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Abstract

In the graph-level prediction task (predict a label for a given graph), the information
contained in subgraphs of the input graph plays a key role. In this paper, we propose
Exact subgraph Isomorphism Network (EIN), which combines the exact subgraph
enumeration, a neural network, and a sparse regularization. In general, building
a graph-level prediction model achieving high discriminative ability along with
interpretability is still a challenging problem. Our combination of the subgraph
enumeration and neural network contributes to high discriminative ability about
the subgraph structure of the input graph. Further, the sparse regularization in EIN
enables us 1) to derive an effective pruning strategy that mitigates computational
difficulty of the enumeration while maintaining the prediction performance, and
2) to identify important subgraphs that contributes to high interpretability. We
empirically show that EIN has sufficiently high prediction performance compared
with standard graph neural network models, and also, we show examples of post-
hoc analysis based on the selected subgraphs.

1 Introduction

Graph-level prediction tasks, which take a graph as an input and predict a label for the entire graph,
have been widely studied in the data-science community. It is known that the graph representation
is an effective approach to a variety of structure data such as chemical compounds (Ralaivola et al.,
2005; Faber et al., 2017), protein structures (Gligorijević et al., 2021), and inorganic crystal structures
(Xie & Grossman, 2018; Louis et al., 2020). In a graph-level prediction task, substructures on the
input graph, i.e., subgraphs, are often an important factor for the prediction and the analysis. For
example, in a prediction of a property of chemical compounds, identifying small substructures of the
molecules can be essential for both of improving prediction accuracy and obtaining an insight about
the underlying chemical mechanism. Therefore, mining predictive subgraphs is a significant issue
for graph-level prediction tasks, and further, those subgraphs can have a higher order dependency to
the prediction that requests sufficient flexibility in the model. However, building a prediction method
that satisfies these requirements is a still challenging problem (see § 3 for existing studies).

Our proposed method, called Exact subgraph Isomorphism Network (EIN), adaptively identifies
predictive subgraphs based on which a neural network model can be simultaneously trained. The
overview of EIN is shown in Fig. 1. Fig. 1 (a) illustrates the subgraph representation of EIN denoted
as 𝜓𝐻 (𝐺) which takes a non-zero value if the input graph 𝐺 contains a subgraph 𝐻 and takes 0
otherwise (i.e., it is based on the exact subgraph isomorphism). As shown in Fig. 1 (b), EIN can be
seen as a neural network in which the candidates of the input features are all the subgraphs contained
in the training dataset. Because of its exact subgraph isomorphism representation, this architecture
can be highly discriminative about subgraph structures. However, since the number of the candidate
subgraphs can be enormous, the naïve computation of this architecture is computationally intractable.

EIN consists of Graph Mining Layer (GML) and Feed Forward Network (FFN). GML implements a
mechanism to select only a small number of subgraphs necessary for the prediction, achieved through
the group-sparse regularization. The group sparse regularization (Yuan & Lin, 2006) is a well-known
regularizer for the group-wise selection of variables. We regard a set of neural network weights from
an input unit (corresponding to one subgraph) to the next layer as a group, by which the adaptive
subgraph selection can be realized. Only the selected subgraphs are used in the subsequent FFN
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(b) Exact subgraph isomorphism network (EIN)

Figure 1: Overview of proposed method.

that learns the dependency between the selected subgraphs and the prediction target. Unfortunately,
although the number of subgraphs becomes small in the trained model, this approach still suffers
from the computational difficulty because all the candidate subgraphs are still required to consider
during the optimization process.

To tackle the computational difficulty, we combine a subgraph enumeration by graph mining (Yan
& Han, 2002) and the proximal gradient optimization (Teboulle, 2017; Beck & Teboulle, 2009),
by which a pruning strategy for unnecessarily subgraphs can be derived, shown in 1 (c). The
proximal gradient is a standard approach for the sparse modeling, in which parameters are updated
through a proximal projection that typically results in a thresholding operation. This thresholding
operation reveals that if the norm of the gradient corresponding to a subgraph 𝐻 is less than certain
threshold, parameters for that subgraph is not required to update. We show that, by deriving an
upper bound of the norm of the gradient, an efficient pruning strategy for the subgraph enumeration
can be constructed. Our pruning strategy has the following two important implications. First, this
pruning enables us to train EIN without enumerating all the candidate subgraphs, which makes
EIN computationally tractable. Second, our pruning strategy maintains the quality of the prediction
compared with when we do not perform the pruning. This is because we only omit the computations
that does not have any effect on the prediction.

Our contributions are summarized as follows.

• We propose EIN, which is a neural network model that uses the exact subgraph isomorphism
feature. Through a group sparse regularization, we formulate EIN so that a small number
of subgraphs can be identified by which an insight about the important substructure can be
extracted for the given graph-level prediction task.

• We show that the combination of the subgraph enumeration and the proximal gradient
with backpropagation can derive an efficient pruning strategy that makes the EIN training
computationally tractable. We further reveal that our pruning strategy does not degrade the
prediction quality.

• Based on synthetic and benchmark datasets, we demonstrate that EIN has superior or com-
parable performance compared with standard graph prediction models while EIN actually
can identify a small number of important subgraphs, simultaneously.

2 Proposed Method: Exact Subgraph Isomorphism Network

Our proposed method, called Exact subgraph Isomorphism Network (EIN), considers the classifica-
tion problem of a graph 𝐺 ∈ G, where G is a set of labeled graphs. 𝐺 consists of a set of nodes and
edges between nodes and each node can have a categorical label. The training data is {(𝐺𝑖 , 𝑦𝑖)}𝑖∈[𝑛] ,
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where 𝑦𝑖 ∈ Y is a graph label, 𝑛 is the number of instances, and [𝑛] = {1, . . . , 𝑛}. Here, although
we only focus on the classification problem, the regression problem can also be handled by just
replacing the loss function.

First, § 2.1 describes the formulation of our model. Second, the optimization procedure is shown in
§ 2.2. Next, § 2.3 and 2.4 discuss post-hoc analysis for knowledge discovery and a combination of
graph neural networks, respectively.

2.1 Model Definition

Let 𝜓𝐻 (𝐺𝑖) ∈ {0, 1} be the feature that represents whether the input graph 𝐺𝑖 contains a subgraph
𝐻 (we only focus on a connected subgraph), which we call subgraph isomorphism feature (SIF):

𝜓𝐻 (𝐺𝑖) = I(𝐻 ⊑ 𝐺𝑖), (1)
where I is the indicator function and 𝐻 ⊑ 𝐺𝑖 indicates that 𝐻 is a subgraph of 𝐺𝑖 . Note that
although instead of I(𝐻 ⊑ 𝐺𝑖), frequency that 𝐻 is included in 𝐺𝑖 can also be used for 𝜓𝐻 (𝐺𝑖) in
our framework, we employ (1) throughout the paper for simplicity (see Appendix A for more detail).
For example, in Fig. 1 (a), 𝐺1 is 𝜓𝐻 (𝐺1) = 1 for 𝐻 = and 𝜓𝐻 (𝐺1) = 0 for 𝐻 = . We define
candidate subgraphs as H = {𝐻 | 𝐻 ⊑ 𝐺𝑖 , 𝑖 ∈ [𝑛], |𝐻 | < maxpat}, which is all the subgraphs in
the training dataset whose size is at most pre-specified maxpat (the size |𝐻 | is the number of edges).
By concatenating SIF 𝜓𝐻 (𝐺𝑖) of each 𝐻 ∈ H , the feature vector 𝝍(𝐺𝑖) ∈ {0, 1} |H | is defined. EIN
identifies a small number of important subgraphs from H through the feature selection discussed
later. SIF 𝜓𝐻 (𝐺𝑖) is obviously highly interpretable and it can assure the existence of a subgraph 𝐻.
Further, if 𝐺𝑖 and 𝐺 𝑗 contain at least one different subgraph 𝐻 ∈ H , then, we have 𝝍(𝐺𝑖) ≠ 𝝍(𝐺 𝑗 ).
As shown in Fig. 1 (b), EIN consists of Graph Mining Layer (GML) and Feed Forward Network
(FFN). Let 𝐾 be the number of output units of GML. We define GML : G → R𝐾 as follows.

GML(𝐺𝑖; 𝑩, 𝒃) = 𝜎(𝒉),
𝒉 =

∑
𝐻 ∈H

𝜷𝐻𝜓𝐻 (𝐺𝑖) + 𝒃,

where 𝑩 = [𝜷1, . . . , 𝜷 |H |] ∈ R𝐾×|H | and 𝒃 ∈ R𝐾 are parameters, and 𝜎 : R𝐾 → R𝐾 is an activation
function. Each 𝜷𝐻 can be seen as a representation corresponding to each subgraph 𝐻. The entire
prediction model is defined as

𝑓 (𝐺𝑖) = FFN(GML(𝐺𝑖; 𝑩, 𝒃);𝚯),
where 𝚯 is parameters of FFN. We optimize the parameters 𝑩, 𝒃, and 𝚯 through the following
optimization problem in which the group sparse penalty (Yuan & Lin, 2006) is imposed on 𝜷𝐻 :

min
𝑩,𝒃,𝚯

𝑛∑
𝑖=1

ℓ(𝑦𝑖 , 𝑓 (𝐺𝑖)) + 𝜆
∑
𝐻 ∈H

∥𝜷𝐻 ∥2 (2)

where ℓ is a differentiable loss function and 𝜆 is a regularization parameter. We here use the cross-
entropy loss for ℓ. The group-wise penalty ∥𝜷𝐻 ∥2 results in 𝜷𝐻 = 0 for many unnecessarily 𝐻 at the
solution of (2), by which we can identify important predictive subgraphs as {𝐻 | 𝜷𝐻 ≠ 0}. However,
since the size of 𝑩, i.e., 𝐾 × |H |, is quite large, naïve optimization of (2) can be difficult.

2.2 Optimization

Our optimization algorithm is based on the block coordinate descent (Xu & Yin, 2017), in which
each one of 𝑩, 𝒃, and 𝚯 are updated alternately while the other two parameters are fixed. Since 𝑩
has the group sparse penalty, we apply the well-known proximal gradient method (Beck & Teboulle,
2009; Parikh & Boyd, 2014). On the other hand, 𝒃 and 𝚯 have no sparse penalty and we can simply
apply the standard gradient descent.

Let 𝒈𝐻 = 𝜕
𝜕𝜷𝐻

∑𝑛
𝑖=1 ℓ(𝑦𝑖 , 𝑓 (𝐺𝑖)) be the gradient of the loss function with respect to 𝜷𝐻 and

prox(𝒂) =

(
1 − 𝜂𝜆

∥𝒂∥2

)
𝒂 if ∥𝒂∥2 > 𝜂𝜆,

0 if ∥𝒂∥2 ≤ 𝜂𝜆
(3)
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be the proximal projection with respect to 𝜂𝜆∥ · ∥2 for a given vector 𝒂 with the step size 𝜂. Then,
the update of each parameter is defined as

𝜷 (new)
𝐻 ← prox (𝜷𝐻 − 𝜂 𝒈𝐻 ) for 𝐻 ∈ H , (4)

𝒃 (new) ← 𝒃 − 𝛼
𝑛∑
𝑖=1

𝜕ℓ(𝑦𝑖 , 𝑓 (𝐺𝑖))
𝜕𝒃

, (5)

𝚯(new) ← 𝚯 − 𝛾
𝑛∑
𝑖=1

𝜕ℓ(𝑦𝑖 , 𝑓 (𝐺𝑖))
𝜕𝚯

, (6)

where 𝛼 and 𝛾 are step sizes. From the definition of (3), the proximal update (4) can be seen as a
soft-thresholding that regularizes the standard gradient descent. SinceH contains a large number of
subgraphs, calculating (4) for allH is not directly tractable. In § 2.2.1, we derive a pruning rule by
which we can perform (4) without enumerating all the subgraphs inH . § 2.2.2 describes the entire
procedure.

2.2.1 Backpropagation with Gradient Pruning

For the update of 𝜷𝐻 defined as (4), we only update 𝐻 ∈ W for a small working setW ⊆ H instead
of the entireH . LetW = H \W. Suppose that 𝜷𝐻 is initialized as 0 and that 𝜷𝐻 for 𝐻 ∈ W has
never been updated, i.e., 𝜷𝐻 = 0 for 𝐻 ∈ W. Then, from the proximal update rule (4), we see

prox (𝜷𝐻 − 𝜂 𝒈𝐻 ) = 0 for 𝐻 ∈ {𝐻 | ∥𝒈𝐻 ∥2 ≤ 𝜆 and 𝐻 ∈ W} (7)

This means that if ∥𝒈𝐻 ∥2 ≤ 𝜆 and 𝐻 ∈ W are satisfied, both of the current 𝜷𝐻 and the updated
𝜷new
𝐻 are zero. From this observation, we incrementally updateW as

W ←W ∪
{
𝐻

��� ∥𝒈𝐻 ∥2 > 𝜆,∀𝐻 ∈ W}
, (8)

and perform the update (4) only for 𝐻 ∈ W. However, evaluating ∥𝒈𝐻 ∥2 > 𝜆 for all 𝐻 ∈ W is
computationally demanding. To avoid this difficulty, the following theorem plays a key role:

Theorem 2.1. Let 𝐻 ′ ⊒ 𝐻 for 𝐻, 𝐻 ′ ∈ W, and 𝛿𝑖𝑘 = 𝜕ℓ (𝑦𝑖 , 𝑓 (𝐺𝑖))
𝜕ℎ𝑘

. Then, we have

∥𝒈𝐻 ′ ∥2 ≤
{ 𝐾∑
𝑘=1

max
{( ∑
𝑖∈{𝑖 |𝛿𝑖𝑘>0}

𝛿𝑖𝑘𝜓𝐻 (𝐺𝑖)
)2
,
( ∑
𝑖∈{𝑖 |𝛿𝑖𝑘<0}

𝛿𝑖𝑘𝜓𝐻 (𝐺𝑖)
)2}}1/2

C UB(𝐻). (9)

We here only describe the sketch of the proof (the proof is in Appendix B). An essential idea is
that we expand 𝒈𝐻 as a linear combination of the derivatives with respect to the GML intermediate
representation ℎ𝑘 , i.e., 𝛿𝑖𝑘 , by which the 𝑘-th element of the gradient can be written as (𝒈𝐻 )𝑘 =∑𝑛
𝑖=1 𝛿𝑖𝑘𝜓𝐻 (𝐺𝑖). By using the monotonically non-increasing property of 𝜓𝐻 (𝐺𝑖), i.e., 𝜓𝐻 ′ (𝐺𝑖) ≤

𝜓𝐻 (𝐺𝑖) if 𝐻 ⊑ 𝐻 ′, we can derive UB(𝐻). Note that, usually, there is no need to explicitly consider
this specific expansion of (𝒈𝐻 )𝑘 ; the theorem can only be derived by deliberately reducing it to the
linear combination of 𝛿𝑖𝑘 .

This theorem indicates that, for any 𝐻 ′ that contains 𝐻 as a subgraph, the L2 norm of the gradient
∥𝒈𝐻 ′ ∥2 can be bounded by UB(𝐻). Note that the upper bound UB(𝐻) can be calculated without
generating 𝐻 ′. From the rule (7) and Theorem 2.1, we can immediately obtain the following
important rule:
Corollary 2.1. For ∀𝐻 ′ ∈ {𝐻 ′ | 𝐻 ′ ⊒ 𝐻, 𝐻 ′ ∈ W},

UB(𝐻) ≤ 𝜆 and 𝐻 ∈ W ⇒ prox (𝜷𝐻 ′ − 𝜂 𝒈𝐻 ′) = 0 (10)

This is a direct consequence from the fact that if the conditions in the left side of (10) holds, we
have ∥𝒈𝐻 ′ ∥2 ≤ UB(𝐻) ≤ 𝜆 from (9). As a result, by using (7), we obtain (10). Corollary (2.1)
means that if the condition in (10) holds, for ∀𝐻 ′ that contains 𝐻 as a subgraph, we can omit the
update. Further, another notable advantage of this rule is that it does not depend on the step size 𝜂
(even when an iterative backtrack algorithm is employed for 𝜂, the evaluation of (10) is not required
to repeat for every backtrack iteration).
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Algorithm 1: Optimization for EIN
1 function Train-EIN(Λ)
2 𝐻0 ← a graph at root of mining tree
3 for 𝜆 in Λ do
4 repeat
5 W ← Traverse(𝐻0,W, 𝜆)
6 Update 𝑩 by (4) for 𝐻 ∈ W
7 Update 𝒃 by (5)
8 for iter = 1, . . . , MaxIter do
9 Update 𝚯 by (6)

10 end
11 until terminate condition met
12 end
13 end

Algorithm 2: Working Set Generation
1 function Traverse(𝐻,W, 𝜆)
2 if UB(𝐻) ≤ 𝜆 then returnW
3 if ∥𝒈𝐻 ∥2 > 𝜆 then

W ←W ∪ {𝐻}
4 C ← Expand(𝐻)
5 for 𝐻 ′ ∈ C do
6 W ← Traverse(𝐻 ′,W, 𝜆)
7 end
8 returnW
9 end

10 function Expand(𝐻)
11 if children of 𝐻 have never been

created by gSpan then
12 C ← all graphs expanded from

𝐻 by gSpan
13 Set {𝜓𝐻 ′ (𝐺𝑖)}𝑛𝑖=1 for 𝐻 ′ ∈ C
14 else
15 C ← Retrieve already expanded

children of 𝐻
16 end
17 return C
18 end

By combining the rule (10) and a graph mining
algorithm, we can build an efficient pruning al-
gorithm. We employ a well-known graph mining
algorithm called gSpan (Yan & Han, 2002) that can
efficiently enumerate all the subgraphs in a given
set of graphs. Figure 1 (c) is an illustration of a
graph mining tree. At each tree node, gSpan ex-
pands the graph (add an edge and a node) as far as
the expanded graph is included in the given dataset
as a subgraph. By providing a unique code to each
generated graphs (called the DFS code because it is
based on depth-first search in a graph), gSpan can
enumerate all the subgraphs without generating du-
plicated graphs (For further detail, see (Yan & Han,
2002)). As shown in Fig. 1 (c), all the graphs in
the tree contains their ancestors as a subgraph. As
a result, the following important consequence is
obtained
Remark 2.1. By evaluating UB(𝐻) ≤ 𝜆 during
the tree traverse of gSpan (e.g., depth-first search),
all the descendants of 𝐻 in the tree can be pruned
if the inequality holds. This means that we can
perform the update (8) without enumerating all the
elements ofW. In other words, we do not need to
enumerate all the subgraphsH for (4).

Further, another notable remark about the pruning
is as follows.
Remark 2.2. Since our pruning strategy only
omit the update of unnecessarily parameters, i.e.,
𝜷𝐻 = 0, the pruning does no change all the pa-
rameter values compared with the case that we do
not use the pruning. This also means that the fi-
nal prediction performance also does not change
because of the pruning.

2.2.2 Algorithm

We here describe the optimization procedure of
EIN. When the regularization parameter 𝜆 is large,
𝑩 becomes highly sparse, by which computations usually become faster because more subgraphs
are expected to be pruned. Therefore, after starting from a larger value of 𝜆, we gradually reduce 𝜆
while optimizing parameters. Let Λ = (𝜆1, . . . , 𝜆𝐾 ) be a sequence of the regularization parameters,
where 𝜆1 > 𝜆2 · · · > 𝜆𝐾 . For each 𝜆, we use the solution of previous 𝜆 as an initial solution.

The Train-EIN function of Algorithm 1 performs the optimization (2) for each 𝜆 from the given
Λ. In line 5, the Traverse function performs the graph mining tree search in whichW is generated
via gradient pruning. The detailed procedure of the working set generation is in Algorithm 2. The
Traverse function searches graph mining tree recursively. At each tree node, UB(𝐻) is evaluated
and the entire subtree below the current node can be pruned if UB(𝐻) ≤ 𝜆. On the other hand,
if ∥𝒈𝐻 ∥2 > 𝜆, 𝐻 should be included inW. The children nodes of 𝐻 are created by gSpan in the
Expand function, by which only the subgraphs 𝐻 ′ included in the training dataset can be generated
and as a byproduct of this process, we obtain 𝜓𝐻 ′ (𝐺𝑖). Note that if the children are already generated
in the previous iterations, we can reuse them.

Once W is determined, 𝑩 and 𝒃 are updated in line 6-7 in Algorithm 1. Their step lengths are
determined by backtrack algorithm (Note that since our pruning condition does not depend on the
step length, we do not need to perform the Traverse function repeatedly during this backtrack steps).
Then, 𝚯 is updated in line 8-10. This is a usual neural network parameter update, for which we
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iterate the update until given max iteration. Here, we employed the full instance gradient, the standard
stochastic gradient can also be used. At each 𝜆, the alternating update procedure stops (line 11) when
the iteration reaches the given maximum iterations or some other stopping condition is satisfied.

2.3 Post-hoc Analysis for Knowledge Discovery

After the optimization, only a small number of 𝜷𝐻 have non-zero values, by which we can identify
predictive subgraphs. Let S = {𝐻 ∈ H | 𝜷𝐻 ≠ 0} be the set of the selected subgraphs by EIN.
In our later experiments, we observed that |S| was typically ranged from around 50 to at most a
few hundreds. Then, some insight may be obtained just by directly observing all of those selected
subgraphs by the domain expert of the data.

The trained EIN can be seen as an |S|-dimensional input neural network, to which post-hoc knowledge
discovery methods (Bhati et al., 2025) can be applied. For example, well-known SHAP (Lundberg
& Lee, 2017) and LIME (Ribeiro et al., 2016), both of which provide local feature importance, is
applicable. Another typical approach is to use the trained EIN as a teacher and fit an interpretable
surrogate model (e.g., decision tree), from which a possible decision rule can be estimated (Molnar,
2025). Note that, usually, applying interpretable machine learning methods directly to exhaustive
subgraph isomorphism features can be computationally intractable. Because of EIN, which selects
a few important subgraphs, a variety of post-hoc analyses become much easier.

2.4 Combining with Graph Neural Network

. . .

Figure 2: A simple example of
EIN combined with GNN.

Since EIN is based on the standard backpropagation mecha-
nism, general neural network models can be combined flexibly.
For example, a simple approach to combining EIN with a graph
neural network (GNN) is

𝑓 (𝐺𝑖) = FFN(GNN(𝐺𝑖;𝚯GNN)
⊕ GML(𝐺𝑖; 𝑩, 𝒃);𝚯FFN),

(11)

where ⊕ is the vector concatenation, GNN is any GNN that
outputs arbitrary dimension representation vector, and 𝚯GNN
and 𝚯FFN are parameters of GNN and FFN, respectively. This
combination enables any GNNs to enhance the discriminative
ability in terms of the selected subgraphs by EIN. A schematic
illustration of a simplest case is shown in Fig. 2. Computations of the combined model can also
be performed by almost the same alternating update (4)-(6). The only difference is that the FFN
parameter update (6) is replaced with the simultaneous update of 𝚯FFN and 𝚯GNN.

3 Related Work

For GNNs, the message passing based approach has been widely employed (Zhou et al., 2020). It is
known that the expressive power of classical message passing approaches is limited by the first order
Weisfeiler-Lehman (1-WL) test (Zhao et al., 2022). Many studies have tackled this limitation, some
of which actually can be comparable with higher order WL tests. For example, 𝑘-hop extensions
of the message passing (e.g., Abu-El-Haija et al., 2019; Nikolentzos et al., 2020; Wang et al., 2021;
Chien et al., 2021; Brossard et al., 2020) and the higher order (tensor) representations (e.g., Morris
et al., 2019; Maron et al., 2019b;a;c; Keriven & Peyré, 2019; Geerts & Reutter, 2022; Murphy
et al., 2019) are popular approaches. Further, several studies (Bouritsas et al., 2023; Cotta et al.,
2021; Barcelo et al., 2021; Bevilacqua et al., 2022) incorporate small subgraph information, such
as pre-specified motifs and ego-networks, into neural networks. On the other hand, EIN performs
the data-adaptive selection of a small number of (globally) predictive subgraphs, based on the exact
enumeration of all the subgraphs in the dataset, which is obviously different approach from the above
popular GNN studies. Further, most of GNNs can be combined with EIN by (11).

Although explainable GNNs are also studied, according to (Yuan et al., 2022), most of them are
for the ‘instance-level’ explanation, which considers an explanation for the prediction of the specific
one input graph. A few exceptions are approaches based on the maximization of the trained GNN
output for a target label (Yuan et al., 2020), the latent space prototype learning (Azzolin et al., 2023),
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Figure 3: Subgraphs (a) and (b) have closed paths whose lengths are 8 and 9, respectively, which
are difficult to discriminate. Subgraph (c) is used for adjusting the number of nodes that have label
‘1’. Note that all subgraphs (a), (b), and (c) have 16 nodes.

and the kernel-based filtering (Feng et al., 2022). However, unlike EIN, they cannot guarantee that
the identified important graphs are actually subgraphs of the input graphs because none of them are
based on the exact matching.

In the context of graph mining, discriminative pattern mining has also been studied (e.g., Thoma et al.,
2010; Potin et al., 2025; Chen et al., 2022). However, most of them are not directly incorporated in a
learning model. Typically, the subgraph enumeration (using some pruning strategies) is performed
based on a discriminative score (e.g., ratio of frequency between two classes) independent from
a learning model, and the selection results can be used in a subsequent prediction model training.
Although (Nakagawa et al., 2016; Yoshida et al., 2019; 2021; Tajima et al., 2024) enumerate subgraphs
during a model optimization, they are limited to a linear combination of the subgraphs. Note that
Tajima et al. (2024) also use a combination of proximal gradient and gSpan, from which our
optimization procedure is extended to the neural network backpropagation and the group-sparsity.
Although (Nakagawa et al., 2016; Yoshida et al., 2019; 2021) provide a stronger pruning rule that
can satisfy the global optimality, the convex formulation of the model training is required. To our
knowledge, a discriminative subgraph mining that directly combines the exact subgraph enumeration
with a (sparsity-induced) neural network has not been investigated.

4 Experiments

We verify the prediction performance and interpretability of EIN through synthetic and benchmark
datasets. For all the datasets, we partitioned them into train : valid : test = 6 : 2 : 2.

Synthetic Datasets. We created two synthetic datasets by using subgraphs shown in Figure 3.
𝐻𝑝 and 𝐻𝑛 are subgraphs with 16 nodes, which is known to be difficult to discriminate by standard
GNNs.

The first dataset use 𝐻𝑝 and 𝐻𝑛, by which positive and negative classes are defined. We first
generated a random connected graph, connected with one of 𝐻𝑝 or 𝐻𝑛 randomly. The initial random
graph has node labels ‘0’, and 𝐻𝑝 and 𝐻𝑛 have node labels ‘1’. We generated 300 instances for each
of the positive and the negative classes. We call this dataset ‘Cycle’. See Appendix C.1 for further
details of the initial random graph.

In the second data, the positive and the negative classes are defined by the XOR rule, i.e., a nonlinear
rule, of 𝐻𝑝 and 𝐻𝑛, which we call ‘Cycle_XOR’ By using the same random graph as the Cycle
dataset, 𝐻𝑝 and/or 𝐻𝑛 are embedded into input graphs. Therefore, if a graph have one of 𝐻𝑝 or 𝐻𝑛,
the class label is 𝑦 = 1, otherwise 𝑦 = 0, i.e., in the case that both of 𝐻𝑝 and 𝐻𝑛 are included or
neither of them are included. We generated 150 instances each of four states of XOR, which results
in 300 instances each of the positive and the negative classes. However, in this setting, the difference
in the number of the nodes labeled as ‘1’ may make the discrimination easier (32 if both of 𝐻𝑝 and
𝐻𝑛 exist, 16 if one of 𝐻𝑝 and 𝐻𝑛 exists, and 0 if neither of 𝐻𝑝 and 𝐻𝑛 exists). To avoid this, we
added an simple subgraph 𝐻padding so that the number of the nodes labeled as ‘1’ is 32 for all graphs.

Benchmark Datasets. As benchmark datasets, we used BZR, COX2, DHFR, and ENZYMES
from (Morris et al., 2020), and ToxCast and SIDER from (Wu et al., 2018).
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Table 1: Accuracy on synthetic and benchmark datasets

BZR COX2 DHFR ENZYMES ToxCast SIDER Cycle Cycle_XOR
GCN 83.7±2.6 80.3±1.3 71.2±4.8 69.5±6.5 60.0±2.8 69.4±0.3 48.8±1.1 50.7±1.5
GAT 81.2±1.9 79.4±1.0 70.8±3.2 69.5±11.1 58.5±3.8 70.1±0.7 49.8±1.5 58.5±6.1
GATv2 82.5±4.2 79.0±2.5 72.1±3.9 69.5±10.4 59.7±2.3 69.5±1.0 48.7±2.2 59.8±4.3
GIN 81.7±2.2 78.2±0.9 70.2±4.6 71.0±8.6 59.0±2.5 68.6±0.6 50.0±0.0 72.2±4.5
PNA 82.7±3.7 78.2±0.5 67.2±2.4 70.0±10.9 56.6±3.6 69.1±0.2 49.5±1.1 74.2±2.8
GIN-AK 82.5±2.3 80.5±3.0 77.1±3.2 75.5±8.0 58.7±2.5 68.9±1.7 53.2±1.6 72.0±5.4
PPGN 83.7±3.8 79.4±2.1 76.1±4.9 66.5±6.0 60.9±2.6 69.6±1.0 49.8±2.1 74.5±2.4
EIN 86.4±4.4 81.4±3.1 82.8±4.0 65.5±12.7 61.8±2.2 70.7±2.8 100.0±0.0 99.8±0.3
EIN+GIN 86.2±3.0 81.2±3.9 81.8±2.8 73.0±3.3 61.8±1.9 70.9±3.5 100.0±0.0 99.8±0.4
# nonzero 𝜷𝐻 of EIN 79±12 83±17 121±103 101±43 74±13 202±29 4.0±0.0 51±15

Compared Methods. For performance comparison, we used GNN methods such as GCN (Kipf &
Welling, 2017), GAT (Velickovic et al., 2018), GATv2 (Brody et al., 2022), GIN (Xu et al., 2019),
PNA (Corso et al., 2020), GNN-AK (Zhao et al., 2022), and PPGN (Maron et al., 2019a). For node
attributes, EIN only used discrete node labels, while compared GNN methods also incorporate
continuous node attributes. GCN, GAT, GATv2, and GIN optimizes the number of the units
{64, 128, 256} and the number of epoch by the validation set, and other settings follow (You et al.,
2021). PNA optimizes the number of the units {16, 32, 64} and the number of epochs by the validation
set, and the number of the message passing is set as 2. GNN-AK uses GIN as the base GNN. Other
settings of GNN-AK and PPGN follow the author implementation. For EIN, maxpat ∈ {5, 10},
𝐾 ∈ {2, 6, 10}, and 𝜎 ∈ {sigmoid,LeakyReLU} are selected by the validation performance. We
also evaluate performance of the combination of EIN and GNN described in § 2.4. For GNN, we
employed GIN and the combine model is denoted as EIN+GIN. For other details, see Appendix C.2.

4.1 Prediction Accuracy Comparison

Table 1 shows classification accuracy on synthetic and benchmark datasets. The results on Cycle and
Cycle_XOR indicate that GNN based methods cannot discriminates closed paths shown in Fig. 3 (a)
and (b). On the other hand, in Cycle and Cycle_XOR datasets, EIN and EIN+GIN achieved almost
100% classification. This indicates that EIN has a high discriminative ability about the subgraph
structure, and flexibility that can capture a nonlinear relation.

For the other benchmark datasets, EIN and EIN+GIN show superior performance compared with
other GNNs except for ENZYMES. EIN+GIN improves GIN for all datasets, which suggests that the
exact subgraph information is essential for the prediction.

Further, the number of the selected subgraphs in EIN, shown in the bottom of Table 1 is at most
a few hundreds, from which we see that EIN can effectively identify a small number of important
subgraphs for the prediction.

4.2 Examples of Post-hoc Analysis

We here show examples of the post-hoc analysis using the trained EIN. Figure 4 is a result of SHAP
for the EIN prediction on an instance of the ToxCast dataset. For SHAP, we used the python library
https://shap.readthedocs.io/en/latest/, and see the document for detail. The SHAP
values are for the predicted class (positive class), and in this case, we can see that a subgraph in
Fig. 4 (a) has a particularly strong contribution to the prediction. Figure 5 shows an example of a
fitted decision tree to the trained EIN prediction for the Cycle_XOR training and test datasets. In
Fig. 5, the top node classifies a graph that do not have both of 𝐻𝑝 and 𝐻𝑛 as 𝑦 = 0 (the top subgraph
is included both in 𝐻𝑝 and 𝐻𝑛, but not in 𝐻padding), and the second and the third nodes consists of
the XOR rule by the length 8 and 9 closed paths (the second node is the length 9 closed path and the
third node is the length 8 closed path). Additional examples are shown in Appendix D.
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Figure 4: Example of SHAP applied to an EIN
prediction from the ToxCast dataset.
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Figure 5: Decision tree on Cycle_XOR

Table 2: Mean pruning rates of EIN
BZR COX2 DHFR ENZYMES ToxCast SIDER Cycle Cycle_XOR

Working set size 76 146 91 164 60 193 4 50
# Traverse nodes 12637 5060 20596 45829 3710 6122 3 828
# all subgraphs |H | 112944 76120 108124 1133298 72734 101965 31953 40627
Pruning rates (%) 88.81 93.35 80.95 95.96 94.90 94.00 99.99 97.96

4.3 Pruning rates

Table 2 shows the mean working set size (mean over all 𝜆), the mean number of the traversed nodes
(mean over all 𝜆), and the number of all the subgraphs |H | for maxpat = 10. The pruning rates are
defined by the ratio between the number of the traversed nodes and |H |. We can see that a large
amount of nodes are pruned. Further, the mean size of the working set is at most a few hundreds,
which means that 𝑩 is highly sparse during the optimization. Computational time required for the
entire Algorithm 1 is also reported in Appendix E. The computational time of EIN is unfortunately
higher than the standard GNNs. However, taking into account the fasts that EIN handles all the
possible subgraphs with the exact matching and that the pruning rate was high, we consider that
EIN performs highly efficiently computations. Further improvement for the high computational
requirement is one of important future work to scale up the applicability.

5 Conclusions

We propose Exact subgraph Isomorphism Network (EIN). EIN combines the exact subgraph enu-
meration, neural networks, and the group sparse regularization. We show that predictive subgraphs
can be identified efficiently by pruning unnecessarily subgraphs during the proximal update without
sacrificing the quality of the model. We demonstrated that EIN has sufficiently high prediction ac-
curacy compared with well-known graph neural networks despite that EIN only uses a small number
of selected subgraphs.
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A SIF by Frequency

The frequency based SIF is used in (Yoshida et al., 2021) in the context of a subgraph pattern based
distance metric learning. They define #(𝐻 ⊑ 𝐺𝑖) as the frequency of the subgraph 𝐻 contained in
𝐺𝑖 , where nodes or edges among the counted subgraphs are not allowed. Then, the feature value is
defined as

𝜙𝐻 (𝐺𝑖) = 𝑔(#(𝐻 ⊑ 𝐺𝑖)),
where 𝑔 is a monotonically non-decreasing and non-negative function such as identity function
𝑔(𝑥) = 𝑥 or the indicator function 𝑔(𝑥) = I(#(𝐻 ⊑ 𝐺𝑖) > 0) (Yoshida et al. (2021) employed
𝑔(𝑥) = log(1+𝑥)for their evaluation). They pointed out computing the frequency without overlapping
is NP-complete (Schreiber & Schwöbbermeyer, 2005), and approximate count is also provided (see
(Yoshida et al., 2021) for detail). Our pruning theorem (Theorem 2.1) holds for both the exact
𝜙𝐻 (𝐺𝑖) and its approximation.

B Proof of Theorem 2.1

We first transform the derivatives of the loss function with respect to 𝜷𝐻 so that it is represented
through the GML intermediate variable 𝒉:

𝒈𝐻 =
𝜕

𝜕𝜷𝐻

𝑛∑
𝑖=1

ℓ(𝑦𝑖 , 𝑓 (𝐺𝑖))

=
𝑛∑
𝑖=1

𝜕𝒉⊤

𝜕𝜷𝐻

𝜕ℓ(𝑦𝑖 , 𝑓 (𝐺𝑖))
𝜕𝒉

.

From the definition of 𝒉, we see 𝜕𝒉⊤

𝜕𝜷𝐻
= 𝜓𝐻 (𝐺𝑖)𝑰𝐾 , where 𝑰𝐾 is the 𝐾 × 𝐾 identity matrix. As a

result, we have

𝒈𝐻 =
𝑛∑
𝑖=1

𝜕ℓ(𝑦𝑖 , 𝑓 (𝐺𝑖))
𝜕𝒉

𝜓𝐻 (𝐺𝑖).

Since 𝛿𝑖𝑘 = 𝜕ℓ (𝑦𝑖 , 𝑓 (𝐺𝑖))
𝜕ℎ𝑘

,

∥𝒈𝐻 ′ ∥2 =

√√√
𝐾∑
𝑘=1

(
𝑛∑
𝑖=1

𝛿𝑖𝑘𝜓𝐻 ′ (𝐺𝑖)
)2

. (12)
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From the definition, 0 ≤ 𝜓𝐻 ′ (𝐺𝑖) ≤ 𝜓𝐻 (𝐺𝑖). Then, the upper and lower bound of the inner sum of
(12), i.e.,

∑𝑛
𝑖=1 𝛿𝑖𝑘𝜓𝐻 ′ (𝐺𝑖), can be derived as

𝑛∑
𝑖=1

𝛿𝑖𝑘𝜓𝐻 ′ (𝐺𝑖) ≤
∑

{𝑖 |𝛿𝑖𝑘>0}
𝛿𝑖𝑘𝜓𝐻 ′ (𝐺𝑖) ≤

∑
{𝑖 |𝛿𝑖𝑘>0}

𝛿𝑖𝑘𝜓𝐻 (𝐺𝑖),

𝑛∑
𝑖=1

𝛿𝑖𝑘𝜓𝐻 ′ (𝐺𝑖) ≥
∑

{𝑖 |𝛿𝑖𝑘<0}
𝛿𝑖𝑘𝜓𝐻 ′ (𝐺𝑖) ≥

∑
{𝑖 |𝛿𝑖𝑘<0}

𝛿𝑖𝑘𝜓𝐻 (𝐺𝑖).

Therefore,(
𝑛∑
𝑖=1

𝛿𝑖𝑘𝜓𝐻 ′ (𝐺𝑖)
)2

≤ max
©­«

∑
{𝑖 |𝛿𝑖𝑘>0}

𝛿𝑖𝑘𝜓𝐻 (𝐺𝑖)
ª®¬

2

,
©­«

∑
{𝑖 |𝛿𝑖𝑘<0}

𝛿𝑖𝑘𝜓𝐻 (𝐺𝑖)
ª®¬

2 ,
which results in (9).

C Detail of Experimental Settings

C.1 Synthetic Dataset

For both Cycle and Cycle_XOR, we first generate a random graph by the following procedure. The
node size is randomly chosen from 5, 6, . . . , 10, and the number of edges are at most 20, which are
also randomly generated by choosing node pairs uniformly. From 𝐻𝑝 , 𝐻𝑛, or 𝐻padding, randomly
selected 𝑛connect ∈ {3, 4, 5, 6} nodes are connected to a randomly selected node in the initial random
graph.

C.2 Other Settings of EIN

In Algorithm 1, we selected five values of𝜆 taken from the interval [log(𝜆max), log(0.01𝜆max)]. From
log(𝜆max), we iteratively decrease Δ𝜆 five times (i.e., log(𝜆𝑘+1) = log(𝜆𝑘 ) −Δ𝜆). The initial value of
Δ𝜆 is (log(𝜆max)− log(0.01𝜆max))/5. If the number of non-zero ∥𝜷𝐻 ∥ increase ≥ 10, then we update
Δ𝜆 ← 0.5Δ𝜆. We determined 𝜆max by 𝜆max = max𝐻 ∈H ∥𝒈𝐻 ∥2, in which 𝑩 and 𝒃 were initialized
by a linear model (Nakagawa et al., 2016) and 𝚯 was randomly initialized. We set the terminate
condition in the alternating update of Algorithm 1 as that the validation loss does not improve 5
times. The hyper-parameters 𝜆, maxpat ∈ {5, 10}, 𝐾 ∈ {2, 6, 10}, and 𝜎 ∈ {sigmoid,LeakyReLU}
were selected by the validation loss. We set the number of layers of FFN as 1 and MaxIter for 𝚯 was
30.

In EIN+GIN, the message passing in GIN was set as 3, the number of the middle unit was 16, and
the activation function was ReLU.

D Other Examples of Post-hoc Analysis

Figure 6 shows an example of a fitted decision tree to the trained EIN prediction for the SIDER
training and test datasets, which provides possible decision rule behind subgraphs and the target
label. As another simple example of post-hoc analysis, Fig. 7 shows subgraph importance estimated
by Random Forest (RF) (Breiman, 2001) for Cycle_XOR. We fitted RF to a set of (𝝍S (𝐺𝑖), 𝑓 (𝐺𝑖))
created by the training and test datasets and the importance is evaluated by scikit-learn feature
importance of RandomForestRegressor, which is based on mean decrease of impurity by that
feature. Top five important subgraphs are shown in the figures. Figure 7 indicates that the closed
paths of 𝐻𝑝 and 𝐻𝑛 are identified by EIN (the top subgraph is the length 9 closed path and the second
subgraph is the length 8 closed path).

E Computational Times

The computational time spent on Algorithm 1 is shown in Table 3. In the table, ‘Traverse Times’
corresponds to the Traverse function in Algorithm 1. We see that the time required for the subgraph
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Figure 6: Decision tree on SIDER.
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Figure 7: Subgraph importance estimated by RF on Cycle_XOR dataset.

enumerations depends on the datasets (depends on a variety of factors such as node sizes, edge sizes,
and the pruning rate).

Table 3: Mean computational time for the entire Algorithm 1
BZR COX2 DHFR ENZYMES ToxCast SIDER Cycle89 Cycle89_XOR

Traverse Times (s) 13 9.2 68 991 602 1706 85 7692
All times (s) 179 185 598 1089 744 1859 1253 10361

F LLM Usage

In this manuscript, LLM was only used to polish writing.
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