
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Exact Subgraph Isomorphism Network for
Predictive Graph Mining

Anonymous authors
Paper under double-blind review

Abstract

In the graph-level prediction task (predict a label for a given graph), the information
contained in subgraphs of the input graph plays a key role. In this paper, we propose
Exact subgraph Isomorphism Network (EIN), which combines the exact subgraph
enumeration, a neural network, and a sparse regularization. In general, building
a graph-level prediction model achieving high discriminative ability along with
interpretability is still a challenging problem. Our combination of the subgraph
enumeration and neural network contributes to high discriminative ability about
the subgraph structure of the input graph. Further, the sparse regularization in EIN
enables us 1) to derive an effective pruning strategy that mitigates computational
difficulty of the enumeration while maintaining the prediction performance, and
2) to identify important subgraphs that contributes to high interpretability. We
empirically show that EIN has sufficiently high prediction performance compared
with standard graph neural network models, and also, we show examples of post-
hoc analysis based on the selected subgraphs.

1 Introduction

Graph-level prediction tasks, which take a graph as an input and predict a label for the entire graph,
have been widely studied in the data-science community. It is known that the graph representation
is an effective approach to a variety of structure data such as chemical compounds (Ralaivola et al.,
2005; Faber et al., 2017), protein structures (Gligorijević et al., 2021), and inorganic crystal structures
(Xie & Grossman, 2018; Louis et al., 2020). In a graph-level prediction task, substructures on the
input graph, i.e., subgraphs, are often an important factor for the prediction and the analysis. For
example, in a prediction of a property of chemical compounds, identifying small substructures of the
molecules can be essential for both of improving prediction accuracy and obtaining an insight about
the underlying chemical mechanism. Therefore, mining predictive subgraphs is a significant issue
for graph-level prediction tasks, and further, those subgraphs can have a higher order dependency to
the prediction that requests sufficient flexibility in the model. However, building a prediction method
that satisfies these requirements is a still challenging problem (see § 3 for existing studies).

Our proposed method, called Exact subgraph Isomorphism Network (EIN), adaptively identifies
predictive subgraphs based on which a neural network model can be simultaneously trained. The
overview of EIN is shown in Fig. 1. Fig. 1 (a) illustrates the subgraph representation of EIN denoted
as 𝜓𝐻 (𝐺) which takes a non-zero value if the input graph 𝐺 contains a subgraph 𝐻 and takes 0
otherwise (i.e., it is based on the exact subgraph isomorphism). As shown in Fig. 1 (b), EIN can be
seen as a neural network in which the candidates of the input features are all the subgraphs contained
in the training dataset. Because of its exact subgraph isomorphism representation, this architecture
can be highly discriminative about subgraph structures. However, since the number of the candidate
subgraphs can be enormous, the naïve computation of this architecture is computationally intractable.

EIN consists of Graph Mining Layer (GML) and Feed Forward Network (FFN). GML implements a
mechanism to select only a small number of subgraphs necessary for the prediction, achieved through
the group-sparse regularization. The group sparse regularization (Yuan & Lin, 2006) is a well-known
regularizer for the group-wise selection of variables. We regard a set of neural network weights from
an input unit (corresponding to one subgraph) to the next layer as a group, by which the adaptive
subgraph selection can be realized. Only the selected subgraphs are used in the subsequent FFN

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

. . .

. . .

(c) Subgraph enumeration
by graph mining tree

Feed forward network
(FFN)

. . .

. . .

. . .

. . .

In
pu

t
gr

ap
hs

(a) Subgraph isomorphism feature

y = +1

y = -1

Backpropagation with
gradient pruning

Cla
ssi
fic
ati
on

bo
ud
ary

Predictive subgraphs

ψ (G1) ψ (G2) ψ (G3) ψ (G4)

ψ (G1) 0 ψ (G3) 0

0 ψ (G2) ψ (G3) ψ (G4)

ψ (G1) ψ (G2) ψ (G3) ψ (G4)

0 0 ψ (G3) 0

ψ (G1) 0 ψ (G3) ψ (G4)

Graph mining layer (GML)

Al
l s

ub
gr

ap
hs

 in
 tr

ai
ni

ng
 d

at
as

et

(b) Exact subgraph isomorphism network (EIN)

Figure 1: Overview of proposed method.

that learns the dependency between the selected subgraphs and the prediction target. Unfortunately,
although the number of subgraphs becomes small in the trained model, this approach still suffers
from the computational difficulty because all the candidate subgraphs are still required to consider
during the optimization process.

To tackle the computational difficulty, we combine a subgraph enumeration by graph mining (Yan
& Han, 2002) and the proximal gradient optimization (Teboulle, 2017; Beck & Teboulle, 2009),
by which a pruning strategy for unnecessarily subgraphs can be derived, shown in 1 (c). The
proximal gradient is a standard approach for the sparse modeling, in which parameters are updated
through a proximal projection that typically results in a thresholding operation. This thresholding
operation reveals that if the norm of the gradient corresponding to a subgraph 𝐻 is less than certain
threshold, parameters for that subgraph is not required to update. We show that, by deriving an
upper bound of the norm of the gradient, an efficient pruning strategy for the subgraph enumeration
can be constructed. Our pruning strategy has the following two important implications. First, this
pruning enables us to train EIN without enumerating all the candidate subgraphs, which makes
EIN computationally tractable. Second, our pruning strategy maintains the quality of the prediction
compared with when we do not perform the pruning. This is because we only omit the computations
that does not have any effect on the prediction.

Our contributions are summarized as follows.

• We propose EIN, which is a neural network model that uses the exact subgraph isomorphism
feature. Through a group sparse regularization, we formulate EIN so that a small number
of subgraphs can be identified by which an insight about the important substructure can be
extracted for the given graph-level prediction task.

• We show that the combination of the subgraph enumeration and the proximal gradient
with backpropagation can derive an efficient pruning strategy that makes the EIN training
computationally tractable. We further reveal that our pruning strategy does not degrade the
prediction quality.

• Based on synthetic and benchmark datasets, we demonstrate that EIN has superior or com-
parable performance compared with standard graph prediction models while EIN actually
can identify a small number of important subgraphs, simultaneously.

2 Proposed Method: Exact Subgraph Isomorphism Network

Our proposed method, called Exact subgraph Isomorphism Network (EIN), considers the classifica-
tion problem of a graph 𝐺 ∈ G, where G is a set of labeled graphs. 𝐺 consists of a set of nodes and
edges between nodes and each node can have a categorical label. The training data is {(𝐺𝑖 , 𝑦𝑖)}𝑖∈[𝑛] ,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where 𝑦𝑖 ∈ Y is a graph label, 𝑛 is the number of instances, and [𝑛] = {1, . . . , 𝑛}. Here, although
we only focus on the classification problem, the regression problem can also be handled by just
replacing the loss function.

First, § 2.1 describes the formulation of our model. Second, the optimization procedure is shown in
§ 2.2. Next, § 2.3 and 2.4 discuss post-hoc analysis for knowledge discovery and a combination of
graph neural networks, respectively.

2.1 Model Definition

Let 𝜓𝐻 (𝐺𝑖) ∈ {0, 1} be the feature that represents whether the input graph 𝐺𝑖 contains a subgraph
𝐻 (we only focus on a connected subgraph), which we call subgraph isomorphism feature (SIF):

𝜓𝐻 (𝐺𝑖) = I(𝐻 ⊑ 𝐺𝑖), (1)
where I is the indicator function and 𝐻 ⊑ 𝐺𝑖 indicates that 𝐻 is a subgraph of 𝐺𝑖 . Note that
although instead of I(𝐻 ⊑ 𝐺𝑖), frequency that 𝐻 is included in 𝐺𝑖 can also be used for 𝜓𝐻 (𝐺𝑖) in
our framework, we employ (1) throughout the paper for simplicity (see Appendix A for more detail).
For example, in Fig. 1 (a), 𝐺1 is 𝜓𝐻 (𝐺1) = 1 for 𝐻 = and 𝜓𝐻 (𝐺1) = 0 for 𝐻 = . We define
candidate subgraphs as H = {𝐻 | 𝐻 ⊑ 𝐺𝑖 , 𝑖 ∈ [𝑛], |𝐻 | < maxpat}, which is all the subgraphs in
the training dataset whose size is at most pre-specified maxpat (the size |𝐻 | is the number of edges).
By concatenating SIF 𝜓𝐻 (𝐺𝑖) of each 𝐻 ∈ H , the feature vector 𝝍(𝐺𝑖) ∈ {0, 1} |H | is defined. EIN
identifies a small number of important subgraphs from H through the feature selection discussed
later. SIF 𝜓𝐻 (𝐺𝑖) is obviously highly interpretable and it can assure the existence of a subgraph 𝐻.
Further, if 𝐺𝑖 and 𝐺 𝑗 contain at least one different subgraph 𝐻 ∈ H , then, we have 𝝍(𝐺𝑖) ≠ 𝝍(𝐺 𝑗).
As shown in Fig. 1 (b), EIN consists of Graph Mining Layer (GML) and Feed Forward Network
(FFN). Let 𝐾 be the number of output units of GML. We define GML : G → R𝐾 as follows.

GML(𝐺𝑖; 𝑩, 𝒃) = 𝜎(𝒉),
𝒉 =

∑
𝐻 ∈H

𝜷𝐻𝜓𝐻 (𝐺𝑖) + 𝒃,

where 𝑩 = [𝜷1, . . . , 𝜷 |H |] ∈ R𝐾×|H | and 𝒃 ∈ R𝐾 are parameters, and 𝜎 : R𝐾 → R𝐾 is an activation
function. Each 𝜷𝐻 can be seen as a representation corresponding to each subgraph 𝐻. The entire
prediction model is defined as

𝑓 (𝐺𝑖) = FFN(GML(𝐺𝑖; 𝑩, 𝒃);𝚯),
where 𝚯 is parameters of FFN. We optimize the parameters 𝑩, 𝒃, and 𝚯 through the following
optimization problem in which the group sparse penalty (Yuan & Lin, 2006) is imposed on 𝜷𝐻 :

min
𝑩,𝒃,𝚯

𝑛∑
𝑖=1

ℓ(𝑦𝑖 , 𝑓 (𝐺𝑖)) + 𝜆
∑
𝐻 ∈H

∥𝜷𝐻 ∥2 (2)

where ℓ is a differentiable loss function and 𝜆 is a regularization parameter. We here use the cross-
entropy loss for ℓ. The group-wise penalty ∥𝜷𝐻 ∥2 results in 𝜷𝐻 = 0 for many unnecessarily 𝐻 at the
solution of (2), by which we can identify important predictive subgraphs as {𝐻 | 𝜷𝐻 ≠ 0}. However,
since the size of 𝑩, i.e., 𝐾 × |H |, is quite large, naïve optimization of (2) can be difficult.

2.2 Optimization

Our optimization algorithm is based on the block coordinate descent (Xu & Yin, 2017), in which
each one of 𝑩, 𝒃, and 𝚯 are updated alternately while the other two parameters are fixed. Since 𝑩
has the group sparse penalty, we apply the well-known proximal gradient method (Beck & Teboulle,
2009; Parikh & Boyd, 2014). On the other hand, 𝒃 and 𝚯 have no sparse penalty and we can simply
apply the standard gradient descent.

Let 𝒈𝐻 = 𝜕
𝜕𝜷𝐻

∑𝑛
𝑖=1 ℓ(𝑦𝑖 , 𝑓 (𝐺𝑖)) be the gradient of the loss function with respect to 𝜷𝐻 and

prox(𝒂) =

(
1 − 𝜂𝜆

∥𝒂∥2

)
𝒂 if ∥𝒂∥2 > 𝜂𝜆,

0 if ∥𝒂∥2 ≤ 𝜂𝜆
(3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

be the proximal projection with respect to 𝜂𝜆∥ · ∥2 for a given vector 𝒂 with the step size 𝜂. Then,
the update of each parameter is defined as

𝜷 (new)
𝐻 ← prox (𝜷𝐻 − 𝜂 𝒈𝐻) for 𝐻 ∈ H , (4)

𝒃 (new) ← 𝒃 − 𝛼
𝑛∑
𝑖=1

𝜕ℓ(𝑦𝑖 , 𝑓 (𝐺𝑖))
𝜕𝒃

, (5)

𝚯(new) ← 𝚯 − 𝛾
𝑛∑
𝑖=1

𝜕ℓ(𝑦𝑖 , 𝑓 (𝐺𝑖))
𝜕𝚯

, (6)

where 𝛼 and 𝛾 are step sizes. From the definition of (3), the proximal update (4) can be seen as a
soft-thresholding that regularizes the standard gradient descent. SinceH contains a large number of
subgraphs, calculating (4) for allH is not directly tractable. In § 2.2.1, we derive a pruning rule by
which we can perform (4) without enumerating all the subgraphs inH . § 2.2.2 describes the entire
procedure.

2.2.1 Backpropagation with Gradient Pruning

For the update of 𝜷𝐻 defined as (4), we only update 𝐻 ∈ W for a small working setW ⊆ H instead
of the entireH . LetW = H \W. Suppose that 𝜷𝐻 is initialized as 0 and that 𝜷𝐻 for 𝐻 ∈ W has
never been updated, i.e., 𝜷𝐻 = 0 for 𝐻 ∈ W. Then, from the proximal update rule (4), we see

prox (𝜷𝐻 − 𝜂 𝒈𝐻) = 0 for 𝐻 ∈ {𝐻 | ∥𝒈𝐻 ∥2 ≤ 𝜆 and 𝐻 ∈ W} (7)

This means that if ∥𝒈𝐻 ∥2 ≤ 𝜆 and 𝐻 ∈ W are satisfied, both of the current 𝜷𝐻 and the updated
𝜷new
𝐻 are zero. From this observation, we incrementally updateW as

W ←W ∪
{
𝐻

��� ∥𝒈𝐻 ∥2 > 𝜆,∀𝐻 ∈ W}
, (8)

and perform the update (4) only for 𝐻 ∈ W. However, evaluating ∥𝒈𝐻 ∥2 > 𝜆 for all 𝐻 ∈ W is
computationally demanding. To avoid this difficulty, the following theorem plays a key role:

Theorem 2.1. Let 𝐻 ′ ⊒ 𝐻 for 𝐻, 𝐻 ′ ∈ W, and 𝛿𝑖𝑘 = 𝜕ℓ (𝑦𝑖 , 𝑓 (𝐺𝑖))
𝜕ℎ𝑘

. Then, we have

∥𝒈𝐻 ′ ∥2 ≤
{ 𝐾∑
𝑘=1

max
{(∑
𝑖∈{𝑖 |𝛿𝑖𝑘>0}

𝛿𝑖𝑘𝜓𝐻 (𝐺𝑖)
)2
,
(∑
𝑖∈{𝑖 |𝛿𝑖𝑘<0}

𝛿𝑖𝑘𝜓𝐻 (𝐺𝑖)
)2}}1/2

C UB(𝐻). (9)

We here only describe the sketch of the proof (the proof is in Appendix B). An essential idea is
that we expand 𝒈𝐻 as a linear combination of the derivatives with respect to the GML intermediate
representation ℎ𝑘 , i.e., 𝛿𝑖𝑘 , by which the 𝑘-th element of the gradient can be written as (𝒈𝐻)𝑘 =∑𝑛
𝑖=1 𝛿𝑖𝑘𝜓𝐻 (𝐺𝑖). By using the monotonically non-increasing property of 𝜓𝐻 (𝐺𝑖), i.e., 𝜓𝐻 ′ (𝐺𝑖) ≤

𝜓𝐻 (𝐺𝑖) if 𝐻 ⊑ 𝐻 ′, we can derive UB(𝐻). Note that, usually, there is no need to explicitly consider
this specific expansion of (𝒈𝐻)𝑘 ; the theorem can only be derived by deliberately reducing it to the
linear combination of 𝛿𝑖𝑘 .

This theorem indicates that, for any 𝐻 ′ that contains 𝐻 as a subgraph, the L2 norm of the gradient
∥𝒈𝐻 ′ ∥2 can be bounded by UB(𝐻). Note that the upper bound UB(𝐻) can be calculated without
generating 𝐻 ′. From the rule (7) and Theorem 2.1, we can immediately obtain the following
important rule:
Corollary 2.1. For ∀𝐻 ′ ∈ {𝐻 ′ | 𝐻 ′ ⊒ 𝐻, 𝐻 ′ ∈ W},

UB(𝐻) ≤ 𝜆 and 𝐻 ∈ W ⇒ prox (𝜷𝐻 ′ − 𝜂 𝒈𝐻 ′) = 0 (10)

This is a direct consequence from the fact that if the conditions in the left side of (10) holds, we
have ∥𝒈𝐻 ′ ∥2 ≤ UB(𝐻) ≤ 𝜆 from (9). As a result, by using (7), we obtain (10). Corollary (2.1)
means that if the condition in (10) holds, for ∀𝐻 ′ that contains 𝐻 as a subgraph, we can omit the
update. Further, another notable advantage of this rule is that it does not depend on the step size 𝜂
(even when an iterative backtrack algorithm is employed for 𝜂, the evaluation of (10) is not required
to repeat for every backtrack iteration).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1: Optimization for EIN
1 function Train-EIN(Λ)
2 𝐻0 ← a graph at root of mining tree
3 for 𝜆 in Λ do
4 repeat
5 W ← Traverse(𝐻0,W, 𝜆)
6 Update 𝑩 by (4) for 𝐻 ∈ W
7 Update 𝒃 by (5)
8 for iter = 1, . . . , MaxIter do
9 Update 𝚯 by (6)

10 end
11 until terminate condition met
12 end
13 end

Algorithm 2: Working Set Generation
1 function Traverse(𝐻,W, 𝜆)
2 if UB(𝐻) ≤ 𝜆 then returnW
3 if ∥𝒈𝐻 ∥2 > 𝜆 then

W ←W ∪ {𝐻}
4 C ← Expand(𝐻)
5 for 𝐻 ′ ∈ C do
6 W ← Traverse(𝐻 ′,W, 𝜆)
7 end
8 returnW
9 end

10 function Expand(𝐻)
11 if children of 𝐻 have never been

created by gSpan then
12 C ← all graphs expanded from

𝐻 by gSpan
13 Set {𝜓𝐻 ′ (𝐺𝑖)}𝑛𝑖=1 for 𝐻 ′ ∈ C
14 else
15 C ← Retrieve already expanded

children of 𝐻
16 end
17 return C
18 end

By combining the rule (10) and a graph mining
algorithm, we can build an efficient pruning al-
gorithm. We employ a well-known graph mining
algorithm called gSpan (Yan & Han, 2002) that can
efficiently enumerate all the subgraphs in a given
set of graphs. Figure 1 (c) is an illustration of a
graph mining tree. At each tree node, gSpan ex-
pands the graph (add an edge and a node) as far as
the expanded graph is included in the given dataset
as a subgraph. By providing a unique code to each
generated graphs (called the DFS code because it is
based on depth-first search in a graph), gSpan can
enumerate all the subgraphs without generating du-
plicated graphs (For further detail, see (Yan & Han,
2002)). As shown in Fig. 1 (c), all the graphs in
the tree contains their ancestors as a subgraph. As
a result, the following important consequence is
obtained
Remark 2.1. By evaluating UB(𝐻) ≤ 𝜆 during
the tree traverse of gSpan (e.g., depth-first search),
all the descendants of 𝐻 in the tree can be pruned
if the inequality holds. This means that we can
perform the update (8) without enumerating all the
elements ofW. In other words, we do not need to
enumerate all the subgraphsH for (4).

Further, another notable remark about the pruning
is as follows.
Remark 2.2. Since our pruning strategy only
omit the update of unnecessarily parameters, i.e.,
𝜷𝐻 = 0, the pruning does no change all the pa-
rameter values compared with the case that we do
not use the pruning. This also means that the fi-
nal prediction performance also does not change
because of the pruning.

2.2.2 Algorithm

We here describe the optimization procedure of
EIN. When the regularization parameter 𝜆 is large,
𝑩 becomes highly sparse, by which computations usually become faster because more subgraphs
are expected to be pruned. Therefore, after starting from a larger value of 𝜆, we gradually reduce 𝜆
while optimizing parameters. Let Λ = (𝜆1, . . . , 𝜆𝐾) be a sequence of the regularization parameters,
where 𝜆1 > 𝜆2 · · · > 𝜆𝐾 . For each 𝜆, we use the solution of previous 𝜆 as an initial solution.

The Train-EIN function of Algorithm 1 performs the optimization (2) for each 𝜆 from the given
Λ. In line 5, the Traverse function performs the graph mining tree search in whichW is generated
via gradient pruning. The detailed procedure of the working set generation is in Algorithm 2. The
Traverse function searches graph mining tree recursively. At each tree node, UB(𝐻) is evaluated
and the entire subtree below the current node can be pruned if UB(𝐻) ≤ 𝜆. On the other hand,
if ∥𝒈𝐻 ∥2 > 𝜆, 𝐻 should be included inW. The children nodes of 𝐻 are created by gSpan in the
Expand function, by which only the subgraphs 𝐻 ′ included in the training dataset can be generated
and as a byproduct of this process, we obtain 𝜓𝐻 ′ (𝐺𝑖). Note that if the children are already generated
in the previous iterations, we can reuse them.

Once W is determined, 𝑩 and 𝒃 are updated in line 6-7 in Algorithm 1. Their step lengths are
determined by backtrack algorithm (Note that since our pruning condition does not depend on the
step length, we do not need to perform the Traverse function repeatedly during this backtrack steps).
Then, 𝚯 is updated in line 8-10. This is a usual neural network parameter update, for which we

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

iterate the update until given max iteration. Here, we employed the full instance gradient, the standard
stochastic gradient can also be used. At each 𝜆, the alternating update procedure stops (line 11) when
the iteration reaches the given maximum iterations or some other stopping condition is satisfied.

2.3 Post-hoc Analysis for Knowledge Discovery

After the optimization, only a small number of 𝜷𝐻 have non-zero values, by which we can identify
predictive subgraphs. Let S = {𝐻 ∈ H | 𝜷𝐻 ≠ 0} be the set of the selected subgraphs by EIN.
In our later experiments, we observed that |S| was typically ranged from around 50 to at most a
few hundreds. Then, some insight may be obtained just by directly observing all of those selected
subgraphs by the domain expert of the data.

The trained EIN can be seen as an |S|-dimensional input neural network, to which post-hoc knowledge
discovery methods (Bhati et al., 2025) can be applied. For example, well-known SHAP (Lundberg
& Lee, 2017) and LIME (Ribeiro et al., 2016), both of which provide local feature importance, is
applicable. Another typical approach is to use the trained EIN as a teacher and fit an interpretable
surrogate model (e.g., decision tree), from which a possible decision rule can be estimated (Molnar,
2025). Note that, usually, applying interpretable machine learning methods directly to exhaustive
subgraph isomorphism features can be computationally intractable. Because of EIN, which selects
a few important subgraphs, a variety of post-hoc analyses become much easier.

2.4 Combining with Graph Neural Network

. . .

Figure 2: A simple example of
EIN combined with GNN.

Since EIN is based on the standard backpropagation mecha-
nism, general neural network models can be combined flexibly.
For example, a simple approach to combining EIN with a graph
neural network (GNN) is

𝑓 (𝐺𝑖) = FFN(GNN(𝐺𝑖;𝚯GNN)
⊕ GML(𝐺𝑖; 𝑩, 𝒃);𝚯FFN),

(11)

where ⊕ is the vector concatenation, GNN is any GNN that
outputs arbitrary dimension representation vector, and 𝚯GNN
and 𝚯FFN are parameters of GNN and FFN, respectively. This
combination enables any GNNs to enhance the discriminative
ability in terms of the selected subgraphs by EIN. A schematic
illustration of a simplest case is shown in Fig. 2. Computations of the combined model can also
be performed by almost the same alternating update (4)-(6). The only difference is that the FFN
parameter update (6) is replaced with the simultaneous update of 𝚯FFN and 𝚯GNN.

3 Related Work

For GNNs, the message passing based approach has been widely employed (Zhou et al., 2020). It is
known that the expressive power of classical message passing approaches is limited by the first order
Weisfeiler-Lehman (1-WL) test (Zhao et al., 2022). Many studies have tackled this limitation, some
of which actually can be comparable with higher order WL tests. For example, 𝑘-hop extensions
of the message passing (e.g., Abu-El-Haija et al., 2019; Nikolentzos et al., 2020; Wang et al., 2021;
Chien et al., 2021; Brossard et al., 2020) and the higher order (tensor) representations (e.g., Morris
et al., 2019; Maron et al., 2019b;a;c; Keriven & Peyré, 2019; Geerts & Reutter, 2022; Murphy
et al., 2019) are popular approaches. Further, several studies (Bouritsas et al., 2023; Cotta et al.,
2021; Barcelo et al., 2021; Bevilacqua et al., 2022) incorporate small subgraph information, such
as pre-specified motifs and ego-networks, into neural networks. On the other hand, EIN performs
the data-adaptive selection of a small number of (globally) predictive subgraphs, based on the exact
enumeration of all the subgraphs in the dataset, which is obviously different approach from the above
popular GNN studies. Further, most of GNNs can be combined with EIN by (11).

Although explainable GNNs are also studied, according to (Yuan et al., 2022), most of them are
for the ‘instance-level’ explanation, which considers an explanation for the prediction of the specific
one input graph. A few exceptions are approaches based on the maximization of the trained GNN
output for a target label (Yuan et al., 2020), the latent space prototype learning (Azzolin et al., 2023),

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

11

11

1

1

1

11

1

1

1

1 1

1

1

(a) 𝐻𝑝

1
1

1
1

1
1

1
1

1

11

1

1

11

1

(b) 𝐻𝑛

1 1
1

1 1 1
1
1

1
1111

1
1 1

tree

(c) 𝐻padding

Figure 3: Subgraphs (a) and (b) have closed paths whose lengths are 8 and 9, respectively, which
are difficult to discriminate. Subgraph (c) is used for adjusting the number of nodes that have label
‘1’. Note that all subgraphs (a), (b), and (c) have 16 nodes.

and the kernel-based filtering (Feng et al., 2022). However, unlike EIN, they cannot guarantee that
the identified important graphs are actually subgraphs of the input graphs because none of them are
based on the exact matching.

In the context of graph mining, discriminative pattern mining has also been studied (e.g., Thoma et al.,
2010; Potin et al., 2025; Chen et al., 2022). However, most of them are not directly incorporated in a
learning model. Typically, the subgraph enumeration (using some pruning strategies) is performed
based on a discriminative score (e.g., ratio of frequency between two classes) independent from
a learning model, and the selection results can be used in a subsequent prediction model training.
Although (Nakagawa et al., 2016; Yoshida et al., 2019; 2021; Tajima et al., 2024) enumerate subgraphs
during a model optimization, they are limited to a linear combination of the subgraphs. Note that
Tajima et al. (2024) also use a combination of proximal gradient and gSpan, from which our
optimization procedure is extended to the neural network backpropagation and the group-sparsity.
Although (Nakagawa et al., 2016; Yoshida et al., 2019; 2021) provide a stronger pruning rule that
can satisfy the global optimality, the convex formulation of the model training is required. To our
knowledge, a discriminative subgraph mining that directly combines the exact subgraph enumeration
with a (sparsity-induced) neural network has not been investigated.

4 Experiments

We verify the prediction performance and interpretability of EIN through synthetic and benchmark
datasets. For all the datasets, we partitioned them into train : valid : test = 6 : 2 : 2.

Synthetic Datasets. We created two synthetic datasets by using subgraphs shown in Figure 3.
𝐻𝑝 and 𝐻𝑛 are subgraphs with 16 nodes, which is known to be difficult to discriminate by standard
GNNs.

The first dataset use 𝐻𝑝 and 𝐻𝑛, by which positive and negative classes are defined. We first
generated a random connected graph, connected with one of 𝐻𝑝 or 𝐻𝑛 randomly. The initial random
graph has node labels ‘0’, and 𝐻𝑝 and 𝐻𝑛 have node labels ‘1’. We generated 300 instances for each
of the positive and the negative classes. We call this dataset ‘Cycle’. See Appendix C.1 for further
details of the initial random graph.

In the second data, the positive and the negative classes are defined by the XOR rule, i.e., a nonlinear
rule, of 𝐻𝑝 and 𝐻𝑛, which we call ‘Cycle_XOR’ By using the same random graph as the Cycle
dataset, 𝐻𝑝 and/or 𝐻𝑛 are embedded into input graphs. Therefore, if a graph have one of 𝐻𝑝 or 𝐻𝑛,
the class label is 𝑦 = 1, otherwise 𝑦 = 0, i.e., in the case that both of 𝐻𝑝 and 𝐻𝑛 are included or
neither of them are included. We generated 150 instances each of four states of XOR, which results
in 300 instances each of the positive and the negative classes. However, in this setting, the difference
in the number of the nodes labeled as ‘1’ may make the discrimination easier (32 if both of 𝐻𝑝 and
𝐻𝑛 exist, 16 if one of 𝐻𝑝 and 𝐻𝑛 exists, and 0 if neither of 𝐻𝑝 and 𝐻𝑛 exists). To avoid this, we
added an simple subgraph 𝐻padding so that the number of the nodes labeled as ‘1’ is 32 for all graphs.

Benchmark Datasets. As benchmark datasets, we used BZR, COX2, DHFR, and ENZYMES
from (Morris et al., 2020), and ToxCast and SIDER from (Wu et al., 2018).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Accuracy on synthetic and benchmark datasets

BZR COX2 DHFR ENZYMES ToxCast SIDER Cycle Cycle_XOR
GCN 83.7±2.6 80.3±1.3 71.2±4.8 69.5±6.5 60.0±2.8 69.4±0.3 48.8±1.1 50.7±1.5
GAT 81.2±1.9 79.4±1.0 70.8±3.2 69.5±11.1 58.5±3.8 70.1±0.7 49.8±1.5 58.5±6.1
GATv2 82.5±4.2 79.0±2.5 72.1±3.9 69.5±10.4 59.7±2.3 69.5±1.0 48.7±2.2 59.8±4.3
GIN 81.7±2.2 78.2±0.9 70.2±4.6 71.0±8.6 59.0±2.5 68.6±0.6 50.0±0.0 72.2±4.5
PNA 82.7±3.7 78.2±0.5 67.2±2.4 70.0±10.9 56.6±3.6 69.1±0.2 49.5±1.1 74.2±2.8
GIN-AK 82.5±2.3 80.5±3.0 77.1±3.2 75.5±8.0 58.7±2.5 68.9±1.7 53.2±1.6 72.0±5.4
PPGN 83.7±3.8 79.4±2.1 76.1±4.9 66.5±6.0 60.9±2.6 69.6±1.0 49.8±2.1 74.5±2.4
EIN 86.4±4.4 81.4±3.1 82.8±4.0 65.5±12.7 61.8±2.2 70.7±2.8 100.0±0.0 99.8±0.3
EIN+GIN 86.2±3.0 81.2±3.9 81.8±2.8 73.0±3.3 61.8±1.9 70.9±3.5 100.0±0.0 99.8±0.4
nonzero 𝜷𝐻 of EIN 79±12 83±17 121±103 101±43 74±13 202±29 4.0±0.0 51±15

Compared Methods. For performance comparison, we used GNN methods such as GCN (Kipf &
Welling, 2017), GAT (Velickovic et al., 2018), GATv2 (Brody et al., 2022), GIN (Xu et al., 2019),
PNA (Corso et al., 2020), GNN-AK (Zhao et al., 2022), and PPGN (Maron et al., 2019a). For node
attributes, EIN only used discrete node labels, while compared GNN methods also incorporate
continuous node attributes. GCN, GAT, GATv2, and GIN optimizes the number of the units
{64, 128, 256} and the number of epoch by the validation set, and other settings follow (You et al.,
2021). PNA optimizes the number of the units {16, 32, 64} and the number of epochs by the validation
set, and the number of the message passing is set as 2. GNN-AK uses GIN as the base GNN. Other
settings of GNN-AK and PPGN follow the author implementation. For EIN, maxpat ∈ {5, 10},
𝐾 ∈ {2, 6, 10}, and 𝜎 ∈ {sigmoid,LeakyReLU} are selected by the validation performance. We
also evaluate performance of the combination of EIN and GNN described in § 2.4. For GNN, we
employed GIN and the combine model is denoted as EIN+GIN. For other details, see Appendix C.2.

4.1 Prediction Accuracy Comparison

Table 1 shows classification accuracy on synthetic and benchmark datasets. The results on Cycle and
Cycle_XOR indicate that GNN based methods cannot discriminates closed paths shown in Fig. 3 (a)
and (b). On the other hand, in Cycle and Cycle_XOR datasets, EIN and EIN+GIN achieved almost
100% classification. This indicates that EIN has a high discriminative ability about the subgraph
structure, and flexibility that can capture a nonlinear relation.

For the other benchmark datasets, EIN and EIN+GIN show superior performance compared with
other GNNs except for ENZYMES. EIN+GIN improves GIN for all datasets, which suggests that the
exact subgraph information is essential for the prediction.

Further, the number of the selected subgraphs in EIN, shown in the bottom of Table 1 is at most
a few hundreds, from which we see that EIN can effectively identify a small number of important
subgraphs for the prediction.

4.2 Examples of Post-hoc Analysis

We here show examples of the post-hoc analysis using the trained EIN. Figure 4 is a result of SHAP
for the EIN prediction on an instance of the ToxCast dataset. For SHAP, we used the python library
https://shap.readthedocs.io/en/latest/, and see the document for detail. The SHAP
values are for the predicted class (positive class), and in this case, we can see that a subgraph in
Fig. 4 (a) has a particularly strong contribution to the prediction. Figure 5 shows an example of a
fitted decision tree to the trained EIN prediction for the Cycle_XOR training and test datasets. In
Fig. 5, the top node classifies a graph that do not have both of 𝐻𝑝 and 𝐻𝑛 as 𝑦 = 0 (the top subgraph
is included both in 𝐻𝑝 and 𝐻𝑛, but not in 𝐻padding), and the second and the third nodes consists of
the XOR rule by the length 8 and 9 closed paths (the second node is the length 9 closed path and the
third node is the length 8 closed path). Additional examples are shown in Appendix D.

8

https://shap.readthedocs.io/en/latest/

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6
6

6
6

8
66 8

(a) pat41
6

6
6

66
8

(b) pat36

66

8
6

8

(c) pat64

6
6
6
6
666

6 66

(d) pat20
66
6
6
6

6 6 6 6

(e) pat6

0.0 0.5 1.0
64 others

pat6
pat20
pat64
pat36
pat41

64 others
pat6

pat20
pat64
pat36
pat41 +0.76

+0.23
+0.11

+0.1
+0.49

−0.24

E[f(X)] = − 0.246

f(x) = 1.21

(f) SHAP values

Figure 4: Example of SHAP applied to an EIN
prediction from the ToxCast dataset.

x[17] <= 0.5

class0 x[4] <= 0.5

class1 x[3] <= 0.5

class1 class0

havedo not have

havedo not have

havedo not have

Figure 5: Decision tree on Cycle_XOR

Table 2: Mean pruning rates of EIN
BZR COX2 DHFR ENZYMES ToxCast SIDER Cycle Cycle_XOR

Working set size 76 146 91 164 60 193 4 50
Traverse nodes 12637 5060 20596 45829 3710 6122 3 828
all subgraphs |H | 112944 76120 108124 1133298 72734 101965 31953 40627
Pruning rates (%) 88.81 93.35 80.95 95.96 94.90 94.00 99.99 97.96

4.3 Pruning rates

Table 2 shows the mean working set size (mean over all 𝜆), the mean number of the traversed nodes
(mean over all 𝜆), and the number of all the subgraphs |H | for maxpat = 10. The pruning rates are
defined by the ratio between the number of the traversed nodes and |H |. We can see that a large
amount of nodes are pruned. Further, the mean size of the working set is at most a few hundreds,
which means that 𝑩 is highly sparse during the optimization. Computational time required for the
entire Algorithm 1 is also reported in Appendix E. The computational time of EIN is unfortunately
higher than the standard GNNs. However, taking into account the fasts that EIN handles all the
possible subgraphs with the exact matching and that the pruning rate was high, we consider that
EIN performs highly efficiently computations. Further improvement for the high computational
requirement is one of important future work to scale up the applicability.

5 Conclusions

We propose Exact subgraph Isomorphism Network (EIN). EIN combines the exact subgraph enu-
meration, neural networks, and the group sparse regularization. We show that predictive subgraphs
can be identified efficiently by pruning unnecessarily subgraphs during the proximal update without
sacrificing the quality of the model. We demonstrated that EIN has sufficiently high prediction ac-
curacy compared with well-known graph neural networks despite that EIN only uses a small number
of selected subgraphs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

References
Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr

Harutyunyan, Greg Ver Steeg, and Aram Galstyan. MixHop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In Kamalika Chaudhuri and Ruslan Salakhut-
dinov (eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pp. 21–29. PMLR, 09–15 Jun 2019.

Steve Azzolin, Antonio Longa, Pietro Barbiero, Pietro Lio, and Andrea Passerini. Global explainabil-
ity of GNNs via logic combination of learned concepts. In The Eleventh International Conference
on Learning Representations, 2023.

Pablo Barcelo, Floris Geerts, Juan L Reutter, and Maksimilian Ryschkov. Graph neural networks
with local graph parameters. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, 2021.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M. Bronstein, and Haggai Maron. Equivariant subgraph aggregation
networks. In International Conference on Learning Representations, 2022.

Deepshikha Bhati, MD Amiruzzaman, Ye Zhao, Angela Guercio, and Tram Le. A survey of post-hoc
XAI methods from a visualization perspective: Challenges and opportunities. IEEE Access, 13:
120785–120806, 2025.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(1):657–668, 2023.

L. Breiman. Random forests. Machine Learning, 45:5–32, 2001.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In
International Conference on Learning Representations, 2022.

Rémy Brossard, Oriel Frigo, and David Dehaene. Graph convolutions that can finally model local
structure. CoRR, abs/2011.15069, 2020.

Yao Chen, Wensheng Gan, Yongdong Wu, and Philip S. Yu. Contrast pattern mining: A survey,
2022.

Eli Chien, Jianxin Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In International Conference on Learning Representations, 2021.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
13260–13271. Curran Associates, Inc., 2020.

Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph repre-
sentations. In Proceedings of the 35th International Conference on Neural Information Processing
Systems, NIPS ’21, Red Hook, NY, USA, 2021. Curran Associates Inc. ISBN 9781713845393.

Felix A. Faber, Luke Hutchison, Bing Huang, Justin Gilmer, Samuel S. Schoenholz, George E. Dahl,
Oriol Vinyals, Steven Kearnes, Patrick F. Riley, and O. Anatole von Lilienfeld. Prediction errors
of molecular machine learning models lower than hybrid dft error. Journal of Chemical Theory
and Computation, 13(11):5255–5264, 2017.

Aosong Feng, Chenyu You, Shiqiang Wang, and Leandros Tassiulas. KerGNNs: Interpretable graph
neural networks with graph kernels. In Thirty-Sixth AAAI Conference on Artificial Intelligence,
AAAI, pp. 6614–6622. AAAI Press, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Floris Geerts and Juan L Reutter. Expressiveness and approximation properties of graph neural
networks. In International Conference on Learning Representations, 2022.

Vladimir Gligorijević, P. Douglas Renfrew, Tomasz Kosciolek, Julia Koehler Leman, Daniel Beren-
berg, Tommi Vatanen, Chris Chandler, Bryn C. Taylor, Ian M. Fisk, Hera Vlamakis, Ramnik J.
Xavier, Rob Knight, Kyunghyun Cho, and Richard Bonneau. Structure-based protein function
prediction using graph convolutional networks. Nature Communications, 12(1):3168, May 2021.

Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks.
Curran Associates Inc., Red Hook, NY, USA, 2019.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

Steph-Yves Louis, Yong Zhao, Alireza Nasiri, Xiran Wang, Yuqi Song, Fei Liu, and Jianjun Hu. Graph
convolutional neural networks with global attention for improved materials property prediction.
Phys. Chem. Chem. Phys., 22:18141–18148, 2020.

Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
Proceedings of the 31st International Conference on Neural Information Processing Systems,
NIPS’17, pp. 4768–4777, Red Hook, NY, USA, 2017. Curran Associates Inc.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019a.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. In International Conference on Learning Representations, 2019b.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 4363–4371. PMLR, 09–15 Jun 2019c.

Christoph Molnar. Interpretable Machine Learning. 3 edition, 2025.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In The Thirty-Third AAAI Conference on Artificial Intelligence, pp. 4602–4609. AAAI Press, 2019.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. TUDataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020. URL
www.graphlearning.io.

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pooling for
graph representations. In Proceedings of the 36th International Conference on Machine Learning,
volume 97, pp. 4663–4673, 2019.

Kazuya Nakagawa, Shinya Suzumura, Masayuki Karasuyama, Koji Tsuda, and Ichiro Takeuchi.
Safe pattern pruning: An efficient approach for predictive pattern mining. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
1785–1794. ACM, 2016.

Giannis Nikolentzos, George Dasoulas, and Michalis Vazirgiannis. k-hop graph neural networks.
Neural Networks, 130:195–205, 2020. ISSN 0893-6080.

Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in Optimization, 1
(3):127–239, January 2014.

11

www.graphlearning.io

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Lucas Potin, Rosa Figueiredo, Vincent Labatut, and Christine Largeron. Pattern-based graph classi-
fication: Comparison of quality measures and importance of preprocessing. ACM Trans. Knowl.
Discov. Data, 19(6), July 2025.

Liva Ralaivola, Sanjay J. Swamidass, Hiroto Saigo, and Pierre Baldi. Graph kernels for chemical
informatics. Neural Networks, 18(8):1093–1110, 2005.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should i trust you?": Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’16, pp. 1135–1144, New York, NY, USA, 2016.
Association for Computing Machinery.

Falk Schreiber and Henning Schwöbbermeyer. Frequency concepts and pattern detection for the
analysis of motifs in networks. In Transactions on computational systems biology III, pp. 89–104.
Springer, 2005.

Shinji Tajima, Ren Sugihara, Ryota Kitahara, and Masayuki Karasuyama. Learning attributed
graphlets: Predictive graph mining by graphlets with trainable attribute. In Proceedings of the
30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2830–2841, 2024.

Marc Teboulle. A simplified view of first order methods for optimization. Mathematical Program-
ming, 170:67–96, 2017.

Marisa Thoma, Hong Cheng, Arthur Gretton, Jiawei Han, Hans-Peter Kriegel, Alex Smola, Le Song,
Philip S. Yu, Xifeng Yan, and Karsten M. Borgwardt. Discriminative frequent subgraph mining
with optimality guarantees. Statistical Analysis and Data Mining: The ASA Data Science Journal,
3(5):302–318, 2010.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018.

Guangtao Wang, Rex Ying, Jing Huang, and Jure Leskovec. Multi-hop attention graph neural
networks. In Zhi-Hua Zhou (ed.), Proceedings of the Thirtieth International Joint Conference
on Artificial Intelligence, IJCAI-21, pp. 3089–3096. International Joint Conferences on Artificial
Intelligence Organization, 8 2021.

Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S.
Pappu, Karl Leswing, and Vijay Pande. MoleculeNet: A benchmark for molecular machine
learning, 2018. URL https://arxiv.org/abs/1703.00564.

Tian Xie and Jeffrey C. Grossman. Crystal graph convolutional neural networks for an accurate and
interpretable prediction of material properties. Phys. Rev. Lett., 120:145301, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Yangyang Xu and Wotao Yin. A globally convergent algorithm for nonconvex optimization based
on block coordinate update. Journal of Scientific Computing, 72:700–734, 2017.

Xifeng Yan and Jiawei Han. gSpan: Graph-based substructure pattern mining. In Proceedings. 2002
IEEE International Conference on Data Mining, pp. 721–724. IEEE, 2002.

Tomoki Yoshida, Ichiro Takeuchi, and Masayuki Karasuyama. Learning interpretable metric between
graphs: Convex formulation and computation with graph mining. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1026–1036,
2019.

Tomoki Yoshida, Ichiro Takeuchi, and Masayuki Karasuyama. Distance metric learning for graph
structured data. Machine Learning, 110(7):1765–1811, Jul 2021.

12

https://arxiv.org/abs/1703.00564

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

J. You, J. M. Gomes-Selman, R. Ying, and J Leskovec. Identity-aware graph neural networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 10737–10745,
2021.

Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. XGNN: Towards model-level explanations of
graph neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 430–438, New York, NY, USA, 2020. Association
for Computing Machinery.

Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks: A
taxonomic survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67, 2006.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any
GNN with local structure awareness. In International Conference on Learning Representations,
2022.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
AI Open, 1:57–81, 2020.

A SIF by Frequency

The frequency based SIF is used in (Yoshida et al., 2021) in the context of a subgraph pattern based
distance metric learning. They define #(𝐻 ⊑ 𝐺𝑖) as the frequency of the subgraph 𝐻 contained in
𝐺𝑖 , where nodes or edges among the counted subgraphs are not allowed. Then, the feature value is
defined as

𝜙𝐻 (𝐺𝑖) = 𝑔(#(𝐻 ⊑ 𝐺𝑖)),
where 𝑔 is a monotonically non-decreasing and non-negative function such as identity function
𝑔(𝑥) = 𝑥 or the indicator function 𝑔(𝑥) = I(#(𝐻 ⊑ 𝐺𝑖) > 0) (Yoshida et al. (2021) employed
𝑔(𝑥) = log(1+𝑥)for their evaluation). They pointed out computing the frequency without overlapping
is NP-complete (Schreiber & Schwöbbermeyer, 2005), and approximate count is also provided (see
(Yoshida et al., 2021) for detail). Our pruning theorem (Theorem 2.1) holds for both the exact
𝜙𝐻 (𝐺𝑖) and its approximation.

B Proof of Theorem 2.1

We first transform the derivatives of the loss function with respect to 𝜷𝐻 so that it is represented
through the GML intermediate variable 𝒉:

𝒈𝐻 =
𝜕

𝜕𝜷𝐻

𝑛∑
𝑖=1

ℓ(𝑦𝑖 , 𝑓 (𝐺𝑖))

=
𝑛∑
𝑖=1

𝜕𝒉⊤

𝜕𝜷𝐻

𝜕ℓ(𝑦𝑖 , 𝑓 (𝐺𝑖))
𝜕𝒉

.

From the definition of 𝒉, we see 𝜕𝒉⊤

𝜕𝜷𝐻
= 𝜓𝐻 (𝐺𝑖)𝑰𝐾 , where 𝑰𝐾 is the 𝐾 × 𝐾 identity matrix. As a

result, we have

𝒈𝐻 =
𝑛∑
𝑖=1

𝜕ℓ(𝑦𝑖 , 𝑓 (𝐺𝑖))
𝜕𝒉

𝜓𝐻 (𝐺𝑖).

Since 𝛿𝑖𝑘 = 𝜕ℓ (𝑦𝑖 , 𝑓 (𝐺𝑖))
𝜕ℎ𝑘

,

∥𝒈𝐻 ′ ∥2 =

√√√
𝐾∑
𝑘=1

(
𝑛∑
𝑖=1

𝛿𝑖𝑘𝜓𝐻 ′ (𝐺𝑖)
)2

. (12)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

From the definition, 0 ≤ 𝜓𝐻 ′ (𝐺𝑖) ≤ 𝜓𝐻 (𝐺𝑖). Then, the upper and lower bound of the inner sum of
(12), i.e.,

∑𝑛
𝑖=1 𝛿𝑖𝑘𝜓𝐻 ′ (𝐺𝑖), can be derived as

𝑛∑
𝑖=1

𝛿𝑖𝑘𝜓𝐻 ′ (𝐺𝑖) ≤
∑

{𝑖 |𝛿𝑖𝑘>0}
𝛿𝑖𝑘𝜓𝐻 ′ (𝐺𝑖) ≤

∑
{𝑖 |𝛿𝑖𝑘>0}

𝛿𝑖𝑘𝜓𝐻 (𝐺𝑖),

𝑛∑
𝑖=1

𝛿𝑖𝑘𝜓𝐻 ′ (𝐺𝑖) ≥
∑

{𝑖 |𝛿𝑖𝑘<0}
𝛿𝑖𝑘𝜓𝐻 ′ (𝐺𝑖) ≥

∑
{𝑖 |𝛿𝑖𝑘<0}

𝛿𝑖𝑘𝜓𝐻 (𝐺𝑖).

Therefore,(
𝑛∑
𝑖=1

𝛿𝑖𝑘𝜓𝐻 ′ (𝐺𝑖)
)2

≤ max
©­«

∑
{𝑖 |𝛿𝑖𝑘>0}

𝛿𝑖𝑘𝜓𝐻 (𝐺𝑖)
ª®¬

2

,
©­«

∑
{𝑖 |𝛿𝑖𝑘<0}

𝛿𝑖𝑘𝜓𝐻 (𝐺𝑖)
ª®¬

2 ,
which results in (9).

C Detail of Experimental Settings

C.1 Synthetic Dataset

For both Cycle and Cycle_XOR, we first generate a random graph by the following procedure. The
node size is randomly chosen from 5, 6, . . . , 10, and the number of edges are at most 20, which are
also randomly generated by choosing node pairs uniformly. From 𝐻𝑝 , 𝐻𝑛, or 𝐻padding, randomly
selected 𝑛connect ∈ {3, 4, 5, 6} nodes are connected to a randomly selected node in the initial random
graph.

C.2 Other Settings of EIN

In Algorithm 1, we selected five values of𝜆 taken from the interval [log(𝜆max), log(0.01𝜆max)]. From
log(𝜆max), we iteratively decrease Δ𝜆 five times (i.e., log(𝜆𝑘+1) = log(𝜆𝑘) −Δ𝜆). The initial value of
Δ𝜆 is (log(𝜆max)− log(0.01𝜆max))/5. If the number of non-zero ∥𝜷𝐻 ∥ increase ≥ 10, then we update
Δ𝜆 ← 0.5Δ𝜆. We determined 𝜆max by 𝜆max = max𝐻 ∈H ∥𝒈𝐻 ∥2, in which 𝑩 and 𝒃 were initialized
by a linear model (Nakagawa et al., 2016) and 𝚯 was randomly initialized. We set the terminate
condition in the alternating update of Algorithm 1 as that the validation loss does not improve 5
times. The hyper-parameters 𝜆, maxpat ∈ {5, 10}, 𝐾 ∈ {2, 6, 10}, and 𝜎 ∈ {sigmoid,LeakyReLU}
were selected by the validation loss. We set the number of layers of FFN as 1 and MaxIter for 𝚯 was
30.

In EIN+GIN, the message passing in GIN was set as 3, the number of the middle unit was 16, and
the activation function was ReLU.

D Other Examples of Post-hoc Analysis

Figure 6 shows an example of a fitted decision tree to the trained EIN prediction for the SIDER
training and test datasets, which provides possible decision rule behind subgraphs and the target
label. As another simple example of post-hoc analysis, Fig. 7 shows subgraph importance estimated
by Random Forest (RF) (Breiman, 2001) for Cycle_XOR. We fitted RF to a set of (𝝍S (𝐺𝑖), 𝑓 (𝐺𝑖))
created by the training and test datasets and the importance is evaluated by scikit-learn feature
importance of RandomForestRegressor, which is based on mean decrease of impurity by that
feature. Top five important subgraphs are shown in the figures. Figure 7 indicates that the closed
paths of 𝐻𝑝 and 𝐻𝑛 are identified by EIN (the top subgraph is the length 9 closed path and the second
subgraph is the length 8 closed path).

E Computational Times

The computational time spent on Algorithm 1 is shown in Table 3. In the table, ‘Traverse Times’
corresponds to the Traverse function in Algorithm 1. We see that the time required for the subgraph

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

x[155] <= 0.5

x[174] <= 0.5 x[119] <= 0.5

x[66] <= 0.5 x[23] <= 0.5

class0 class1 class1 class0

x[7] <= 0.5 x[125] <= 0.5

class1 class1 class1 class0

SIDER M=2 leakyRelu cv2

havedo not have

Figure 6: Decision tree on SIDER.

Fe
at

ur
e

im
po

rta
nc

e

1st 2nd 3rd 4th 5th

Figure 7: Subgraph importance estimated by RF on Cycle_XOR dataset.

enumerations depends on the datasets (depends on a variety of factors such as node sizes, edge sizes,
and the pruning rate).

Table 3: Mean computational time for the entire Algorithm 1
BZR COX2 DHFR ENZYMES ToxCast SIDER Cycle89 Cycle89_XOR

Traverse Times (s) 13 9.2 68 991 602 1706 85 7692
All times (s) 179 185 598 1089 744 1859 1253 10361

F LLM Usage

In this manuscript, LLM was only used to polish writing.

15

	Introduction
	Proposed Method: Exact Subgraph Isomorphism Network
	Model Definition
	Optimization
	Backpropagation with Gradient Pruning
	Algorithm

	Post-hoc Analysis for Knowledge Discovery
	Combining with Graph Neural Network

	Related Work
	Experiments
	Prediction Accuracy Comparison
	Examples of Post-hoc Analysis
	Pruning rates

	Conclusions
	SIF by Frequency
	Proof of Theorem 2.1
	Detail of Experimental Settings
	Synthetic Dataset
	Other Settings of EIN

	Other Examples of Post-hoc Analysis
	Computational Times
	LLM Usage

