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ABSTRACT

Goal-conditioned environments are known as sparse rewards tasks, in which the
agent gains a positive reward only when it achieves the goal. Such an setting re-
sults in much difficulty for the agent to explore successful trajectories. Hindsight
experience replay (HER) replaces the goal in failed experiences with any practi-
cally achieved one, so that the agent has a much higher chance to see successful
trajectories even if they are fake. Comprehensive results have demonstrated the
effectiveness of HER in the literature. However, the importance of the fake trajec-
tories differs in terms of exploration and exploitation, and it is usually inefficient
to learn with a fixed proportion of fake and original data as HER did. In this
paper, inspired by Bootstrapped DQN, we use multiple heads in DDPG and take
advantage of the diversity and uncertainty among multiple heads to improve the
data efficiency with relabeled goals. The method is referred to as Bootstrapped
HER (BHER). Specifically, in addition to the benefit from the Bootstrapped ver-
sion, we explicitly leverage the uncertainty measured by the variance of estimated
Q-values from multiple heads. A common knowledge is that higher uncertainty
will promote exploration and hence maximizing the uncertainty via a bonus term
will induce better performance in Q-learning. However, in this paper, we reveal
a counterintuitive fact that for hindsight experiences, exploiting lower uncertainty
data samples will significantly improve the performance. The explanation behind
this fact is that hindsight relabeling itself largely promotes exploration, and then
exploiting lower uncertainty data (whose goals are generated by hindsight rela-
beling) provides a good trade-off between exploration and exploitation, resulting
in further improved data efficiency. Comprehensive experiments demonstrate that
our method can achieve state-of-the-art results in many goal-conditioned tasks.

1 INTRODUCTION

Deep reinforcement learning (DRL) has gained significant achievements in solving games (Zha
et al., 2019; Crespo & Wichert, 2020; Oh et al., 2021) and robotics problems (Rahimi et al., 2018;
Nguyen & La, 2019; Zhu et al., 2021). Despite these successes, sparse rewards problems are still
challenging. In sparse reward tasks, the agent gets a non-negative reward only when it achieves
some goal. As a consequence, it is very difficult for an agent to see successful trajectories. Indeed,
many state-of-the-art RL algorithms, such as TRPO (Schulman et al., 2015), PPO (Schulman et al.,
2017), DQN (Mnih et al., 2015), and DDPG (Lillicrap et al., 2019), etc., often fail to perform well
in sparse rewards environments.

To solve sparse rewards problems, there have been rich literature devoted to reward engineering.
Potential Based Reward Shaping (PBRS) (Ng et al., 1999) uses difference between two potential
functions to design a shaping function, where the potential function comes from the expertise knowl-
edge and evaluates the value of state. Potential Based state-action Advice (PBA) (Wiewiora et al.,
2003) extend PBRS to use potential function to evaluates the value of state-action pair. Dynamic
Potential Based (DPB) (Devlin & Kudenko, 2012) approach takes time as one of the inputs of the
potential function. However, reward engineering usually requires domain-specific knowledge and it
often suffers from sub-optimal performance. A brilliant idea for solving goal-conditioned tasks is
using hindsight experiences. HER (Andrychowicz et al., 2017), which replaces the desired goal in
failed experiences with some achieved state in the failed trajectory to pretend that the agent obtains
a positive reward, has been demonstrated its effectiveness in a wide range of goal-conditioned appli-
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cations. However, HER has its own limitations that when relabeling the goal in one failed trajectory,
there exists many choices of the pseudo goals that any achieved state can be selected. Generally,
uniformly sampling one of them, as HER did, is not the most effective way from the perspective of
importance sampling.

In this paper, we focus on improving the data efficiency in HER via the following two directions:
1) inspired by Bootstrapped DQN (Osband et al., 2016), we propose a bootstrapped version of HER
that employs multiple Q-value heads to increase the diversity in choosing the pseudo goals for deep
exploration. In this paper, we use DDPG as the basic RL algorithm, while the proposed techniques
can be integrated by any off-the-shelf RL algorithms; 2) in addition to the benefit on exploration by
using the bootstrapped Q-learning, we further explicitly leverage the uncertainty among the multi-
ple heads by sampling goals conditioning on the variance of the estimated Q-values. Many previous
approaches have shown that data with higher value uncertainty can promote exploration, and max-
imizing the uncertainty by incorporating a bonus term in the reward has been widely considered,
such as bandit algorithms (Lattimore & Szepesvári, 2020). To our surprise, this is totally not the
case in HER. On the contrast, sampling goals with lower value uncertainty first is demonstrated
to be significantly better than uniform sampling, and sampling goals with high uncertainty in prior
deteriorates the performance of HER a lot. We thus call this empirical fact as counterintuitive prior-
itization. Indeed, this can be explained by the trade-off between exploration and exploitation when
importing HER, bootstrapped Q-learning and importance sampling. We refer our algorithm to as the
Bootstrapped HER with counterintuitive prioritization (BHER). We experiment with a number of
control tasks with continuous action space. The experimental results verify the superiority of BHER
over many state-of-the-art baseline methods.

2 RELATED WORK

Sparse rewards in goal-conditioned environment is one of the major challenges of RL at present.
The earlier work is UVF (Schaul et al., 2015) algorithm, which uses state and goal together as the
conditions for agent to take action. Bootstrapped DQN (Osband et al., 2016) uses the bootstrap
principle to expand network structure. It uses multiple randomized value functions to estimate the
Q-value of the state-action pair. This is equivalent to agent having multiple policies to interact with
the environment, which effectively enhances agent’s exploration. But these methods don’t work well
in the environment of sparse rewards. Hindsight Experience Replay (HER) (Andrychowicz et al.,
2017) algorithm recalculates reward by randomly replacing the desired goal in the failed transition
with the achieved goal. In this way, pseudo successful data can be obtained, which can improve data
efficiency. HER algorithm better solves the problem of sparse rewards.

Since then, there have been many studies related to HER algorithm. Dynamic Hindsight Experience
Replay (DHER) (Fang et al., 2019a) utilizes the HER algorithm to process dynamic goals in the
environment. Competitive Experience Replay (CER) (Liu et al., 2019) uses the competition between
two agents to obtain better exploration. Goal-Conditioned Supervised Learning (GCSL) (Ghosh
et al., 2020) is a kind of imitation learning. It uses successful trajectories generated by agent as
expert demonstrates, and use supervised learning to optimize a lower bound on the goal-oriented
RL objective. PlanGAN (Charlesworth & Montana, 2020) is a model-based RL algorithm that uses
GANs (Creswell et al., 2018) to learn the model of the environment and make planning. But this
method requires a huge amount of computation to select a single action.

Recently, researchers have realized that not all data have the same value to learn (Schulman et al.,
2017). More of the work is to further improve data efficiency by adding priority replay on HER
algorithm. Energy-Based HER (Zhao & Tresp, 2018) calculates the kinetic energy, potential energy
and rotational energy as the total energy of the achieved goal according to the energy principle
in physics. Then it gives higher priority to transitions with larger energy. Maximum Entropy-
based Prioritization (MEP) (Zhao et al., 2020) calculates the entropy of a trajectory which is used as
priority. Curriculum-guided HER (CHER) (Fang et al., 2019b) calculates the proximity and diversity
between the achieved goal and the desired goal by designing two functions, which are added together
with a weight to balance exploration and exploitation. These methods can be regarded as a form of
curriculum learning (Elman, 1993; Bengio et al., 2009; Zaremba & Sutskever, 2014; Graves et al.,
2017). But these algorithms either make some assumptions about the environment or design some
specific functions to calculate the priority. Unlike the above works, our BHER algorithm does not
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have any requirements on the environment when calculating the priority, and it is easy to generalize
to other goal-conditioned environments.

3 PRELIMINARIES

In this section, we introduce the preliminaries, such as the challenge of goal-conditioned environ-
ment, HER (Andrychowicz et al., 2017) and Bootstrapped DQN (Osband et al., 2016) which moti-
vate us to propose our BHER algorithm.

3.1 GOAL-CONDITIONED ENVIRONMENT

In RL, the problem considered is usually composed of an agent and an environment. At time step
t, the agent takes action at conditioned on the state st of the environment. After the environment
receives the action at, it transfers to the state st+1 and feeds back the reward rt. The agent learns a
policy π(a|s) to maximize expected discounted return:

G = Eτ

[
T−1∑
t=0

γtrt

]
, (1)

where τ is a trajectory (s0, a0, r0, ..., sT−1, aT−1, rT−1) and γ is the discount factor.

In goal-conditioned environment, the agent takes an action a by taking an additional input, i.e., a
goal g, and the policy is hence a function of (s, g) that a ∼ π(·|s, g). Generally, the rewards in
goal-conditioned environments are sparse, and only when the agent reaches the goal, it gets a non-
negative feedback. Therefore, it is difficult for the agent to explore successful trajectories when its
policy starts from scratch.

3.2 HER AND BOOTSTRAPPED DQN

HER replaces the desired goal g in the failed transition with some sampled achieved state g′ in the
current trajectory, and then recalculates the reward based on the pseudo goal g′. In this way, the
agent can see successful trajectories much more frequently, even if the goal is fake. It has been
demonstrated in rich literature that HER is very effective for solving goal-conditioned tasks and it
can be adopted by any off-policy algorithms, such as DQN (Mnih et al., 2015), DDPG (Lillicrap
et al., 2019), TD3 (Fujimoto et al., 2018), etc.

Bootstrapped DQN designs multiple value function heads which are initialized randomly in the
network structure of the DQN algorithm, and all heads share the underlying network. Each time
agent interacts with the environment, one of the value function heads is randomly selected as policy
to generate a trajectory. Each value function head is updated according to its own target network for
temporally extended exploration, and each value function head only uses data generated by itself for
updates. Bootstrapped DQN subtly applies the Thompson sampling (Russo et al., 2017) heuristic to
RL which allows for deep exploration.

4 METHODOLOGY

In this section, we introduce the bootstrapped version of HER with multiple Q-value heads and the
counterintuitive prioritization.

4.1 BOOTSTRAPPED HER

We use DDPG as the basic RL algorithm. In goal-conditioned tasks, the policy and Q-value take
both the state and goal as input. A bootstrapped version of DDPG is dipicted in Fig. 1, where
both the actor network and critic network are implemented with multiple heads. All critic heads
share an underlying embedding network, similar to what was used in Bootstrapped DQN (Osband
et al., 2016), and actor heads share an underlying network for feature extraction as well. Each actor
head is updated according to its corresponding critic head, for which its pseudo goals are sampled
independently and it is updated by according to its own recomputed rewards.
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Figure 1: The network structure of Bootstrapped HER.

As has been demonstrated in Bootstrapped DQN, random initialization of the parameters of each
head is sufficient to generate diversity for deep exploration. This is also verified in our experiments
for BHER. In this way, we can benefit a lot in terms of exploration with the cost of increasing only
a small amount of the network parameters from multiple heads, since they share a large proportion
of parameters in the embedding network.

In Appendix D, we provide an illustration of the distribution of goals the agent can arrive in a
toy environment by using multiple heads. Compared to the standard HER, we can verify that the
bootstrapped version of HER is much more efficient in terms of exploration.

4.2 COUNTERINTUITIVE PRIORITIZATION

As we have shown, employing multiple Q-value heads for HER can effectively promote explo-
ration, since each head is updated by sampling its own trajectories and pseudo goals. Moreover,
with multiple critic heads, it is natural to compute the variance among the estimated Q-values. In
this section, we propose to explicitly leverage this information. Specifically, given a transition, we
inference all the Q-values and calculate the variance, which is stored in the replay buffer. Then, at
the back-propagation stage, we sample the mini-batch conditioning on the stored variance. A com-
mon experience is that sampling the data with higher variance will further encourage exploration on
these transitions that the policy rarely see. Previous results (Pathak et al., 2017; Zhelo et al., 2018; Li
et al., 2020) have demonstrated this principle can result in much better performance in RL. However,
as we will explain below and verify in the experiments, this principle is never true for BHER.

To verify this, we use the Reacher environment (for more details, please refer to Appendix A) as a toy
example to visualize the variance of the Q-values stored in data. Fig. 2 shows that during the training
process at different training epochs, the variances of the hindsight transitions are consistently smaller
than the variances of the original transitions. This is explainable, because in hindsight transitions,
the agent always receives positive (pseudo) rewards, while for the original transitions without goal
relabeling, the agent fails to reach the goal at most of the time at the early training epochs, unless
the policy is good enough. Indeed, in Fig. 2(c), when we have trained over more training epochs,
the variance in the original transitions decrease. According to RL, the policy will be updated more
aggressively over the transitions whereas the values are higher. Therefore, the hindsight experiences
deserve a lower variance of the Q-values in BHER.

Now, it becomes straightforward that if we give high priority in sampling transitions with larger
Q-value variances, we are still sampling original transitions without goal relabeling. That is, we are
not performing HER any more. Therefore, we should assign higher priority to hindsight transitions
with smaller Q-value variances in the training process. That is, we enhance the exploitation on the
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(a) epoch=1

(b) epoch=10

(c) epoch=30

Figure 2: Variance of the Q-values estimated from multiple heads in BHER on Reacher. The left
side denotes the variances of the hindsight transitions (with modified goals) in the replay buffer,
while the right side plots the variances of the original transitions. In this illustration experiment, the
ratio of sampled original data is set to 50%, and another half of data is composed by the hindsight
samples (in the original work of HER, this ratio is set to 20% by default). This is to eliminate the
impact of data imbalance on evaluating the variances in the data. In our formal experiments, this
ratio keeps the value as the same in HER.

hindsight experiences by sampling these data more aggressively. So, we refer this sampling principle
to as Counterintuitive Prioritization.

Indeed, BHER with Counterintuitive Prioritization provides a trade-off between exploration and
exploitation that the bootstrapped Q-learning encourages deep exploration and more diversity, while
counterintuitive prioritization promotes exploitation in the data samples which are selected by the
bootstrapped progress and are worthy exploration. As we will demonstrate in our experiments on a
wide range of environemnts, the above methods can improve the standard HER method by a large
margin in performance.

4.3 BOOTSTRAPPED HER WITH COUNTERINTUITIVE PRIORITIZATION

In this section, we provide a detailed description of the proposed algorithm. In the following context,
the abbreviation BHER denotes the bootstrapped HER with counterintuitive prioritization by default.

Algorithm 1 Calculate Priority

1: Requirement: original buffer Bo and HER buffer Bh
2: while training is not ending do
3: Sample minibatch transitions Bo from Bo
4: Replace desired goals with achieved goals in transitions Bo with HER
5: Calculate variance of Q-value for each transition in Bo
6: Store transitions Bo in Bh with variances
7: Update priority for each transition in Bh (see Equation(2))
8: end while
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Similar to Bootstrapped DQN (Osband et al., 2016), in our implementation of BHER, all heads share
most of the parameters, and each head is updated according to its own target. However, an important
difference is that each head in Bootstrapped DQN has to maintain its own replay buffer to distinguish
the data (diversity) generated by different heads (policies), while in BHER this is not necessary.
Note that in BHER, most transitions are hindsight experiences, which are not exactly generated by
the training policies, so there is no need to distinguish which head generated the transitions, and all
the heads can share the same replay buffer.

To implement counterintuitive prioritization, we create two replay buffers. One replay buffer has
larger size and it stores the original interactions between the agent and the environment, and we
call it the original buffer Bo. Another one is a smaller buffer, which stores a proportion of sampled
hindsight and original data, and we call this buffer the HER buffer Bh. During training, we first
sample in the original buffer according to the original HER algorithm, replace the goals according
to a certain proportion, and then store them in the HER buffer. We then calculate the priority of each
transition t in the HER buffer according to the formula:

pt =

(
σ2
max − σ2

t + ε∑
σ∈Bh

(σ2
max − σ2 + ε)

)T
(2)

where σ2
t is the variance of Q-values of transition t, and σ2

max is the largest variance in the current
HER buffer; ε is a very small number for numerical stability, and we set it to 1e−6 in our experiments;
T is a temperature coefficient used to adjust the sharpness of the priority distribution in the HER
buffer. Then, the transitions in the HER buffer are sampled according to the calculated priority.
Algorithm 1 briefly illustrates the implementation of priority calculation process in our algorithm.

For data generation, each time we use all the actor heads to generate multiple trajectories and store
them in the original buffer to ensure the diversity of the original data. When sampling data in the
original buffer, we use the ‘future’ method in the HER algorithm, and set replay times to 4. That is,
20% of the data in the HER buffer is original data. Algorithm 2 briefly illustrates the implementation
of our algorithm. In our experiments, we set the number of heads to 8, which is sufficient to allow
the agent explore well. The detailed settings of other hyperparameters are reported in Section 5.3.

Algorithm 2 Bootstrapped Hindsight Experience replay with Counterintuitive Prioritization

1: Initiate: an off-policy RL Algorithm A, original buffer Bo and HER buffer Bh
2: for training epoch = 0, 1, 2, · · · ,M − 1 do
3: for cycle i = 0, 1, · · · , N − 1 do
4: for head k = 0, 1, · · · ,K − 1 do
5: Sample an initial goal g as desired goal and initial state so
6: for timestep t = 0, 1, · · · , T − 1 do
7: Task an action at from the behavioral policy of A, i.e., at ∼ πk(·|st, g)
8: Observe a new state st+1 and achieved goal g′t
9: Calculate reward rt := r(st, at, g)

10: Store the transition (st, at, rt, g, g
′
t) in Bo

11: end for
12: end for
13: Sample transitions Bo from Bo and store them in Bh by Algorithm 1, i.e.,
14: for head k = 0, 1, · · · ,K − 1 do
15: Sample a minibatch transitions Bh according to priority in Bh
16: Optimize k-th head of A using minibatch transitions Bh
17: end for
18: end for
19: Evaluate the average performance of all heads through 100 rollouts
20: end for

5 EXPERIMENT

We use a number of goal-reaching and robotics control environments to evaluate our BHER al-
gorithm and compare with state-of-the-art baselines. We first introduce the environment and our
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(a) Point2DLargeEnv (b) Reacher (c) FetchReach (d) SawyerReach

(e) SawyerDoor (f) HandReach (g) HandManipulatePen

Figure 3: Environment.

comparison results. In the end, we adjust and compare our own algorithms and show the results of
ablation experiments.

5.1 ENVIRONMENTS

Fig. 3 shows the goal-conditioned environments we have evaluated in our experiment. Goal-reaching
environments include Point2DLargeEnv, Reacher, FetchReach and SawyerReach, and robotics con-
trol tasks include SawyerDoor, HandReach and HandManipulatePen. The state space and action
space of all environments are continuous, and the reward is sparse and non-negative. Only when
agent reaches desired goal, it gets a reward of 0, otherwise it receives a reward of −1. The max-
imum number of steps in each environment is set to 50. For a more detailed description of the
environments, please refer to Appendix A.

5.2 BASELINES

The implementation of all algorithms is based on the DDPG algorithm. We compare our algorithm
with the following state-of-the-art HER based methods:

• HER (Andrychowicz et al., 2017), which does not use prioritization and randomly samples
transitions.

• HEREBP (Zhao & Tresp, 2018), which calculates the energy of transitions and use it as the
sample priority.

• CHER (Fang et al., 2019b), which calculates the proximity and diversity of transitions as
the sample priority.

We compare our algorithms with these baselines which are implemented by their open-sourced codes
in all the environments described above.

5.3 COMPARISON RESULTS ON ALL ENVIRONMENTS

The common hyperparameters of all algorithms are set as the same. When we experiment in the
goal-reaching environments, we set the epoch to 30 and the batch size to 64. In the robotics control
tasks, the epoch is set to 100 and the batch size is 256. We do not use MPI to parallelize the
program on multiple workers. In order to ensure that all algorithms have the same amount of data
during training, our algorithm uses 8 heads to generate multiple trajectories each time, while other
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(a) Point2DLargeEnv (b) Reacher (c) FetchReach (d) SawyerReach

(e) SawyerDoor (f) HandReach (g) HandManipulatePen

Figure 4: Performance for allenvironments: success rate (line) with standard deviation range (shaded
area) on all environments acorss 10 random seeds.

algorithms use DummyVecEnv to run 8 environments in parallel. After each epoch, we perform 100
rollouts for evaluation, and calculate the average success rate of the 100 rollouts. In our algorithm,
each head generates a trajectory during each rollout progress when evaluation.

Fig. 4 shows the comparison results of all algorithms. For each algorithm, we use 10 random seeds
to repeat the training and testing and plot the mean curve and the standard derivation confidence.
It can be observed that our algorithm outperforms all other baselines. In some environments, the
performance of HEREBP and CHER is not as good as HER, which may be because the method of
calculating priority in these two algorithms is not suitable for the current environment. For example,
in SawyerDoor environment, the goal has no potential energy or rotational energy, and HEREBP
algorithm can only use kinetic energy as the priority of transition.

For BHER, we fine tune different temperature coefficients in calculating the priority for each en-
vironment in our algorithm, as shown in Appendix B. This hyperparameter can slightly adjust the
performance of our algorithm. We choose the best temperature coefficient for each environment for
BHER algorithm.

5.4 ABLATION EXPERIMENTS RESULTS

We conducted ablation experiments to confirm the effectiveness of counterintuitive prioritization.
Section 4.2 illustrates that counterintuitive priority replay method (giving higher priority to smaller
variances of Q-value) can improve the exploitation of algorithm. Here we compare it with a variant
of our BHER algorithm that only uses Bootstrapped DDPG and do not use counterintuitive prioriti-
zation, referred to as BHER w/o prioritization. In addition, we also compared the way of prioritizing
transitions based on higher variance of Q-value which we call BHER w/ higher variance first.

The result in Fig. 5 verifies the effectiveness of counterintuitive prioritization. It improves the ex-
ploitation of algorithm by prioritizing transitions with small variance of the Q-value, and further
improves data efficiency.
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(a) Point2DLargeEnv (b) Reacher (c) FetchReach (d) SawyerReach

(e) SawyerDoor (f) HandReach (g) HandManipulatePen

Figure 5: Ablation experiments: success rate (line) with standard deviation range (shaded area) on
all environments acorss 10 random seeds.

We also conducted an experimental comparison on the adjustment of the priority temperature co-
efficient. Appendix B shows the results. It can be seen that different environments have different
optimal priority temperature coefficients.

In addition, Section 4.2 illustrates that the variances of the hindsight transitions are smaller than
the variances of the original transitions, and we give higher priority in transitions with smaller vari-
ance. In this way, hindsight transitions have a higher probability of being sampled by the algorithm.
Intuitively, we will think about the impact of not using original data on the performance of our al-
gorithm. To see this, we conduct ablation experiments to evaluate the influence of the usage of the
original data. We show our ablation experimental results in Appendix C. It illustrates that in some
simple environments, the usage of original data has little effect on our algorithm. But in more com-
plex environments, original data is necessary. The ratio of the original data is not the focus of our
algorithm, we just set it to 20% according to the original HER algorithm.

6 CONCLUSION

The main contributions of the BHER algorithm we proposed are as follows: 1) The way we use
the bootstrapped principle to design the network has greatly improved HER algorithm’s exploration
in environment of sparse rewards. And when we update the network, we do not distinguish the
source of the data, which greatly improves the sample efficiency. 2) We designed a counterintuitive
prioritized replay method to improve the exploitation of algorithms, which provides a new criterion
for priority replay in RL. And our priority calculation method will not vary depending on the envi-
ronment, which makes our algorithm have better generalization. 3) We combined the bootstrapped
principle and counterintuitive prioritization, which makes a excellent trade-off between exploration
and exploitation in RL. 4) Whether in a simple goal-reaching environment or a difficult robotics
controll environment, our algorithm has achieved state-of-the-art preformance. 5) Our algorithm
does not have any assumptions or requirements on the environment, and can be easily extended to
any goal-conditioned environment.
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REPRODUCIBILITY

We provide a Reproducibility Statement below. For the algorithms, we have attached the main codes
of BHER in the submitted .zip supplementary material.
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APPENDIX

A ENVIRONMENTS

Fig. 3(a) 3(b) 3(c) 3(e) shows the goal-reaching environment we have used, including four environ-
ments: Point2DLargeEnv, Reacher, FetchReach and SawyerReach. Point2DLargeEnv is a point-
based environment, in which the blue point aims to reach the green circle. The blue point can reach
any position in the environment. The state and goal of this environment are both 2-dimensional vec-
tors, which respectively represent the position of the blue point and the green circle, and the action
is also a 2-dimensional vector, which represents the moving distance of the green circle each time.
In Reacher, a 2-DoF (degrees of freedom) robotic arm whose task is to reach a particular target
in the field. Its state is an 11-dimensional vector, which contains the angle of the two joints and
the position of the fingertip relative to the target, and goal is a 2-dimensional vector that represents
the position of the target, and action is also a 2-dimensional vector, representing the movement of
two joints. FetchReach and SawyerReach are two very similar environments. Both have a 7-DoF
robotic arm pushing a box until it reaches the target position. In FetchReach, robotics arm has a
two-fingered parallel gripper. The action is a 3-dimensional vector representing the desired gripper’
movement. The goal is a 3-dimensional vector describing the position of the target and the achieved
goal is the position of the gripper. In SawyerReach, the arm’s end-effector (EE) is constrained to a
2-dimensional rectangle parallel to a table and constrained to only move in the 2-dimensional plane.
The action controls EE position through the use of a mocap. The state is the 2-dimensional position
of the EE and the goal is an 2-dimensional position of the EE.

Fig. 3(e) 3(f) 3(g) shows the robotics controll environment we have used, including three environ-
ments: SawyerDoor, HandReach and HandManipulatePenRotate. In SawyerDoor, these is a robotics
arm which aims to open a small cabinet door, initially shut closed, sitting on a table to a specified
angle. The state is a 4-dimensional vector consisting of the Cartesian coordinates of the arm’s end-
effector and the door’s angle. The action is a 3-dimensional vector controlling the position of the
end-effector. The goal is the desired angle at which the door is opened. Hand environments has a 24-
DoF anthropomorphic robotic hand, whose 20 joints can be can be controlled independently whereas
the remaining ones are coupled joints (Plappert et al., 2018). So the action is a 20-dimensional vec-
tor containing the absolute position control for all non-coupled joints of the hand. In HandReach,
the goal is 15-dimensional vector and contains the target Cartesian position of each fingertip of the
hand and is considered achieved if the mean distance between fingertips and their desired position
is less than 1 cm. In HandManipulatePenRotate, a pen is placed on the palm of the hand. The task
is to then manipulate the pen such that a target pose is achieved. The goal is a 7-dimensional vector
including the target position in Cartesian coordinates and target rotation in quaternions. We use the
rotate mode which includes the target rotation x and y axes of the pen and without target rotation
around the z axis or target position.

B OPTIMAL PRIORITY TEMPERATURE COEFFICIENTS

We evaluate the impact of different priority temperature coefficients on our BHER algorithm.

Table 1: Priority Temperature Coefficients

Point2DLargeEnv Reacher FetchReach SawyerReach

9.0 9.0 9.0 7.0

HandManipulatePenRotate HandReach SawyerDoor

7.0 7.0 1.0
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(a) Point2DLargeEnv (b) Reacher (c) FetchReach (d) SawyerReach

(e) SawyerDoor (f) HandReach (g) HandManipulatePen

Figure 6: Performance of BHER with different priority temperature coefficient.

We experimented with five priority temperature coefficients of {1.0, 3.0, 5.0, 7.0, 9.0} in all envi-
ronments. Fig. 6 shows the results of our comparative experiment. It can be seen that different
environments have different optimal priority temperature coefficients. We select an optimal priority
temperature coefficient for each environment, as shown in the Table 1.

C ABLATION EXPERIMENT FOR ORIGINAL DATA

Section 4.2 shows that hindsight transitions have smaller variance, and learning small variance tran-
sitions is more conducive to improving the exploitation of agent. In other words, it is better to let
the agent learn the hindsight transitions first.

Therefore, we design an ablation experiment to evaluate the influence of the original data on our
algorithm. We modify our algorithm to not use the original data which we call BHER w/o original
data. Fig. 6 shows that in some relatively simple environments, such as Point2DLargeEnv and
FetchReach, not using original data has little effect on the performance of our algorithm. However,
in other more complex environments, original data will seriously affect the performance of our
algorithm. The ratio of the original data is not the focus of our paper, we set this ratio just like HER
algorithm.

(a) Point2DLargeEnv (b) Reacher (c) FetchReach (d) SawyerReach
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(e) SawyerDoor (f) HandReach (g) HandManipulatePen

Figure 6: Ablation experiments results for original data.

We also evaluate the intuitive priority replay (higher priority for higher variance) without using the
original data which we call BHER w/o original data w/ higher variance first. We don’t evaluate this
setting in all environments, because we think these results can already prove our method. Fig. 7
shows that even under the setting that does not use the original data, the counterintuitive priority
replay method has better performance. This also illustrates the effectiveness of our counterintuitive
prioritization, which improves the exploitation of agent.

(i) Point2DLargeEnv (j) Reacher (k) FetchReach (l) SawyerReach

Figure 7: Ablation experiments results for original data and higher variance first.

D TRADE-OFF OF EXPLORATION AND EXPLOITATION IN TOY ENVIRONMENT

We use Reacher (for details, see Appendix A) as the toy environment to illustrate the trade-off
between exploration and exploitation in our BHER algorithm. Fig. 8(a) and 8(b) shows that agent

(a) HER
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(b) BHER w/o prioritization

(c) BHER

Figure 7: Distribution of the goals in Reacher. (BHER w/o prioritization only uses bootstrap princi-
ple on the basis of HER, but does not use any priority replay)

can explore more goals in a shorter period of time. This shows that bootstrap principle has improved
the agent’s exploration. Fig. 8(b) and 8(c) illustrates that we can make the agent preferentially select
more valuable goals to learn by using counterintuitive prioritization. This effectively improves the
exploitation of agent, which thus learns the optimal strategy faster.
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