
Under review as a conference paper at ICLR 2023

CURIOSITY-DRIVEN UNSUPERVISED DATA COLLEC-
TION FOR OFFLINE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In offline reinforcement learning (RL), while the majority of efforts are focusing
on engineering sophisticated learning algorithms given a fixed dataset, very few
works have been carried out to improve the dataset quality itself. More impor-
tantly, it is even challenging to collect a task-agnostic dataset such that the offline
RL agent can learn multiple skills from it. In this paper, we propose a Curiosity-
driven Unsupervised Data Collection (CUDC) method to improve the data collec-
tion process. Specifically, we quantify the agent’s internal belief to estimate the
probability of the k-step future states being reachable from the current states. Dif-
ferent from existing approaches that implicitly assume limited feature space with
a fixed temporal distance between current and next states, CUDC is capable of
adapting how many steps into the future that the dynamics model should predict.
Thus, the feature representation can be diversified with the dynamics information.
With this adaptive reachability mechanism in place, the agent can navigate itself to
collect higher-quality data with curiosity. Empirically, CUDC surpasses existing
unsupervised methods in sample efficiency and learning performance in various
downstream offline RL tasks of the DeepMind control suite.

1 INTRODUCTION

Deep reinforcement learning has demonstrated remarkable breakthroughs in games, robotics, and
navigation in complex environments (Kiran et al., 2021; Singh et al., 2022; Sun et al., 2022a). For
online RL, agents constantly update the policy to acquire different skills through active interactions
with the environments. However, online RL is impractical in many real-world environments as
direct interactions with the environments might be expensive or dangerous (Kiran et al., 2021; Singh
et al., 2022). In recent years, offline RL has become a promising research area to cope with limited
interactions, where agents learn a policy exclusively from previously-collected experiences stored
in a fixed dataset (Levine et al., 2020; Kostrikov et al., 2021; Fujimoto & Gu, 2021).

In view of the growing popularity of offline RL, the majority of current research focuses on model-
centric practices by successively developing new algorithms (Kumar et al., 2020; Janner et al., 2021;
Matsushima et al., 2021; Emmons et al., 2022; Kumar et al., 2022). Despite the rapid progress in
these algorithmic advances, their performances are inevitably limited by the quality of the pre-
collected dataset itself. Recently, the concept of data-centric approaches has become critical in the
machine learning community, emphasizing the importance of improving the training data quality
over algorithmic advances (Ng, 2021; Motamedi et al., 2021; Patel et al., 2022). Motivated by this,
the offline RL research community attempts to eye on ways of engineering the training data (Pru-
dencio et al., 2022). To focus on more useful data, one solution is to exploit the sample importance
with sampling (Zhang et al., 2020) or re-weighting (Wu et al., 2021). Different from this approach,
we aim to collect a higher-quality dataset that can be directly used for offline RL agents.

More importantly, it is even more desirable yet challenging to collect a task-agnostic dataset such
that offline RL agents are able to extract effective policies for multiple downstream tasks. To analyze
and understand these challenges, ExORL (Yarats et al., 2022) empirically shows that unsupervised
RL methods are superior to supervised methods to collect the exploratory data that allows even
vanilla off-policy RL algorithms to effectively learn offline and acquire different skills. Nevertheless,
these existing methods pre-define a fixed temporal distance between current states and future states
to train the models, which implicitly limits the diversity in the learned feature representation.
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As we observe that fixing the temporal distance between current and future states may limit the
feature space and result in low-quality dataset, it is desired to enhance feature representation by ex-
ploiting the reachability from current state to more distant future states. Although existing works of
reachability analysis have been introduced in RL (Savinov et al., 2019; Péré et al., 2018; Ivanovic
et al., 2019; Yu et al., 2022), these approaches are however not directly applicable. For example,
Savinov et al. (2019) only considers the reachability in a binary case, and it requires extensive com-
parisons to the stored embeddings in memory. Moreover, the reachability in goal space exploration
requires kernel density estimation, increasing the computational cost substantially. Different from
these approaches, we propose a Curiosity-driven Unsupervised Data Collection (CUDC) method
with a novel reachability module. Inspired by the fact that human curiosity can enhance the learn-
ing process by motivating human beings on the novel knowledge that is beyond ones’ perception
(Rossing & Long, 1981; Markey & Loewenstein, 2014; Sun et al., 2022b), CUDC facilitates the
agent to collect a dataset curiously without any task-specific reward. In particular, we define the
reachability module to characterize the probability of a k-step future state being reachable from the
current state, with no episodic memory or feature space density modeling required. This module
allows the agent to automatically determine how many steps into the future that the dynamics model
should predict, where the learned feature representation can be incorporated with the information of
dynamics. Compared with the existing unsupervised methods, it avoids relying on the fixed feature
space by gradually expanding to more distant future states. With the enhanced representation learn-
ing, a mixed intrinsic reward encourages curious exploration towards more meaningful state-action
space as well as the under-learned states. As a result, the collected dataset can lead to improved
sample efficiency and better performances in downstream offline RL tasks.

Our contributions can be summarized as follows. 1) We are the first to introduce reachability for
improving data collection in offline RL, which is defined in a more efficient way and can enable
the agent to navigate curiosity-driven learning coherently. 2) We empirically show that adapting the
number of steps between current and future states to perform increasingly challenging prediction can
enhance feature representation with information of the dynamics, thereby improving the collected
dataset quality. 3) With the learned state and action representations, CUDC additionally incentivizes
the agent to explore diverse state-action space as well as the under-learned states with high prediction
errors through a mixed intrinsic reward and regularization. 4) Under the ExORL (Yarats et al., 2022)
setting, CUDC outperforms the other unsupervised methods to collect the dataset that can be learned
offline in multiple downstream tasks of the DeepMind control suite (Tassa et al., 2018).

2 RELATED WORKS

Reachability in RL Savinov et al. (2019) constructed a reachability network to estimate how
many environment steps to take for reaching a particular state. It intrinsically rewards the agent to
explore the state that is unreachable i.e., takes more than a fixed threshold step, from other states
in memory. However, it only takes the binary case of reachability into consideration and is quite
inefficient when comparing the similarity with all stored states in memory. In the goal exploration
tasks, Péré et al. (2018) defined the reachability of a goal with an estimated density and proposed
to sample increasingly difficult goals to reach during exploration. Although the goal space can be
learned in an unsupervised manner other than in a specifically engineered way, its sampling process
requires a kernel density estimator, increasing the computational cost substantially. Following the
similar idea, BARC (Ivanovic et al., 2019) adapts the initial state distribution gradually from easy-
to-reach to challenging-to-reach goals. As a result, agents can perform well even in a hard robotic
control task. Recently, RCRL (Yu et al., 2022) has shown that leveraging reachability analysis (Hsu
et al., 2021) can help learn an optimal safe policy by expanding the limited conservative feasible set
to the largest feasible set of the state space.

Curiosity-Driven RL Curiosity-driven RL intrinsically encourages agents to explore the task en-
vironment in a human-like way, which is of vital importance when the task-specific rewards are
sparse or absent (Aubret et al., 2019; Sun et al., 2022b). The main type of curiosity-driven RL is
to incorporate an intrinsic reward that self-motivates agents to explore based on various aspects of
the state, such as novelty (Bellemare et al., 2016), entropy (Seo et al., 2021; Liu & Abbeel, 2021b),
reachability (Savinov et al., 2019), prediction errors (Pathak et al., 2017; Berseth et al., 2020), com-
plexity (Campero et al., 2020), and uncertainty (Pathak et al., 2019; Sekar et al., 2020; Li et al.,
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2021). Another type of curiosity-driven RL is to prioritize the experience replay towards under-
explored states (Schaul et al., 2016; Zhao & Tresp, 2019; Brittain et al., 2019; Jiang et al., 2021).
However, the curiosity mechanism can be further exploited and introduced into other components of
RL for exploration, as shown in CCLF (Sun et al., 2022a). Therefore, we propose to curiously adapt
the temporal distance to explore more distant future states, enhancing the learned representation
space with dynamics information. Meanwhile, our method regularizes the Q-learning by assigning
the importance weights through a curiosity weight to focus more on under-learned tuples.

Unsupervised Data Collection ExORL (Yarats et al., 2022) evaluates 9 unsupervised data col-
lection algorithms, demonstrating a superior capability over supervised methods for multi-task of-
fline learning. In particular, knowledge-driven models of ICM (Pathak et al., 2017), Disagreement
(Pathak et al., 2019), and RND (Burda et al., 2019) encourage agents to explore by maximizing
the prediction errors of the states. Data-driven models of APT (Liu & Abbeel, 2021b) and ProtoRL
(Yarats et al., 2021) incentivize to uniformly explore the entire state space. By leveraging some prior
information, competence-based models of DIAYN (Eysenbach et al., 2019), SMM (Lee et al., 2019)
and APS (Liu & Abbeel, 2021a) encourage agents to learn diverse skills. However, all these meth-
ods are not tailored for data collection; instead, they were originally proposed for online pretraining
and fine-turning at task learning process as evaluated in the URLB benchmark (Laskin et al., 2021).
Moreover, their feature space is limited by relying on a fixed temporal distance k between the cur-
rent state and future state for model training. Concurrently, Explore2Offline (Lambert et al., 2022)
leverages the intrinsic model predictive control to simulate trajectories and their resulting predicted
intrinsic rewards, but it does not consider the sample importance while updating the policy.

3 CURIOSITY-DRIVEN UNSUPERVISED DATA COLLECTION (CUDC)

3.1 PROBLEM SETTING

We consider the problem of multi-task offline learning with three main steps of data collection,
reward relabeling, and downstream offline learning as described in both ExORL(Yarats et al., 2022)
and Explore2Offline (Lambert et al., 2022). In the data collection phase, the exploratory agent
(data collector) has the access to a Markov Decision Process (MDP) environment with a state of
the environment s ∈ S, an action a ∈ A based on a policy π(s), a transition probability p(s′|s, a)
mapping from the current state s and action a to the next state s′, a reward r, and a discount factor
γ ∈ [0, 1) weighting future rewards. In particular, the exploratory agent online interacts with the
environment and stores the unlabeled tuples (s, a, s′) in the dataset D. The second phase is to relabel
the collected dataset D using the given reward function about the downstream task r(s, a) for each
tuple. It transfers information from task-agnostic exploration to downstream tasks. The last step
is to perform multiple downstream tasks with an offline RL agent on the labeled dataset. In this
paper, we focus on the most challenging part of this problem setting, which is the task-agnostic data
collection and we evaluate the quality of the collected dataset in multiple downstream tasks.
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Figure 1: Curiosity-driven Unsupervised Data Collection (CUDC): The diagram on the left illustrates the
framework of CUDC. A batch of transition tuples is sampled from the accumulated dataset, and then the
reachability between the k-step future and current states is measured by agent’s internal belief. The reachability
module outputs the mixed intrinsic reward to encourage diverse exploration. Meanwhile, it also outputs a
curiosity weight to adapt the temporal distance and regularize the backbone RL. Therefore, the agent can
collect new data until the capacity is reached. The diagram on the right shows how the agent measures and
updates its internal belief on the probability of the k-step future states being reachable from the current states.
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3.2 FRAMEWORK OVERVIEW

In this section, we propose a Curiosity-driven Unsupervised Data Collection (CUDC) method,
which employs DDPG (Lillicrap et al., 2015) as the base RL algorithm for the exploratory agent. As
shown in Figure 1 (right), a novel reachability module is constructed to measure the probability of a
k-step future state being reachable from the current state. With this module in place, the exploratory
agent is encouraged to diversely explore by a mixed intrinsic reward, and meanwhile regularize the
critic-actor update to focus more on under-learned tuples. Most importantly, the temporal distance
of k-step between current and future states is adaptively increased to incorporate the dynamics infor-
mation in the learned feature representation. As a result, the exploration and data collection become
more diverse. More details are listed in Algorithm 1.

3.3 THE REACHABILITY MODULE

In ExORL(Yarats et al., 2022), the existing unsupervised methods assume the limited feature space
by implicitly fixing the temporal distance k between current and future states to train the model. To
diversity the feature representation, a natural choice is to employ the reachability analysis that can
adjust k during exploration. However, the existing implementations of reachability are not desired
due to the limited capability by binary classification of reachable states (Savinov et al., 2019), or
costly density estimation of goal space (Péré et al., 2018). As these approaches are not practical
in the offline RL setting, we define the reachability in CUDC by the self-supervised estimation on
the probability of a k-step future state sti+k being reachable from the current state sti , with no
expensive density estimation or manual labelling required. As a result, the proposed method can
enhance feature representation when expanding the feature space through an adaptive k-step. In
fact, this motivation has been shown effective in the other works of reachability, such as constrained
RL (Yu et al., 2022) and robotics (Ivanovic et al., 2019).

Given a batch of unlabeled tuples (sti , ati , sti+k, k)
n
i=1, we first encode the state features zsti =

ϕs(sti), zsti+k
= ϕs(sti+k) and action feature zati

= ϕa(ati) with a state encoder ϕs(·) and an
action encoder ϕa(·), and perform the one-hot encoding for the temporal distance k. To facilitate
the reachability analysis, a forward dynamic network ẑsti+k

= fs(zsti , zati
, k; θs) is constructed,

which takes the inputs of zsti , zati
, and the encoded k to predict the future state feature ẑsti+k

, fully
exploiting the information of dynamics. It can be updated by an l2 norm loss of ||zsti+k

− ẑsti+k
||2.

In addition, we want to enforce ẑsti+k
to match with its own zsti+k

as much as possible, while keep-
ing apart from the other future states within the same batch. This contrastive intuition is that each
future state should be most reachable from its own current state, which can quantify the reachabil-
ity in a simple and efficient way. In fact, the self-supervised contrastive learning has been recently
introduced in RL and is shown to be capable of learning rich representation with more semantic
latents (Srinivas et al., 2020; Liu & Abbeel, 2021b). Following this intuition, we can estimate the
probability of sti+k being reachable from sti by

li =
exp(h(ẑsti+k

)TWh̄(z̄sti+k
))

exp(h(ẑsti+k
)TWh̄(z̄sti+k

)) +
∑n

j=1,j ̸=i exp(h(ẑsti+k
)TWh̄(z̄stj+k

))
(1)

where n is the batch size, h(·) is a deterministic projection function, W is a hidden weight to
compute the similarity between the two projections, and h̄(·) as well as z̄(·) are respectively the
momentum-based moving average of the projection and state feature to ensure consistency and sta-
bility (He et al., 2020). In this way, this reachability network can be updated by the contrastive loss
of Lreach = −

∑n
i=1 log li in a self-supervised way without maunal labeling.

To further improve the representation learning, the reachability module also includes two inverse
models for predicting action feature ẑati

and temporal distance k̂. Similar to ICM (Pathak et al.,
2017) and Disagreement (Pathak et al., 2019), we define ẑati

= fa(zsti , zsti+k
, k; θa) with a back-

ward loss of ||zati
− ẑati

||2, which ensures the encoded features are robust to environment variations
that are uncontrollable by the agent. For the inverse model of the k-step, k̂ = fk(zsti , zsti+k

; θk)

characterizes the prediction with a distribution P(k). It is updated through a cross-entropy loss,
which enables the encoders to capture the dynamics information in the encoded features.
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The agent can therefore update its internal belief in a self-supervised manner without any expensive
labeling process compared to supervised learning. More importantly, we can allow the temporal
distance of k-step to adapt during learning, rather than relying on a fixed hyperparameter in many
existing unsupervised methods. It is of vital importance as the feature representations of both states
and actions become more informative and robust when adjusting the temporal distance of k-step.
Meanwhile, this module is also capable of computing a curiosity weight wi for each tuple i as

wi = 1− li ∈ [0, 1]. (2)

Intuitively, a large value of wi means that the agent mistakenly believes the true future state is
unreachable from the current state, which induces high curiosity due to the conflict with agent’s
current internal belief. It further indicates that this under-learned transition tuple contains novel
information, and the encoders are not capable of extracting meaningful features yet. With this
reachability module in place, we can enable the agent to perform the task-agnostic dataset collection
in a curious manner. Detailed curiosity-driven learning is illustrated in the next subsection.

3.4 CURIOSITY-DRIVEN LEARNING

It should be noted that reachability in previous works is only incorporated as an intrinsic reward to
encourage diverse exploration. In contrast, our proposed CUDC extends the reachability to more
stages of learning. Firstly, it adapts the temporal distance, i.e. k-step to explore, enhancing feature
representation with the dynamics information of more distant future states. Secondly, it incorporates
a mixed intrinsic reward to encourage effective exploration with the expanded feature space. Lastly,
it regularizes the critic-actor update for the DDPG algorithm by utilizing the curiosity weights to
focus more on under-learned tuples. Different from the 8 existing methods evaluated in ExORL that
only utilize intrinsic rewards as curiosity, our CUDC extends curiosity-driven learning to different
RL components, improving the data collection process coherently.

3.4.1 ENHANCE FEATURE REPRESENTATION WITH ADAPTIVE k-STEP

It is worth noting that all 8 methods discussed in ExORL limit the autonomy of feature space by
expecting the agent to reach the future states in exactly 3 steps. Recent works on online pre-training
RL such as SPR (Schwarzer et al., 2020) and SGI (Schwarzer et al., 2021) predict agent’s own latent
state representations multiple steps into the future, addressing the challenge of sample efficiency.
However, this approach requires iterative predictions by calling the forward dynamic network for k
times. In contrast, CUDC can automatically adjust the temporal distance k to directly perform the
k-step future state estimation in the proposed reachability module, without increasing the computa-
tional complexity substantially. To expand the feature space by leveraging the dynamics information,
our main idea is to keep the reachability estimation increasingly challenging with an adaptive k-step.

In particular, we adaptively adjust the k by encouraging curiosity, i.e., k is increased by 1 if the
agent is not curious enough for the current reachability analysis. For this purpose, we set a threshold
Cw for low curiosity and a threshold Ck for the proportion of tuples with low curiosity. Thus, the
agent will adapt k when

∑n
i 1[wi<Cw]

n > Ck. The intuition is that the agent should be encouraged
to explore further based on the reachability, when they are no longer curious about the majority of
tuples within the same batch. As a result, the feature representation can be enhanced by learning
the dynamics of more distant future states. With the expanded feature space, the data collection is
performed towards more informative and diverse features. It should be noted that there are many
possible ways to vary the k-step such as by sampling from a probabilistic distribution. For this
reason, an ablation study is also conducted to validate the effectiveness of the proposed curiosity-
driven method, compared to other sampling-based methods.

3.4.2 INCORPORATE A MIXED INTRINSIC REWARD

CUDC employs a mixed intrinsic reward of state-action entropy and prediction error of future states.
On one hand, the existing methods of APT (Liu & Abbeel, 2021b) and RE3 (Seo et al., 2021) have
shown that agents can be encouraged to explore the state space more uniformly, by utilizing the
particle-based k-nearest neighbors state entropy as an intrinsic reward. This is consistent with the
entropy maximization principle (Beirlant et al., 1997; Singh et al., 2003). However, we believe that
the agent should diversely explore not only the state space, but also the action space. Therefore,
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Algorithm 1 Implementation of the proposed CUDC
Initialize parameters of encoders ϕs and ϕa, forward dynamic network fs, inverse models fa and
fk, projection h, critic Q, policy π, hidden weight W , and the temporal distance k
Initialize the task-agnostic dataset D = ∅

for each time step t do
// COLLECT TRANSITIONS
Interact with the environment using the policy at ∼ π(st) and observe st+1

D ∪ (st, at, st+1) → D
// UPDATE INTERNAL BELIEF OF REACHABILITY
Sample a minibatch {(sti , ati , sti+k, k)}ni=1 ∼ D
for each tuple i in the minibatch do

Encode the state and action, and predict the ti + k’s future state feature ẑsti+k

Evaluate the curiosity weight wi according to Equation (2)
Compute the intrinsic reward ri using wi by Equation (3)

end for
Update the internal belief of reachability module
//ADAPT THE K-STEP TO PREDICT
if 1

n

∑n
i 1[wi < Cw] > Ck then

Increase the temporal distance by k = k + 1
end if
//REGULARIZE CRITIC-ACTOR UPDATE
Update the critic Q with regularization by Equation (4)
Update the actor π with regularization
Perform the momentum update for h̄ and z̄

end for

CUDC extends state embedding to state-action embedding and we prove that the k-nearest neighbor
entropy estimation in the state-action representation space can be used for entropy maximization.
Lemma 3.1. Let u = (zs, za) represent the state-action representation. The particle-based entropy
H(u) is proportional to a K-nearest neighbor (K-NN) distance,

H(u) ∝
n∑

i=1

log ||ui − uK-NN
i ||2.

Following the same idea to treat each tuple as a particle (Liu & Abbeel, 2021b; Seo et al.,
2021), we formulate an intrinsic reward to estimate the particle-based entropy, rH(sti , ati) =
log( 1

NK

∑
||ui−uK-NN

i ||2+1) where ui = (ϕs(sti), (ϕa(ati)) and NK is the number of K-NN. As
the encoded features are constantly updated to capture the dynamics of more distant future states in
the reachability module, the proposed rH can lead to a more diverse state-action space exploration,
where the state-of-the-art off-policy RL algorithm SAC (Haarnoja et al., 2018) has also shown that
exploration through a discounted maximum-policy (actor)-entropy term is more effective.

On the other hand, the prediction errors of future states are often employed as the intrinsic re-
ward to incentivize the agent to explore surprising states that are beyond their exceptions (Pathak
et al., 2017; Burda et al., 2018). CUDC additionally integrates the prediction error rE(sti , ati) =
||zsti+k

− ẑsti+k
||2 in the intrinsic reward as well, where the reachability module is conveniently

re-used without additional networks. Finally, the mixed intrinsic reward in CUDC is given by

ri(sti , ati) = rH(sti , ati) + αrE(sti , ati) + β, (3)

where α controls the prioritization of under-learned state exploration and β is a constant for numer-
ical stability.

3.4.3 REGULARIZE THE CRITIC-ACTOR UPDATE

Furthermore, CUDC adaptively regularizes the backbone DDPG algorithm to focus more on under-
learned tuples, by utilizing the curiosity weight wi. In particular, w = (w1, w2, · · · , wn) quan-
titatively describes the curiosity weight on each transition tuple, which can be seamlessly used to
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characterize the sample importance and regularize both critic and actor updates. Therefore, we can
perform the Q-learning in DDPG by minimizing the following objective,

E(s,a,s′)∼D

[
w (Q(s, a)− (ri(s, a) + γQtarget(s

′, π(s′))))
2
]
. (4)

Meanwhile, the policy can be updated by maximizing E(s,a,s′)∼D [wQ(s, π(s))]. In this way, CUDC
facilitates the agent to adapt the learning process in a self-supervised manner in the sense that the
regularization is controlled by the conceptualized curiosity to exploit sample importance.

4 EXPERIMENTAL RESULTS

Environments We evaluate the proposed CUDC on continuous control tasks with state observa-
tions in the DeepMind control suite (Tassa et al., 2018), which consists of 12 downstream tasks
across 3 main challenging domains: Walker, Quadruped, and Jaco Arm. Walker is a controllable
entity with locomotion-related balancing controls, where it can learn walking, running, flipping and
standing. Quadruped is a passively stable body in a more challenging 3D environment to learn vari-
ous locomotion skills of walking, running, standing, and jumping. Jaco Arm is 6 degree-of-freedom
robotic arm with a three-finger gripper for object manipulation, where the downstream tasks re-
quire it to reach different positions. Note that PointMass Maze is not included since most baseline
methods in ExORL have already demonstrated excellent performances.

Baseline Models We compare CUDC against state-of-the-art unsupervised methods across all
three categories as benchmarked in ExORL, i.e., a knowledge-driven baseline of ICM (Pathak et al.,
2017), data-driven baselines of APT (Liu & Abbeel, 2021b) and ProtoRL (Yarats et al., 2021), and
a competence-driven baseline of APS (Liu & Abbeel, 2021a). Meanwhile, a random data collector
is also included, which collects the data by performing randomly sampled actions. The other four
methods discussed in ExORL are excluded since their performance are less competitive. We set
the same hyperparameters and model architecture as reported in ExORL. To demonstrate that all
proposed components play important roles in the performance, we also compare four versions of
CUDC as follows. CUDCICM

vary and CUDCAPT
vary : adapting the temporal distance of k-step by the in-

trinsic rewards based on the original ICM and APT methods. CUDCreward: extending to state-action
entropy with a mixed intrinsic reward based on CUDCAPT

vary . CUDCreach: adding the full reachability
module without regularization based on CUDCreward. The detailed implementation and differences
from the full model are summarized in Appendix A.

Model Training and Evaluation To impose model stability during learning, we restrict the k-
step to be increased from 3 to 6 and set the upper and lower bounds for the regularization weights
to ensure stability. For further details regarding the network implementation and hyperparameter
setting of the proposed CUDC, readers can refer to Appendix A. During data collection, all methods
are trained using a DDPG (Lillicrap et al., 2015) agent as the backbone for fairness. They interact
with 3 domain environments in the absence of extrinsic rewards for 1M steps. For the main results,
a total of 90 datasets (6 algorithms × 3 main tasks × 5 seeds) are collected. After that, relabeling
is performed for each downstream task on the collected dataset. During the evaluation, a TD3
(Fujimoto et al., 2018) agent learns offline from each relabeled dataset for 500K steps. We report
the performance score at 100K step for sample efficiency and at 500K step for learning performance.

Main Results on 12 Downstream Tasks As shown in Figure 2, no single baseline method can
greatly improve the dataset quality for all domains. In contrast, the dataset collected by CUDC is
capable of boosting the offline agent’s learning performances at 500K step in all 12 downstream
tasks across 3 challenging domains, as highlighted in Table 1. Specifically, CUDC outperforms the
competence-based method (APS) in the Walker domain by 6%, outperforms the data-based method
(APT) in the Quadruped domain by 51%, and outperforms the knowledge-based method (ICM) in
the Jaco Arm domain by 10%. As for the sample efficiency, it can be observed in Figure 2 that CUDC
leads to the best sample efficiency with a significant margin on 3 downstream tasks of Quadruped.
In the easy domain of Walker, CUDC can help the offline agent to converge faster in 3 downstream
tasks. However, the sample efficiency in the hardest domain of Jaco Arm is not desirable. It might
be caused by too much complexity in this most challenging environment, increasing the difficulty
of reachablility analysis. More results are included in Appendix C.1 and evaluation using another
offline RL algorithm of CQL (Kumar et al., 2020) is conducted in Appendix C.2.
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Table 1: Main results of the offline RL agent on 12 downstream tasks across 3 main domains. The proposed
CUDC collects a more useful dataset such that offline RL agents can improve sample efficiency (100K) in 9
out of 12 downstream tasks and achieve better learning performance (500K) in all 12 downstream tasks.
100K Step Score Random APS ProtoRL ICM APT CUDC

Walker, Walk 190±153 652±227 532±332 503±258 548±338 827±64
Walker, Flip 175±136 590±77 610±95 530±59 579±51 615±66
Walker, Run 53±25 368±77 332±81 233±111 372±40 381±37
Walker, Stand 401±295 923±76 831±318 797±312 878±101 984±11
Quadruped, Walk 135±101 206±25 153±119 338±211 248±22 338±147
Quadruped, Run 145±96 183±17 121±31 210±63 249±24 256±133
Quadruped, Stand 271±105 334±148 193±78 585±301 524±153 618±311
Quadruped, Jump 223±60 237±83 150±89 466±208 391±127 483±222
Jaco Arm, Reach Top Left 5±4 63±40 68±49 88±78 42±77 54±60
Jaco Arm, Reach Top Right 49±37 119±64 76±39 99±73 51±67 32±59
Jaco Arm, Reach Bottom Left 35±31 87±74 76±75 101±46 30±43 74±89
Jaco Arm, Reach Bottom Right 49±46 100±75 85±66 113±89 92±42 121±79

500K Step Score Random APS ProtoRL ICM APT CUDC

Walker, Walk 198±266 845±38 826±67 802±67 799±73 893±34
Walker, Flip 303±195 561±121 645±150 534±218 591±77 717±41
Walker, Run 62±24 369±33 386±38 261±142 384±20 393±11
Walker, Stand 519±312 949±24 954±17 868±73 890±139 971±7
Quadruped, Walk 77±53 169±38 177±181 231±107 363±141 425±76
Quadruped, Run 102±52 179±52 77±36 165±89 198±57 349±80
Quadruped, Stand 162±96 335±80 127±111 343±133 464±144 637±188
Quadruped, Jump 152±74 261±71 99±51 242±108 329±85 574±74
Jaco Arm, Reach Top Left 59±75 129±26 138±52 166±54 41±29 212±11
Jaco Arm, Reach Top Right 81±54 152±82 166±19 195±36 95±32 214±17
Jaco Arm, Reach Bottom Left 91±68 103±74 100±68 216±16 101±56 218±7
Jaco Arm, Reach Bottom Right 107±56 197±33 149±69 229±8 131±33 229±6
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Figure 2: Learning curves of the offline RL agent on the task-agnostic dataset collected by different methods.
The proposed CUDC demonstrates superior capability of improving the sample efficiency and learning perfor-
mances of the offline RL agent.

Effects of Adapting the k-Step We empirically show that adapting the temporal distance to ex-
plore more distant future states can certainly help to enhance the feature representation, and thereby
improve the data collection process. By comparing the results in Figure 3, CUDCICM

vary has outper-
formed ICM significantly, with on average 1.25 × sample efficiency at 100K step and 1.16 × offline
learning performance at 500K step. Similarly, CUDCAPT

vary obtains respectively 1.12 × and 1.04 ×
scores at 100K and 500K steps across 4 downstream tasks, compared with APT. We note that the
standard deviation increases a bit, which might be caused by the introduced complexity of more dis-
tant future state when improving the learned representation. Thus, it is desirable to find an adaptive
way to smooth this process, e.g., by incorporating the other proposed components inherently.
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Figure 3: The performance score evaluated at 100K and 500K steps in 4 downstream tasks of Walker. All four
versions of CUDC perform better than ICM and APT.

Effectiveness of the Other Proposed Components We additionally incorporate the mixed intrin-
sic reward to CUDCAPT

vary as CUDCreward, and it further improves both sample-efficiency and learning
capability of the offline RL agent, shown in Table 4 and Figure 3. As the new intrinsic reward en-
courages a more uniform exploration on the state-action space and focuses more on under learned
states, the performance at 100K is inevitably unstable, with a 67% increase of standard deviation.
Therefore, it is necessary to leverage the proposed reachability module as agent’s internal belief and
facilitate the data collection. By comparing CUDCreach with CUDCreward, the dataset collected by
CUDCreach stabilizes the offline learning process by reducing 48% and 25% of standard deviation at
100K and 500K steps. However, its performance scores slightly decrease in 2 tasks. To address this
problem, the full model further regularizes the critic-actor update with a curiosity weight, compared
with CUDCreach. It achieves the best performances with minimum standard deviation at 500K step.
More experiments are conducted in Appendix C.4 by removing each proposed components. It can
be concluded that all components play important roles to collect a useful dataset for improving the
downstream task learning and resolving instability on offline RL agents.
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Figure 4: Learning curves of the offline RL agent on 4 downstream tasks of Walker. The k-step adaptation
proposed in CUDC performs better than the other two sampling methods in 3 out of 4 downstream tasks.

Adjusting the k-Step in Different Ways One may wonder how the feature representation im-
proves with different ways of adjusting the temporal distance k in the reachability module. Thus,
we explicitly conduct an ablation study on the Walker domain by sampling k uniformly (Uniform)
from 3 to 6 and normally (Normal) with an increasing mean. It can be observed in Figure 4 that
Uniform performs the worst in all 4 tasks as it cannot adapt the temporal distance in a curious way
to enhance the representation learning. At 500K step, it only achieves 85% overall learning capa-
bility with 300% increase in the standard deviation, compared to CUDC. Normal to some extent
adapts k through an increasing mean, and it even outperforms CUDC in the Flip task. However, its
overall performance is still 4.5% weaker than CUDC and its standard deviation is 128% higher than
CUDC, indicating the instability issue. Overall, the curious adaptation method proposed in CUDC
is the best and it is interesting to investigate more adaptive ways in the future.

5 CONCLUSION

We propose CUDC, a curiosity-driven unsupervised data collection method to improve the dataset
quality for offline RL agents in the multi-task setting. A reachability module is introduced, quan-
tifying agent’s internal belief of estimating the probability of a k-step future state being reachable
form the current state. Substantially, CUDC can enhance feature representation by adaptively allow-
ing the agent to explore more distant future states in the reachability module. Empirically, CUDC
demonstrates superior data collection capability with improved sample efficiency and better per-
formances in downstream multi-task offline learning. We also present this work with insightful
empirical evidence of effective data collection methods for future research.
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mani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems, 2021.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In International Conference on Machine Learning,
pp. 5774–5783. PMLR, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. Should i run offline reinforcement
learning or behavioral cloning? In International Conference on Learning Representations, 2022.

Nathan Lambert, Markus Wulfmeier, William Whitney, Arunkumar Byravan, Michael Bloesch, Vib-
havari Dasagi, Tim Hertweck, and Martin Riedmiller. The challenges of exploration for offline
reinforcement learning. arXiv preprint arXiv:2201.11861, 2022.

Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine Cang, Lerrel
Pinto, and Pieter Abbeel. Urlb: Unsupervised reinforcement learning benchmark. arXiv preprint
arXiv:2110.15191, 2021.

Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric Xing, Sergey Levine, and Ruslan Salakhutdi-
nov. Efficient exploration via state marginal matching. arXiv preprint arXiv:1906.05274, 2019.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. ArXiv e-prints, pp.
arXiv–1607, 2016.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Kevin Li, Abhishek Gupta, Ashwin Reddy, Vitchyr H Pong, Aurick Zhou, Justin Yu, and Sergey
Levine. Mural: Meta-learning uncertainty-aware rewards for outcome-driven reinforcement
learning. In ICML, pp. 6346–6356, 2021.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Hao Liu and Pieter Abbeel. Aps: Active pretraining with successor features. In International
Conference on Machine Learning, pp. 6736–6747. PMLR, 2021a.

Hao Liu and Pieter Abbeel. Behavior from the void: Unsupervised active pre-training. Advances in
Neural Information Processing Systems, 34:18459–18473, 2021b.

Amanda Markey and George Loewenstein. Curiosity. International handbook of emotions in edu-
cation, pp. 238–255, 2014.

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu. Deployment-
efficient reinforcement learning via model-based offline optimization. In ICLR, 2021.

Mohammad Motamedi, Nikolay Sakharnykh, and Tim Kaldewey. A data-centric approach for train-
ing deep neural networks with less data. arXiv preprint arXiv:2110.03613, 2021.

Andrew Ng. A chat with andrew on mlops: From model-centric to data-centric ai, 2021.

Hima Patel, Shanmukha Guttula, Ruhi Sharma Mittal, Naresh Manwani, Laure Berti-Equille, and
Abhijit Manatkar. Advances in exploratory data analysis, visualisation and quality for data centric
ai systems. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 4814–4815, 2022.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

11



Under review as a conference paper at ICLR 2023

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement.
In International conference on machine learning, pp. 5062–5071. PMLR, 2019.
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A CUDC IMPLEMENTATION AND HYPERPARAMETER SETTING

A.1 IMPLEMENTATION DETAILS

A.1.1 CUDC

In the reachability module of CUDC shown in Figure 1, the state encoder ϕs is a 1-layer MLP with
the ReLU activation. Subsequently, the output is passed to a single normalized fully-connected layer
by LayerNorm (Lei Ba et al., 2016) with the tanh nonlinearity applied at the end. The target encoder
is momentum updated from the state encoder to obtain z̄. The action encoder ϕa is a 3-layer MLP
with the ReLU activation. For the forward network fs and the backward networks fa and fk, they
are 2-layer MLP with the ReLU activation. The projection network h is a 2-layer MLP with hidden
size of 128 and output size of 64, followed by LayerNorm. h̄ is also momentum updated from h.

A.1.2 CUDCICM
VARY AND CUDCAPT

VARY

CUDCICM
vary and CUDCAPT

vary are two variants of the proposed CUDC. Given the implementation of
ICM and APT in ExORL (Yarats et al., 2022), we added the forward network fs and backward
network fk in order to let these models learn more feature representations with the dynamics infor-
mation. Therefore, the temporal distance of k-step can be adapted in a similar way as in CUDC. k is
increased by 1 if the proportion of tuples with low intrinsic rewards is greater than a threshold, i.e.∑n

i 1[ri<Cr]

n > Ck. In this way, we can investigate the effects of adapting environment step on two
unsupervised baseline methods.

A.1.3 CUDCREWARD

CUDCreward is a variant of the proposed CUDC. Given the implementation of CUDCAPT
vary in the

previous subsection, we extended the state entropy to state-action entropy and meanwhile add a
prediction error of the k-step future state as formulated in Equation (3). Therefore, agent can be
encouraged to explore more diverse state-action space while focusing on the under states with high
prediction errors. In this way, we can investigate the effects of the proposed mixed intrinsic reward.

A.1.4 CUDCREACH

CUDCreach is a variant of the proposed CUDC. Given the implementation of CUDCreward in the
previous subsection, we incorporated the full reachability module with the reachable network. As
a result, the adaptive update of the environment step can be facilitated by the curiosity weight w
outputted by the reachability module and the enhanced representation learning can be carried out
in a self-supervised manner. Compared with the full CUDC model, CUDCreach has disabled the
regularization of the critic-actor update. In this way, we can investigate the effects of the proposed
reachability module.

A.2 HYPERPARAMETER SETTING

A.2.1 DATA COLLECTION

We provide a full set of common hyperparameters used in baselines as welll as CUDC in Table 2,
which closely follows the same settings from ExORL (Yarats et al., 2022) and URLB (Laskin et al.,
2021).

For the other hyperparameter used in CUDC, they are listed in Table 3.

It should be noted that Explore2Offline (Lambert et al., 2022) is a concurrent work for data collec-
tion, but its source code is not available at the moment.

A.2.2 OFFLINE RL

For the offline RL agent, we follow the findings reported in ExORL that even the vanilla off-policy
RL algorithm of TD3 (Fujimoto et al., 2018) can outperform the carefully designed offline RL
algorithms when the collected dataset is of high quality. Thus, we implement an offline RL of TD3
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Table 2: Common hyperparameter setting for the unsupervised data collection methods
Hyperparameter Value

Observation type states
Replay buffer Size 106

Action repetitions 1
Seed frames 4000
Batch size 1024
Discount factor 0.99
Optimizer Adam
Learning rate 10−4

Non-linearity ReLU
Agent update frequency 2
Critic target EMA rate 0.01
Hidden dimension 1024
Exploration stddev clip 0.3
Exploration stddev value 0.2

Table 3: Hyperparameter setting for the proposed CUDC
Hyperparameter Value

k-step range 3, 4, 5, 6
State representation dimension 512
Actor representation dimension 64
MLP hidden dimension for action encoder 64 for action encoder
MLP hidden dimension 128 for projection
Projection dimension 64
Regularization clip [0.2, 2] for Walker

[0.2, 1] for Quadruped
[0.9, 1] for Jaco Arm

Intrinsic reward weights (α, β) (10−3, 10−2) for Walker
(10−4, 10−2) for Quadruped
(100, 0) for Jaco Arm

K-NN 12
Threshold Cw 0.02 for Walker and Quadruped

0.01 for Jaco Arm
Threshold Ck 512

to evaluate the quality of the collected dataset. The detailed implementation and hyperparamter
settings can be found in ExORL.
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B PROOF OF LEMMA 3.1

Proof. It has been shown in APT Liu & Abbeel (2021b) that the particle-based entropy estimator of
the state representation z can be derived as

H(z) = − 1

n

n∑
i=1

log
K

nvKi
+ b(K) ∝

n∑
i=1

log vKi (5)

where b(K) represents a bias correlation and vKi indicates the volume of the hypersphere with a
radius of ||zi − zK-NN

i || between the zi and its K-th nearest neighbor zK-NN
i .

By substituting vKi =
||zi−zK-NN

i ||πnz/2

Γ(nz/2+1) where Γ is a gamma function and nz is the dimension of z,
we can obtain

H(z) ∝
n∑

i=1

log ||zi − zK-NN
i ||2. (6)

Let u = (zs, za) represent the state-action representation and we can further substitute z = u into
Equation (6) to obtain

H(u) ∝
n∑

i=1

log ||ui − uK-NN
i ||2. (7)
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C ADDITIONAL RESULTS AND DISCUSSIONS

C.1 FULL RESULTS OF MAIN EXPERIMENTS

Figure 5 and Figure 6 show the full results on the 12 downstream tasks across 3 domains. Figure 7
summarizes the overall performances in 3 domains. They demonstrate that our proposed methods
significantly outperform the baseline methods in 3 downstream tasks of Walker and 3 downstream
tasks of Quadruped. However, in the hardest domain of Jaco Arm, the learning sample efficiency
becomes poor in 3 downstream tasks although its learning performance at 500K step catches up
with the best baseline method of ICM. We explain this by the fact that our method can introduce
more complexity and challenges for the agent whenever adapting the temporal distance k to learn a
better representation. However, as Jaco Arm is indeed the most challenging domain, the introduced
complexity cannot be fully coped with this environment. Thus, the poor performance in sample effi-
ciency can occur, and it is interesting to further study on how to cope with hard domain environments
in the future works.
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Figure 5: Full results of the average performance score evaluated at 100K and 500K steps for the offline RL
agent on each downstream task. CUDC significantly improves the sample-efficiency in 9 out 12 tasks at 100K
step and learning performances in all 12 tasks at 500K step.

0 100 200 300 400 500
Environmental Steps (K)

0

200

400

600

800

1000

A
ve

ra
ge

 E
va

lu
at

io
n 

S
co

re
s

Walker, Walk

0 100 200 300 400 500
Environmental Steps (K)

0

200

400

600

800

A
ve

ra
ge

 E
va

lu
at

io
n 

S
co

re
s

Walker, Flip

0 100 200 300 400 500
Environmental Steps (K)

0

100

200

300

400

500

A
ve

ra
ge

 E
va

lu
at

io
n 

S
co

re
s

Walker, Run

0 100 200 300 400 500
Environmental Steps (K)

0

200

400

600

800

1000

1200

A
ve

ra
ge

 E
va

lu
at

io
n 

S
co

re
s

Walker, Stand

0 100 200 300 400 500
Environmental Steps (K)

0

200

400

600

800

A
ve

ra
ge

 E
va

lu
at

io
n 

S
co

re
s

Quadruped, Walk

0 100 200 300 400 500
Environmental Steps (K)

0

100

200

300

400

500

600

A
ve

ra
ge

 E
va

lu
at

io
n 

S
co

re
s

Quadruped, Run

Random APS ProtoRL ICM APT CUDC

0 100 200 300 400 500
Environmental Steps (K)

0

200

400

600

800

1000

A
ve

ra
ge

 E
va

lu
at

io
n 

S
co

re
s

Quadruped, Stand

0 100 200 300 400 500
Environmental Steps (K)

0

200

400

600

800

A
ve

ra
ge

 E
va

lu
at

io
n 

S
co

re
s

Quadruped, Jump

0 100 200 300 400 500
Environmental Steps (K)

50

0

50

100

150

200

250

A
ve

ra
ge

 E
va

lu
at

io
n 

S
co

re
s

Jaco Arm, Reach Top Left

0 100 200 300 400 500
Environmental Steps (K)

50

0

50

100

150

200

250

300

A
ve

ra
ge

 E
va

lu
at

io
n 

S
co

re
s

Jaco Arm, Reach Top Right

0 100 200 300 400 500
Environmental Steps (K)

50

0

50

100

150

200

250

300

A
ve

ra
ge

 E
va

lu
at

io
n 

S
co

re
s

Jaco Arm, Reach Bottom Left

0 100 200 300 400 500
Environmental Steps (K)

50

0

50

100

150

200

250

300

A
ve

ra
ge

 E
va

lu
at

io
n 

S
co

re
s

Jaco Arm, Reach Bottom Right

Figure 6: Learning curves of the offline RL agent on full 12 downstream tasks with the task-agnostic dataset
collected by different methods. The proposed CUDC demonstrates superior capability of improving the sample-
efficiency and learning performances of the offline RL agent in the domains of Walker and Quadruped.
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Figure 7: The overall offline learning performance across 3 domains. CUDC consistently leads to
significant improvement in offline agent’s performance at 500K step in all 3 domains on average.

In Figure 8, we plot how our proposed method adapts the k-step during data collection in the Walker
domain. It can be observed that agents take around 450K step to learn and adjust the temporal
distance from k = 3 to k = 4. Then, it takes around just 200K steps to increase from k =
4 to k = 5. Finally, it takes more than 400K steps to reach k = 6. This increasing behavior
implies that at the early phase of training, we should not inject a too challenging k value. Once the
agent has learned enough dynamics information, they are able to learn quickly on more challenging
reachability analysis. However, after a certain stage (k = 5 in this domain), the learning becomes
too difficult for the agent. Therefore, it is interesting to further adapt this over-difficult knowledge
in the future works as well.
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Figure 8: The adaptive increase of how many steps into the future that the dynamics model should predict. It
is averaged by 5 random runs in the Walker domain, where the k-step is limited to change from 3 to 6.

In Figure 9, we visualize how the loss of dynamics model (forward and inverse networks) and the
contrastive loss of the reachable networks change w.r.t. training steps. Both losses decrease and
converge during learning. In particular, they only increase when the step k is adapted to increase.
After that, both losses decrease quickly. The agent can well predict each sampled k-step future state
being most reachable from its own current state rather than those from other transition tuples. Even
without inputting the sequence of intermediate actions or states, the agent can predict the k-step
future state accurately. During the model training, the feature representations are enhanced as well.
Therefore, it can be validated that the learned representation contains more semantic latents with
dynamics information, with the self-supervised learning of agent’s internal belief.
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Figure 9: The visualization of the dynamics model loss as well as reachability loss (contrastive loss)
during learning in the Walker domain.

In addition to the offline multi-task learning performance, we compare the quality of the collected
datasets by plotting the normalized density of the true reward for the downstream task of Stand
in Walker environment. The visualization is shown in Figure 10. It can be seen that the dataset
collected by our proposed CUDC is of higher quality, with larger density for high rewards and
a larger proportion at the low reward part. Specifically, the mean trajectory reward of CUDC is
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0.312, which is 69% higher than APS, 21% higher than ProtoRL, 16% higher than ICM, and 10%
higher than APT. Moreover, the 75% quartile of the trajectory reward for CUDC is 0.498, which
is 143% larger than APS, 42% larger than ProtoRL, 19% larger than ICM, 16% larger than APT.
Therefore, it indicates the effectiveness of our proposed method to collect higher-quality dataset,
where increasingly more rewarding states have been visited.
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Figure 10: The visualization of the true reward density on Walker, Stand task for the task-agnostic
dataset collected by the proposed method and baseline models.

C.2 EVALUATION BY ANOTHER OFFLINE RL ALGORITHM OF CQL

In this work, we consider the problem setting for offline RL into three main steps: data collection,
reward relabeling, and downstream offline learning. Our work focuses only on the first step of
collecting high-quality dataset and thereby is agnostic to the offline RL algorithms. For the main
experiments, we chose TD3 (Fujimoto et al., 2018) to evaluate the multi-task downstream learning,
since it was concluded in ExORL that the vanilla TD3 algorithm can effectively learn offline and
even outperform carefully designed offline RL algorithms by improving the dataset quality.

To demonstrate that the dataset collected by our proposed method is of high quality than the other
methods, we conduct additional experiments using another offline RL algorithm of CQL (Kumar
et al., 2020) that regularizes the Q-values during training. The results are shown in Figure 11
and our proposed CUDC has also demonstrated improved sample efficiency at 100K learning steps
and learning capability at 500K learning steps in all 4 downstream tasks against baseline methods.
By comparing the performance score at 100K and 500K steps of CUDC against the best baseline
method, CUDC has achieved on average 18.2% and 12.3% improvement at respectively 100K and
500K CQL agent learning steps, across 4 downstream tasks. Specifically, CUDC is 21% higher than
the best baseline of APT at 100K steps on Run task while its learning performance is 15% higher
than the best baseline of APS at 500K steps.
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Figure 11: Learning curves (top) and performance scores at 100k and 500K learning steps (bottom)
for the CQL agent on 4 downstream tasks of Walker. The proposed CUDC demonstrates superior
capability of improving the sample-efficiency and learning performances of the CQL agent in all 4
tasks.
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C.3 RESULTS OF ADDING EACH PROPOSED COMPONENT ON TOP OF EACH OTHER

We present the performance scores of the four variants of CUDC at 100K and 500K steps in Table 4.
Moreover, the detailed learning curves of the offline RL agent on 4 downstream tasks are shown in
Figure 6. It can be concluded that adapting the temporal distance to reach more distant k-step future
can substantially improve both sample efficiency and learning capabilities. Moreover, all proposed
components facilitated by the proposed reachability module are necessarily important to yield the
improvement. As a result, the full CUDC model further addressed the instability issue to obtain the
minimum standard deviation among all methods.

Table 4: Performance scores (mean & standard deviation) of four versions of CUDC at 100K and
500K environment steps. The full model outperforms other versions on 3 out of 4 tasks in sample
efficiency (100K) and all four tasks in learning performance (500K) regimes, across 5 random seeds.
100K Step Score ICM CUDCICM

vary APT CUDCAPT
vary CUDCreward CUDCreach CUDC

Walker, Walk 503±258 686±46 548±338 785±56 796±85 811±69 827±64
Walker, Flip 530±59 589±82 579±51 542±173 601±156 570±71 615±66
Walker, Run 233±111 320±26 372±40 387±19 385±69 370±40 381±37
Walker, Stand 797±312 909±88 878±101 936±69 950±40 983±11 984±11

500K Step Score ICM CUDCICM
vary APT CUDCAPT

vary CUDCreward CUDCreach CUDC

Walker, Walk 802±67 822±52 799±73 820±71 824±52 849±36 893±34
Walker, Flip 534±218 665±32 591±77 674±77 666±53 679±41 717±41
Walker, Run 261±142 336±115 384±20 370±38 394±43 375±27 393±11
Walker, Stand 868±73 927±74 890±139 916±78 970±12 969±11 971±7
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Figure 12: Full results of learning curves on 4 downstream tasks of Walker environment with the
task-agnostic dataset collected by different versions of the proposed CUDC. They are capable of
improving both sample efficiency at 100K step and learning capabilities at 500K steps, compared to
the baselines of ICM and APT. All proposed components work inherently to collect the high quality
dataset for offline learning.

C.4 RESULTS OF REMOVING EACH PROPOSED COMPONENT FROM FULL MODEL

To further investigate the effectiveness of each proposed component and quantify the importance of
them, we carry out additional experiments by respectively removing each proposed component from
the full model. In particular, the following models are used to collect the task-agnostic dataset for
the Walker environment with 5 random seeds.

• CUDC−Entropy: The proposed intrinsic reward of KNN-based particle entropy of state and
action rH(st, at) is removed, and only the prediction error based reward rE(st, at) is used.

• CUDC−PE: The proposed intrinsic reward of prediction error rE(st, at) is removed, and
only the KNN-based particle entropy reward of state and action rH(st, at) is used.

• CUDC−Regularize: the mechanism of regularizing the backbone DDPG algorithm is re-
moved.

• CUDC−Vary: k-step is fixed to be 3 throughout learning.
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• CUDC−Reach: The proposed reachability module is removed while k-step is still adapted
through the loss of the dynamics model.

• CUDC−Inverse: The inverse networks of predicting the action and step k are removed.
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Figure 13: Learning curves (top) and performance scores at 100K and 500K learning steps (bottom)
on 4 downstream tasks of Walker environment with the task-agnostic dataset collected by different
models of removing each proposed component from CUDC. Removing any proposed component
will cause less desirable performance throughout the offline multi-task learning process.

Table 5: Relative performance of the average scores for the ablation models (removing each pro-
posed component from the full CUDC model) at 100K and 500K learning steps. Adapting k-step is
the most effective component to the improved sample efficiency and learning capabilities, while the
proposed mixed intrinsic reward is the second.
100K Relative Performance CUDC−Entropy CUDC−PE CUDC−Regularize CUDC−Vary CUDC−Reach CUDC−Inverse CUDC

Walker, Walk 0.954 0.768 0.902 0.849 0.963 0.946 1.000
Walker, Flip 0.979 1.028 0.909 0.819 0.976 1.074 1.000
Walker, Run 0.851 0.827 0.916 0.857 0.986 0.974 1.000
Walker, Stand 1.000 0.995 0.994 0.977 0.965 0.954 1.000

Mean 0.946 0.904 0.930 0.875 0.973 0.987 1.000

500K Relative Performance CUDC−Entropy CUDC−PE CUDC−Regularize CUDC−Vary CUDC−Reach CUDC−Inverse CUDC

Walker, Walk 0.935 0.934 0.952 0.900 0.922 0.837 1.000
Walker, Flip 0.843 0.894 0.937 0.809 0.929 0.929 1.000
Walker, Run 0.856 0.899 0.914 0.902 0.942 0.853 1.000
Walker, Stand 0.979 0.999 0.989 0.962 0.999 0.981 1.000

Mean 0.903 0.931 0.948 0.893 0.948 0.900 1.000

Figure 13 shows the overall offline learning performances. We can observe that limiting k = 3
and removing the inverse networks will cause the most significant performance decreases among
the evaluated models. It implies that adapting the step between current and future states can help
to learn rich representation, which plays the most important role in our proposed CUDC to collect
high-quality dataset for offline multi-task learning. Meanwhile, the inverse networks are necessary
to learn the representation that is robust to the uncontrollable features by the agent’s actions and
enables the encoders to capture the dynamics information in the learned representation.

To quantitatively measure the benefits brought by each proposed component, we compute the relative
performance scores at 100K for sample efficiency and 500K for learning capabilities based on the
full model. The results are summarized in Table 5. For the sample efficiency at 100K steps, removing
the k-step adaptation has caused the worst performance with a 18.1% decrease in Flip task and
an overall 12.5% decrease across all 4 downstream tasks, followed by removing prediction-error-
based reward (9.6%), removing regularization (7.0%) and removing entropy-based reward (5.4%).
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For the learning capabilities at 500K steps, removing the k-step adaptation has also resulted in the
worst performance with a 19.1% decrease in Flip task and an overall 10.7% decrease across all 4
downstream tasks, followed by removing inverse networks (10.0%), removing entropy-based reward
(9.7%) and removing prediction-error-based reward (6.9%). Thus, we conclude that adapting how
many steps into the future that the dynamics model should predict is most effective to the improved
sample efficiency and learning capabilities, while the proposed mixed intrinsic reward is the second
most effective.

C.5 ABLATION STUDIES ON THE RANGE OF VARYING k-STEP

In our work, we set the range of varying k-step from 3 to 6. It starts from 3 as we follow the same
setting as the ExORL benchmark, where all 8 data collection baselines strictly limit k=3 for the
future state in each transition tuple. As for the threshold of Cw and Ck, we did not specifically
hypertune these values and they were just set to ensure that k can be varied from 3 to 6 adaptively
during the 1M dataset collection process. As for the upper bound of 6, it is an optimal end value to
obtain the desired performances. To support this finding, we carry out a sweep of the upper bound
of k from 3 to 8, and present the results in Figure 14. Firstly, it can be observed that the learning
capabilities at 500K learning steps first increase and then decrease with the increase of the upper
bound of k, across all 4 downstream tasks. Setting the upper bound of 6 achieves the highest in
Walk and Run tasks while it is the second highest in Flip and Stand tasks. Secondly, there is no clear
trend of performance at 100K steps by setting different values of the upper bound for k. It can be
explained by the complexity caused by varying the k-step for the future states. However, we can
still observe that setting the upper bound of 6 achieves the highest in 3 tasks. Therefore, we believe
k should vary from 3 to 6 to learn rich representation with more semantic latents.
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Figure 14: Learning curves (top) and performance scores at 100K and 500K steps (bottom) on 4
downstream tasks of Walker with the task-agnostic dataset collected by different range of k-step.
Overall, setting the range from 3 to 6 performs relatively the best.
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