
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WHEN CAN YOU GET AWAY WITH LOW MEMORY
ADAM?

Anonymous authors
Paper under double-blind review

ABSTRACT

Adam is the go-to optimizer for training modern machine learning models, but
it requires additional memory to maintain the moving averages of the gradients
and their squares. While various low-memory optimizers have been proposed that
sometimes match Adam’s performance, their lack of reliability has left Adam as
the default choice. In this work, we apply a simple layer-wise Signal-to-Noise
Ratio (SNR) analysis to quantify when second-moment tensors can be effectively
replaced by their means across different dimensions. Our SNR analysis reveals
how architecture, training hyperparameters, and dataset properties impact second
moment compressibility, naturally leading to SlimAdam, a memory-efficient Adam
variant. SlimAdam compresses second moments along dimensions with high SNR
when feasible, and leaves when compression would be detrimental. Through
experiments across a diverse set of training tasks, we show that SlimAdam matches
Adam’s performance and stability while saving up to 99% of total second moments
(∼ 50% total memory).

1 INTRODUCTION

Adam with weight decay (Loshchilov & Hutter, 2019) has become the standard optimizer choice
in modern machine learning, consistently outperforming non-adaptive optimizers such as Stochastic
Gradient Descent with momentum (SGD-M). Its success is typically attributed to adapting to the ge-
ometry of the landscape by estimating the “effective learning rate” for each parameter using a moving
average of the squared gradients. Additionally, this adaptive mechanism makes the optimal learning
rate less sensitive to changes in the training recipe. While these factors conspire to make Adam the go-
to optimizer for training language models, it requires additional memory beyond SGD-M. It requires
storing moving averages of both first and second moments, doubling the optimizer’s memory foot-
print. This memory cost becomes particularly crucial in resource-limited settings, where the memory
allocated to the optimizer states could otherwise be used for the model parameters or activations.

To avoid the extra memory footprint of Adam, various low-memory optimizers have been pro-
posed (Shazeer & Stern, 2018; Ginsburg et al., 2020; Anil et al., 2019; Modoranu et al., 2024). These
optimizers are a free lunch in some settings – slashing memory usage with no detectable loss in perfor-
mance (Zhao et al., 2025; Zhang et al., 2025) – but they compromise performance in others (Luo et al.,
2023). While the potential benefits of low-memory optimizers are clear, a lack of understanding as to
when they will perform well is a major barrier to widespread adoption, as the expense of training mod-
ern generative models makes engineers unwilling to take risks such as modifying core components in
the training recipe. We argue that a practical low-memory alternative to Adam should exhibit the fol-
lowing properties. First and foremost, it must maintain optimization efficacy, showing no degradation
in performance. Additionally, it should preserve Adam’s robustness to minor changes in the training
hyperparameters. Finally, the low-memory optimizer should immediately work with the same hyperpa-
rameter choices as Adam so that users can swap in a low-memory optimizer without major re-tuning.

Figure 1(a) reveals a natural dichotomy in the space of low-memory optimizers: (1) those that yield
learning rate sensitivity curves similar to Adam’s, and (2) those that deviate substantially, exhibiting
major shifts in optimal learning rates and expected training dynamics. The first group comprises
Adam-mini and our proposed SlimAdam, which are both constructed by replacing individual second
moments with their means along specific dimensions, whereas the latter group comprises Lion,
SM3, and Adafactor, which are all significantly different algorithms. In this work, we focus on the
first category of low-memory optimizers, as they can serve as a drop-in replacement for Adam. Our
goal here is to develop a principled framework to help users understand and quantify when these

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a)

10−4 10−3 10−2 10−1

Learning rate

3.0

3.2

3.4

T
es

t
lo

ss

GPT-small FineWeb-Edu

Adam

SlimAdam

Adam-mini v1

Adam-mini v2

Lion

SM3

(b)

0 2k 4k 6k 8k 10k
step

3

4

5

6

7

T
ra

in
lo

ss

GPT-medium FineWeb-Edu η = 1e-04

Adam

Adalayer+LN+TL

SlimAdam

Adam-mini v1

Adam-mini v2

(c)

0 2k 4k 6k 8k 10k
step

3

4

5

6

7

T
ra

in
lo

ss

GPT-medium FineWeb-Edu η = 6e-03

Adam

Adalayer+LN+TL

SlimAdam

Adam-mini v1

Adam-mini v2

Figure 1: Comparison of common low-memory optimizers on GPT pre-training task using Fineweb-
Edu dataset. (a) SlimAdam matches Adam’s performance with a nearly identical U-shaped loss curve.
(b) All low-memory Adam variants exhibit nearly identical training curves at small learning rates. (c)
At large learning rates, SlimAdam exhibits nearly the same training dynamics as Adam, while other
low-memory Adam variants experience training instabilities.

low-memory variants of Adam are appropriate for their problem, thereby improving the reliability
of low-memory optimizers and providing deeper insights into Adam’s dynamics.

Contributions: We propose and study a simple measure of the compressibility of Adam’s second-
moment memory. By examining the Signal-to-Noise Ratio (SNR) of the second moment tensor in
each layer, we quantify when it is safe to replace individual second moments with their means across
specific dimensions (such as fanin or fanout). Our SNR analysis reveals that optimal compression
strategies vary by layer type and strongly depend on the architecture, training hyperparameters, and
dataset properties. For example, key and query second moments of Transformers prefer compression
along the fanin dimension, as behaviors in the fanout dimensions are inconsistent across the multiple
heads stacked in that dimension. These compressibility trends are systematic within a specific training
domain, but do vary across different domains, reflecting differences in the optimization landscape in-
duced by the model, data, and training objective. For instance, the first MLP layer prefers compression
along the fanout dimension in GPT pre-training, but along the fanin in ViT image classification.

To demonstrate the utility of our analysis, we implement SlimAdam, a memory-efficient variant of
Adam that utilizes SNR to determine the most efficient dimension for each layer, or selectively leaves
layers uncompressed when needed to maintain stability. Since compression trends remain consistent
within each task, SlimAdam requires configuration once per task, with settings that generalize
across scale and dataset variations. By taking an adaptive approach to compression, SlimAdam
preserves desirable properties of Adam while significantly reducing memory usage. For instance,
SlimAdam saves 99% of second moments (∼ 50% total memory) in GPT pre-training, scaling up
to 1B parameters. Further, we show that SlimAdam matches Adam’s performance and robustness
to the choice of learning rate.

From a fundamental perspective, our work addresses a critical theoretical question: Does Adam
effectively utilize its full second moments during training? Through a careful analysis, we show that
many layers can be compressed and pinpoint key compression bottlenecks, such as large vocabulary
sizes, large learning rates, and suboptimal initializations. Our investigation also reveals an intriguing
observation: the second moment compressibility drastically reduces at large learning rates. For
instance, in GPT pre-training, SNR analysis suggests that only∼ 30% of Adam’s second moments are
safe to compress at the optimal learning rate. This finding, combined with the success of low memory
optimizers, suggests that while only a small fraction of second moments are required to achieve
optimal performance, Adam ends up utilizing a significantly large proportion at large learning rates.

Related Work: The superiority of Adam is primarily observed in language modeling, with SGD
performing comparably to Adam in image classification settings (Zhang et al., 2020). This disparity
has motivated several investigations into the unique challenges of language modeling landscapes,
with studies identifying several explanations. Zhang et al. (2020); Ahn et al. (2024) argue that the
heavy-tailed distribution of the stochastic gradient noise in language modeling cases causes SGD
to perform worse than Adam. Pan & Li (2022) attributed Adam’s faster convergence to “directional
sharpness,” which is the curvature along the update direction. Adding to these findings, Zhang et al.
(2024) illustrated that the Hessian spectrum varies heavily across parameter blocks, attributing SGD’s
worse performance to using a single learning rate for all blocks. Further insights come from Kunstner
et al. (2024), who found that, in settings with heavy-tailed class imbalance, SGD struggles to decrease
loss in infrequent classes, while adaptive optimizers are less sensitive to this imbalance. Zhao et al.
(2025) argued that Adam’s advantage over SGD in language modeling primarily stems from using
per-parameter adaptive learning rates in two specific components—LayerNorm and the final layer.

Several approaches have been proposed to reduce Adam’s memory footprint in the past few years.
Adafactor (Shazeer & Stern, 2018) approximates the second-moment matrix of a layer using a

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

0 2k 4k 6k 8k 10k
step

10−3

10−1

101

S
N

R
K

(V
)

Tok.Embd, shape=(50304, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

10−1

100

S
N

R
K

(V
)

Attn.Key, layer=6, shape=(768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

10−1

100

101

S
N

R
K

(V
)

MLP.Down, layer=5, shape=(768, 3072), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

100

101

S
N

R
K

(V
)

Final.LN, shape=(768,), η = 3e-04

K

(0,)

Figure 2: SNR trajectories of selected second-moment blocks of a GPT-small model trained on
OpenWebText. Compression dimensions are denoted by: K = 0 for fanout, K = 1 for fanin, and
K = (0, 1) for both dimensions.

moving average of the row and column sums of the squared gradients. SM3 (Anil et al., 2019)
groups parameters by tensor dimensions and estimates second moments as the minimum value across
relevant group averages. Lion (Chen et al., 2023) is an algorithmically discovered optimizer that only
tracks momentum and uses a sign operation to estimate the update. MicroAdam (Modoranu et al.,
2024) combines gradient sparsification, quantization, and error feedback to compress optimizer states.
Adam-mini (Zhang et al., 2025) assigns adaptive learning rates to block partitions based on the
Hessian spectrum at initialization. In Appendix B, we further discuss closely related works in detail.

2 NOTATIONS AND PRELIMINARIES

Consider a loss function L(θ) parameterized by parameters θ. For a weight matrix W ∈ Rfanout×fanin ,
let Gt := ∇WL(θt) denote its gradient at step t. Adam updates these weights using learning rate ηt
and the moving averages of the first two moments of gradients, denoted by Mt and Vt, with coefficients
β1 and β2, respectively. The equations governing the updates are: Mt+1 = β1Mt + (1 − β1)Gt,

Vt+1 = β2Vt + (1 − β2)G
2
t , and Wt+1 = Wt − ηtM̂t+1/

√
V̂t+1+ϵ. Here, M̂t = Mt/1−βt

1 and
V̂t = Vt/1−βt

2 are the bias-corrected moments and ϵ is a small scalar used for numerical stability. For
our analysis, we generalize Adam to a family of low-memory variants parameterized by layer-specific
sharing dimensions. For each layer, we compute an estimate of the second moments by averaging
squared gradients across specified dimensions K (fanin, fanout, or both). The difference compared to
Adam lies in the second moment update:

Vt+1 = β2Vt + (1− β2)EK

[
G2

t

]
, (1)

where EK [·] denotes an average over dimensions K. Since Adam’s second moment acts as a per-
parameter “effective” learning rate, averaging these moments along dimensions K is equivalent to
sharing a common learning rate. The above optimizer coincides with Adam when K = ∅. Another
notable limiting case is AdaLayer (Zhao et al., 2025), which maintains one second moment per
parameter block. In Section 5, we introduce SlimAdam, a special member of the low memory Adam
family, where the averaging dimensions K are determined by our SNR analysis.

Throughout this work, we partition second moments using the default parameter partitioning scheme
that groups parameters at the granularity of layer components (weights, biases, and attention compo-
nents), while accounting for special dimensions such as attention heads when interpreting the results.
We use K = 0 for fanout, K = 1 for fanin and K = (0, 1) to denote sharing along both dimensions.

3 SNR ANALYSIS OF ADAM’S SECOND MOMENTS

This section analyzes how effectively Adam’s per-parameter second moments can be replaced by their
mean along different dimensions (such as fanin, fanout, or both) during training. The feasibility of such
a compression depends on how tightly the entries are clustered around their mean value. If entries
along a dimension exhibit low variance relative to their mean, they can be effectively represented by
a single value. To quantify this concentration of values, we analyze the Signal-to-Noise Ratio (SNR)
of the second moments during training. For a second moment matrix V ∈ Rfanout×fanin and specified
compression dimensions K, SNRK is defined as:

SNRK(Vt) = EK′

[
(EK [Vt])

2

VarK [Vt]

]
(2)

where EK [·] and VarK [·] compute the mean and variance along the specified dimensions K, while
the outer expectation EK′ [·] averages the ratio over the remaining dimensions to obtain a scalar.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2 4 6 8 10 12
Layer index

0

1

2

3

4

E t
[S

N
R
K

(V
t)

]

Attn.Key, shape = (768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

2

4

6

E t
[S

N
R
K

(V
t)

]

Attn.Query, shape = (768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

1

2

3

4

E t
[S

N
R
K

(V
t)

]

Attn.Value, shape = (768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0.0

2.5

5.0

7.5

10.0

12.5

E t
[S

N
R
K

(V
t)

]

Attn.Proj, shape = (768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

1

2

3

4

5

E t
[S

N
R
K

(V
t)

]

MLP.Up, shape = (3072, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0.0

2.5

5.0

7.5

10.0

12.5

E t
[S

N
R
K

(V
t)

]

MLP.Down, shape = (768, 3072), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0.4

0.6

0.8

1.0

E t
[S

N
R
K

(V
t)

]

Attn.LN, shape = (768,), η = 3e-04

K

(0,)

2 4 6 8 10 12
Layer index

1.0

1.5

2.0

E t
[S

N
R
K

(V
t)

]

MLP.LN, shape = (768,), η = 3e-04

K

(0,)

Figure 3: Depth dependence of average SNR values for different second-moment blocks of the
GPT-small model trained on OpenWebText. The experimental setup is the same as in Figure 2.

SNR directly quantifies the quality of the compression —when the replacing V with its mean along
axis K, the relative compression error is given by (see Appendix C.1 for details):

EK [∥V − EK [V ]∥2]
EK [∥V ∥2] =

1

1 + SNRK(V )
. (3)

Hence, high SNR indicates the mean provides a good approximation with relative error approaching
zero, while low SNR suggests significant information is lost during compression. Futhermore, in
Appendix C.2, we show that SNR analysis can be viewed as examining Adam’s preconditioner
through its condition number. As Adam adapts to the local geometry of the loss landscape through its
preconditioner, SNR values also serve as a proxy for optimization complexity during training, with
lower SNR suggesting higher complexity and a need for per-parameter effective learning rates.

Compressibility: Throughout this work, we say that second moments are compressible along
dimensions K when SNRK ≳ α, where α ≈ 1 is a given threshold1. When SNRK ≳ 1, the
signal dominates the noise, indicating entries can be effectively described by their mean, whereas
SNRK ≲ 1 suggests that individual entries carry significant information that would be lost when
the entries are replaced by their mean. In Section 5, we find that α = 1 reliably yields low memory
Adam, without any manual tuning.

3.1 COMPRESSIBILITY IN DIVERSE TRAINING TASKS

We analyze the evolution of SNR across diverse training tasks (pre-training, fine-tuning, image classi-
fication) to uncover fundamental SNR trends. For each setup, experimental details and supplementary
results are provided in Appendix D and Appendix F, respectively. We introduce our methodology
by examining a representative example. Figure 2 (left) shows SNR trajectories of the second-moment
matrix for the Token Embedding layer of a GPT-small model trained on a language pre-training task.
These SNR trajectories typically exhibit an early transient phase where their value quickly grows,
followed by a late time phase where these values may consistently increase, decrease, or stabilize. We
are interested in cases where it is feasible to replace the second moments by their mean throughout
training. To this end, we define average SNR as: Eτ [SNRK(Vτ )] =

1
T

∑T
τ SNRK(Vτ ), where τ

indexes the training steps at which SNR is measured and T is the total number of measurements.
The averaged SNR quantifies compression feasibility along dimensions K throughout training.

3.1.1 LANGUAGE PRE-TRAINING

We analyze GPT-style Transformers (Radford et al., 2019) trained on two language datasets: Open-
WebText (Gokaslan et al., 2019) and FineWeb-Edu (Penedo et al., 2024). Figure 2 shows SNR trajec-
tories as a function of the optimization step for selected second-moment blocks of a GPT-small model
trained on OpenWebText. Figure 3 presents the depth dependence of the averaged SNR values of
different layer types within a standard transformer block. The lack of consistency as to which compres-
sion dimension K exhibits higher SNR across different layer types suggests that optimal compression
strategies must be customized for each parameter category rather than applying a uniform approach
throughout the model. Below, we describe these trends in detail and discuss their implications.

1For random Gaussian gradients, SNRK > 1/2 indicates compression feasibility (see Appendix C.3).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2 4 6 8 10 12 14 16
Layer index

0.0

0.2

0.4

0.6

0.8

1.0

E t
[S

N
R
K

(V
t)

]

Attn.Query, shape = (2048, 2048), η = 3e-05

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12 14 16
Layer index

0

5

10

15

E t
[S

N
R
K

(V
t)

]

Attn.Proj, shape = (2048, 2048), η = 3e-05

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12 14 16
Layer index

0.0

0.5

1.0

1.5

2.0

E t
[S

N
R
K

(V
t)

]

MLP.Up, shape = (8192, 2048), η = 3e-05

K

(0,)

(1,)

(0, 1)

0 1k 2k 3k
step

10−4

10−2

100

S
N

R
K

(V
)

Tok.Embd, shape=(128256, 2048), η = 3e-05

K

(0,)

(1,)

(0, 1)

Figure 4: SNR trends for selected layers of pre-trained Llama 3.2 1B fine-tuned on Alpaca dataset.
(for full results, see Appendix F.2)

Token Embedding and Language Modeling Head (LM Head2) second moments exhibit lower
compressibility (low SNR) along the token dimension (vocabulary dimension) while favoring
compression (high SNR) along the embedding dimension. This pattern suggests that the subset of
the parameter matrix corresponding to each token in the vocabulary evolves at its own pace during
training, thereby requiring its own learning rate. These findings align with recent studies (Zhang
et al., 2025; Zhao et al., 2025) that advise against compressing the token embedding and LM Head
matrices in language modeling. Our SNR analysis extends this understanding by revealing that this
lower compressibility is specific only to the token dimension and not the entire matrix.

Attention key and query second moments consistently show lower compressibility along the fanout
dimension, where multiple heads are stacked, suggesting that each attention head requires its own
effective learning rate. (Zhang et al., 2025) reached similar conclusions through an independent
Hessian-based analysis, corroborating our findings. On the other hand, attention value and projection
second show an opposite trend, with higher compressibility along the fanout dimension as compared
to the fanin dimension. For projection layers, lower compressibility along the fanin dimension (where
heads are stacked) is intuitive, as the parameters corresponding to each attention head are intended to
evolve independently during training. However, for the same reason, the higher compressibility of
second moments in the value layer along the head-stacked dimension is unexpected. Intuitions aside,
from an absolute magnitude perspective, values and projection layers show higher averaged SNR
values along the preferred dimension than keys and queries, indicating greater overall compressibility.

Interestingly, by a similar magnitude argument, MLP second moments exhibit greater compressibility
than attention keys and queries. While in general MLP second moments exhibit higher SNR values
along the output dimension (fanout), for some layer indices the second moment can also exhibit higher
compressibility along the input dimension (fanin) or even both dimensions simultaneously.

LayerNorm components show different SNR trends depending on their position in the network. The
SNR values of the attention LayerNorms and final LayerNorm typically exhibit a sharp decline after
an initial increase, suggesting incompressibility. In contrast, MLP LayerNorms maintain consistently
high SNR values throughout training, indicating their second moments can be effectively compressed.
We validate the robustness of these results in Appendix F.1 by observing similar trends in a larger
model and on a different dataset (FineWeb-edu).

3.1.2 LANGUAGE FINE-TUNING

Next, we examine second-moment compressibility during fine-tuning with Llama-3.2 (Team, 2024)
on the Alpaca dataset (Taori et al., 2023). Figure 4 shows the SNR trends of selected layers,
which reveal layer-wise patterns with subtle distinctions from GPT pre-training. We find lower
SNR values across all layers during fine-tuning, suggesting lower compressibility in general in
this experimental setting. This is particularly pronounced in the attention layer, where key and
query second moments exhibit SNR values well below 1.0. While attention value and projection
second moments maintain an SNR value above 1.0 along fanout dimension, these values are notably
smaller than those observed during GPT pre-training. MLP layers display variable SNR patterns.
The first two MLP layers (MLP.Up and MLP.Gate) show sporadic compressibility (SNR ≳ 1) at
certain depths, but without consistently favoring either input or output dimension compression. In
comparison, the output MLP layer (MLP.Down) consistently maintains a high SNR value (SNR ≳ 1)
across depths, exhibiting higher compressibility along the fanout dimension. Attention and MLP
RMSNorms show consistently low SNR values across layers, while the final RMSNorm’s SNR
gradually increases during training, eventually exceeding 1.0. The token embeddings show reduced
SNR values even along the embedding dimension, possibly due to a larger vocabulary relative to
the embedding dimension for the Llama model than the GPT-small model.

2We use weight tying, meaning that the Token Embedding and LM Head share parameters and moments.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a)

2 4 6 8 10 12 14 16
Layer index

2

4

6

8

10

12

E t
[S

N
R
K

(V
t)

]

Conv, shape = (64, 64, 3, 3), η = 1e-03

K

(0,)

(1,)

(0, 1)

(b)

0 5k 10k 15k 20k
step

100

101

S
N

R
K

(V
)

FC.weight, shape=(100, 512), η = 1e-03

K

(0,)

(1,)

(0, 1)

(c)

2 4 6 8 10 12
Layer index

0

2

4

6

E t
[S

N
R
K

(V
t)

]

Attn.Key, shape = (768, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

(d)

2 4 6 8 10 12
Layer index

0

5

10

15

E t
[S

N
R
K

(V
t)

]

MLP.Up, shape = (3072, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

Figure 5: SNR trends of selected layers of (a, b) ResNet-18 and (c, d) 12-layer ViT trained on
CIFAR-100. For detailed results, see Appendix F.3.

3.1.3 RESNET IMAGE CLASSIFICATION

Compared to language pre-training and fine-tuning settings, the second moments of ResNets trained
on CIFAR-100 and CIFAR-10 (Figure 5(a, b) and Appendix F.3) exhibit high SNR values. These
SNR values suggest high second-moment compressibility across layers. In particular, the intermediate
convolutional layers show exceptionally high SNR values across both fanin and fanout dimensions, with
an increasing trend as a function of depth. By comparison, the first and last layers behave differently.
The first convolutional layer resists compression along the fanout dimension (shown in Figure 24,
Appendix F.3), while the final layer exhibits SNR values close to 1.0 that decreases late in training.

3.1.4 VIT IMAGE CLASSIFICATION

Next, we analyze Vision Transformers (ViTs) (Dosovitskiy et al., 2021), with a GPT-style Transformer
adapted for image classification. Figure 5(c, d) shows that ViTs trained on CIFAR-100 exhibit SNR
trends combining characteristics from both ResNet and GPT pre-training. The attention moments
maintain GPT-like SNR trends but with higher SNR values. The keys and query second moments
favor fanin compression, while values and projections prefer fanout dimension. These attention compo-
nents exhibit higher SNR values than GPT pre-training, with the averaged SNR increasing with depth
for most layers. Unlike GPT pre-training, the first MLP layer (MLP.Up) favors fanin compression
instead of fanout. This suggests that this layer type’s compression behavior is training task-dependent.
By comparison, the second layer (MLP.Down) maintains GPT-like fanout preference and exhibits
high SNR values along both dimensions. Similar to ResNet’s first convolution layer, ViT’s patch
embedding layer favors fanin compression. Meanwhile, the classification layer maintains SNR values
close to 1.0 without consistent preference toward a particular compression dimension. Notably, all
LayerNorm components display surprisingly high SNR values, suggesting high compressibility.

3.2 COMPRESSIBILITY TRENDS ACROSS TRAINING TASKS

SNR analysis revealed several consistent compressibility trends and some task-specific behaviors.
Table 1 summarizes the preferred compressibility dimension by layer type, which we discuss below.

Attention: Key and query second moments consistently exhibit higher compressibility along
fanin dimension while showing lower compressibility along fanout (head-stacked dimension). By
comparison, values and projection second moments display an opposite trend, exhibiting higher
compressibility along fanout dimension. Moreover, value and projection layers generally exhibit
higher SNR values than key and query layers, suggesting higher overall compressibility. These trends
persist across training tasks (GPT pre-training, Llama fine-tuning, and ViT image classification),
suggesting these trends are intrinsic to the attention mechanism. However, the compressibility
strength varies across training tasks, with ViT showing overall higher SNR values than GPT
pre-training and fine-tuning exhibiting notably lower SNR values.

Table 1: Summary of preferred compression dimensions by layer type. Compression dimensions
marked with ⋆ show inconsistent trends across training tasks. Compared to prior work, we report
different trends for attention value, projection, and normalization layers (see Appendix B for details).

Layer Type K∗ Layer Type K∗

Attention Special Layers
Key & Query fanin Token Embedding fanout
Value & Projection fanout Language Modeling Head fanin

MLP Layers Vision First Layer fanin
First layer (Up) fan⋆

out Vision Classification Head fan⋆
in

Middle layer (Gate) fan⋆
out Normalization Layers –

Last layer (Down) fanout

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a)

0 10k 20k 30k 40k 50k
step

10−3

10−2

10−1

100

S
N

R
K

(V
)

Tok.Embd, K = (1, ), η =3e-03

nvocab

1024

2048

4096

8192

16384

32768

49152

65536

(b)

0 10k 20k 30k 40k 50k
step

10−3

10−2

10−1

100

S
N

R
K

(V
)

LM.Head, K = (0, ), η =3e-03

nvocab

1024

2048

4096

8192

16384

32768

49152

65536

(c)

210 211 212 213 214 215 216

nvocab

0.00

0.02

0.04

0.06

∆
L

A
d

am

Two Layer Linear Model, WikiText-103

Kembd, Khead

(), ()

(0, 1), (0, 1)

(0, ), (0, )

(0, ), (1, )

(1, ), (0, )

(1, ), (1, )

Figure 6: (a) SNR trajectories of the linear head of the simplified two-layer model with varying
vocabulary sizes. For details, see Appendix I. (b) Test loss gap ∆LAdam = L(Kembd,Khead) − LAdam of
the linear model trained with Adam with shared second moments across dimensions (Kembd,Khead).

MLPs: Our GPT and ViT models share identical MLP blocks with two layers (MLP.Up and
MLP.Down). The first layer shows task-dependent trends, with higher fanout compressibility in
the language pre-training and fanin in ViT image classification. The second layer (MLP.Down),
consistently exhibits higher fanout compressibility across both settings. The pre-trained Llama
model uses three layers in the MLP block (Up, Down, Gate). The first two layers (Up, Gate)
show inconsistent compressibility trends, whereas the output layer (Down) exhibits higher fanout
compressibility similar to the GPT setting.

First and Last layer: In language models, Token Embedding and LM Head exhibit lower SNR
values along the token dimension, while maintaining higher values along the embedding dimension.
In image classification, the first layers exhibit higher fanin compressibility, while classification heads
show inconsistent compression trends but maintain overall higher SNR values. Overall, image
classification models exhibit substantially higher compressibility than language models.

Normalization layers: These layers show domain-specific compressibility trends. Language models
exhibit lower LayerNorm compressibility, while both BatchNorm and LayerNorm in vision models
maintain higher compressibility throughout training. Due to their high variability and minimal
contribution to the overall memory usage, we advise against compressing them.

4 FACTORS INFLUENCING COMPRESSIBILITY

Our earlier analysis revealed various consistent SNR trends across training tasks. Here, we conduct
experiments to analyze the effect of initialization, dataset properties, and learning rate on these trends.

4.1 INCOMPRESSIBILITY UNDER HEAVY-TAILED DISTRIBUTIONS

In the previous section, we observed that language models exhibit very low SNR along the token
dimensions. This suggests that individual tokens require their own learning rates, as their gradients
evolve at different paces. To better understand this phenomenon, we investigate how token frequency
distribution influences compressibility. We examine a simplified two-layer model, solely consisting
of a token embedding matrix and a linear head. We train the model on the WikiText-103 dataset
(Merity et al., 2017), tokenized using BPE tokenizer (Gage, 1994) with varying vocabulary sizes.
By progressively reducing the vocabulary size, we systematically remove rare tokens to control the
tail of the token distribution. Figure 6(a, b) shows that SNR values along the token dimension of
both layers decrease substantially as vocabulary size increases, suggesting lower compressibility.

We then analyze how large vocabulary sizes affect performance by training the model using Adam
with shared second moments (Equation (1)) along dimensions (Kembd,Khead). Figure 6(c) shows the
loss gap between the above optimizer and standard Adam, defined as ∆LAdam = L(Kembd,Khead)−LAdam.
For large vocabularies, compression is only effective along embedding dimensions, while token-
dimension compression degrades performance. In contrast, small vocabularies permit compression
along both dimensions. These findings extend the work of Kunstner et al. (2024), which showed that
Adam outperforms SGD on language tasks by making faster progress on rare tokens. Our analysis
suggests that the apparent advantage of Adam in language modeling might stem in large part from
allowing individual second moments to each token in the vocabulary.

4.2 LARGE LEARNING RATES REDUCE COMPRESSIBILITY

In this section, we analyze how increasing the learning rate affects averaged SNR values and thereby
compression feasibility. Figure 7(a, b) shows that increasing the learning rate consistently reduces
SNR values across layers (see Appendix G.1 for full results). For clarity, we focus on the preferred
SNR compression dimension for each layer type. This decline in averaged SNR values suggests
that higher learning rates cause training to explore regions of parameter space where the gradient
distribution contains more outliers, thereby reducing SNR values. In Appendix G.2, we show that

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a)

10−4 10−3 10−2 10−1

Learning Rate

1

2

3

E t
[S

N
R
K
∗ (
V
t)

]

GPT-small OpenWebText Attn.Key

(b)

10−4 10−3 10−2 10−1

Learning Rate

0

2

4

6

E t
[S

N
R
K
∗ (
V
t)

]

GPT-small OpenWebText Tok.Embd

(c)

10−4 10−3 10−2

Learning Rate

2

4

6

8

10

E t
[S

N
R
K

(V
t)

]

GPT-small FineWeb-Edu Attn.Proj

init

Mitchell

PyTorch
(d)

10−4 10−3 10−2

Learning Rate

0

2

4

6

8

E t
[S

N
R
K

(V
t)

]

GPT-small FineWeb-Edu MLP.Down

init

Mitchell

PyTorch

Figure 7: (a, b) The effect of learning rate on the averaged SNR values of selected layer types of a
GPT-small model trained on OpenWebText. For each layer type, we select the compression dimension
K∗ with the highest SNR. The shaded region around the mean trend shows the variation across depth.
(c, d) The effect of initialization on SNR trends of GPT-small trained on FineWeb-Edu.

average SNR trends do not vary extensively with batch size and learning rate remaining the primary
factor reducing compressibility. Based on the effect of increasing the learning rate on SNR values,
we classify layer types into two categories:

1. Layers that have lower compressibility (SNR ≲ 1) at the optimal learning rate: Token Embed-
ding/LM Head, LayerNorm, Attention keys, queries, first MLP layer (MLP.Up).

2. Layers that exhibit higher compressibility (SNR ≳ 1) at the optimal learning rate: Attention values
and projections and the second MLP layer (MLP.Down).

Pre-trained Llama and ViT models show similar results, while ResNets remain compressible even at
very high learning rates. In Section 5, we quantify these architectural differences in compressibility.

4.3 EFFECT OF INITIALIZATION ON COMPRESSIBILITY

Next, we examine the effect of initialization schemes on SNR trends. We compare Mitchell initializa-
tion (Groeneveld et al., 2024) used in Section 3 against PyTorch’s default initialization scheme. A key
feature of Mitchell initialization is that it scales the variance of layers that add to the residual stream
(Attn.Proj and MLP.Down) with a factor of 1/depth. Figure 7(c, d) and Figure 30 in Appendix H
show that Mitchell initialization leads to higher SNR values compared to the default PyTorch initial-
ization across layers of the GPT-small model. In particular, Attn.Proj and MLP.Down layers show
significantly higher SNR values. These exceptionally high SNR values provide empirical support for
the 1/depth scaling in Mitchell initialization. As Adam’s second moments adapt to the landscape
geometry, these findings indicate that SNR analysis can serve as a proxy for evaluating initialization
schemes by determining ones with higher SNR values.

5 BUILDING A LOW-MEMORY ADAM VARIANT

Leveraging insights from our comprehensive analysis of SNR trends presented in previous sections,
we now introduce SlimAdam — a memory-efficient Adam variant that preserves Adam’s performance
and stability through SNR-guided compression. In a nutshell, SlimAdam compresses matrix-like
second moments along the dimension with the highest SNR when it is above a threshold and leaves
vector-like second moments uncompressed due to their high variability and minimal effect on the
overall memory. Our implementation consists of three steps (see Figure 8 for an overview):

Step 1: First, we collect layer-wise SNR statistics using a small proxy model with a 10× smaller
learning rate than optimal.

Step 2: Next, we identify the compression dimension K∗ for each layer type with the highest SNR,
i.e., K∗ = argmaxK Eτ [SNRK(V (l))]. We compress a layer only if Eτ [SNRK∗(V (l))] is
above a given cutoff. Otherwise, no compression is applied and Slimadam reverts to full
Adam for this layer.

Step 3: Finally, we train the target model using Adam with shared second moments (Equation (1))
along these compression dimensions K∗ determined in Step 2.

For new training tasks, we recommend deriving compression rules, whereas for well studied setups,
such as GPT pre-training, our prec-computed rules in Table 1 can be directly used. The full algorithm
is detailed in Appendix E.1.

The Superior Stability of SlimAdam: Figure 1(b, c) shows that SlimAdam exhibits more stable
training dynamics at large learning rates compared, unlike other low-memory Adam variants. By
comparison, at small learning rates, all low-memory Adam variants perform equally well. While these
alternatives show large training instabilities at Adam’s optimal learning rate, SlimAdam maintains
nearly identical training dynamics as Adam. This difference in stability is expected, as for Adam

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 8: Workflow for building low-memory optimizers using SNR-guided compression.

variants, the pre-conditioner P−1 = 1/
√
V directly affects the local instability threshold (Cohen et al.,

2022; Kalra & Barkeshli, 2024), and compressing the “correct” dimensions as guided by our SNR
analysis is crucial for maintaining both stability and performance at large learning rates.

Efficient Analysis with Small Proxy Models: We find that depth-averaged SNR
1

depth

∑depth
l=1 Eτ [SNRK(V (l))] yields consistent compression dimensions across model sizes.

For example, a 4-layer GPT model with embedding dimension nembd = 256 yields the same optimal
compression dimensions as a 24-layer model with nembd = 1024, matching those in Table 1. This
consistency allows using a smaller proxy model to identify compression dimensions for larger target
models. Figure 32 in Appendix J verifies that SlimAdam with depth-averaged SNR derived rules
yield the same performance in GPT pre-training.

The Importance of Computing SNR at Small Learning Rates: SNR-predicted compressibility
primarily depends on the learning rate used to train the proxy model and the SNR cutoff, with distinct
patterns across architectures (top panel, Figure 9). A priori, one might assume that performing the
SNR analysis at the optimal learning rate is also optimal for determining compression rules. However,
surprisingly, for Transformer-based models (GPT, Llama, and ViT), we find high compressibility of∼
99% (SNR cutoff of 1.0) if analyzed at relatively small learning rates but that these savings reduce to∼
30% at large learning rates. As shown in Figure 9 (bottom panel), for GPT, ViT, and ResNets, deriving
compression rules at 10× lower learning rates than optimal can enable SlimAdam to achieve Adam-
level performance and stability while saving ∼ 99% second moments (∼ 50% total memory). In
Figure 14, we show that SlimAdam continoues to match Adam’s performance and stability at 1B scale.

6 DISCUSSION

Our computationally efficient SNR analysis independently confirms and extends several findings
from prior work while overcoming their limitations. Zhang et al. (2025) used Hessian-based analysis
of small models to construct a low-memory optimizer and then applied these rules to larger models,
assuming transferability. A primary advantage of our approach is that we can directly analyze
models of any scale without requiring expensive Hessian computations. Similarly, Zhao et al.
(2025)’s extensive ablation studies showed that Adam’s advantage over SGD in language modeling
primarily stems from maintaining per-parameter second moments for two components: LM Head
and LayerNorm. Our SNR analysis naturally uncovers these same trends and shows that for LM
Head and Token Embedding, this aversion to compression is specific only to the token dimension.

Our SNR analysis can also serve as a standalone diagnostic tool. SNR values serve as a proxy for learn-
ing complexity within each layer, with lower SNR indicating higher complexity. This insight naturally
reveals regions of model architecture that could benefit from improvements. For instance, low SNR
values observed in token embeddings or language model heads suggest these components might bene-
fit from more sophisticated designs or specialized optimizer rules. SNR analysis also enables a quanti-

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

10−4 10−3 10−2 10−1

Learning Rate

0.0

0.2

0.4

0.6

0.8

1.0

S
N

R
-p

re
di

ct
ed

sa
vi

ng
s

GPT-small FineWeb-Edu

cutoff

0.2

0.6

1.0

1.4

10−6 10−5 10−4 10−3

Learning Rate

0.0

0.2

0.4

0.6

0.8

1.0

S
N

R
-p

re
di

ct
ed

sa
vi

ng
s

Llama-3.2-3B Alpaca

cutoff

0.2

0.6

1.0

1.4

10−5 10−4 10−3 10−2 10−1 100

Learning Rate

0.90

0.92

0.94

0.96

0.98

1.00

S
N

R
-p

re
di

ct
ed

sa
vi

ng
s

Resnet18 CIFAR-10

cutoff

0.2

0.6

1.0

1.4

10−5 10−4 10−3

Learning Rate

0.6

0.8

1.0

S
N

R
-p

re
di

ct
ed

sa
vi

ng
s

ViT-small CIFAR-10

cutoff

0.2

0.6

1.0

1.4

10−4 10−3 10−2 10−1

Learning rate

3.0

3.2

3.4

3.6

T
es

t
lo

ss

GPT-small FineWeb-Edu

Adam

Adalayer+LN+TL

SlimAdam

Adam-mini v1

Adam-mini v2

10−6 10−5 10−4 10−3

Learning rate

1

2

3

4

T
ra

in
in

g
L

os
s

Llama-3.2-3B, Alpaca

Adalayer+LN+TL

Adam

SlimAdam

10−5 10−4 10−3 10−2 10−1 100

Learning rate

20

40

60

80

T
es

t
ac

cu
ra

cy

Resnet18 CIFAR-10

Adam

Adalayer

SlimAdam

10−5 10−4 10−3

Learning rate

40

60

80

T
es

t
ac

cu
ra

cy

ViT-small CIFAR-10

Adam

Adalayer+LN+TL

SlimAdam

Figure 9: (Top) Fraction of reducible second moments (relative to Adam) across learning rate and
SNR cutoff, as predicted by SNR analysis. (Bottom) Performance comparison across learning rates
between SlimAdam (with rules derived with 10x smaller learning rate than optimal) and baselines:
Adam, AdaLayer, and Adam-mini (for details, see Appendix B). SlimAdam achieves Adam-level
performance and stability while significantly reducing memory usage across all configurations.
Appendix E.2 shows that SNR cutoff and learning rate does not affect SlimAdam’s performance.

tative evaluation of the effectiveness of initialization schemes; see Section 4.3 where lower SNRs un-
der PyTorch’s default compared with the “Mitchell” initialization suggest the former’s suboptimality.

Based on SlimAdam’s success in the GPT pre-training regime, we posit the following “implicit bias”
of the Adam optimizer. Without any specific intervention during training, Adam’s full second moment
tensors end up populated with incompressible state regardless of whether the optimization problem—
the architecture, dataset, and/or objective—actually requires this much flexibility. Only through SNR
analysis at small learning rates, where we can avoid artifacts that emerge when training Adam at large
learning rates, are we actually able to capture these latent fundamental compression rules the that
optimization problem admits. Since only a small fraction of second moments are required for optimal
performance, we interpret our results as evidence of an inherent bias of Adam to utilize whatever
state capacity is provided, even if it is not strictly necessary for optimal training performance.

In conclusion, we present a principled framework to analyze when second moments can be effectively
replaced with their means, naturally leading to SlimAdam, a practical low-memory Adam variant
which maintains performance and stability while enjoying significant memory savings. A key
limitation of SNR analysis is that it’s based on an Adam run (which depends on hyperparameters)
and does not guarantee that other low-memory optimizers with even greater memory savings could
exist. While conducted up to 1B scale, we hope that our work furthers understanding of when low
memory optimizers are safe to use in practice while deepening our fundamental understanding of
how architecture, data, and optimizer design interact.

REFERENCES

Kwangjun Ahn, Xiang Cheng, Minhak Song, Chulhee Yun, Ali Jadbabaie, and Suvrit Sra. Linear
attention is (maybe) all you need (to understand transformer optimization). In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=0uI5415ry7.

Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory-efficient adaptive optimiza-
tion. In NeurIPS 2019, 2019. URL https://papers.nips.cc/paper_files/paper/
2019/hash/8f1fa0193ca2b5d2fa0695827d8270e9-Abstract.html.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V Le. Symbolic discovery of optimization
algorithms. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=ne6zeqLFCZ.

Jeremy M Cohen, Behrooz Ghorbani, Shankar Krishnan, Naman Agarwal, Sourabh Medapati, Michal
Badura, Daniel Suo, David Cardoze, Zachary Nado, George E Dahl, et al. Adaptive gradient
methods at the edge of stability. arXiv preprint arXiv:2207.14484, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,

10

https://openreview.net/forum?id=0uI5415ry7
https://openreview.net/forum?id=0uI5415ry7
https://papers.nips.cc/paper_files/paper/2019/hash/8f1fa0193ca2b5d2fa0695827d8270e9-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/8f1fa0193ca2b5d2fa0695827d8270e9-Abstract.html
https://openreview.net/forum?id=ne6zeqLFCZ


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=YicbFdNTTy.

Enealor. Pytorch-sm3, 7 2020. URL https://github.com/Enealor/PyTorch-SM3.

Facebook Research. Adafactor optimizer implementation in fairseq. https://github.com/
facebookresearch/fairseq/blob/main/fairseq/optim/adafactor.py,
2023. Accessed: February 2025.

Philip Gage. A new algorithm for data compression. C Users J., 12(2):23–38, February 1994. ISSN
0898-9788.

Boris Ginsburg, Patrice Castonguay, Oleksii Hrinchuk, Oleksii Kuchaiev, Vitaly Lavrukhin, Ryan
Leary, Jason Li, Huyen Nguyen, Yang Zhang, and Jonathan M. Cohen. Training deep networks
with stochastic gradient normalized by layerwise adaptive second moments, 2020. URL https:
//openreview.net/forum?id=BJepq2VtDB.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. http:
//Skylion007.github.io/OpenWebTextCorpus, 2019.

Dirk Groeneveld, Iz Beltagy, Evan Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya
Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkinson, Russell
Authur, Khyathi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu, Jack Hessel,
Tushar Khot, William Merrill, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik, Crystal
Nam, Matthew Peters, Valentina Pyatkin, Abhilasha Ravichander, Dustin Schwenk, Saurabh
Shah, William Smith, Emma Strubell, Nishant Subramani, Mitchell Wortsman, Pradeep Dasigi,
Nathan Lambert, Kyle Richardson, Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca Soldaini,
Noah Smith, and Hannaneh Hajishirzi. OLMo: Accelerating the science of language models. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 15789–15809,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.acl-long.841. URL https://aclanthology.org/2024.acl-long.841/.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2015.

Dayal Singh Kalra and Maissam Barkeshli. Why warmup the learning rate? underlying mechanisms
and improvements. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=NVl4SAmz5c.

Andrej Karpathy. nanoGPT: The simplest, fastest repository for training/finetuning medium-sized
gpts. https://github.com/karpathy/nanoGPT, 2022.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Frederik Kunstner, Robin Yadav, Alan Milligan, Mark Schmidt, and Alberto Bietti. Heavy-tailed
class imbalance and why adam outperforms gradient descent on language models. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=T56j6aV8Oc.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Yang Luo, Xiaozhe Ren, Zangwei Zheng, Zhuo Jiang, Xin Jiang, and Yang You. CAME:
Confidence-guided adaptive memory efficient optimization. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 4442–4453, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.243. URL
https://aclanthology.org/2023.acl-long.243.

11

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://github.com/Enealor/PyTorch-SM3
https://github.com/facebookresearch/fairseq/blob/main/fairseq/optim/adafactor.py
https://github.com/facebookresearch/fairseq/blob/main/fairseq/optim/adafactor.py
https://openreview.net/forum?id=BJepq2VtDB
https://openreview.net/forum?id=BJepq2VtDB
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://aclanthology.org/2024.acl-long.841/
https://openreview.net/forum?id=NVl4SAmz5c
https://github.com/karpathy/nanoGPT
https://openreview.net/forum?id=T56j6aV8Oc
https://openreview.net/forum?id=T56j6aV8Oc
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/2023.acl-long.243


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In International Conference on Learning Representations, 2017. URL https://
openreview.net/forum?id=Byj72udxe.

Ionut-Vlad Modoranu, Mher Safaryan, Grigory Malinovsky, Eldar Kurtic, Thomas Robert, Peter
Richtárik, and Dan Alistarh. Microadam: Accurate adaptive optimization with low space overhead
and provable convergence. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=Tck41RANGK.

Yan Pan and Yuanzhi Li. Toward understanding why adam converges faster than SGD for transformers.
In OPT 2022: Optimization for Machine Learning (NeurIPS 2022 Workshop), 2022. URL
https://openreview.net/forum?id=Sf1NlV2r6PO.

Guilherme Penedo, Hynek Kydlı́ček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for
the finest text data at scale. In The Thirty-eight Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2024. URL https://openreview.net/forum?
id=n6SCkn2QaG.

Tomer Porian, Mitchell Wortsman, Jenia Jitsev, Ludwig Schmidt, and Yair Carmon. Resolving
discrepancies in compute-optimal scaling of language models. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview.
net/forum?id=4fSSqpk1sM.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. In Sanjoy Dasgupta and
David McAllester (eds.), Proceedings of the 30th International Conference on Machine Learning,
volume 28 of Proceedings of Machine Learning Research, pp. 343–351, Atlanta, Georgia, USA,
17–19 Jun 2013. PMLR. URL https://proceedings.mlr.press/v28/schaul13.
html.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Katrin Erk and Noah A. Smith (eds.), Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1715–1725, Berlin,
Germany, August 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1162.
URL https://aclanthology.org/P16-1162/.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 4596–4604.
PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/shazeer18a.
html.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Llama Team. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.
21783.

torchtune maintainers and contributors. torchtune: Pytorch’s finetuning library, April 2024. URL
https//github.com/pytorch/torchtune.

Lichuan Xiang, Rosco Hunter, Minghao Xu, Łukasz Dudziak, and Hongkai Wen. Exploiting network
compressibility and topology in zero-cost nas. In Aleksandra Faust, Roman Garnett, Colin White,
Frank Hutter, and Jacob R. Gardner (eds.), Proceedings of the Second International Conference
on Automated Machine Learning, volume 224 of Proceedings of Machine Learning Research,
pp. 18/1–14. PMLR, 12–15 Nov 2023. URL https://proceedings.mlr.press/v224/
xiang23a.html.

12

https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Tck41RANGK
https://openreview.net/forum?id=Sf1NlV2r6PO
https://openreview.net/forum?id=n6SCkn2QaG
https://openreview.net/forum?id=n6SCkn2QaG
https://openreview.net/forum?id=4fSSqpk1sM
https://openreview.net/forum?id=4fSSqpk1sM
https://proceedings.mlr.press/v28/schaul13.html
https://proceedings.mlr.press/v28/schaul13.html
https://aclanthology.org/P16-1162/
https://proceedings.mlr.press/v80/shazeer18a.html
https://proceedings.mlr.press/v80/shazeer18a.html
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https//github.com/pytorch/torchtune
https://proceedings.mlr.press/v224/xiang23a.html
https://proceedings.mlr.press/v224/xiang23a.html


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Minghao Xu, Lichuan Xiang, Xu Cai, and Hongkai Wen. No more adam: Learning rate scaling at
initialization is all you need, 2024. URL https://arxiv.org/abs/2412.11768.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, San-
jiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 15383–15393. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/b05b57f6add810d3b7490866d74c0053-Paper.pdf.

Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhi-Quan Luo. Why trans-
formers need adam: A hessian perspective. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024. URL https://openreview.net/forum?id=
X6rqEpbnj3.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Diederik P Kingma, Yinyu
Ye, Zhi-Quan Luo, and Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=iBExhaU3Lc.

Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham M. Kakade. Decon-
structing what makes a good optimizer for autoregressive language models. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=zfeso8ceqr.

A LLM USAGE

LLMs were used for editing and condensing paragraphs to comply with the page limit restriction. We
have verified that these edits do not change the intended message or result in any way.

B DETAILED COMPARISON WITH OTHER LOW-MEMORY OPTIMIZERS

10−4 10−3 10−2 10−1

Learning rate

3.0

3.2

3.4

3.6

T
es

t
lo

ss

GPT-small FineWeb-Edu

Adam

SlimAdam

SM3-0.0

SM3-0.95

(a)

10−4 10−3 10−2

Learning rate

3.0

3.2

3.4

3.6

T
es

t
lo

ss

GPT-small FineWeb-Edu

Adam

SlimAdam

Lion-0.0

Lion-0.95

Lion-0.99

(b)

10−4 10−3 10−2

Learning rate

3

4

5

6

T
es

t
lo

ss

GPT-small FineWeb-Edu

Adam

SlimAdam

Adafactor

Adafactor-v2

(c)

Figure 10: Comparison of SlimAdam with different optimizers on GPT pre-training using Fineweb-
Edu dataset.

Adam-mini: Zhang et al. (2025) introduced Adam-mini, which assigns adaptive learning rates to
block partitions based on the Hessian spectrum at initialization. The initial release, Adam-mini v1.0.4
(referred to as Adam-mini v1), uses PyTorch’s default block partitioning with two key modifications:
(1) individual second moments are assigned to each parameter in the Token Embedding and LM Head,
and (2) individual second moments are assigned to each key and query attention head. In a recent
update, Adam-mini v1.1.1 (referred to as Adam-mini v2) revises this approach by assigning one
second moment per output neuron in each layer, with two exceptions: (1) each key and query attention
head receives its own second moment, and (2) each token dimension in the Token Embedding and
LM Head receives its own second moment. LayerNorms are always compressed.

Our SNR analysis identifies similar compression rules to Adam-mini, but with two key differences.
First, Adam-mini assigns one second moment to every output neuron of attention values, projection,
and MLPs. In our convention, it amounts to fanin compression. In comparison, our SNR analysis
suggests that fanout compression is more appropriate for these layers. The second difference relates to
LayerNorm parameters. While Adam-mini compresses these by default, our SNR analysis indicates
that LayerNorm second moments show aversion to compression. We attribute SlimAdam’s superior
learning rate stability to its identification of these more appropriate compression dimensions.

13

https://arxiv.org/abs/2412.11768
https://proceedings.neurips.cc/paper_files/paper/2020/file/b05b57f6add810d3b7490866d74c0053-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/b05b57f6add810d3b7490866d74c0053-Paper.pdf
https://openreview.net/forum?id=X6rqEpbnj3
https://openreview.net/forum?id=X6rqEpbnj3
https://openreview.net/forum?id=iBExhaU3Lc
https://openreview.net/forum?id=iBExhaU3Lc
https://openreview.net/forum?id=zfeso8ceqr
https://openreview.net/forum?id=zfeso8ceqr


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

AdaLayer: Zhao et al. (2025) found that Adam’s superior performance over SGD in language
modeling primarily comes from using per-parameter adaptive learning rates in just two components:
LayerNorm and the LM Head. All other layers can be trained with SGD. Following their naming
convention, we use AdaLayer to refer to Adam with one second moment per weight/bias, and
‘AdaLayer+LN+TN’ to denote AdaLayer with per-parameter second moments for LayerNorm and
final layer parameters.

While our SNR analysis supports their findings about Token Embedding/LM Head and LayerNorm
second moments, we find that AdaLayer+LN+TN underperforms Adam and SlimAdam, using 2% of
Adam’s second moment, closely matches Adam’s performance and stability.

SM3: Anil et al. (2019) grouped parameters into sets based on similarity, such that each parameter
can belong to multiple sets. Then, it maintains a moving average of the maximum of squared moments
for each set and approximates a second-moment entry using the minimum value across different
sets it belongs to. We use the implementation from Enealor (2020) with momentum = 0.9 and
β ∈ {0.0, 0.95}. Figure 10(a) compares SM3 performance with different β values on the GPT
pre-training task. We observe that β = 0.95 performs better for GPT pre-training. We use this
optimal β value in the comparisons shown in Figure 1.

Lion: Chen et al. (2023) algorithmically discovered an optimizer that only tracks momentum and
uses the sign operation to determine update directions. For the GPT-small experiment, we found that
β2 = 0.95 performs best when keeping β1 = 0.9 fixed, as shown in Figure 10(b). Similar to other
optimizers, we use a weight decay strength of λ = 0.1 and a gradient clipping threshold of 1.0.

Adafactor: Shazeer & Stern (2018) approximated the second-moment matrix of a layer using a
moving average of the row and column sums of the squared gradients. We evaluate two implementa-
tions: (1) the PyTorch implementation, which does not use a moving average of updates (referred
to as Adafactor) and (2) the implementation by Facebook Research (2023), which incorporates
the moving average of updates (referred to as Adafactor v2). For both variants, we maintain the
same learning rate schedule used in our default experiments. For Adafactor v2, this requires setting
relative step=False. As shown in Figure 10(c), both Adafactor variants perform significantly
worse than Adam. Due to this performance gap, we exclude these results from Figure 1.

C THEORETICAL ANALYSIS OF SIGNAL-TO-NOISE RATIO

Different variants of SNR have been utilized in prior works. For instance, (Schaul et al., 2013)
used per-gradient SNR to adaptively set the learning rate, Xu et al. (2024) used SNR to construct a
pre-conditioner at initialization, whereas Xiang et al. (2023) used SNR to search over architectures.
By comparison, we use SNR to analyze the compression of second moments.

This section theoretically analyzes the SNR metric, examining its fundamental properties and practical
implications for adaptive optimization.

C.1 THE CONNECTION BETWEEN SNR AND RELATIVE COMPRESSION ERROR

In this section, we establish a relationship between SNR and relative compression error. Consider a
second moment vector v ∈ Rn with mean µ = 1

n

∑n
i=1 vi, variance σ2 = 1

n

∑n
i=1(vi − µ)2, and

SNR= µ2

σ2 . Then, the relative compression error is given by:

∥v − µ∥2
∥v∥2 =

nσ2

n(σ2 + µ2)
=

1

1 + SNR
. (4)

A high SNR indicates that the mean provides a good approximation with relative error approaching
zero, while low SNR suggests significant information is lost during compression.

C.2 THE CONNECTION BETWEEN SNR AND PRE-CONDITIONING

For adaptive optimizers with pre-conditioner P , the dynamics is governed by the pre-conditioned
Hessian P−1H (Cohen et al., 2022; Kalra & Barkeshli, 2024), where P ∝

√
V for Adam. The

condition number of the problem is bounded by:

κ(P−1H) ≤ κ(P−1)κ(H), (5)

suggesting that the condition number of the preconditioner κ(P−1) directly influences the overall
conditioning. We now connect SNR with the condition number κ(P−1).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Consider a second moment vector v ∈ Rn with mean µ = 1
n

∑n
i=1 vi, variance σ2 = 1

n

∑n
i=1(vi −

µ)2, and SNR= µ2

σ2 . Then, the condition number of Adam’s preconditioner is:

κ(P−1) =
λmax(P

−1)

λmin(P−1)
=

minni
√
vi

maxni
√
vi
. (6)

Both the condition number κ(P−1) and the SNR measure the dispersion of the second moment
distribution.

High SNR regime: When SNR is large, second moments concentrate around the mean, resulting
in κ(P−1) ≈ 1. In this case, the preconditioner uniformly scales the Hessian by a scalar value,
suggesting that a single second moment suffices.

Low SNR regime: When SNR is low, κ(P−1) is small, and replacing second moments with their
mean won’t perform the required preconditioning.

The above analysis suggests that that SNR analysis can be viewed as examining Adam’s preconditioner
throughout training.

C.3 SNR ANALYSIS FOR GAUSSIAN GRADIENTS

In this section, we analyze the SNR metric for random, iid Gaussian distributed gradients. Consider
a gradient matrix G ∈ Rn×n with elements Gij sampled from N (0, σ2). Let V = G2 denote the
element-wise squared gradient matrix. Then, the expectation of the mean and variance along column
j is:

E [Vi] = E

 1

n

n∑
j=1

Vij

 =
1

n

n∑
j=1

E[G2
ij ] = σ2.

E

 1

n

n∑
j=1

(Vij − E[Vi])
2

 =
1

n

n∑
j=1

[
E[G4

ij ]− E[Gij ]
2
]
= 3σ4 − σ4 = 2σ4.

This yields SNR = 1/2 for iid Gaussian gradients irrespective of matrix dimension. We numerically
verify this result in Figure 11. In real-world scenarios, gradients follow complex distributions, often
exhibiting long tails that defy iid Gaussian assumptions. In our experiments, we found that a more
stringent cutoff of 1 works better.

102 103 104

Matrix size

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

S
N

R
al

on
g

ro
w

di
m

Figure 11: SNR values along the row dimension for iid Gaussian distributed gradients.

D EXPERIMENTAL DETAILS

SNR measurement: We measured SNR values at regular intervals throughout training: every 100
step for the first 1000 steps, then every 1000 step thereafter. For determining the SlimAdam rules,
we deliberately exclude frequent early-training measurements to prevent biasing the averaged SNR
towards initial SNR values.

D.1 LANGUAGE PRE-TRAINING

Model and Datasets: We train GPT-style models (Radford et al., 2019) using a codebase based
on NanoGPT (Karpathy, 2022) on two language modeling datasets: OpenWebText (Gokaslan et al.,

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

2019) and 10B token subset of FineWeb-Edu (Penedo et al., 2024). The datasets are tokenized using
the GPT tokenizer with a vocabulary size nvocab = 50, 304. The models are trained with a context
length of Tn = 1024. We use nlayers to denote the number of layers, nheads to denote the number of
heads, and dmodel to denote the embedding dimension. We consider three model configurations, as
summarized in the table below.

Table 2: GPT model configurations and parameter counts.

Model nlayers nheads dmodel Parameters Tokens

GPT-small 12 12 768 100M 10B
GPT-medium 24 16 1024 350M 10B
GPT-large 36 25 1600 1B 20B

All models have an MLP upscaling factor of 4, learnable positional embedding, and weight tying,
without biases.

Initialization: Unless specified, we consider the Mitchell initialization (Groeneveld et al., 2024):
For standard layers, the weights are initialized using a normal distributionN (0, 0.022), while residual
projection layers (attention and MLP projections) use a scaled normal distribution N (0, 0.02

2
/2nlayers).

In Section 4.3, we use PyTorch’s default uniform initialization: U(− 1√
fanin

, 1√
fanin

).

Training: The training uses a micro-batch size of 32 with 40 gradient accumulation steps, resulting
in an effective batch size of B = 1, 280. Small and medium models are trained for 10B tokens,
whereas the 1B model is trained for 20B tokens (Chinchilla optimal). We use the following Adam
hyperparameters: β1 = 0.9, β2 = 0.95, ϵ = 10−8, and weight decay strength λ = 0.1. The learning
rate is linearly increased from zero to a target learning rate η in Twrm = 2048 steps, followed by
cosine decay to ηmin = η/10.0. Gradients are clipped at a maximum norm of 1.0.

D.2 LINEAR MODEL TRAINED ON WIKITEXT

Model Architecture: We consider a two-layer linear model composed of an embedding layer
followed by a language model head, trained on WikiText-103 (Merity et al., 2017). The dataset
is tokenized using BPE tokenization (Gage, 1994; Sennrich et al., 2016) with different vocabulary
sizes V ∈ {1024, 2048, 4096, 8192, 16384, 32768, 49152, 65536}. The embedding dimension is set
to dmodel = 768 and a context length of Tn = 128 is considered.

Initialization: The embedding parameters are initialized using a truncated normal distribution
N (0, 1), while the language model head uses a truncated normal distribution N (0, 1/fanin).

Training: The training consists of one epoch with a batch size B = 16. The model is trained
using Adam variants with hyperparameters β1 = 0.9, β2 = 0.999, ϵ = 10−8, and weight decay
strength λ = 10−4. The learning rate follows a schedule with linear warmup from zero to η over
Twrm = 2048 steps, followed by cosine decay to ηmin = η/10.0. The optimal target learning rate is
found by scanning the set {1e-4, 3e-4, 6e-4, 1e-3, 3e-3}.
D.3 LANGUAGE FINE-TUNING

Model and Datasets: We consider pre-trained Llama-3.2 models (Team, 2024) and fine-tune
them on the Alpaca dataset (Taori et al., 2023) using the torchtune library (torchtune maintainers &
contributors, 2024).

Fine-tuning: We finetune the models for 3 epochs using a batch size B = 16, optimizer hyperpa-
rameters β1 = 0.9, β2 = 0.999, ϵ = 10−8 and weight decay strength λ = 0.1.

D.4 IMAGE CLASSIFICATION

Model and Datasets: We train ResNet (He et al., 2015) and ViT (Dosovitskiy et al., 2021) models
on CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al., 2009) with random crop and horizontal
flip augmentations.

ResNet: We consider the standard ResNet-18 architecture with batch normalization.

ViT: We consider Vision Transformers (Dosovitskiy et al., 2021), with GPT-like architecture adapted
for image classification using patch embeddings and a special class token. We consider two model

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

configurations: ViT-mini (nlayers = 6 layers, nheads = 12 heads, embedding dimension dmodel = 768)
and ViT-small (nlayers = 12 layers, nheads = 12 heads, embedding dimension dmodel = 768). Both
models are initialized using Mitchell initialization, do not use biases, and use a learnable class token
and a patch size of 2.

Training: We train these models with a batch size of B = 128 for 100, 000 steps with optimization
hyperparamters: β1 = 0.9, β2 = 0.999, ϵ = 10−8 and weight decay strength λ = 0.01. The learning
rate is linearly increased from zero to a target learning rate η in Twrm = 2048 steps, followed by
cosine decay to ηmin = η/10.0.

D.5 ESTIMATED COMPUTATIONAL RESOURCES

Each experiment required approximately 12 H100 GPU hours to complete. Our experimental design
included around 8 learning rate variations, 2 distinct datasets for the four training tasks, resulting
in 64 total runs. This amounted to 768 H100 GPU hours for the primary experiments. Additional
small-scale exploratory experiments consumed approximately 250 H100 GPU hours, bringing the
total computational resources used in this study to around 1000 H100 GPU hours.

E THE SlimAdam OPTIMIZER

E.1 SlimAdam ALGORITHM

This section describes the SlimAdam algorithm in detail. SlimAdam implementation consists
of three steps. The code is available at https://github.com/ml-conf-authors/
low-memory-adam.

Step 1: Collect SNR statistics using a small proxy model
First, we collect layer-wise SNR statistics using a small proxy model with a 10× smaller learning rate
than optimal. In theory, we would perform the SNR analysis at the optimal learning rate to determine
compression rules, but this approach only saves around 30% of seconds moments with a cutoff of 1.0
for Transformer models. Instead, we chose a 10× smaller learning rate, which predicts saving around
99% of second moments for a large range of cutoffs.

Algorithm 1 Collect SNR statistics using a small proxy model

Require: Small model, dataset, optimization hparams (10× smaller learning rate)
1: Train for TSNR steps
2: for all layer l in model do
3: for all compression dimension K ∈ {(0, ), (1, ), (0, 1)} do
4: Compute and Record SNRK(V

(l)
t ) according to Equation (2)

5: end for
6: end for

Step 2: Extract Compression Rules from SNR Statistics
Next, we identify the compression dimension K∗ for each layer type with the highest SNR:

K∗ = argmax
K

Eτ [SNRK(V (l))]. (7)

If SNR Eτ [SNRKmax(V
(l))] exceeds the cutoff, we set the compression dimension K(l) to Kmax.

Otherwise, no compression is performed. This results in consistent compression rules that generalize
across depth and width and can be reused.

Step 3: SlimAdam Optimizer
Finally, we train the target model using Adam with shared second moments (Equation (1)) along these
compression dimensions K∗. Given either (1) SNR-derived compression rules or (2) pre-computed
rules from Table 1, SlimAdam applies these rules during training using Equation Equation (1). If
K(l) = ∅, SlimAdam does not compress second moments, and the optimization is identical to Adam.

For new training configurations, we suggest deriving compression rules using the SNR statistics of a
smaller model. For known training setups, such as GPT pre-training, Table 1 rules can be used out of
the box.

17

https://github.com/ml-conf-authors/low-memory-adam
https://github.com/ml-conf-authors/low-memory-adam


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 2 Compression Rule Extraction from SNR Statistics.

Require: layer-wise SNR statistics and SNR cutoff
1: for all layer l in model do
2: K(l) ← ∅
3: if dim(V (l)) > 1 then
4: Kmax = argmaxK Eτ [SNRK(V

(l)
τ )]

5: if Eτ [SNRKmax(V
(l))] > cutoff then

6: K(l) ← Kmax

7: end if
8: end if
9: end for

10: return K∗ for all layers

Algorithm 3 SlimAdam

Require: Learning rate η, moment decay rates β1, β2, layer-wise compression rules K(l)

1: for each training step t do
2: Gt := ∇WL(θt)
3: for each layer l do
4: M

(l)
t+1 = β1M

(l)
t + (1− β1)G

(l)
t

5: if K(l) ̸= ∅ then
6: V

(l)
t+1 = β2V

(l)
t + (1− β2)EK(l) [(G

(l)
t )2]

7: else
8: V

(l)
t+1 = β2V

(l)
t + (1− β2)(G

(l)
t )2

9: end if
10: M̂

(l)
t+1 ←

M l
t+1

1−βt
1

11: V̂
(l)
t+1 ←

V
(l)
t+1√
1−βt

2

12: W
(l)
t+1 = W

(l)
t − ηt

M̂(l)t+1√
V̂

(l)
t+1+ϵ

13: end for
14: end for

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E.2 EFFECT OF SNR CUTOFF AND PROXY MODEL LEARNING RATE ON SlimAdam
PERFORMANCE

0.2 0.4 0.6 0.8 1.0 1.2 1.4
SNR cutoff

0.0001

0.0003

0.0006

0.001

0.003

0.006

0.01

S
N

R
L

ea
rn

in
g

R
at

e

0.999 0.999 0.999 0.999 0.994 0.989 0.980

0.999 0.999 0.999 0.980 0.980 0.975 0.966

0.999 0.999 0.966 0.932 0.890 0.871 0.857

0.999 0.975 0.932 0.880 0.819 0.504 0.485

0.994 0.942 0.594 0.442 0.309 0.272 0.248

0.956 0.523 0.404 0.314 0.253 0.219 0.175

0.651 0.485 0.338 0.291 0.238 0.208 0.166

SNR predicted savings

0.2

0.4

0.6

0.8

(a)

0.2 0.4 0.6 0.8 1.0 1.2 1.4
SNR cutoff

0.
00

01
0.

00
03

0.
00

1
0.

00
3

0.
01

S
N

R
L

ea
rn

in
g

R
at

e

2.937 2.938 2.937 2.937 2.936 2.937 2.937

2.936 2.938 2.940 2.937 2.938 2.938 2.936

2.937 2.937 2.938 2.936 2.936 2.938 2.938

2.938 2.937 2.939 2.938 2.939 2.937 2.937

2.940 2.939 2.939 2.938 2.939 2.939 2.937

Validation Loss at LR = 0.003

2.936

2.937

2.938

2.939

2.940

(b)

0.2 0.4 0.6 0.8 1.0 1.2 1.4
SNR cutoff

0.
00

01
0.

00
03

0.
00

1
0.

00
3

0.
01

S
N

R
L

ea
rn

in
g

R
at

e

3.052 3.069 3.094 3.074 3.092 3.082 3.065

3.051 3.072 3.072 3.053 3.074 3.059 3.058

3.063 3.050 3.086 3.073 3.047 3.063 3.053

3.050 3.047 3.064 3.043 3.024 3.032 3.022

3.069 3.042 3.045 3.035 3.040 3.039 3.034

Validation Loss at LR = 0.03

3.04

3.06

3.08

(c)

Figure 12: Effect of SNR cutoff and proxy model learning rate on SlimAdam performance: (a)
SNR predicted memory savings, (b, c) validation loss as a function of SNR learning rate and cutoff
for optimal learning rate and a large learning rate.

Figure 12 shows the effect of SNR cutoff and proxy model learning rate (SNR learning rate) on
SlimAdam performance for GPT-small pre-trained on FineWeb-Edu.

E.3 ADDITIONAL RESULTS FOR SlimAdam

This section provides additional results for Section 5. Figure 13 compares SNR predicted savings
and performance of SlimAdam with other baselines on additional tasks. Figures 15 and 16 shows the
training loss and downstream performance (HellaSwag and TruthfulQA) of Llama-3.2 1B and Llama
3.2 3B fine-tuned on the Alpaca dataset.

10−4 10−3 10−2 10−1

Learning Rate

0.0

0.2

0.4

0.6

0.8

1.0

S
N

R
-p

re
di

ct
ed

sa
vi

ng
s

GPT-small OpenWebText

cutoff

0.2

0.6

1.0

1.4

10−4 10−3 10−2 10−1

Learning Rate

0.0

0.2

0.4

0.6

0.8

1.0

S
N

R
-p

re
di

ct
ed

sa
vi

ng
s

GPT-medium FineWeb-Edu

cutoff

0.2

0.6

1.0

1.4

10−5 10−4 10−3 10−2 10−1

Learning Rate

0.90

0.92

0.94

0.96

0.98

1.00

S
N

R
-p

re
di

ct
ed

sa
vi

ng
s

Resnet18 CIFAR-100

cutoff

0.2

0.6

1.0

1.4

10−5 10−4 10−3

Learning Rate

0.5

0.6

0.7

0.8

0.9

1.0

S
N

R
-p

re
di

ct
ed

sa
vi

ng
s

ViT-small CIFAR-100

cutoff

0.2

0.6

1.0

1.4

10−4 10−3 10−2 10−1

Learning rate

3.0

3.2

3.4

3.6

T
es

t
lo

ss

GPT-small OpenWebText

Adam

Adalayer+LN+TL

SlimAdam

Adam-mini v1

Adam-mini v2

10−4 10−3 10−2 10−1

Learning rate

2.7

2.8

2.9

3.0

3.1

3.2

3.3

T
es

t
lo

ss

GPT-medium FineWeb-Edu

Adam

Adalayer+LN+TL

SlimAdam

Adam-mini v1

Adam-mini v2

10−5 10−4 10−3 10−2 10−1 100

Learning rate

20

40

60

T
es

t
ac

cu
ra

cy

Resnet18 CIFAR-100

Adam

Adalayer

SlimAdam

10−5 10−4 10−3

Learning rate

10

20

30

40

50

T
es

t
ac

cu
ra

cy

ViT-small CIFAR-100

Adam

Adalayer+LN+TL

SlimAdam

Figure 13: (Top) Fraction of second moments saved (relative to Adam) as a function of learning
rate and SNR cutoff across training configuration, as suggested by the SNR analysis. (Bottom)
Performance comparison across learning rates between SlimAdam and baselines.

10 4 10 3 10 2

Learning Rate
2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

Te
st

 L
os

s

GPT-Large FineWeb-Edu (20B)
Adam
SlimAdam
Adam-mini v1
Adam-mini v2

Figure 14: Performance comparison of Slimadam and baselines across learning rates for GPT-large
model with 1B parameters trained on 20B tokens.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

10−6 10−5 10−4 10−3

Learning rate

1.0

1.5

2.0

2.5

T
ra

in
in

g
L

os
s

Llama-3.2-1B, Alpaca

Adalayer+LN+TL

Adam

SlimAdam

10−6 10−5 10−4 10−3

Learning rate

0.400

0.425

0.450

0.475

0.500

E
va

l
A

cc
ur

ac
y

Llama-3.2-1B, Alpaca, truthfulqa mc2

Adam

Adalayer+LN+TL

SlimAdam

10−6 10−5 10−4 10−3

Learning rate

0.25

0.30

0.35

0.40

0.45

0.50

E
va

l
A

cc
ur

ac
y

Llama-3.2-1B, Alpaca, hellaswag

Adam

Adalayer+LN+TL

SlimAdam

Figure 15: Training loss and Downstream performance of Llama-3.2 1B finetuned on the Alpaca
dataset.

10−6 10−5 10−4 10−3

Learning rate

1

2

3

4

T
ra

in
in

g
L

os
s

Llama-3.2-3B, Alpaca

Adalayer+LN+TL

Adam

SlimAdam

10−6 10−5 10−4 10−3

Learning rate

0.42

0.44

0.46

0.48

0.50

E
va

l
A

cc
ur

ac
y

Llama-3.2-3B, Alpaca, truthfulqa mc2

Adam

Adalayer+LN+TL

SlimAdam

10−6 10−5 10−4 10−3

Learning rate

0.3

0.4

0.5

E
va

l
A

cc
ur

ac
y

Llama-3.2-3B, Alpaca, hellaswag

Adam

Adalayer+LN+TL

SlimAdam

Figure 16: Training loss and Downstream performance of Llama-3.2 3B finetuned on the Alpaca
dataset.

0 2k 4k 6k 8k 10k
step

10−1

100

S
N

R
K

(V
)

Attn.Key, layer=6, shape=(768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

10−1

100

S
N

R
K

(V
)

Attn.Query, layer=10, shape=(768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

10−1

100

S
N

R
K

(V
)

Attn.Value, layer=1, shape=(768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

10−1

100

101

S
N

R
K

(V
)

Attn.Proj, layer=8, shape=(768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

10−1

100

S
N

R
K

(V
)

MLP.Up, layer=3, shape=(3072, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

10−1

100

S
N

R
K

(V
)

MLP.Down, layer=4, shape=(768, 3072), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

100

S
N

R
K

(V
)

Attn.LN, layer=12, shape=(768,), η = 3e-04

K

(0,)

0 2k 4k 6k 8k 10k
step

100

S
N

R
K

(V
)

MLP.LN, layer=10, shape=(768,), η = 3e-04

K

(0,)

0 2k 4k 6k 8k 10k
step

100

101

S
N

R
K

(V
)

Final.LN, shape=(768,), η = 3e-04

K

(0,)

0 2k 4k 6k 8k 10k
step

10−3

10−1

101

S
N

R
K

(V
)

Tok.Embd, shape=(50304, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

10−2

10−1

100

101

S
N

R
K

(V
)

Pos.Embd, shape=(1024, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

Figure 17: SNR trajectories of GPT-small trained on OpenWebText. For each layer type, the layer
number is selected at random.

F SNR ANALYSIS OF DIVERSE TRAINING TASKS

F.1 LANGUAGE PRE-TRAINING

This section provides supporting results for the SNR analysis of language pre-training performed in
Section 3.1.1. We considered three experiments to explore the model size and dataset dependency on
the SNR results:

1. GPT-small trained on OpenWebText (Figures 17 and 18)

2. GPT-small trained on FineWeb-Edu (Figures 19 and 20)

3. GPT-medium trained on FineWeb-Edu (Figure 21)

Figures 17 and 19 show that similar SNR trajectories are observed across different web text datasets.
The layerwise trends shown in Figures 18 and 20 further support this claim. Furthermore, Figure 21
shows that similar SNR trends for a GPT-medium model.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

2 4 6 8 10 12
Layer index

0

1

2

3

4

E t
[S

N
R
K

(V
t)

]

Attn.Key, shape = (768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

2

4

6

E t
[S

N
R
K

(V
t)

]

Attn.Query, shape = (768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

1

2

3

4

E t
[S

N
R
K

(V
t)

]

Attn.Value, shape = (768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0.0

2.5

5.0

7.5

10.0

12.5

E t
[S

N
R
K

(V
t)

]

Attn.Proj, shape = (768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

1

2

3

4

5

E t
[S

N
R
K

(V
t)

]

MLP.Up, shape = (3072, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0.0

2.5

5.0

7.5

10.0

12.5

E t
[S

N
R
K

(V
t)

]

MLP.Down, shape = (768, 3072), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0.4

0.6

0.8

1.0

E t
[S

N
R
K

(V
t)

]

Attn.LN, shape = (768,), η = 3e-04

K

(0,)

2 4 6 8 10 12
Layer index

1.0

1.5

2.0

E t
[S

N
R
K

(V
t)

]

MLP.LN, shape = (768,), η = 3e-04

K

(0,)

Figure 18: Layer dependence of averaged SNR values of GPT-small trained on OpenWebText.

0 2k 4k 6k 8k 10k
step

10−1

100

S
N

R
K

(V
)

Attn.Key, layer=10, shape=(768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

10−1

100

S
N

R
K

(V
)

Attn.Query, layer=12, shape=(768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

10−1

100

S
N

R
K

(V
)

Attn.Value, layer=7, shape=(768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

10−1

100

101

S
N

R
K

(V
)

Attn.Proj, layer=9, shape=(768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

10−1

100

S
N

R
K

(V
)

MLP.Up, layer=5, shape=(3072, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

10−1

100

101

S
N

R
K

(V
)

MLP.Down, layer=1, shape=(768, 3072), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

10−1

100

S
N

R
K

(V
)

Attn.LN, layer=11, shape=(768,), η = 3e-04

K

(0,)

0 2k 4k 6k 8k 10k
step

100

S
N

R
K

(V
)

MLP.LN, layer=10, shape=(768,), η = 3e-04

K

(0,)

0 2k 4k 6k 8k 10k
step

100

101

S
N

R
K

(V
)

Final.LN, shape=(768,), η = 3e-04

K

(0,)

0 2k 4k 6k 8k 10k
step

10−3

10−1

101

S
N

R
K

(V
)

Tok.Embd, shape=(50304, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

10−2

10−1

100

101

S
N

R
K

(V
)

Pos.Embd, shape=(1024, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

Figure 19: SNR trajectories of GPT-small trained on 10B subset of FineWeb-Edu. For each layer
type, the layer number is selected at random.

2 4 6 8 10 12
Layer index

0

1

2

3

4

E t
[S

N
R
K

(V
t)

]

Attn.Key, shape = (768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

1

2

3

4

5

E t
[S

N
R
K

(V
t)

]

Attn.Query, shape = (768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

1

2

3

E t
[S

N
R
K

(V
t)

]

Attn.Value, shape = (768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0.0

2.5

5.0

7.5

10.0

12.5

E t
[S

N
R
K

(V
t)

]

Attn.Proj, shape = (768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

1

2

3

4

5

E t
[S

N
R
K

(V
t)

]

MLP.Up, shape = (3072, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0.0

2.5

5.0

7.5

10.0

E t
[S

N
R
K

(V
t)

]

MLP.Down, shape = (768, 3072), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0.4

0.6

0.8

1.0

E t
[S

N
R
K

(V
t)

]

Attn.LN, shape = (768,), η = 3e-04

K

(0,)

2 4 6 8 10 12
Layer index

0.5

1.0

1.5

2.0

2.5

E t
[S

N
R
K

(V
t)

]

MLP.LN, shape = (768,), η = 3e-04

K

(0,)

Figure 20: Layer dependence of averaged SNR values of GPT-small trained on 10B token subset of
FineWeb-Edu.

F.2 LANGUAGE FINE-TUNING

Figure 22 shows the SNR trends for pre-trained Llama 3.2 1B, fine-tuned on the Alpaca dataset. In
comparison to the GPT pre-training experiments, we observe that the SNR values of attention key

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 3 6 9 12 15 18 21 24
Layer index

0

1

2

3

4

E t
[S

N
R
K

(V
t)

]

Attn.Key, shape = (1024, 1024), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 3 6 9 12 15 18 21 24
Layer index

0

2

4

6

E t
[S

N
R
K

(V
t)

]

Attn.Query, shape = (1024, 1024), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 3 6 9 12 15 18 21 24
Layer index

0

1

2

3

4

E t
[S

N
R
K

(V
t)

]

Attn.Value, shape = (1024, 1024), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 3 6 9 12 15 18 21 24
Layer index

0

5

10

E t
[S

N
R
K

(V
t)

]

Attn.Proj, shape = (1024, 1024), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 3 6 9 12 15 18 21 24
Layer index

0

2

4

6

E t
[S

N
R
K

(V
t)

]

MLP.Up, shape = (4096, 1024), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 3 6 9 12 15 18 21 24
Layer index

0

5

10

15

E t
[S

N
R
K

(V
t)

]

MLP.Down, shape = (1024, 4096), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 3 6 9 12 15 18 21 24
Layer index

0.2

0.4

0.6

0.8

1.0

E t
[S

N
R
K

(V
t)

]

Attn.LN, shape = (1024,), η = 3e-04

K

(0,)

0 3 6 9 12 15 18 21 24
Layer index

1

2

3

E t
[S

N
R
K

(V
t)

]

MLP.LN, shape = (1024,), η = 3e-04

K

(0,)

Figure 21: Layer dependence of average SNR values of the GPT-medium trained on FineWeb-Edu.

2 4 6 8 10 12 14 16
Layer index

0.0

0.2

0.4

0.6

0.8

1.0

E t
[S

N
R
K

(V
t)

]

Attn.Key, shape = (512, 2048), η = 3e-05

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12 14 16
Layer index

0.0

0.2

0.4

0.6

0.8

1.0

E t
[S

N
R
K

(V
t)

]

Attn.Query, shape = (2048, 2048), η = 3e-05

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12 14 16
Layer index

0

2

4

6

E t
[S

N
R
K

(V
t)

]

Attn.Value, shape = (512, 2048), η = 3e-05

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12 14 16
Layer index

0

5

10

15

E t
[S

N
R
K

(V
t)

]

Attn.Proj, shape = (2048, 2048), η = 3e-05

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12 14 16
Layer index

0.0

0.5

1.0

1.5

2.0

E t
[S

N
R
K

(V
t)

]

MLP.Up, shape = (8192, 2048), η = 3e-05

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12 14 16
Layer index

0

5

10

15

20

25

E t
[S

N
R
K

(V
t)

]

MLP.Down, shape = (2048, 8192), η = 3e-05

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12 14 16
Layer index

0.0

0.5

1.0

1.5

2.0

E t
[S

N
R
K

(V
t)

]

MLP.Gate, shape = (8192, 2048), η = 3e-05

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12 14 16
Layer index

0.0

0.2

0.4

0.6

0.8

1.0

E t
[S

N
R
K

(V
t)

]

Attn.norm, shape = (2048,), η = 3e-05

K

(0,)

2 4 6 8 10 12 14 16
Layer index

0.0

0.2

0.4

0.6

0.8

1.0

E t
[S

N
R
K

(V
t)

]

MLP.norm, shape = (2048,), η = 3e-05

K

(0,)

0 1k 2k 3k
step

10−4

10−2

100

S
N

R
K

(V
)

Tok.Embd, shape=(128256, 2048), η = 3e-05

K

(0,)

(1,)

(0, 1)

0 1k 2k 3k
step

10−1

100

S
N

R
K

(V
)

Final.norm, shape=(2048,), η = 3e-05

K

(0,)

Figure 22: SNR analysis of pre-trained Llama 3.2 1B fine-tuned on Alpaca dataset.

and query second moments are significantly lower than 1.0. More generally, we observe lower SNR
values, suggesting less compressibility.

F.3 IMAGE CLASSIFICATION

0 5k 10k 15k 20k
step

100

101

102

103

S
N

R
K

(V
)

Conv.first, shape=(64, 3, 3, 3), η = 1e-03

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12 14 16
Layer index

2

4

6

8

10

12

E t
[S

N
R
K

(V
t)

]

Conv, shape = (64, 64, 3, 3), η = 1e-03

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12 14 16
Layer index

2

4

6

E t
[S

N
R
K

(V
t)

]

BN.weight, shape = (64,), η = 1e-03

K

(0,)

0 5k 10k 15k 20k
step

100

101

S
N

R
K

(V
)

FC.weight, shape=(10, 512), η = 1e-03

K

(0,)

(1,)

(0, 1)

Figure 23: SNR trends of different layers of ResNet-18 trained on CIFAR-10.

Next, we examine the SNR trends of ResNets and ViTs trained on image classification tasks. As
shown in Figures 23 and 24, ResNets trained on both CIFAR-10 and CIFAR-100 exhibit consistently
high SNR values, suggesting compressibility. Most layers maintain high SNR values throughout
training, with notable exceptions at the network boundaries. The first convolutional layer averses
compressibility along the fanout dimension, while the final layer exhibits declining SNR values during
later training stages when both dimensions are compressed. Unlike LayerNorm in Transformers,
BatchNorm layers demonstrate SNR values around 1.0 throughout training.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 5k 10k 15k 20k
step

10−1

100

101

102

103

S
N

R
K

(V
)

Conv.first, shape=(64, 3, 3, 3), η = 1e-03

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12 14 16
Layer index

2

4

6

8

10

12

E t
[S

N
R
K

(V
t)

]

Conv, shape = (64, 64, 3, 3), η = 1e-03

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12 14 16
Layer index

0

5

10

15

20

25

E t
[S

N
R
K

(V
t)

]

BN.weight, shape = (64,), η = 1e-03

K

(0,)

0 5k 10k 15k 20k
step

100

101

S
N

R
K

(V
)

FC.weight, shape=(100, 512), η = 1e-03

K

(0,)

(1,)

(0, 1)

Figure 24: SNR trends of different layers of ResNet-18 trained on CIFAR-100.

2 4 6 8 10 12
Layer index

0.5

1.0

1.5

2.0

E t
[S

N
R
K

(V
t)

]

Attn.Key, shape = (768, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

1

2

3

E t
[S

N
R
K

(V
t)

]

Attn.Query, shape = (768, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0.5

1.0

1.5

2.0

2.5

3.0

E t
[S

N
R
K

(V
t)

]

Attn.Value, shape = (768, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

10

20

30

E t
[S

N
R
K

(V
t)

]

Attn.Proj, shape = (768, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

1

2

3

E t
[S

N
R
K

(V
t)

]

MLP.Up, shape = (3072, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

5

10

15

20

25

E t
[S

N
R
K

(V
t)

]

MLP.Down, shape = (768, 3072), η = 1e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

1.0

1.2

1.4

1.6

1.8

2.0

E t
[S

N
R
K

(V
t)

]

Attn.LN, shape = (768,), η = 1e-04

K

(0,)

2 4 6 8 10 12
Layer index

1.0

1.5

2.0

2.5

3.0

E t
[S

N
R
K

(V
t)

]

MLP.LN, shape = (768,), η = 1e-04

K

(0,)

0 5k 10k 15k 20k
step

101

103

105

S
N

R
K

(V
)

Patch.Embd, shape=(768, 3, 2, 2), η = 1e-04

K

(0,)

(1,)

(0, 1)

0 5k 10k 15k 20k
step

10−2

10−1

100

S
N

R
K

(V
)

Pos.Embd, shape=(1, 257, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

0 5k 10k 15k 20k
step

100

S
N

R
K

(V
)

Final.LN, shape=(768,), η = 1e-04

K

(0,)

0 5k 10k 15k 20k
step

100

101

S
N

R
K

(V
)

LM.Head, shape=(10, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

Figure 25: SNR trends of different layers of ViT-small trained on CIFAR-10.

2 4 6 8 10 12
Layer index

0

2

4

6

E t
[S

N
R
K

(V
t)

]

Attn.Key, shape = (768, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

10

20

30

E t
[S

N
R
K

(V
t)

]

Attn.Query, shape = (768, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

2

4

6

8

10

E t
[S

N
R
K

(V
t)

]

Attn.Value, shape = (768, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

20

40

60

80

E t
[S

N
R
K

(V
t)

]
Attn.Proj, shape = (768, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

5

10

15

E t
[S

N
R
K

(V
t)

]

MLP.Up, shape = (3072, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

10

20

30

40

50

E t
[S

N
R
K

(V
t)

]

MLP.Down, shape = (768, 3072), η = 1e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

2

4

6

8

E t
[S

N
R
K

(V
t)

]

Attn.LN, shape = (768,), η = 1e-04

K

(0,)

2 4 6 8 10 12
Layer index

5

10

15

E t
[S

N
R
K

(V
t)

]

MLP.LN, shape = (768,), η = 1e-04

K

(0,)

0 5k 10k 15k 20k
step

100

101

102

103

104

S
N

R
K

(V
)

Patch.Embd, shape=(768, 3, 2, 2), η = 1e-04

K

(0,)

(1,)

(0, 1)

0 5k 10k 15k 20k
step

10−2

10−1

100

S
N

R
K

(V
)

Pos.Embd, shape=(1, 257, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

0 5k 10k 15k 20k
step

100

101

S
N

R
K

(V
)

Final.LN, shape=(768,), η = 1e-04

K

(0,)

0 5k 10k 15k 20k
step

100

101

S
N

R
K

(V
)

LM.Head, shape=(100, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

Figure 26: SNR trends of different layers of ViT-small trained on CIFAR-100.

G EFFECT OF TRAINING HYPERPARAMETERS ON COMPRESSIBILITY

G.1 LARGE LEARNING RATES REDUCE COMPRESSIBILITY

This section provides supporting results for Section 4.2 on the effect of learning rates on averaged SNR
values Et[SNRK(Vt)]. For each layer, we analyze the effect of the learning rate on the dimension
K∗ with the highest SNR. Figure 28 shows that the averaged SNR values consistently decrease with
the learning rate. This decline suggests that higher learning rates cause training to explore regions

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6
Layer index

0.0

0.5

1.0

1.5

2.0

2.5

E t
[S

N
R
K

(V
t)

]

Attn.Key, shape = (768, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

1 2 3 4 5 6
Layer index

0

10

20

30

E t
[S

N
R
K

(V
t)

]

Attn.Query, shape = (768, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

1 2 3 4 5 6
Layer index

2

4

6

8

10

E t
[S

N
R
K

(V
t)

]

Attn.Value, shape = (768, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

1 2 3 4 5 6
Layer index

0

20

40

60

80

E t
[S

N
R
K

(V
t)

]

Attn.Proj, shape = (768, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

1 2 3 4 5 6
Layer index

0

5

10

15

E t
[S

N
R
K

(V
t)

]

MLP.Up, shape = (3072, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

1 2 3 4 5 6
Layer index

0

10

20

30

40

50

E t
[S

N
R
K

(V
t)

]

MLP.Down, shape = (768, 3072), η = 1e-04

K

(0,)

(1,)

(0, 1)

1 2 3 4 5 6
Layer index

1.00

1.25

1.50

1.75

2.00

E t
[S

N
R
K

(V
t)

]

Attn.LN, shape = (768,), η = 1e-04

K

(0,)

1 2 3 4 5 6
Layer index

5

10

15

20

E t
[S

N
R
K

(V
t)

]

MLP.LN, shape = (768,), η = 1e-04

K

(0,)

0 5k 10k 15k 20k
step

100

101

102

103

104

S
N

R
K

(V
)

Patch.Embd, shape=(768, 3, 2, 2), η = 1e-04

K

(0,)

(1,)

(0, 1)

0 5k 10k 15k 20k
step

10−2

10−1

100

S
N

R
K

(V
)

Pos.Embd, shape=(1, 257, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

0 5k 10k 15k 20k
step

100

101

S
N

R
K

(V
)

Final.LN, shape=(768,), η = 1e-04

K

(0,)

0 5k 10k 15k 20k
step

100

101

S
N

R
K

(V
)

LM.Head, shape=(100, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

Figure 27: SNR trends of different layers of ViT-mini trained on CIFAR-100.

10−4 10−3 10−2 10−1

Learning Rate

1

2

3

E t
[S

N
R
K
∗ (
V
t)

]

GPT-small OpenWebText Attn.Key

10−4 10−3 10−2 10−1

Learning Rate

1

2

3

E t
[S

N
R
K
∗ (
V
t)

]

GPT-small OpenWebText Attn.Query

10−4 10−3 10−2 10−1

Learning Rate

1.0

1.5

2.0

2.5

3.0

E t
[S

N
R
K
∗ (
V
t)

]
GPT-small OpenWebText Attn.Value

10−4 10−3 10−2 10−1

Learning Rate

2

4

6

8

10

E t
[S

N
R
K
∗ (
V
t)

]

GPT-small OpenWebText Attn.Proj

10−4 10−3 10−2 10−1

Learning Rate

1

2

3

4

E t
[S

N
R
K
∗ (
V
t)

]

GPT-small OpenWebText MLP.Up

10−4 10−3 10−2 10−1

Learning Rate

0

2

4

6

8

10

E t
[S

N
R
K
∗ (
V
t)

]

GPT-small OpenWebText MLP.Down

10−4 10−3 10−2 10−1

Learning Rate

0.0

0.5

1.0

1.5

2.0

E t
[S

N
R
K
∗ (
V
t)

]

GPT-small OpenWebText MLP.LN

10−4 10−3 10−2 10−1

Learning Rate

0.00

0.25

0.50

0.75

1.00

1.25

E t
[S

N
R
K
∗ (
V
t)

]

GPT-small OpenWebText Attn.LN

10−4 10−3 10−2 10−1

Learning Rate

0

2

4

6

E t
[S

N
R
K
∗ (
V
t)

]

GPT-small OpenWebText Tok.Embd

10−4 10−3 10−2 10−1

Learning Rate

0.0

2.5

5.0

7.5

10.0

12.5

E t
[S

N
R
K
∗ (
V
t)

]

GPT-small OpenWebText Pos.Embd

10−4 10−3 10−2 10−1

Learning Rate

0

5

10

15

E t
[S

N
R
K
∗ (
V
t)

]

GPT-small OpenWebText Final.LN

Figure 28: The effect of learning rate on the averaged SNR values of different layers of a GPT-small
model trained on the OpenWebText dataset. For each layer, we have selected the dimension K∗ with
the highest SNR. The shaded region around the mean trend shows the variation across depth. The
vertical dashed line at 3e-03 denotes the optimal learning rate.

of parameter space where gradients contain more outliers, thereby reducing compression feasibility
across all layers. Based on the effect of increasing the learning rate on SNR values, we classify layer
types into two categories:

1. Layers that exhibit low SNR values (≲ 1) at the optimal learning rate: Token Embedding/LM
Head, LayerNorm, attention keys, queries and MLp.Up.

2. Layers that exhibit high SNR values (≳ 1) even at the optimal learning rate: Attention
values, projections and MLP.Down.

G.2 BATCH SIZE WITH OPTIMAL β2 VALUE HAS A NOMINAL EFFECT ON COMPRESSIBILITY

In this section, we analyze the effect of batch size on SNR trends. We consider GPT models trained on
10B tokens of the FineWeb dataset for batch sizes B ∈ {32, 256, 1024} and β2 ∈ {0.95, 0.99, 0.999}.
Consistent with prior work Porian et al. (2024), we observe that the optimal β2 increases with
decreasing batch size, as shown in Table 3. For a fair comparison, we use the optimal β2 for each

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

batch size. Figure 29 shows that batch size has a nominal effect on the SNR trends for most layers.
Table 3 also shows that SlimAdam matches Adam’s performance while saving 99% of second
moments for batch sizes B = 256 and 1024, while saving 92% in the noisy regime of small batch
size B = 32.

10 4 10 3 10 2

Learning Rate

0

2

4

6

8

t[S
NR

K(
V t

)]

GPT-small FineWeb-Edu Attn.Key
Batch size

32
256
1024

10 4 10 3 10 2

Learning Rate
0

2

4

6

t[S
NR

K(
V t

)]

GPT-small FineWeb-Edu Attn.Query
Batch size

32
256
1024

10 4 10 3 10 2

Learning Rate

1

2

3

4

5

t[S
NR

K(
V t

)]

GPT-small FineWeb-Edu Attn.Value
Batch size

32
256
1024

10 4 10 3 10 2

Learning Rate

0

20

40

60

t[S
NR

K(
V t

)]

GPT-small FineWeb-Edu Attn.Proj
Batch size

32
256
1024

10 4 10 3 10 2

Learning Rate
0

2

4

6

8

t[S
NR

K(
V t

)]

GPT-small FineWeb-Edu MLP.Up
Batch size

32
256
1024

10 4 10 3 10 2

Learning Rate

0

10

20

30
t[S

NR
K(

V t
)]

GPT-small FineWeb-Edu MLP.Down
Batch size

32
256
1024

10 4 10 3 10 2

Learning Rate

0

1

2

3

4

t[S
NR

K(
V t

)]

GPT-small FineWeb-Edu MLP.LN
Batch size

32
256
1024

10 4 10 3 10 2

Learning Rate

0

1

2

3

t[S
NR

K(
V t

)]

GPT-small FineWeb-Edu Attn.LN
Batch size

32
256
1024

10 4 10 3 10 2

Learning Rate

0

2

4

6

t[S
NR

K(
V t

)]

GPT-small FineWeb-Edu Tok.Embd
Batch size

32
256
1024

10 4 10 3 10 2

Learning Rate

0

10

20

30

40

t[S
NR

K(
V t

)]
GPT-small FineWeb-Edu Pos.Embd

Batch size
32
256
1024

10 4 10 3 10 2

Learning Rate

0

5

10

15

t[S
NR

K(
V t

)]

GPT-small FineWeb-Edu Final.LN
Batch size

32
256
1024

Figure 29: The effect of batch size on the averaged SNR values of different layers of a GPT-small
model trained on the Fineweb dataset. For each layer, we have selected the dimension K∗ with the
highest SNR. The shaded region around the mean trend shows the variation across depth. For each
batch size, we select the optimal β2 as described in Table 3.

H EFFECT OF INITIALIZATION ON COMPRESSIBILITY

This section provides supporting results for Section 4.3 on the effect of initialization on averaged
SNR values Et[SNRK(Vt)]. We analyze how different initialization schemes affect SNR trends by
comparing PyTorch’s default initialization with the commonly used Mitchell initialization used in
GPT models (recall that Mitchell initialization scales down the variance by 1/depth in layers that add
to the residual stream, such as Attn.Proj and MLP.Down). For simplicity, we select the dimension
K∗ with the highest SNR for each layer.

Figure 30 shows that PyTorch’s default initialization exhibits substantially lower SNR values across
layers, especially the layers that add to the residual stream (Attn.Proj and MLP.Down) exhibit
substantially lower SNR values. These results suggest that the compression feasibility depends
on initialization choices and architectural details, suggesting that a single compression strategy is
unlikely to work universally.

I TAILED TOKEN DISTRIBUTION REDUCE COMPRESSIBILITY

Figure 31 shows additional SNR trajectories for the token distribution experiment discussed in
Section 4.1. For both layers, the SNR values along the token dimension (K = 0 for Tok.Embd
and K = 1 for LM.Head) decrease as the vocabulary size is increased. This suggests that at large
vocabulary sizes, each token evolves at its own pace and this requires its own effective learning rate.

Table 3: Performance comparison across different batch sizes for GPT-small trained on FineWeb.

Batch Size Optimal β2 Adam Loss SlimAdam Loss Second Moment Savings (%)

32 0.999 2.961 2.960 92.8
256 0.99 2.956 2.958 99.9
1024 0.95 2.959 2.960 99.4

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

10−4 10−3 10−2

Learning Rate

1

2

3

E t
[S

N
R
K

(V
t)

]

GPT-small FineWeb-Edu Attn.Key

init

Mitchell

PyTorch

10−4 10−3 10−2

Learning Rate

1

2

3

E t
[S

N
R
K

(V
t)

]

GPT-small FineWeb-Edu Attn.Query

init

Mitchell

PyTorch

10−4 10−3 10−2

Learning Rate

0.5

1.0

1.5

2.0

2.5

3.0

E t
[S

N
R
K

(V
t)

]

GPT-small FineWeb-Edu Attn.Value

init

Mitchell

PyTorch

10−4 10−3 10−2

Learning Rate

2

4

6

8

10

E t
[S

N
R
K

(V
t)

]

GPT-small FineWeb-Edu Attn.Proj

init

Mitchell

PyTorch

10−4 10−3 10−2

Learning Rate

0

1

2

3

4

E t
[S

N
R
K

(V
t)

]

GPT-small FineWeb-Edu MLP.Up

init

Mitchell

PyTorch

10−4 10−3 10−2

Learning Rate

0

2

4

6

8

E t
[S

N
R
K

(V
t)

]

GPT-small FineWeb-Edu MLP.Down

init

Mitchell

PyTorch

10−4 10−3 10−2

Learning Rate

0.0

0.5

1.0

1.5

E t
[S

N
R
K

(V
t)

]

GPT-small FineWeb-Edu Attn.LN

init

Mitchell

PyTorch

10−4 10−3 10−2

Learning Rate

0.0

0.5

1.0

1.5

2.0

2.5

E t
[S

N
R
K

(V
t)

]

GPT-small FineWeb-Edu MLP.LN

init

Mitchell

PyTorch

10−4 10−3 10−2

Learning Rate

0

2

4

6

E t
[S

N
R
K

(V
t)

]

GPT-small FineWeb-Edu Tok.Embd

init

Mitchell

PyTorch

10−4 10−3 10−2

Learning Rate

0.0

2.5

5.0

7.5

10.0

12.5

E t
[S

N
R
K

(V
t)

]

GPT-small FineWeb-Edu Pos.Embd

init

Mitchell

PyTorch

10−4 10−3 10−2

Learning Rate

0.0

2.5

5.0

7.5

10.0

12.5

E t
[S

N
R
K

(V
t)

]

GPT-small FineWeb-Edu Final.LN

init

Mitchell

PyTorch

Figure 30: The effect of initialization on the averaged SNR values of different layers of a GPT-small
model trained on the OpenWebText dataset. For each layer, we have selected the dimension K∗ with
the highest SNR. The shaded region around the mean trend shows the variation across depth. The
vertical dashed line at 3e-03 denotes the optimal learning rate for Mitchel initialization.

J ROBUSTNESS OF SlimAdam COMPRESSION RULES

This section analyzes the robustness of SlimAdam rules across datasets and model sizes. These
variations disappear when using the depth-averaged SNR.

0 10k 20k 30k 40k 50k
step

100

101

S
N

R
K

(V
)

Tok.Embd, K = (0, ), η =3e-03

nvocab

1024

2048

4096

8192

16384

32768

49152

65536

0 10k 20k 30k 40k 50k
step

10−3

10−2

10−1

100

S
N

R
K

(V
)

Tok.Embd, K = (1, ), η =3e-03

nvocab

1024

2048

4096

8192

16384

32768

49152

65536

0 10k 20k 30k 40k 50k
step

10−4

10−3

10−2

10−1

100

S
N

R
K

(V
)

Tok.Embd, K = (0, 1), η =3e-03

nvocab

1024

2048

4096

8192

16384

32768

49152

65536

0 10k 20k 30k 40k 50k
step

10−3

10−2

10−1

100

S
N

R
K

(V
)

LM.Head, K = (0, ), η =3e-03

nvocab

1024

2048

4096

8192

16384

32768

49152

65536

0 10k 20k 30k 40k 50k
step

100

S
N

R
K

(V
)

LM.Head, K = (1, ), η =3e-03

nvocab

1024

2048

4096

8192

16384

32768

49152

65536

0 10k 20k 30k 40k 50k
step

10−4

10−3

10−2

10−1

100

S
N

R
K

(V
)

LM.Head, K = (0, 1), η =3e-03

nvocab

1024

2048

4096

8192

16384

32768

49152

65536

Figure 31: SNR trajectories of the token embedding and linear head of the simplified two-layer model
with varying vocabulary sizes.

10−4 10−3 10−2 10−1

Learning rate

3.0

3.2

3.4

3.6

T
es

t
lo

ss

GPT-small FineWeb-Edu

Adam

SlimAdam

SlimAdam-mean

Figure 32: SlimAdam with compression rules derived from depth-averaged SNR per layer type
(SlimAdam-mean) achieves identical performance to SlimAdam with per-layer compression rules.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

J.1 DATASET DEPENDENCY OF SLIMADAM RULES

This section analyzes how SlimAdam’s compression rules vary across different datasets. We compare
rules derived from OpenWebText against FineWeb-Edu using GPT-small. The compression rules
remain largely consistent, with differences in only five matrices, primarily in early MLP layers, as
summarized in Table 4.

Table 4: Compression rule differences between datasets for GPT-small.

Layer OpenWebText FineWeb-Edu

Attention
Attn Query (L3) None fan-out

MLP
MLP Up (L0) fan-out None
MLP Up (L1) None fan-out
MLP Proj (L1) fan-out fan-in
MLP Proj (L2) fan-in fan-out

J.2 WIDTH DEPENDENCY OF SLIMADAM RULES

This section analyzes the robustness of SlimAdam’s compression rules across model widths (dmodel).
We compare the SNR-derived compression rules for GPT-small with embedding dimension dmodel =
768 against a narrower model (dmodel = 256. Out of all layer matrices, we observe differences in
compression rules for only 12 matrices, primarily in early to middle layers, as shown in Table 5.

Table 5: SlimAdam compression rule differences between narrow (width 256) and wide (width 768)
models.

Layer dmodel = 256 dmodel = 768

Attention Components
Attention Value (L0) fan-in fan-out
Attention Key (L2) fan-out fan-in
Attention Query (L2) fan-in fan-out
Attention Query (L3) fan-in None

MLP Components
MLP Up (L0) fan-in fan-out
MLP Up (L1) fan-out None
MLP Proj (L2) fan-out fan-in
MLP Up (L3) fan-in fan-out
MLP Up (L4) fan-in fan-out
MLP Proj (L4) fan-in fan-out
MLP Proj (L5) fan-in fan-out
MLP Up (L6) fan-in fan-out

The variations observed in Tables 4 and 5 can be eliminated by deriving compression rules using
depth-averaged SNR for each layer type. Figure 32 shows that compression rules derived from
depth-averaged SNR result in identical performance to SlimAdam with per-layer compression rules.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

K WEIGHT-SPACE DISTANCE BETWEEN SLIMADAM AND ADAM

Figure 33 shows that the normalized weight space distance between SlimAdam and Adam increases
during training, suggesting that they learn different solutions. We leave a comprehensive study on the
analysis and implication of this observation for future work.

0 1000 2000 3000 4000 5000
steps

0.0

0.1

0.2

0.3

0.4

0.5

Ad
am

Sl
im

Ad
am

2
Ad

am
2

Weight Space Distance b/w Adam and SlimAdam

Figure 33: Normalized weight space distance between Adam and SlimAdam increases with training.

L TRAINING TRAJECTORIES OF SLIMADAM

Recommended version: This section presents the training trajectories of loss and accuracy corre-
sponding to the results in Figure 9. Figures 34, 35, 36, and 37 show these trajectories for GPT
pre-training, LLaMA finetuning, ResNet, and ViT image classification, respectively.

0 2000 4000 6000 8000 10000
step

3.0

3.2

3.4

3.6

3.8

4.0

T
es

t
lo

ss

GPT-small FineWeb-Edu, LR=0.0006

Adam

Adalayer+LN+TL

SlimAdam-mean

SlimAdam

Adam-mini v1

Adam-mini v2

0 2000 4000 6000 8000 10000
step

3.0

3.2

3.4

3.6

3.8

4.0

T
es

t
lo

ss

GPT-small FineWeb-Edu, LR=0.006

Adam

Adalayer+LN+TL

SlimAdam-mean

SlimAdam

Adam-mini v1

Adam-mini v2

0 2000 4000 6000 8000 10000
step

3.0

3.2

3.4

3.6

3.8

4.0

T
es

t
lo

ss

GPT-small FineWeb-Edu, LR=0.01

Adam

Adalayer+LN+TL

SlimAdam-mean

SlimAdam

Adam-mini v1

Adam-mini v2

Figure 34: Loss trajectories for the GPT pre-training task corresponding to the results in Figure 9.

0 10000 20000 30000 40000
Step

1.5

2.0

2.5

T
ra

in
in

g
lo

ss
(m

ov
in

g
av

er
ag

e)

Llama-3.2-3B, Alpaca, η=1e-06

Adam

Adalayer+LN+TL

SlimAdam

0 10000 20000 30000 40000
Step

1.0

1.5

2.0

2.5

T
ra

in
in

g
lo

ss
(m

ov
in

g
av

er
ag

e)

Llama-3.2-3B, Alpaca, η=1e-05

Adam

Adalayer+LN+TL

SlimAdam

0 10000 20000 30000 40000
Step

0

2

4

6

8

T
ra

in
in

g
lo

ss
(m

ov
in

g
av

er
ag

e)

Llama-3.2-3B, Alpaca, η=0.0001

Adam

Adalayer+LN+TL

SlimAdam

Figure 35: Smoothed loss trajectories (last 100 steps) for the Llama finetuning task corresponding to
the results in Figure 9.

0 20000 40000 60000 80000 100000
Step

50

60

70

80

90

T
es

t
ac

cu
ra

cy

Resnet18 CIFAR-10 η=0.0001

Adam

Adalayer

SlimAdam

0 20000 40000 60000 80000 100000
Step

60

70

80

90

T
es

t
ac

cu
ra

cy

Resnet18 CIFAR-10 η=0.001

Adam

Adalayer

SlimAdam

0 20000 40000 60000 80000 100000
Step

70

80

90

T
es

t
ac

cu
ra

cy

Resnet18 CIFAR-10 η=0.01

Adam

Adalayer

SlimAdam

Figure 36: Accuracy trajectories for the ResNet classification task corresponding to the results in
Figure 9.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0 20000 40000 60000 80000 100000
Step

50

60

70

80

T
es

t
ac

cu
ra

cy

ViT-small CIFAR-10 η=0.0001

Adam

Adalayer+LN+TL

SlimAdam

0 20000 40000 60000 80000 100000
Step

50

60

70

80

90

T
es

t
ac

cu
ra

cy

Resnet18 CIFAR-10 η=0.0001

Adam

Adalayer

SlimAdam

0 20000 40000 60000 80000 100000
Step

30

40

50

60

70

80

T
es

t
ac

cu
ra

cy
ViT-small CIFAR-10 η=0.0003

Adam

Adalayer+LN+TL

SlimAdam

Figure 37: Accuracy trajectories for the ViT classification task corresponding to the results in Figure 9.

29


	Introduction
	Notations and Preliminaries
	SNR Analysis of Adam's Second Moments
	Compressibility in Diverse Training Tasks
	Language Pre-training
	Language Fine-tuning
	ResNet Image Classification
	ViT Image Classification

	Compressibility Trends Across Training Tasks

	Factors Influencing Compressibility
	Incompressibility under Heavy-Tailed Distributions
	Large Learning Rates reduce Compressibility
	Effect of Initialization on Compressibility

	Building A Low-Memory Adam Variant
	Discussion
	LLM Usage
	Detailed Comparison with Other Low-memory Optimizers
	Theoretical analysis of Signal-to-Noise Ratio
	The Connection Between SNR and Relative Compression Error
	The Connection Between SNR and Pre-conditioning
	SNR Analysis for Gaussian Gradients

	Experimental Details
	Language Pre-training
	Linear Model trained on WikiText
	Language Fine-tuning
	Image Classification
	Estimated Computational Resources

	The SlimAdam Optimizer
	SlimAdam Algorithm
	Effect of SNR cutoff and Proxy Model Learning Rate on SlimAdam Performance
	Additional Results for SlimAdam

	SNR Analysis of Diverse Training Tasks
	Language Pre-training
	Language Fine-tuning
	Image Classification

	Effect of Training Hyperparameters on Compressibility
	Large Learning Rates Reduce Compressibility
	Batch size with optimal 2 value has a nominal effect on compressibility

	Effect of Initialization on Compressibility
	Tailed Token Distribution Reduce Compressibility
	Robustness of SlimAdam Compression Rules
	Dataset Dependency of SlimAdam Rules
	Width Dependency of SlimAdam Rules

	Weight-space distance between SlimAdam and Adam
	Training Trajectories of SlimAdam

