Under review as a conference paper at ICLR 2026

Exact SUBGRAPH IsoMORPHISM NETWORK FOR
PreDICTIVE GRAPH MINING

Anonymous authors
Paper under double-blind review

ABSTRACT

In the graph-level prediction task (predict a label for a given graph), the information
contained in subgraphs of the input graph plays a key role. In this paper, we propose
Exact subgraph Isomorphism Network (EIN), which combines the exact subgraph
enumeration, a neural network, and a sparse regularization. In general, building
a graph-level prediction model achieving high discriminative ability along with
interpretability is still a challenging problem. Our combination of the subgraph
enumeration and neural network contributes to high discriminative ability about
the subgraph structure of the input graph. Further, the sparse regularization in EIN
enables us 1) to derive an effective pruning strategy that mitigates computational
difficulty of the enumeration while maintaining the prediction performance, and
2) to identify important subgraphs that contributes to high interpretability. We
empirically show that EIN has sufficiently high prediction performance compared
with standard graph neural network models, and also, we show examples of post-
hoc analysis based on the selected subgraphs.

1 INTRODUCTION

Graph-level prediction tasks, which take a graph as an input and predict a label for the entire graph,
have been widely studied in the data-science community. It is known that the graph representation
is an effective approach to a variety of structure data such as chemical compounds (Ralaivolaefall,
7003, Faber ef all, DOT7), protein structures (Gligorijevic et all, Z071), and inorganic crystal structures
(Xie_& Grossman, ZOTR; Comis_ef all, P020). In a graph-level prediction task, substructures on the
input graph, i.e., subgraphs, are often an important factor for the prediction and the analysis. For
example, in a prediction of a property of chemical compounds, identifying small substructures of the
molecules can be essential for both of improving prediction accuracy and obtaining an insight about
the underlying chemical mechanism. Therefore, mining predictive subgraphs is a significant issue
for graph-level prediction tasks, and further, those subgraphs can have a higher order dependency to
the prediction that requests sufficient flexibility in the model. However, building a prediction method
that satisfies these requirements is a still challenging problem (see § B for existing studies).

Our proposed method, called Exact subgraph Isomorphism Network (EIN), adaptively identifies
predictive subgraphs based on which a neural network model can be simultaneously trained. The
overview of EIN is shown in Fig. [. Fig. [l (a) illustrates the subgraph representation of EIN denoted
as ¥ (G) which takes a non-zero value if the input graph G contains a subgraph H and takes 0
otherwise (i.e., it is based on the exact subgraph isomorphism). As shown in Fig. [(b), EIN can be
seen as a neural network in which the candidates of the input features are all the subgraphs contained
in the training dataset. Because of its exact subgraph isomorphism representation, this architecture
can be highly discriminative about subgraph structures. However, since the number of the candidate
subgraphs can be enormous, the naive computation of this architecture is computationally intractable.

EIN consists of Graph Mining Layer (GML) and Feed Forward Network (FFN). GML implements a
mechanism to select only a small number of subgraphs necessary for the prediction, achieved through
the group-sparse regularization. The group sparse regularization (Ynan & Tin, PO06) is a well-known
regularizer for the group-wise selection of variables. We regard a set of neural network weights from
an input unit (corresponding to one subgraph) to the next layer as a group, by which the adaptive
subgraph selection can be realized. Only the selected subgraphs are used in the subsequent FFN

Under review as a conference paper at ICLR 2026

i Backpropagation with
-2 Gy Gs Gs Gy (gradient pruning
©
kS Sl S = T <3
oo y=+1
o) l(Ga) u(G) 4(Ga) o8
@ —
g1l u,G) 0 4Gy 0])
5| 0° i ol N S
g 0 7nﬁfz(Gz) Tﬁi{(Gz) @ﬁ?c(sz) re &
g
< | 0y(G) U y(Ga) U (Gr) Y (Ga) o e
2 N y=-1
g 0 0 UE o(Ga) 0 — and Feed forward network
?, ¥ (Gh) 0 P (G3)) (G4) © Predictive subgraphs)
2| o ol od o (C) Subgraph enumeration
: : : : : by graph mining tree
(a) Subgraph isomorphism feature Graph mining layer (GML)

b) Exact subgraph isomorphism network (EIN)

Figure 1: Overview of proposed method.

that learns the dependency between the selected subgraphs and the prediction target. Unfortunately,
although the number of subgraphs becomes small in the trained model, this approach still suffers
from the computational difficulty because all the candidate subgraphs are still required to consider
during the optimization process.

To tackle the computational difficulty, we combine a subgraph enumeration by graph mining (Yan
& Harl, P007) and the proximal gradient optimization (Ilehoulld, PUT7; Beck & Teboulld, 200Y9),
by which a pruning strategy for unnecessarily subgraphs can be derived, shown in 0 (c). The
proximal gradient is a standard approach for the sparse modeling, in which parameters are updated
through a proximal projection that typically results in a thresholding operation. This thresholding
operation reveals that if the norm of the gradient corresponding to a subgraph H is less than certain
threshold, parameters for that subgraph is not required to update. We show that, by deriving an
upper bound of the norm of the gradient, an efficient pruning strategy for the subgraph enumeration
can be constructed. Our pruning strategy has the following two important implications. First, this
pruning enables us to train EIN without enumerating all the candidate subgraphs, which makes
EIN computationally tractable. Second, our pruning strategy maintains the quality of the prediction
compared with when we do not perform the pruning. This is because we only omit the computations
that does not have any effect on the prediction.

Our contributions are summarized as follows.

* We propose EIN, which is a neural network model that uses the exact subgraph isomorphism
feature. Through a group sparse regularization, we formulate EIN so that a small number
of subgraphs can be identified by which an insight about the important substructure can be
extracted for the given graph-level prediction task.

* We show that the combination of the subgraph enumeration and the proximal gradient
with backpropagation can derive an efficient pruning strategy that makes the EIN training
computationally tractable. We further reveal that our pruning strategy does not degrade the
prediction quality.

* Based on synthetic and benchmark datasets, we demonstrate that EIN has superior or com-
parable performance compared with standard graph prediction models while EIN actually
can identify a small number of important subgraphs, simultaneously.

2 Prorosep MeTHOD: ExXAcT SUBGRAPH ISOMORPHISM NETWORK

Our proposed method, called Exact subgraph Isomorphism Network (EIN), considers the classifica-
tion problem of a graph G € G, where G is a set of labeled graphs. G consists of a set of nodes and
edges between nodes and each node can have a categorical label. The training datais {(G;, y;) }ie[n]

Under review as a conference paper at ICLR 2026

where y; € Y is a graph label, n is the number of instances, and [n] = {1,...,n}. Here, although
we only focus on the classification problem, the regression problem can also be handled by just
replacing the loss function.

First, § I describes the formulation of our model. Second, the optimization procedure is shown in
§ . Next, § I3 and 4 discuss post-hoc analysis for knowledge discovery and a combination of
graph neural networks, respectively.

2.1 MobEL DEFINITION

Let 1 (G;) € {0, 1} be the feature that represents whether the input graph G; contains a subgraph
H (we only focus on a connected subgraph), which we call subgraph isomorphism feature (SIF):

Yyu(G;) =1(HC G;),)]

where I is the indicator function and H C G; indicates that H is a subgraph of G;. Note that
although instead of I(H C G;), frequency that H is included in G; can also be used for ¢ 5 (G;) in
our framework, we employ () throughout the paper for simplicity (see Appendix A for more detail).
For example, in Fig. Il (a), G| is 17 (G1) = 1 for H = eand ¢ (G{) = 0 for H = { . We define
candidate subgraphs as H = {H | H C G;,i € [n],|H| < maxpat}, which is all the subgraphs in
the training dataset whose size is at most pre-specified maxpat (the size |H| is the number of edges).
By concatenating SIF /5 (G;) of each H € H, the feature vector ¥ (G;) € {0, 1}!*l is defined. EIN
identifies a small number of important subgraphs from H through the feature selection discussed
later. SIF ¥ (G;) is obviously highly interpretable and it can assure the existence of a subgraph H.
Further, if G; and G contain at least one different subgraph H € H, then, we have ¢ (G;) # ¥ (G).

As shown in Fig. [(b), EIN consists of Graph Mining Layer (GML) and Feed Forward Network
(FFN). Let K be the number of output units of GML. We define GML : G — RX as follows.

GML(G;; B,b) = o(h),
h= " Buyu(Gi)+b,

HeH

where B = [B,..., B3] € REXIHI and b € RX are parameters, and o : RK — RX is an activation
function. Each B can be seen as a representation corresponding to each subgraph H. The entire
prediction model is defined as

f(G;) = FFN(GML(G;; B, b); 0),

where O is parameters of FFN. We optimize the parameters B, b, and @ through the following
optimization problem in which the group sparse penalty (Yuan & Tin, P006) is imposed on S :

Jmin 3 C0i f(G))+A) 1Byl @
i=1 HeH

where ¢ is a differentiable loss function and A is a regularization parameter. We here use the cross-

entropy loss for £. The group-wise penalty || S ||2 results in S = 0 for many unnecessarily H at the

solution of (1), by which we can identify important predictive subgraphs as {H | By # 0}. However,

since the size of B, i.e., K X |H], is quite large, naive optimization of (F) can be difficult.

2.2 OPTIMIZATION

Our optimization algorithm is based on the block coordinate descent (Ku-& Yin, 2(0T7), in which
each one of B, b, and @ are updated alternately while the other two parameters are fixed. Since B
has the group sparse penalty, we apply the well-known proximal gradient method (Beck & Tebhoulle,
2009; Parikh & Boyd, 2014). On the other hand, b and ® have no sparse penalty and we can simply
apply the standard gradient descent.

Letgy = % 1 (i, f(Gy)) be the gradient of the loss function with respect to 8 and

na .
1———|a if|la|l, > nA,
prox(a) = (||a||2) lellz > 7 3
0 if [lall> <A

Under review as a conference paper at ICLR 2026

be the proximal projection with respect to || - || for a given vector a with the step size . Then,
the update of each parameter is defined as

gew) —prox (By —ngy) for H € H, 4)

b (e eb—azw, (5)
i=1

W) _ @_— yZ W, (6)

i=1
where « and y are step sizes. From the definition of (B), the proximal update (#) can be seen as a
soft-thresholding that regularizes the standard gradient descent. Since H contains a large number of
subgraphs, calculating () for all # is not directly tractable. In § 721, we derive a pruning rule by
which we can perform (B) without enumerating all the subgraphs in H. § 727 describes the entire
procedure.

2.2.1 BACKPROPAGATION WITH GRADIENT PRUNING

For the update of S defined as (8), we only update H € ‘W for a small working set ‘W C H instead
of the entire H. Let ‘W = H \ ‘W. Suppose that B is initialized as 0 and that 8 for H € W has
never been updated, i.e., B = 0 for H € ‘W. Then, from the proximal update rule (B), we see

prox (By —n gy) =0 for He {H| gyl < dand H € W} (7

This means that if ||gg|l» < Aand H € W are satisfied, both of the current 8 7 and the updated

5" are zero. From this observation, we incrementally update W as

‘W<—(WU{H|||gH||2>/l,VHeW}, ®)

and perform the update (@) only for H € ‘W. However, evaluating ||g|l, > A for all H € ‘W is
computationally demanding. To avoid this difficulty, the following theorem plays a key role:

Theorem 2.1. Let H' 3 H for H,H' € W, and 8 = My"a’—ik(c")). Then, we have

K 1/2
||gH/||zs{Zmax{(D Guwn(GH) () &-m(ci)f}} = UB(H). (9)
k=1

i€f{i|6;>0} ie{i|6;1<0}

We here only describe the sketch of the proof (the proof is in Appendix Bl). An essential idea is
that we expand gy as a linear combination of the derivatives with respect to the GML intermediate
representation /i, i.e., §;x, by which the k-th element of the gradient can be written as (gg)x =
2 0ik¥r (G;). By using the monotonically non-increasing property of ¥ ¢ (G;), i.e., Yy (G;) <
Yy (G;)if HC H’, we can derive UB(H). Note that, usually, there is no need to explicitly consider
this specific expansion of (g)«; the theorem can only be derived by deliberately reducing it to the
linear combination of ;.

This theorem indicates that, for any H’ that contains H as a subgraph, the L2 norm of the gradient
llg g 1l2 can be bounded by UB(H). Note that the upper bound UB(H) can be calculated without
generating H’'. From the rule () and Theorem P, we can immediately obtain the following
important rule:

Corollary 2.1. ForVH' € {H' |H’ 2 H,H' € W},
UB(H) <Aand He W = prox (By —n8s) =0 (10)

This is a direct consequence from the fact that if the conditions in the left side of () holds, we
have ||gy/|l2 < UB(H) < A from (B). As a result, by using (i), we obtain (). Corollary (Z-T)
means that if the condition in () holds, for YH’ that contains H as a subgraph, we can omit the
update. Further, another notable advantage of this rule is that it does not depend on the step size n
(even when an iterative backtrack algorithm is employed for 7, the evaluation of () is not required
to repeat for every backtrack iteration).

Under review as a conference paper at ICLR 2026

By combining the rule (I) and a graph mining - - —
algorithm, we can build an efficient pruning al. Algorithm 1: Optimization for EIN
gorithm. We employ a well-known graph mining 1 function Train-EIN(A)

algorithm called gSpan (Yan & Han, PZ007) that can 2 Hy « a graph at root of mining tree
efficiently enumerate all the subgraphs in a given 3 for 1in A do

set of graphs. Figure [(c) is an illustration of a 4 repeat

graph mining tree. At each tree node, gSpan ex- 3 W « Traverse(Hoy, W, 1)
pands the graph (add an edge and a node) as far as ¢ Update B by (@) for H € ‘W
the expanded graph is included in the given dataset 7 Update b by (B)

as a subgraph. By providing a unique code to each s for iter =/, ..., Maxlter do
generated graphs (called the DFS code because itis 9 | Update © by (B)

based on depth-first search in a graph), gSpan can 10 end

enumerate all the subgraphs without generating du- 11 until terminate condition met
plicated graphs (For further detail, see (Yan & Han, ;, end

20072)). As shown in Fig. 0 (c), all the graphs in ;3 end
the tree contains their ancestors as a subgraph. As

a result, the following important consequence is Algorithm 2: Working Set Generation

obtained 1 function Traverse(H, W, 1)
Remark 2.1. By evaluating UB(H) < A during , if UB(H) < A then return ‘W
the tree traverse of gSpan (e.g., depth-first search), if ||gy > > A then

all the descendants of H in the tree can be pruned W — WU {H}

if the inequality holds. This means that we can 4 C « Expand(H)
perform the update (8) without enumerating all the 5 for H € C do
elements of 'W. In other words, we do not need to ¢ \ W « Traverse(H’, W,)
enumerate all the subgraphs H for (8). 7 end
8 return W
Further, another notable remark about the pruning ¢ end
is as follows. 10 function Expand(H)
Remark 2.2. Since our pruning strategy only ! if children of / have never been
omit the update of unnecessarily parameters, i.e., created by gSpan then
By = 0, the pruning does no change all the pa- * C « all graphs expanded from
rameter values compared with the case that we do H by gSpan " ,
not use the pruning. This also means that the fi- 3 Set {yu (G}, for H' € C

nal prediction performance also does not change 4 else
because of the pruning. 15 C < Retrieve already expanded
children of H
2.2.2 ALGORITHM 16 end
17 return C

We here describe the optimization procedure of 18 end
EIN. When the regularization parameter A is large,
B becomes highly sparse, by which computations usually become faster because more subgraphs
are expected to be pruned. Therefore, after starting from a larger value of A, we gradually reduce A
while optimizing parameters. Let A = (11, ..., dg) be a sequence of the regularization parameters,
where 1] > Ay --- > Ag. For each A, we use the solution of previous A as an initial solution.

The Train-EIN function of Algorithm [0 performs the optimization () for each A from the given
A. In line 5, the Traverse function performs the graph mining tree search in which ‘W is generated
via gradient pruning. The detailed procedure of the working set generation is in Algorithm B. The
Traverse function searches graph mining tree recursively. At each tree node, UB(H) is evaluated
and the entire subtree below the current node can be pruned if UB(H) < A. On the other hand,
if ||ggll2 > A, H should be included in ‘W. The children nodes of H are created by gSpan in the
Expand function, by which only the subgraphs H’ included in the training dataset can be generated
and as a byproduct of this process, we obtain ¢ g/ (G;). Note that if the children are already generated
in the previous iterations, we can reuse them.

Once W is determined, B and b are updated in line 6-7 in Algorithm 0. Their step lengths are
determined by backtrack algorithm (Note that since our pruning condition does not depend on the
step length, we do not need to perform the Traverse function repeatedly during this backtrack steps).
Then, @ is updated in line 8-10. This is a usual neural network parameter update, for which we

Under review as a conference paper at ICLR 2026

iterate the update until given max iteration. Here, we employed the full instance gradient, the standard
stochastic gradient can also be used. At each 4, the alternating update procedure stops (line 11) when
the iteration reaches the given maximum iterations or some other stopping condition is satisfied.

2.3 Post-HOC ANALYSIS FOR KNOWLEDGE DISCOVERY

After the optimization, only a small number of 8 have non-zero values, by which we can identify
predictive subgraphs. Let S = {H € H | By # 0} be the set of the selected subgraphs by EIN.
In our later experiments, we observed that |S| was typically ranged from around 50 to at most a
few hundreds. Then, some insight may be obtained just by directly observing all of those selected
subgraphs by the domain expert of the data.

The trained EIN can be seen as an |S|-dimensional input neural network, to which post-hoc knowledge
discovery methods (Bhafi_ef all, P075) can be applied. For example, well-known SHAP (Cundberg
& Tee, P0T7) and LIME (Ribeira ef all, P0TH), both of which provide local feature importance, is
applicable. Another typical approach is to use the trained EIN as a teacher and fit an interpretable
surrogate model (e.g., decision tree), from which a possible decision rule can be estimated (Malnat,
2075). Note that, usually, applying interpretable machine learning methods directly to exhaustive
subgraph isomorphism features can be computationally intractable. Because of EIN, which selects
a few important subgraphs, a variety of post-hoc analyses become much easier.

2.4 CoMBINING WITH GRAPH NEURAL NETWORK

GJ\A\((; G)(IN.\')

Since EIN is based on the standard backpropagation mecha-

nism, general neural network models can be combined flexibly. o(G)
For example, a simple approach to combining EIN with a graph : o £(@)
neural network (GNN) is 7/%-()
(e
f(G;) = FFN(GNN(G/; OgnN) (11 L:“'() FFN(-; Oppx)
® GML(G/; B, b); @), @)
where @ is the vector concatenation, GNN is any GNN that GML(G; B,b)

outputs arbitrary dimension representation vector, and @gNN

and Oppyn are parameters of GNN and FEN, respectively. This Figure 2: A simple example of
combination enables any GNNs to enhance the discriminative EIN combined with GNN.

ability in terms of the selected subgraphs by EIN. A schematic

illustration of a simplest case is shown in Fig. B. Computations of the combined model can also
be performed by almost the same alternating update (B)-(H). The only difference is that the FFN
parameter update (B) is replaced with the simultaneous update of @gpn and Ognn.

3 RELATED WORK

For GNNSs, the message passing based approach has been widely employed (Zhouefall, DO20). It is
known that the expressive power of classical message passing approaches is limited by the first order
Weisfeiler-Lehman (1-WL) test (Zhao“ef"all, 20177). Many studies have tackled this limitation, some
of which actually can be comparable with higher order WL tests. For example, k-hop extensions
of the message passing (e.g., Abu-El-Haija et all, P0TY; Nikolenfzos ef all, Z020; Wang et all, 2021,
Chien ef all, PO, Brossard ef all, 2070]) and the higher order (tensor) representations (e.g., Morris
et_all, 201Y; Maron et all, LO19h;a;0; Keriven & Peyre, LO19; eerts & Rentted, 2027; Murphy
ef-all, POTY) are popular approaches. Further, several studies (Bourifsas_ef all, 2073; Coffa_ef all,
20770; Barcela ef all, D021, Bevilacqua et all, 20027) incorporate small subgraph information, such
as pre-specified motifs and ego-networks, into neural networks. On the other hand, EIN performs
the data-adaptive selection of a small number of (globally) predictive subgraphs, based on the exact
enumeration of all the subgraphs in the dataset, which is obviously different approach from the above
popular GNN studies. Further, most of GNNs can be combined with EIN by (ITl).

Although explainable GNNs are also studied, according to (Yuan—ef all, 2027), most of them are
for the ‘instance-level” explanation, which considers an explanation for the prediction of the specific
one input graph. A few exceptions are approaches based on the maximization of the trained GNN
output for a target label (Yuan_ef-all, P0120), the latent space prototype learning (Azzolinef all, P(173),

Under review as a conference paper at ICLR 2026

Yo R \ / \
\ X / /[/
~€)— —)— ~— ~
(a) Hp (b) Hp (©) Hpadding

Figure 3: Subgraphs (a) and (b) have closed paths whose lengths are 8 and 9, respectively, which
are difficult to discriminate. Subgraph (c) is used for adjusting the number of nodes that have label
‘1°. Note that all subgraphs (a), (b), and (c) have 16 nodes.

and the kernel-based filtering (Feng et all, ?(1727). However, unlike EIN, they cannot guarantee that
the identified important graphs are actually subgraphs of the input graphs because none of them are
based on the exact matching.

In the context of graph mining, discriminative pattern mining has also been studied (e.g., Thomaefal],
P010; Pofinef all, P075; Chen ef all, 2027). However, most of them are not directly incorporated in a
learning model. Typically, the subgraph enumeration (using some pruning strategies) is performed
based on a discriminative score (e.g., ratio of frequency between two classes) independent from
a learning model, and the selection results can be used in a subsequent prediction model training.
Although (Nakagawa et all, P016; [Yoshida efall, POTY; 207T; [Tajima et al], 2024)) enumerate subgraphs
during a model optimization, they are limited to a linear combination of the subgraphs. Note that
[ajima et al] (2074) also use a combination of proximal gradient and gSpan, from which our
optimization procedure is extended to the neural network backpropagation and the group-sparsity.
Although (Nakagawa et all, P0T6; [Yoshida_ef-all, POTY; PO21) provide a stronger pruning rule that
can satisfy the global optimality, the convex formulation of the model training is required. To our
knowledge, a discriminative subgraph mining that directly combines the exact subgraph enumeration
with a (sparsity-induced) neural network has not been investigated.

4 EXPERIMENTS

We verify the prediction performance and interpretability of EIN through synthetic and benchmark
datasets. For all the datasets, we partitioned them into train : valid : test =6 : 2 : 2.

Synthetic Datasets. = We created two synthetic datasets by using subgraphs shown in Figure B.
H), and H,, are subgraphs with 16 nodes, which is known to be difficult to discriminate by standard
GNNG .

The first dataset use H, and H,, by which positive and negative classes are defined. We first
generated a random connected graph, connected with one of H), or H,, randomly. The initial random
graph has node labels ‘0’, and H,, and H,, have node labels ‘1’. We generated 300 instances for each
of the positive and the negative classes. We call this dataset ‘Cycle’. See Appendix Ll for further
details of the initial random graph.

In the second data, the positive and the negative classes are defined by the XOR rule, i.e., a nonlinear
rule, of H, and H,, which we call ‘Cycle_XOR’ By using the same random graph as the Cycle
dataset, H), and/or H,, are embedded into input graphs. Therefore, if a graph have one of H, or H,,,
the class label is y = 1, otherwise y = 0, i.e., in the case that both of H, and H,, are included or
neither of them are included. We generated 150 instances each of four states of XOR, which results
in 300 instances each of the positive and the negative classes. However, in this setting, the difference
in the number of the nodes labeled as ‘1’ may make the discrimination easier (32 if both of H/, and
H, exist, 16 if one of H), and H,, exists, and O if neither of H, and H,, exists). To avoid this, we
added an simple subgraph Hp,qding S0 that the number of the nodes labeled as ‘1’ is 32 for all graphs.

Benchmark Datasets. As benchmark datasets, we used BZR, COX2, DHFR, and ENZYMES
from (Morris_ef-all, 2020), and ToxCast and SIDER from (Wiref-all, DUTH).

Under review as a conference paper at ICLR 2026

Table 1: Accuracy on synthetic and benchmark datasets

BZR COX2 DHFR ENZYMES ToxCast SIDER Cycle Cycle_XOR

GCN 83.7+2.6 80.3+1.3 71.2+4.8 69.5+6.5 60.0+2.8 69.4+0.3 48.8+1.1 50.7+1.5
GAT 81.2+1.9 79.4+1.0 70.843.2 69.5+11.1 58.5+3.8 70.1+0.7 49.8+1.5 58.5+6.1
GATv2 82.5+42 79.0+£2.5 721439 69.5+104 59.7+2.3 69.5+1.0 48.7+2.2 59.8+4.3
GIN 81.7+2.2 782409 70.2+4.6 71.0£8.6 59.0£2.5 68.6+0.6 50.0+0.0 72.2+4.5
PNA 82.7+3.7 782+0.5 67.2+2.4 70.0+10.9 56.6£3.6 69.1+0.2 49.5+1.1 74.2+2.8
GIN-AK 82.5+2.3 80.5£3.0 77.1£3.2 75.5+8.0 58.7+2.5 68.9+1.7 53.2+1.6 72.0+5.4
PPGN 83.7+£3.8 79.4+2.1 76.1+49 66.5+6.0 60.9+2.6 69.6+1.0 49.8+2.1 74.5+2.4
EIN 86.4+4.4 81.4+3.1 82.8+4.0 0655+12.7 61.8+22 70.7+2.8 100.0+0.0 99.8+0.3
EIN+GIN 86.2+3.0 81.2+39 81.8+2.8 73.0£33 61.8+1.9 70.9+3.5 100.0+0.0 99.8+0.4
#nonzero By of EIN ~ 79+12 83+17 121103 101+43 74+13 202429 4.0+0.0 51+15

Compared Methods. For performance comparison, we used GNN methods such as GCN (Kipt &
Welling, P0T7), GAT (Velickovic et all, POTY), GATv2 (Brody et all, P022), GIN (Xu“efall, 20TY),
PNA ([ifm‘s() efall, 2020), GNN-AK (Zhaoef all, 2027), and PPGN (Maron ef all, P(0194). For node
attributes, EIN only used discrete node labels, while compared GNN methods also incorporate
continuous node attributes. GCN, GAT, GATv2, and GIN optimizes the number of the units
{64, 128,256} and the number of epoch by the validation set, and other settings follow (You ef all,
2021). PNA optimizes the number of the units {16, 32, 64} and the number of epochs by the validation
set, and the number of the message passing is set as 2. GNN-AK uses GIN as the base GNN. Other
settings of GNN-AK and PPGN follow the author implementation. For EIN, maxpat € {5, 10},
K € {2,6,10}, and o € {sigmoid, LeakyReLLU} are selected by the validation performance. We
also evaluate performance of the combination of EIN and GNN described in § 4. For GNN, we
employed GIN and the combine model is denoted as EIN+GIN. For other details, see Appendix C2.

4.1 PrebicTioN AcCURACY COMPARISON

Table [shows classification accuracy on synthetic and benchmark datasets. The results on Cycle and
Cycle_XOR indicate that GNN based methods cannot discriminates closed paths shown in Fig. B (a)
and (b). On the other hand, in Cycle and Cycle_XOR datasets, EIN and EIN+GIN achieved almost
100% classification. This indicates that EIN has a high discriminative ability about the subgraph
structure, and flexibility that can capture a nonlinear relation.

For the other benchmark datasets, EIN and EIN+GIN show superior performance compared with
other GNNs except for ENZYMES. EIN+GIN improves GIN for all datasets, which suggests that the
exact subgraph information is essential for the prediction.

Further, the number of the selected subgraphs in EIN, shown in the bottom of Table [is at most
a few hundreds, from which we see that EIN can effectively identify a small number of important
subgraphs for the prediction.

4.2 ExAMPLES OF POST-HOC ANALYSIS

We here show examples of the post-hoc analysis using the trained EIN. Figure B is a result of SHAP
for the EIN prediction on an instance of the ToxCast dataset. For SHAP, we used the python library
https://shap.readthedocs.io/en/latest/, and see the document for detail. The SHAP
values are for the predicted class (positive class), and in this case, we can see that a subgraph in
Fig. B (a) has a particularly strong contribution to the prediction. Figure B shows an example of a
fitted decision tree to the trained EIN prediction for the Cycle_XOR training and test datasets. In
Fig. B, the top node classifies a graph that do not have both of H, and H;, as y = O (the top subgraph
is included both in H), and H,,, but not in Hp,dding), and the second and the third nodes consists of
the XOR rule by the length 8 and 9 closed paths (the second node is the length 9 closed path and the
third node is the length 8 closed path). Additional examples are shown in Appendix .

https://shap.readthedocs.io/en/latest/

Under review as a conference paper at ICLR 2026

(b) pat36 (c) pat64

do not havV \ have

classO
(d) pat20 (e) pat6
fix)=1.21 do not havy \ have
pat36 —0.24- class1
pat64 | RRE]
pat20 o
pats Po: do not have / \have
64 others
0.0 05 1.0 classl classO
EIf(X)] = — 0.246

(f) SHAP values
Figure 5: Decision tree on Cycle_XOR
Figure 4: Example of SHAP applied to an EIN
prediction from the ToxCast dataset.

Table 2: Mean pruning rates of EIN
BZR COX2 DHFR ENZYMES ToxCast SIDER Cycle Cycle XOR

Working set size 76 146 91 164 60 193 4 50
Traverse nodes 12637 5060 20596 45829 3710 6122 3 828
all subgraphs |H| 112944 76120 108124 1133298 72734 101965 31953 40627
Pruning rates (%) 88.81 93.35 80.95 95.96 94.90 94.00 99.99 97.96

4.3 PRUNING RATES

Table D shows the mean working set size (mean over all 1), the mean number of the traversed nodes
(mean over all 1), and the number of all the subgraphs || for maxpat = 10. The pruning rates are
defined by the ratio between the number of the traversed nodes and |H|. We can see that a large
amount of nodes are pruned. Further, the mean size of the working set is at most a few hundreds,
which means that B is highly sparse during the optimization. Computational time required for the
entire Algorithm [is also reported in Appendix B. The computational time of EIN is unfortunately
higher than the standard GNNs. However, taking into account the fasts that EIN handles all the
possible subgraphs with the exact matching and that the pruning rate was high, we consider that
EIN performs highly efficiently computations. Further improvement for the high computational
requirement is one of important future work to scale up the applicability.

5 CONCLUSIONS

We propose Exact subgraph Isomorphism Network (EIN). EIN combines the exact subgraph enu-
meration, neural networks, and the group sparse regularization. We show that predictive subgraphs
can be identified efficiently by pruning unnecessarily subgraphs during the proximal update without
sacrificing the quality of the model. We demonstrated that EIN has sufficiently high prediction ac-
curacy compared with well-known graph neural networks despite that EIN only uses a small number
of selected subgraphs.

Under review as a conference paper at ICLR 2026

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. MixHop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In Kamalika Chaudhuri and Ruslan Salakhut-
dinov (eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pp. 21-29. PMLR, 09-15 Jun 2019.

Steve Azzolin, Antonio Longa, Pietro Barbiero, Pietro Lio, and Andrea Passerini. Global explainabil-
ity of GNNs via logic combination of learned concepts. In The Eleventh International Conference
on Learning Representations, 2023.

Pablo Barcelo, Floris Geerts, Juan L Reutter, and Maksimilian Ryschkov. Graph neural networks
with local graph parameters. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, 2021.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2(1):183-202, 2009.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M. Bronstein, and Haggai Maron. Equivariant subgraph aggregation
networks. In International Conference on Learning Representations, 2022.

Deepshikha Bhati, MD Amiruzzaman, Ye Zhao, Angela Guercio, and Tram Le. A survey of post-hoc
XAI methods from a visualization perspective: Challenges and opportunities. IEEE Access, 13:
120785-120806, 2025.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(1):657-668, 2023.

L. Breiman. Random forests. Machine Learning, 45:5-32, 2001.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In
International Conference on Learning Representations, 2022.

Rémy Brossard, Oriel Frigo, and David Dehaene. Graph convolutions that can finally model local
structure. CoRR, abs/2011.15069, 2020.

Yao Chen, Wensheng Gan, Yongdong Wu, and Philip S. Yu. Contrast pattern mining: A survey,
2022.

Eli Chien, Jianxin Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In International Conference on Learning Representations, 2021.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Lio, and Petar Velickovi¢. Principal
neighbourhood aggregation for graph nets. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
13260-13271. Curran Associates, Inc., 2020.

Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph repre-
sentations. In Proceedings of the 35th International Conference on Neural Information Processing
Systems, NIPS *21, Red Hook, NY, USA, 2021. Curran Associates Inc. ISBN 9781713845393.

Felix A. Faber, Luke Hutchison, Bing Huang, Justin Gilmer, Samuel S. Schoenholz, George E. Dahl,
Oriol Vinyals, Steven Kearnes, Patrick F. Riley, and O. Anatole von Lilienfeld. Prediction errors
of molecular machine learning models lower than hybrid dft error. Journal of Chemical Theory
and Computation, 13(11):5255-5264, 2017.

Aosong Feng, Chenyu You, Shigiang Wang, and Leandros Tassiulas. KerGNNSs: Interpretable graph

neural networks with graph kernels. In Thirty-Sixth AAAI Conference on Artificial Intelligence,
AAAI pp. 6614-6622. AAAI Press, 2022.

10

Under review as a conference paper at ICLR 2026

Floris Geerts and Juan L Reutter. Expressiveness and approximation properties of graph neural
networks. In International Conference on Learning Representations, 2022.

Vladimir Gligorijevié, P. Douglas Renfrew, Tomasz Kosciolek, Julia Koehler Leman, Daniel Beren-
berg, Tommi Vatanen, Chris Chandler, Bryn C. Taylor, lan M. Fisk, Hera Vlamakis, Ramnik J.
Xavier, Rob Knight, Kyunghyun Cho, and Richard Bonneau. Structure-based protein function
prediction using graph convolutional networks. Nature Communications, 12(1):3168, May 2021.

Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks.
Curran Associates Inc., Red Hook, NY, USA, 2019.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

Steph-Yves Louis, Yong Zhao, Alireza Nasiri, Xiran Wang, Yuqi Song, Fei Liu, and Jianjun Hu. Graph
convolutional neural networks with global attention for improved materials property prediction.
Phys. Chem. Chem. Phys., 22:18141-18148, 2020.

Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
Proceedings of the 31st International Conference on Neural Information Processing Systems,
NIPS’17, pp. 4768-4777, Red Hook, NY, USA, 2017. Curran Associates Inc.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019a.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. In International Conference on Learning Representations, 2019b.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 4363-4371. PMLR, 09-15 Jun 2019c.

Christoph Molnar. Interpretable Machine Learning. 3 edition, 2025.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In The Thirty-Third AAAI Conference on Artificial Intelligence, pp. 4602-4609. AAAI Press, 2019.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. TUDataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020. URL
www .graphlearning.io.

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pooling for
graph representations. In Proceedings of the 36th International Conference on Machine Learning,
volume 97, pp. 46634673, 2019.

Kazuya Nakagawa, Shinya Suzumura, Masayuki Karasuyama, Koji Tsuda, and Ichiro Takeuchi.
Safe pattern pruning: An efficient approach for predictive pattern mining. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
1785-1794. ACM, 2016.

Giannis Nikolentzos, George Dasoulas, and Michalis Vazirgiannis. k-hop graph neural networks.
Neural Networks, 130:195-205, 2020. ISSN 0893-6080.

Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in Optimization, 1
(3):127-239, January 2014.

11

www.graphlearning.io

Under review as a conference paper at ICLR 2026

Lucas Potin, Rosa Figueiredo, Vincent Labatut, and Christine Largeron. Pattern-based graph classi-
fication: Comparison of quality measures and importance of preprocessing. ACM Trans. Knowl.
Discov. Data, 19(6), July 2025.

Liva Ralaivola, Sanjay J. Swamidass, Hiroto Saigo, and Pierre Baldi. Graph kernels for chemical
informatics. Neural Networks, 18(8):1093-1110, 2005.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should i trust you?": Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD 16, pp. 1135-1144, New York, NY, USA, 2016.
Association for Computing Machinery.

Falk Schreiber and Henning Schwobbermeyer. Frequency concepts and pattern detection for the
analysis of motifs in networks. In Transactions on computational systems biology III, pp. 89-104.
Springer, 2005.

Shinji Tajima, Ren Sugihara, Ryota Kitahara, and Masayuki Karasuyama. Learning attributed
graphlets: Predictive graph mining by graphlets with trainable attribute. In Proceedings of the
30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2830-2841, 2024.

Marc Teboulle. A simplified view of first order methods for optimization. Mathematical Program-
ming, 170:67-96, 2017.

Marisa Thoma, Hong Cheng, Arthur Gretton, Jiawei Han, Hans-Peter Kriegel, Alex Smola, Le Song,
Philip S. Yu, Xifeng Yan, and Karsten M. Borgwardt. Discriminative frequent subgraph mining
with optimality guarantees. Statistical Analysis and Data Mining: The ASA Data Science Journal,
3(5):302-318, 2010.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018.

Guangtao Wang, Rex Ying, Jing Huang, and Jure Leskovec. Multi-hop attention graph neural
networks. In Zhi-Hua Zhou (ed.), Proceedings of the Thirtieth International Joint Conference
on Artificial Intelligence, IICAI-21, pp. 3089-3096. International Joint Conferences on Artificial
Intelligence Organization, 8 2021.

Zhenqgin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S.
Pappu, Karl Leswing, and Vijay Pande. MoleculeNet: A benchmark for molecular machine
learning, 2018. URL https://arxiv.orqg/abs/1703.00564.

Tian Xie and Jeffrey C. Grossman. Crystal graph convolutional neural networks for an accurate and
interpretable prediction of material properties. Phys. Rev. Lett., 120:145301, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Yangyang Xu and Wotao Yin. A globally convergent algorithm for nonconvex optimization based
on block coordinate update. Journal of Scientific Computing, 72:700-734, 2017.

Xifeng Yan and Jiawei Han. gSpan: Graph-based substructure pattern mining. In Proceedings. 2002
IEEE International Conference on Data Mining, pp. 721-724. IEEE, 2002.

Tomoki Yoshida, Ichiro Takeuchi, and Masayuki Karasuyama. Learning interpretable metric between
graphs: Convex formulation and computation with graph mining. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1026-1036,
2019.

Tomoki Yoshida, Ichiro Takeuchi, and Masayuki Karasuyama. Distance metric learning for graph
structured data. Machine Learning, 110(7):1765-1811, Jul 2021.

12

https://arxiv.org/abs/1703.00564

Under review as a conference paper at ICLR 2026

J. You, J. M. Gomes-Selman, R. Ying, and J Leskovec. Identity-aware graph neural networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 10737-10745,
2021.

Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. XGNN: Towards model-level explanations of
graph neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 430-438, New York, NY, USA, 2020. Association
for Computing Machinery.

Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks: A
taxonomic survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49-67, 2006.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any
GNN with local structure awareness. In International Conference on Learning Representations,
2022.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
Al Open, 1:57-81, 2020.

A SIF BY FREQUENCY

The frequency based SIF is used in ([Yoshida'ef-all, POZT) in the context of a subgraph pattern based
distance metric learning. They define #(H £ G;) as the frequency of the subgraph H contained in
G, where nodes or edges among the counted subgraphs are not allowed. Then, the feature value is
defined as
¢u(Gi) = g(#(H C Gy)),

where g is a monotonically non-decreasing and non-negative function such as identity function
g(x) = x or the indicator function g(x) = I(#(H T G;) > 0) (Yoshida ef_all (207T) employed
g(x) = log(1+x)for their evaluation). They pointed out computing the frequency without overlapping
is NP-complete (Schreiber & Schwobbermeyert, 2Z005), and approximate count is also provided (see
(Yoshida“ef-all, POZT) for detail). Our pruning theorem (Theorem IZT) holds for both the exact
¢ (G;) and its approximation.

B ProOF oF THEOREM 1]

We first transform the derivatives of the loss function with respect to B so that it is represented
through the GML intermediate variable h:

a n
gy = 3B Zf(yi,f(Gi))

Z oh" 8€(yuf(G)
0By '

From the definition of Ak, we see % =y (G;)Ig, where Ig is the K X K identity matrix. As a
result, we have

o - Z 211G, G,

9l (yi, f (Gi))

Since 6;x = onn ,

2
(12)

K n
gzl = > (Z Skt (Gi)

k=1

13

Under review as a conference paper at ICLR 2026

From the definition, 0 < ¥/ (G;) < Y5 (G;). Then, the upper and lower bound of the inner sum of
(@), ie., 27, dix¥yu (G;), can be derived as

zn:(Sikl//H/(Gi)S Z O0iuvm (G;) < Z 0iu¥n (Gi),
izl

{i]6ik>0} {i16ix>0}

Zn:5ik¢’H'(Gi)2 Z Oikn (Gi) 2 Z 0iu¥u (Gy).
im1

{il6ix<0} {il6ik<0}
Therefore,
.) 2 2
(Z iy (Gi)| < max Z Ouvnu (G| , Z Sixyu(Gi) | ¢
i=1 {il&,‘k>0} {iléik<0}

which results in (9).

C DeTAIL OF EXPERIMENTAL SETTINGS

C.1 SyNTHETIC DATASET

For both Cycle and Cycle_XOR, we first generate a random graph by the following procedure. The
node size is randomly chosen from 5, 6, . . ., 10, and the number of edges are at most 20, which are
also randomly generated by choosing node pairs uniformly. From H, H,, or Hpadding, randomly
selected nconnect € {3, 4,5, 6} nodes are connected to a randomly selected node in the initial random
graph.

C.2 OrtHER SETTINGS OF EIN

In Algorithm [, we selected five values of A taken from the interval [l0g(Amax), 102(0.0121ax)]. From
log(Amax), we iteratively decrease AA five times (i.e., log(Ax+1) = log(Ax) —AA). The initial value of
A is (log(Amax) —10g(0.01Amax)) /5. If the number of non-zero || B || increase > 10, then we update
Ad « 0.5AA. We determined Ayax bY Amax = MmaxXg ey ||g g |l2, in which B and b were initialized
by a linear model (Nakagawa et all, Z016) and ® was randomly initialized. We set the terminate
condition in the alternating update of Algorithm [as that the validation loss does not improve 5
times. The hyper-parameters A, maxpat € {5, 10}, K € {2, 6, 10}, and o € {sigmoid, LeakyReLLU}
were selected by the validation loss. We set the number of layers of FFN as 1 and MaxIter for ® was
30.

In EIN+GIN, the message passing in GIN was set as 3, the number of the middle unit was 16, and
the activation function was ReLLU.

D OtHER ExAMPLES OF POST-HOC ANALYSIS

Figure B shows an example of a fitted decision tree to the trained EIN prediction for the SIDER
training and test datasets, which provides possible decision rule behind subgraphs and the target
label. As another simple example of post-hoc analysis, Fig. [l shows subgraph importance estimated
by Random Forest (RF) (Breiman, 200T) for Cycle_XOR. We fitted RF to a set of (¢ 5(G:), f(Gi))
created by the training and test datasets and the importance is evaluated by scikit-learn feature
importance of RandomForestRegressor, which is based on mean decrease of impurity by that
feature. Top five important subgraphs are shown in the figures. Figure [indicates that the closed
paths of H, and H,, are identified by EIN (the top subgraph is the length 9 closed path and the second
subgraph is the length 8 closed path).

E CompuratioNAL TIMES

The computational time spent on Algorithm [is shown in Table B. In the table, ‘Traverse Times’
corresponds to the Traverse function in Algorithm . We see that the time required for the subgraph

14

Under review as a conference paper at ICLR 2026

do not have/ \ have

*L

S'T ¢\ l\

class0 classl classl class0 classl classl classl class0

Figure 6: Decision tree on SIDER.

® 0.30
2

S 025
©

S 0.20

o

E o015

2 010

2
@ 0.
S 0.05
L 0.00

1st 2nd 3rd 4th 5th

Figure 7: Subgraph importance estimated by RF on Cycle_XOR dataset.

enumerations depends on the datasets (depends on a variety of factors such as node sizes, edge sizes,
and the pruning rate).

Table 3: Mean computational time for the entire Algorithm [
BZR COX2 DHFR ENZYMES ToxCast SIDER Cycle89 Cycle89_XOR

Traverse Times (s) 13 9.2 68 991 602 1706 85 7692
All times (s) 179 185 598 1089 744 1859 1253 10361
F LLM UsacGe

In this manuscript, LLM was only used to polish writing.

15

	Introduction
	Proposed Method: Exact Subgraph Isomorphism Network
	Model Definition
	Optimization
	Backpropagation with Gradient Pruning
	Algorithm

	Post-hoc Analysis for Knowledge Discovery
	Combining with Graph Neural Network

	Related Work
	Experiments
	Prediction Accuracy Comparison
	Examples of Post-hoc Analysis
	Pruning rates

	Conclusions
	SIF by Frequency
	Proof of Theorem 2.1
	Detail of Experimental Settings
	Synthetic Dataset
	Other Settings of EIN

	Other Examples of Post-hoc Analysis
	Computational Times
	LLM Usage

