed by 3 repeats of a 30s lights-off period
then a 30s “strong” lights-on period (3 mW/cm2). In total, these videos were 390s long (58500 frames). For thermogenetic
experiments, videos were recorded for 300 seconds (45000 frames).

C.1.2. FLY TRACKING

The body and wings of the flies were tracked using the FlyTracker software (Eyjolfsdottir et al., 2014). 19 selected landmark
points were tracked using the Animal Part Tracker (APT) (Kabra et al., 2022), depicted in Figure 11. Coordinates were
converted from pixels to millimeters by detecting the circular arena boundary, with (0, 0) corresponding to the arena center.

C.1.3. FLY BEHAVIOR ANNOTATION

Using JAABA (Kabra et al., 2013), we annotated 6 behaviors involved in fly courtship and aggression:

• Aggression: The focus fly was angled towards another fly and engaged in several touches with ≥ 2 limbs to the head,
abdomen or thorax of another fly, causing the other fly to move. This behavior included head butting, fencing, and
shoving behaviors as defined (Nilsen et al., 2004; Schretter et al., 2020).

• Chase: The focus fly was following another moving fly, maintaining a small, somewhat constant distance to it (Robie
et al., 2017).

• Courtship: The focus fly was performing any stage of the courtship sequence, including orienting, following, tapping,
singing, licking, attempted copulation, or copulation (Sokolowski, 2001).

• High posture fencing: The focus fly was angled towards another fly with the mid legs of the fly angled sharply (< 45
degrees), and the forelegs lifted off of the bottom of the arena and touching limbs, head, abdomen or thorax of another
fly (Nilsen et al., 2004; Schretter et al., 2020).

• Wing extension: The focus fly unilaterally rotates a wing out for an extended period of time. This behavior is likely an
indication of the fly producing courtship song with the extended wing (Robie et al., 2017).
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Fly type N. videos Description
Control 1 9 Groups of 5 female and 5 male flies from control line pBDPGAL4u x TrpA

that were raised together.
Control 1 sex-
separated

4 Groups of 5 female and 5 male flies from control line pBDPGAL4u x TrpA
that were raised separately, with groups encountering each other for the
first time in the videos.

Control 2 6 Groups of 10 female flies from control line JHS K 85321 x CsChrimson
R71G01 13 Groups of 5 female and 5 male flies from courtship line R71G01 x TrpA
Male R71G01 fe-
male control

5 Groups of 5 female flies from the control line pBDPGAL4U x TrpA and 5
male flies from courtship line R71G01 x TrpA

R65F12 12 Groups of 5 female and 5 male flies from courtship line R65F12 x TrpA
R91B01 10 Groups of 5 female and 5 male flies from visual avoidance line R91B01 x

TrpA
Blind control 9 Groups of 10 blind female flies from control line JHS K 85321 x ChR

with the norpA mutation
aIPg 9 Groups of 10 female flies from aggression line SS36564 x ChR, which

targets aIPg neurons
pC1d 8 Groups of 10 female flies from aggression line SS56987 x ChR, which

targets pC1d neurons.
Blind aIPg 11 Groups of 10 blind female flies with the norpA mutation from aggression

line SS36564, which targets aIPg neurons
Any courtship 30 Any of R71G01, Male R71G01 + female control, or R65F12.
Any control 28 Any of Control 1, Control 1 sex-separated, Control 2, or Blind control.
Any blind 20 Any of Blind control, Blind aIPg.
Any aIPg 20 Any of aIPg or Blind aIPg.
Any aggression 28 Any of aIPg, pC1d, blind aIPg.
Any R71G01 18 Any of R71G01 or Male R71G01 + female control
Any sex separated 9 Any of Control 1 sex-separated or Male R71G01 + female control.

Table 9. Descriptions of types of flies used in each task.

Task type Description
Fly type 1 indicates activation periods (whole video for TrpA, any lights-on periods for ChR)

of the selected fly type. 0 indicates activation periods for other lines. nan indicates
lights-off periods.

On vs off 1 indicates activation lights-on periods for the selected fly type, 0 lights-off periods for
that fly type. nan indicates other fly types.

Strong vs off 1 indicates strong activation lights-on periods for the selected fly type, 0 lights-off
periods for that fly type. nan indicates other fly types.

Weak vs off 1 indicates weak activation lights-on periods for the selected fly type, 0 lights-off
periods for that fly type. nan indicates other fly types.

Strong vs weak 1 indicates strong activation lights-on periods for the selected fly type, 0 weak activation
lights-on periods for that fly type. nan indicates lights-off periods for that fly type, or
any other fly type.

Last vs first 1 indicates the last strong activation lights-on period for the selected fly ty[e, 0 the first
strong activation lights-on period for that fly type. nan indicates other lights-on periods
or lights off periods for that fly type, or any other fly type.

Manual annotation 1 indicates frames from any fly type manually labeled as the selected behavior, 0 frames
manually labeled as not the selected behavior, nan frames that were not labeled.

Female vs male 1 indicate female flies, 0 indicates male flies.

Table 10. Descriptions of types of comparisons made in each task.
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Task Flies/Behavior Task type
1 Control 1 Fly type
2 Control 1 sex-

separated
Fly type

3 Control 2 Fly type
4 R71G01 Fly type
5 male R71G01 fe-

male control
Fly type

6 R65F12 Fly type
7 R91B01 Fly type
8 Blind Control Fly type
9 aIPG Fly type

10 pC1d Fly type
11 Blind aIPG Fly type
12 Blind control On vs off
13 Blind control Strong vs off
14 Blind control Weak vs off
15 Blind control Strong vs weak
16 Blind control Last vs first
17 Control 2 On vs off
18 Control 2 Strong vs off
19 Control 2 Weak vs off
20 Control 2 Strong vs weak
21 Control 2 Last vs first
22 Blind aIPg On vs off
23 Blind aIPg Strong vs off
24 Blind aIPg Weak vs off
25 Blind aIPg Strong vs weak

Task Flies/Behavior Task type
26 Blind aIPg Last vs first
27 aIPg On vs off
28 aIPg Strong vs off
29 aIPg Weak vs off
30 aIPg Strong vs weak
31 aIPg Last vs first
32 pC1d On vs off
33 pC1d Strong vs off
34 pC1d Weak vs off
35 pC1d Strong vs weak
36 pC1d Last vs first
37 Any courtship Fly type
38 Any control Fly type
39 Any blind Fly type
40 Any aIPg Fly type
41 Any aggression Fly type
42 Any R71G01 Fly type
43 Any sex-separated Fly type
44 All Female vs male
45 Aggression Manual annotation
46 Chase Manual annotation
47 Courtship Manual annotation
48 High fence Manual annotation
49 Wing ext. Manual annotation
50 Wing flick Manual annotation

Table 11. Descriptions of fly tasks.
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Figure 11. 19 tracked landmark points on the fly body.

• Wing flick: The focus fly rapidly and symmetrically moves its wings out and back in performing a quick scissoring
movement several times in a row (Robie et al., 2017).

As all of the behaviors we annotated occur rarely, we sparsely annotated the data using frames suggested using JAABA’s
interactive system. We only annotated frames for which we were confident of the correct class. We annotated frames across
all fly types, for many different videos and flies. For all behaviors, the classifiers trained by JAABA using the annotated data
looked reasonable, based on casual proofreading.

C.1.4. DATA SPLITTING

We split the data into 4 sets, with each set containing distinct videos and flies.

• User train: Data given to the competitor to learn their embedding.

• Evaluation train: Data used to train the linear classifier during evaluation.

• Test 1: Data used to measure performance of the linear classifier. Performance on this dataset was presented on the
leaderboard during the competition.

• Test 2: Final set of data used to measure performance on the linear classifier, used for determining the competition
winners.

We used simulated annealing to find a way to split the videos so that:

• There were videos from each fly type in each set.

• There were manual labels from each fly type and each behavior category in each set.

• Approximately 60% of videos were in User train, 20% in Evaluator train, 10% in Test 1, and 10% in Test 2.

• For each behavior type and fly type, approximately 40% of manual labels for each behavior were in User train, 30% in
Test 1, and 30% in Test 2.
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We split each video into segments of length 30s (4500 frames), with gaps of a randomly selected interval between .5s (75
frames) and 2s (150 frames) between segments. Included segments were chosen such that they did not include obvious
identity tracking errors (trajectory births or deaths). Flies were shuffled within each segment so that fly i across segments
did not correspond.

C.2. Mice Triplets

C.2.1. EXPERIMENTAL SETUP

This section is adapted from (Beane et al., 2022; Sheppard et al., 2022; Geuther et al., 2019). Experiments were performed
in the JAX Animal Behavior System (JABS), consisting of an open field arena measuring 52 cm by 52 cm, with overhead
LED ring lighting on a 12:12 light-dark cycle. The arena floor is white PVC plastic covered by a layer of bedding (wood
shavings and Alpha-Dri), and food and water are held in a hopper with grate access in one arena wall, and replaced when
depleted. For recording videos while lights were off, additional IR LED lighting at 940 nm was added. Video was recorded
at 30Hz using a Basler acA1300-75gm camera with 4-12mm lens (Tamron) and 800nm longpass filter (Hoya) to exclude
visible light, using a custom recording client developed by JAX (see https://github.com/KumarLabJax/JABS-data-pipeline).
Experimental mice were adult males between 10 and 20 weeks old, of genetic background C57Bl/6J or BTBR. Prior to
testing, animals were allowed to acclimate to the behavior room for 30-60 minutes, after which three mice were introduced
to the JABS arena over a period of several minutes. Behavior was recorded continuously for four days, during which time
animal behavior and welfare was monitored remotely. All behavioral tests were performed in accordance with approved
protocols from The Jackson Laboratory Institutional Animal Care and Use Committee guidelines.

C.2.2. MOUSE TRACKING

12 anatomical keypoints on each animal were tracked using a modified version of HRnet (provided at
https://github.com/KumarLabJax/deep-hrnet-mouse), with coordinates of keypoints reported in pixels (Sheppard et al.,
2022). Occurrence of each anatomically defined keypoint were grouped into up to four animal pose instances (one more
than the number of mice present), using associative embedding (Newell et al., 2017) to evaluate likelihood of keypoint
pairs belonging to the same animal. The four candidate pose instances were then assigned animal identities by computing
distances between all tracked pose pairs across neighboring video frames, and propagating animal IDs forward in time to the
closest pose instance falling within a maximum radius. A second post-hoc pass was then applied to extracted pose tracklets,
in which incomplete pose instances were merged when complementary pairs of points were found within a maximum radius,
and resulting tracklets were merged based on a minimum distance criterion, to produce the final set of three pose trajectories
provided in the dataset.

Task Name Type Values Description
Experiment day Sequence 1-4 Mice were filmed interacting for four days after introduc-

tion to a new arena; task is to determine which day a
sequence comes from.

Time of day Sequence 0-1440 Mice show circadian changes in their level of activity; task
is to infer time of day from behavior.

Strain Sequence 0 or 1 Mice are from either C57Bl/6J or BTBR genetic back-
ground. Strain field is 1 for BTBR and 0 for C57Bl/6J.

Lights Sequence 0 or 1 Mice are more active when the lights are off, which occurs
between 6am and 6pm; task is to infer light condition from
behavior.

Table 12. Format of experimentally-defined tasks for mouse dataset.

C.2.3. MOUSE BEHAVIOR ANNOTATION

Mouse behavioral videos were manually annotated using the VIA video annotator (Dutta & Zisserman, 2019). Each of the
behaviors: huddle, chase, anal sniff, and face sniff, was annotated as an individual time series with frame-level temporal
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resolution. We annotated 400 clips overall (200/100/100; train/val/test), randomly selected from the full set of videos. Chase
was annotated when a pair of mice moved quickly, with one mouse following close behind the other. Huddle was annotated
when the bodies of the mice are in close contact and the animals are stationary for at least several seconds; it can occur
between either pairs or triplets of animals. Face sniffing was annotated when a close-investigation behavior occurred in
which the nose of one mouse was in close contact with the nose or face of another mouse. Anogenital sniffing was annotated
for a close-investigation behavior in which one mouse is investigating the anogenital area of another, typically with its nose
near the base of the tail or pushed underneath the hindquarters of the other animal.

C.2.4. DATA SPLITTING

Each dataset was randomly assigned into four sets; due to the relatively small number of source experiments, we did not
separate sets by animal identity. The percentage of videos/trajectories assigned to each set is given in parentheses.

• User train (30%): Data given to the competitor to learn their embedding (note that competitors could also include the
submission train, test 1, and test 2 video/trajectories for training, but these were not included for experiments in the
main text.)

• Evaluation train (50%): Data used to train the linear classifiers during evaluation.

• Test 1 (10%): Data used to measure performance of the linear classifiers. Performance on this dataset was presented on
the leaderboard during the competition.

• Test 2 10%): Final set of data used to measure performance of the linear classifiers, and for determining the competition
winners.

C.3. Beetle Interactions

C.3.1. EXPERIMENTAL SETUP

This dataset consists of videos of paired insect interactions. One of the interactor is a symbiotic rove beetles (Sceptobius
lativentris), while the other interactor may be their host ant (Liometopum occidentale), manipulated host ant (e.g. with
pheromones stripped off), or other insects (e.g. clown or nitidulid beetles). The original video recordings consists of 8-well
behavioral interaction chambers (2cm diameter circles) in the dark and illuminated with infrared lights from the side/top.
A top-mounted machine vision camera sensitive to IR light monitored the two-hour behavioral trials at 60 Hz, which we
downsample to 30Hz for MABe22. Individual circular wells were cropped/parsed from the multi-well video by hand and
saved at 800x800 resolution. We annotated six behaviors in whole two-hour videos, consisting of seven different types
of one-on-one interactions using BORIS (14 hours total). These interactors represent a range of cue types, from the host
organism with which the symbiont should interact extensively, to a neutral random other insect which the symbiont will
likely ignore. Generating a meaningful representation that extracts information of interest about the different behaviors
adopted by the beetle in response to these disparate cues is crucial for insight into how species interact in nature.

C.3.2. BEETLE TASK DESCRIPTIONS

For the beetle dataset, identifying the sequence-level interactor apply to all frames, while the frame-level behavior tasks
apply to a subset of the videos. All of these tasks are classification, except for a regression task for interaction duration,
where the goal is to identify how long the two organisms have been interacting (up to 4 hours).

The following sequence-level labels describe the type of interactors present:
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histerid Sceptobius lativentris interacting with a clown beetle (family Histeridae.)
nitidulid Sceptobius lativentris interacting with a sap beetle (family Nitidulidae.)
locc Sceptobius lativentris interacting with a live Liometopum occidentale.
gasterless Sceptobius lativentris interacting with a live gasterless Liometopum

occidentale ant, i.e. an ant with its gaster (abomen) removed.
platy Sceptobius lativentris interacting with a live Platyusa sonomae beetle.
reapplied Sceptobius lativentris interacting with a dead Liometopum occidentale

stripped of pheromones and then with pheromones reapplied.
tethered Sceptobius lativentris interacting with a live Liometopum occidentale

tethered to a magnet, i.e. immobilized in the center of the arena.

The following frame-wise labels reflect categories of behavior present in the video:

grooming object Sceptobius lativentris is grooming the interactor object/insect.
grooming self Sceptobius lativentris is grooming itself (e.g. cleaning an antenna).
idle alone Sceptobius lativentris is idle (not doing any visible behavior) by itself.
idle object Sceptobius lativentris is idle (not doing any visible behavior) by on top

of the interactor/object.
exploring object Sceptobius lativentris is exploring (moving around on) atop the interac-

tor/object.
exploring alone Sceptobius lativentris is exploring (moving around) in the arena.

To evaluate the performance of frame-level behavior labels, we generate two sets of evaluation conditions, same and different.
For same, we create the evaluation train and test splits with the same interactor types (so the linear evaluator has access to the
same interactors for behavior classification during train and test). For different, we create the evaluation train and test split
with different interactor types (so the linear evaluator has access to different interactors for behavior classification during
train and test). Note that this only affects the linear evaluation split, and does not affect the representation learning model.

C.3.3. DATA SPLITTING

Each dataset was randomly assigned into four sets; the data is split such that either the interactor type is the same across
evaluation splits, or different as described above. The percentage of videos/trajectories assigned to each set is given in
parentheses. Note that this percentage may vary across different conditions.

• User train (25%): Data given to the competitor to learn their embedding (note that competitors could also include the
submission train, test 1, and test 2 video/trajectories for training, but these were not included for experiments in the
main text.)

• Evaluation train (60%): Data used to train the linear classifiers during evaluation.

• Test 1 (7.5%): Data used to measure performance of the linear classifiers. Performance on this dataset was presented
on the leaderboard during the competition.

• Test 2 7.5%): Final set of data used to measure performance of the linear classifiers, and for determining the competition
winners.

D. Evaluation

For all tasks, we evaluate representation learning performance using a linear evaluation protocol, by training a linear model
on top of the learned representation at each frame for classification and regression on a set of downstream tasks. These
downstream tasks are unseen during training of the representation learning model. We train separate linear models per task,
and because of the high class imbalance of some tasks, the classes are weighted inverse to class frequencies during training.

For training the linear models, we use three fixed random 80% of the evaluation train split to train three models. All
evaluations are performed on a fixed test set. For classification tasks, majority voting combines the predictions of the three
classifiers. For regression tasks, the predictions are averaged. Both merging schemes are done at the frame level. The
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evaluation metrics are F1 score for classification and Mean Squared Error for regression computed for each sequence, then
averaged over the sequences. Note that all sequences given an organism have the same number of frames. We use default
hyperparameters for the Ridge classifier and do not perform hyperparameter tuning. Notably, the evaluation framework
does not choose a particular feature normalization strategy, and any feature normalization should happen before input to the
framework.

F1 score. The F1 score is the harmonic mean of the Precision P and Recall R:

P =
TP

TP + FP
(6)

R =
TP

TP + FN
(7)

F1 =
2× P ×R

P +R
(8)

Where true positives (TP) is the number of frames that a model correctly labels as positive for a class, false positives (FP) is
the number of frames incorrectly labeled as positive for a class, and false negatives (FN) is the number of frames incorrectly
labeled as negative for a class.

For F1 score across tasks, we take an unweighted average across classification tasks in either the mouse or fly domain. For
our evaluation, the class with the highest predicted probability in each frame was used to compute F1 score, but the F1 score
will likely be higher with threshold tuning.

Mean Squared Error. For regression tasks, given n data samples, we use the predicted values ȳ and the real labels y to
compute:

MSE =
1

n

n∑
i=1

(yi − ȳi)
2 (9)

We normalize the label values for regression to between 0 and 1. In our dataset, the experiment day and time of day tasks
are regression tasks, while all other tasks are classification tasks.

E. Implementation Details/Hyperparameters

For studying self-supervised video learning we used adapted the SlowFast (Fan et al., 2020) implementations of SOTA
methods. We list hyperparameters for each methods below.

Config Value
optimizer AdamW (Loshchilov & Hutter, 2017b)
optimizer momentum β1, β2=0.9,0.95 (Chen et al., 2020a)
weight decay 0.05
learning rate 1.6e-4
learning rate schedule cosine decay (Loshchilov & Hutter)
warmup epochs (Goyal et al., 2017) 60
epochs 2000
augmentation hflip, crop [0.5, 1]
batch size 64
gradient clipping 0.02

Table 13. Training parameters for MAE (He et al., 2022).
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Config Value
optimizer AdamW (Loshchilov & Hutter, 2017b)
optimizer momentum β1, β2=0.9,0.999
weight decay 0.05
learning rate 0.0001
learning rate schedule cosine decay (Loshchilov & Hutter)
warmup epochs (Goyal et al., 2017) 10
epochs 800
augmentation hflip, crop [0.5, 1]
batch size 32
gradient clipping 0.02

Table 14. Training parameters for MaskFeat (Wei et al., 2022).

Config Value
optimizer SGD
optimizer momentum β1, β2=0.9,0.999
weight decay 1e-6
learning rate 1.2
learning rate schedule cosine decay (Loshchilov & Hutter)
warmup epochs (Goyal et al., 2017) 35
epochs 200
augmentation hflip, crop [0.5, 1]
batch size 32
gradient clipping 0.02

Table 15. Training parameters for ρBYOL (Feichtenhofer et al., 2021).

F. Additional Trajectory Method Results

We present additional results for trajectory based methods, from community-contributed solutions for the first phase of our
challenge. This dataset consists of 5336 clips of mouse triplets, alongside 968 clips of fly data.

F.1. Mouse Programmatically-Annotated Behaviors

In addition to the experimental condition labels outlined above, the 9 behaviors were programmatically annotated using
heuristics described below using the trajectory data. These programmatically-annotated behaviors were used to evaluate the
mouse trajectory methods. Note that multiple behavior labels may be positive on a given frame.

• Approach: Mice move from at least 5 cm apart to less than 1 cm apart at closest point, over a period of at least 10
seconds at a maximum speed of 2 cm/sec.

• Chase: Mice are moving above 15 cm/sec, with closest points less than 5 cm apart, and angular deviation between mice
is less than 30 degrees, for at least 80% of frames within at least one second. Merge bouts less than 0.5 seconds apart.

• Close: Closest points of mice are less than 3 cm apart. Merge bouts less than 2 seconds apart.

• Contact: Closest points of mice are less than 1 cm apart. Merge bouts less than 2 seconds apart.

• Huddle: Closest points of mice are less than 1 cm apart for at least 10 seconds, during which mice show less than 3 cm
displacement. Merge bouts less than 2 seconds apart.

• Oral-ear contact: Nose and ear of mice are less than 1.5 cm apart for at least 50% of frames within a window of 0.25
seconds or more. Must occur less than 5 seconds after an approach. Merge bouts less than 0.5 seconds apart.
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Mice Triplet Exp. Time of Strain Movement Contact Watching Lights
Day ↓ Day ↓ ↑ Group↑ Group↑ ↑ ↑

PCA .0942± .0000 .946± .0000 .516± .002 .005± .000 .169± .001 .066± .001 .546± .002
TVAE .0940± .0002 .944± .0001 .530± .001 .008± .000 .213± .001 .102± .002 .568± .005
T-Perceiver .0933± .0005 .932± .0005 .698± .014 .014± .001 .232± .005 .164± .005 .697± .006
T-GPT .0927± .0004 .938± .0001 .645± .004 .012± .000 .252± .003 .179± .005 .654± .004
T-PointNet .0928± .0001 .932± .0001 .660± .004 .036± .003 .256± .001 .156± .005 .672± .000
T-BERT .0926± .0004 .928± .0003 .786± .022 .013± .000 .266± .003 .172± .006 .688± .003

Fly Group Fly Stimulation, Stimulation, Line Female Manual -
Type ↑ Control ↑ Aggression ↑ Category ↑ vs. Male ↑ Behaviors ↑

PCA .282± .017 .466± .002 .484± .001 .553± .006 .990± .000 .230± .002 -
TVAE .199± .005 .500± .019 .450± .011 .341± .009 .821± .005 .222± .011 -
T-Perceiver .394± .018 .418± .039 .513± .013 .573± .013 .982± .002 .197± .018 -
T-GPT .363± .015 .515± .020 .500± .009 .557± .019 .873± .001 .246± .014 -

Table 16. MABe2022 Trajectory Benchmark Results. Task-averaged MSE and F1 score are from mean and standard deviation over
five runs. For mouse task groups, “Movement” consists of approach and chase behaviors, and “Contact” consists of close, contact,
huddle, oral-ear contact, oral-genital contact, and oral-oral contact behaviors. For fly task groups, “Fly type” corresponds to tasks 1 to
11, “Stimulation Control” is tasks 12 to 21, “Stimulation Aggression” is tasks 22 to 36, “Line Category” is tasks 37 to 43, and “Manual
Behaviors” is tasks 45 to 50 in Appendix Table 11. The best performing model is in bold.

• Oral-genital contact: Nose and tail base of mice are less than 1.5 cm apart for at least 50% of frames within a window
of 0.25 seconds or more. Must occur less than 5 seconds after an approach. Merge bouts less than 0.5 seconds apart.

• Oral-oral contact: Noses of mice are less than 1.5 cm apart for at least 50% of frames within a window of 0.25
seconds or more. Must occur less than 5 seconds after an approach. Merge bouts less than 0.5 seconds apart.

• Watching: Mice are more than 5 cm apart but less than 20 cm apart, and gaze offset of one mouse is less than 15
degrees from body of other mouse, for a minimum duration of 3 seconds. Merge bouts less than 0.5 seconds apart.

F.2. Results

First, we perform a frame-wise PCA as a simple baseline. Principal components were computed from the centered and
normalized pose of each mouse, or from the centered pose of each fly and its two nearest neighbors, giving a 60-dim
representation for mouse and 253-dim representation for fly.

Taking into account all task groups across both datasets, the current best performing models are generally based on
transformer architectures (Table 16). Interestingly, T-PointNet, which models trajectory features using point clouds, is
competitive on the mouse triplet data. Further work to extend this model to account for more agents could improve its fly
group performance. For many mouse and fly task groups, PCA performance was very close to the Base model. However,
the top performing models show a significant improvement in performance, demonstrating that we can learn representations
that improve behavior analysis performance, even without knowledge of the downstream evaluation tasks.

In general, task categories consisting of annotated behaviors are the most challenging for existing models, likely due to
the relatively rare positive behavior annotations. These task labels are at the frame-level, where there is a need to capture
local temporal information, compared to sequence-level tasks such as “Strain” and “Fly Type” which does not vary over a
clip. Representations that can further improve data efficiency of downstream classifiers or better capture local temporal
information could help improve the performance of these task groups.
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