

EFFICIENT IMPLICIT NEURAL SURFACES VIA MULTI-SCALE RESIDUALS AND NESTED TRAINING

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Encoding input coordinates with sinusoidal functions into multi-layer perceptrons
012 (MLPs) has proven effective for implicit neural representations (INRs) of surfaces
013 defined as zero-level sets. This approach enables the capture of high-frequency
014 detail and supports geometric regularization through MLP derivatives, such as the
015 Eikonal constraint for signed distance function (SDF) fitting. However, existing
016 methods typically rely on a single large MLP to learn the surface across the entire
017 domain — a design that hinders efficient modeling of fine-grained details. Scaling
018 the model may enable enhanced surface modeling, but at the cost of a larger number
019 of MLP parameters and expensive inference, since mesh extraction or sphere tracing
020 requires querying the MLP at many off-surface points. To address these issues, we
021 propose M-plicits (Multiscale Implicit Neural surfaces), a multiscale framework
022 for representing and training INRs to encode surfaces as SDFs, enabling both high-
023 quality reconstruction and efficient inference. To increase representational capacity,
024 we model the INR as a residual sum of MLPs, where each component captures a
025 specific level of detail, modulated by the sinusoidal input encodings. To improve
026 efficiency, a small MLP captures coarse geometry, while finer residual MLPs are
027 trained within a sequence of nested neighborhoods around the zero-level set. This
028 design concentrates modeling capacity near the surface, improving reconstruction
029 and reducing computation by relying on coarse approximations for off-surface
030 points. Experiments show that M-plicits achieves state-of-the-art accuracy in
031 surface reconstruction across standard benchmark datasets, while maintaining a
032 compact representation. Our method also supports real-time sphere tracing and
033 efficient high-resolution mesh extraction. Code and models will be released.

1 INTRODUCTION

034 Reconstructing surfaces from point clouds is a long-standing problem in vision and graphics (Kazhdan
035 et al., 2006), with applications in augmented/virtual reality (Tkach et al., 2016), digital twins (Sun
036 et al., 2005), cultural heritage preservation (Scopigno et al., 2011), and autonomous robotics (Whelan
037 et al., 2016)—where high-quality 3D geometry is essential for perception, interaction, and decision-
038 making. The emergence of high-resolution depth sensors has further motivated the development of
039 accurate and efficient surface reconstruction methods. Representing the surfaces as zero-level sets of
040 multi-layer perceptrons (MLPs) has became a prominent approach, due to their strong representational
041 capacity and the ability to incorporate geometric regularizations (Wang et al., 2021). To enhance
042 model expressiveness, input coordinates are projected into a set of sinusoidal functions (Tancik et al.,
043 2020; Novello et al., 2025), allowing the network’s bandlimit to be controlled through appropriate
044 frequency initialization. For geometric regularization, it is common to assume that the underlying
045 function represents a signed distance function (SDF) of the ground-truth surface (Schirmer et al.,
046 2024), which satisfies the Eikonal equation. Incorporating this constraint into the implicit neural
047 representation (INR) loss function serves as a geometric regularizer, helping to prevent overfitting.

048 Most existing INRs rely on a single large MLP to model the SDF across the entire domain. While
049 scaling up the network can capture finer geometric details through high-frequency components, it
050 also leads to large models with prohibitive inference costs, making them impractical for fast or
051 real-time applications. This is especially limiting for level set extraction methods—such as marching
052 cubes (Lorensen & Cline, 1987) or sphere tracing (Hart et al., 1989)—which require dense off-surface
053 evaluations. For instance, SIREN (Sitzmann et al., 2020) requires full MLP evaluation at every

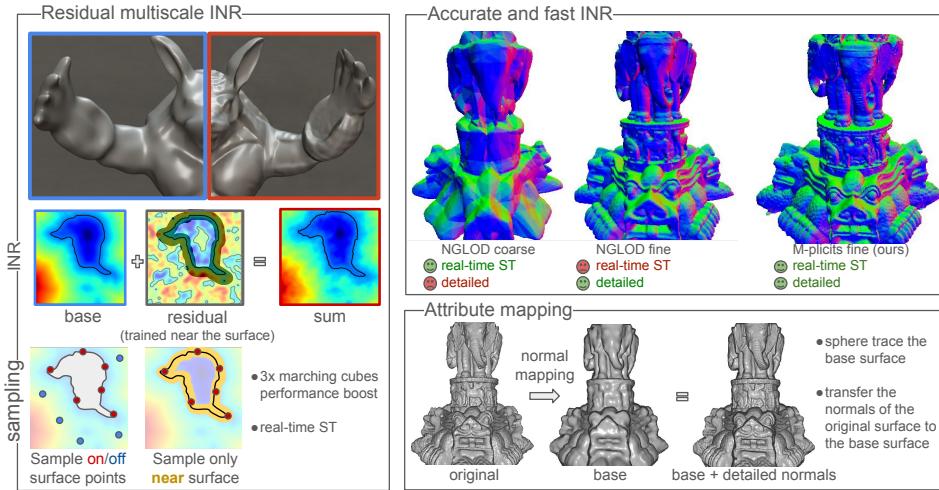


Figure 1: We introduce **M-plicits**, a multiscale INR framework for SDFs, based on a nested neighborhood scheme. (Left) Geometry is decomposed into base and residual SIRENs, trained at progressively finer scales with localized, near-surface sampling. (Top-right) M-plicits supports real-time sphere tracing (ST) with high fidelity, outperforming NGLOD (Takikawa et al., 2021) in both quality and rendering speed. (Bottom-right) M-plicits supports downstream tasks such as normal mapping.

query point, regardless of proximity to the surface, leading to substantial computational overhead.

To alleviate this, grid-based MLPs have been proposed (Müller et al., 2022), enabling localized evaluations. However, introducing grid dependencies may limit surface smoothness and remain

unsuitable for real-time rendering with high geometric fidelity.

To address these limitations, we introduce **M-plicits** (Multiscale Implicit Neural Surfaces), an INR framework for encoding SDFs in multiscale for efficient training and inference. M-plicits models the SDF of a surface as a residual sum of MLPs, where each MLP captures a different level of detail modulated by sinusoidal input encodings. A small, coarse MLP gives the global shape across the whole domain, while finer residual MLPs are trained within a sequence of nested neighborhoods around the previous zero-level sets. This multiscale strategy concentrates modeling capacity near the zero-level set, enhancing surface reconstruction accuracy and computational efficiency. In addition to geometry, M-plicits also models surface attributes—such as normals and textures—within the same neighborhood structure, ensuring smooth and consistent outputs. For real-time rendering, we introduce *multiscale sphere tracing* and a *normal computation* based on the General Matrix Multiplication (GEMM) (Dongarra et al., 1990) that leverages efficient matrix operations on the GPU. M-plicits supports fast surface extraction and integrates naturally into point clouds pipelines. Figure 1 showcases M-plicits’s results on fitting and rendering SDFs, demonstrating significant improvements over prior methods in accuracy and inference speed. In summary, our contributions are:

- A compact and efficient multiscale INR model for accurate SDF representation, formulated as a residual sum of MLPs, each capturing a specific frequency band—achieving high representational capacity with fast inference for detailed surface modeling.
- A nested neighborhood training strategy that refines each residual component by supervising only near the previous zero-level set, enhancing geometric fidelity and improving data efficiency for oriented point clouds.
- M-plicits enables fast inference through real-time multiscale sphere tracing, a GEMM-based technique for normal computation, and efficient mesh extraction with support for normal and texture mapping, delivering SoTA performance in surface rendering and extraction.

2 RELATED WORK

Implicit representations are central to graphics and vision (Velho et al., 2007; Macêdo et al., 2009; Mescheder et al., 2019), with SDFs serving as a fundamental tool for modeling and manipulating surfaces (Bloomenthal & Wyvill, 1990; Sang et al., 2025). Recently, MLPs have been shown effective as INRs to model SDFs (Park et al., 2019; Gropp et al., 2020), including SIRENs (Sitzmann et al., 2020), which use periodic activations to capture high-frequency details.

Multiscale Neural SDFs. Various methods have investigated multiscale or frequency-aware training to enhance the expressiveness of INRs. BACON (Lindell et al., 2021) employs multiplicative filter networks (MFNs) (Fathony et al., 2020) to band-limit the spectrum of INRs. However, this approach introduces artifacts due to hard spectral truncation, and the lack of non-linear activations limits the capacity to represent fine details with small networks. Dou et al. (2023) improves the use of MFNs by integrating a feature grid and small architectural changes. BANF (Shabanov et al., 2024), MINER Saragadam et al. (2022), and MRNet (Paz et al., 2023) follow a multiscale design using a Laplacian pyramid. BANF uses grid-based MLPs, which increases memory usage and introduces a dependency on spatial grids. Also, these methods supervise off-surface regions at all scales, limiting their efficiency and making real-time inference more challenging. In contrast, our approach constructs a residual sum of SIRENs, with each component supervised to capture a distinct frequency band improving geometric fidelity and data efficiency by concentrating learning near the surface.

Inference and Rendering. Traditional visualization of SDFs relies on marching cubes (Lorensen & Cline, 1987) or sphere tracing (ST) (Hart, 1996). Performance-focused approaches such as (Davies et al., 2020) leverage ST to enable real-time rendering of INR level sets. NGLOD, in particular, interpolates hierarchical features from a sparse voxel octree, which are decoded by shallow MLPs. However, this interpolation results in discontinuous gradients, which impair normal estimation. Also, it cannot render highly-detailed level sets in real time. M-plicits addresses these issues by representing each frequency band explicitly using SIRENs, enabling smooth and efficient inference.

Attribute Mapping. Finally, classical attribute mapping techniques, such as normal mapping (Cohen et al., 1998), enhance surface detail but require explicit parameterizations and are sensitive to geometric distortions. Recent neural approaches (Wang et al., 2022) extend these ideas by propagating learned features off-surface using convolutional modules. Our method simplifies this process by avoiding interpolation entirely: inspired by variational inpainting techniques (Bertalmio et al., 2001), we regularize attribute fields to remain smooth along normals near the surface. For texture mapping, traditional parameterized approaches (Catmull, 1974) and neural texture fields (Oechsle et al., 2019; Gao et al., 2022) require known meshes or image-depth pairs and often involve complex training. In contrast, we define texture fields directly from colored point clouds using compact MLPs, regularized along the surface, enabling fast, texture-aware rendering without dense supervision or UV mapping.

3 M-PLICITS

Our goal is to model SDFs using a multiscale INR based on a residual sum of SIRENs, where each component captures a distinct level of detail. We train these networks using a *nested neighborhood* strategy: each residual is supervised only near the current zero-level set, concentrating learning near the surface. This improves geometric details and enables fast inference. Additionally, we introduce an attribute mapping scheme that leverages the SDF structure to support textures and normals without relying on mesh parameterizations or interpolation. Figure 2 gives an overview of our method.

3.1 PRELIMINARIES

Given an oriented point cloud $\{x_j, N_j\}_{j=1}^n$, consisting of surface points x_j and their normals N_j , our goal is to reconstruct the underlying surface S as the zero level set of a signed distance function (SDF) $f : \mathbb{R}^3 \rightarrow \mathbb{R}$, i.e., $S = f^{-1}(0) = \{x \mid f(x) = 0\}$, with the additional condition that $f(x_j) \approx 0$ and $\nabla f(x_j) \approx N_j$. To regularize the solution away from the input data, we also recall that true SDFs satisfy the *Eikonal equation*: $\|\nabla f(x)\| = 1$ for all $x \in \Omega$ in the training domain Ω . Enforcing this condition during training improves generalization in unsupervised regions. Finally, combining the data constraints with the Eikonal regularization leads to a loss function (Gropp et al., 2020):

$$\mathcal{L}(f) = \frac{1}{n} \sum_j [f(x_j)^2 + (1 - \langle \nabla f(x_j), N_j \rangle)] + \int_{\Omega} (\|\nabla f(x)\| - 1)^2 dx. \quad (1)$$

The first two terms ensure that the network fits the input points and aligns the gradient with the ground-truth normals. The third term enforces the Eikonal constraint, providing geometric regularization over Ω . To capture fine geometric detail, it is common to parameterize the SDF f using a sinusoidal MLP (SIREN). A SIREN with $n-1$ hidden layers is defined as:

$$f(x) = W_n \circ h_{n-1} \circ \cdots \circ h_0(x) + b_n, \quad \text{where } h_i(x) = \sin(\omega_0(W_i x + b_i)). \quad (2)$$

Here, ω_0 is a frequency parameter controlling the network's capacity to model high-frequency details (Sitzmann et al., 2020), and each W_i, b_i are the learnable weight matrices and biases.

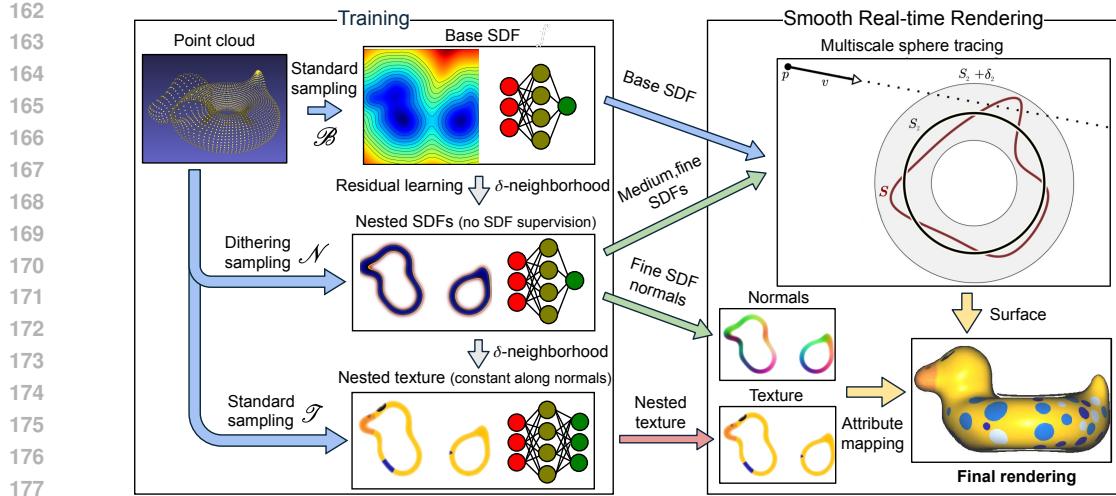


Figure 2: Overview of M-plimits. Starting from an oriented point cloud with colors, we combine sampling techniques and loss regularizations (\mathcal{B} and \mathcal{N}) to create a base, a medium, and a fine SDF to implicitly represent the SDF in multiscale. The base SDF is defined for the entire domain, while the others are residuals, defined in (nested) neighborhoods of the surface. The colors are also trained in a neighborhood, regularized (by \mathcal{T}) to be constant along normals. The resulting multiscale representation can be rendered using novel sphere tracing and attribute mapping algorithms.

This architecture enables the network to fit both surface constraints $f(x_j) \approx 0$ and normal alignment $\nabla f(x_j) \approx N_j$, while providing high representational capacity for complex geometries. However, relying on a single large MLP to represent the entire domain is inefficient, especially for high-resolution surfaces, as it leads to high computational cost during inference.

3.2 MULTISCALE MODELING OF NEURAL SDFs

Standard neural SDFs typically rely on large MLPs to capture fine surface details, leading to fitting inefficiencies and high inference costs. To address this, we propose a multiscale SDF representation by recursively refining a coarse base network. Specifically, we define a sequence of neural SDFs $\{f_i\}_{i=1}^n$ via a sum of residual MLPs: $f_{i+1} = f_i + r_i$, for $i = 1, 2$, where f_1 is a compact base MLP trained over the full domain, and each residual r_i refines f_i by capturing higher-frequency components, modulated by the SIREN frequency parameter ω_0 . We refer to the sequence $\{f_i\}$ as *multiscale SDFs*, each approximating the SDF of S at an increasing level of detail. While this formulation naturally extends to an arbitrary number of residuals, we focus on the case of three MLPs for simplicity and because this configuration performs well in our experiments.

To enable efficient learning and real-time inference, we impose a *nesting condition* between successive SDF levels. Specifically, each refined surface $S_i = f_i^{-1}(0)$, for $i = 2, 3$ is constrained to lie within a narrow band around the previous level set S_{i-1} , that is,

$$S_3 \subset [|f_2| < \delta_2] \subset [|f_1| < \delta_1] \quad (3)$$

This is enforced during training by supervising the residual MLP r_i only within this δ_i -neighborhood, a strategy we call *nested neighborhood training*. This condition ensures that each residual captures localized corrections, promotes coarse-to-fine refinement, and supports efficient applications such as progressive sphere tracing and surface-aware attribute mapping (see Section C). The choice of δ_i is tied to the training regime and is discussed in Section 3.2.

Training with nested neighborhoods. In standard SIREN-based SDF fitting, the loss in Equation 1 is applied across the entire domain Ω . In contrast, our multiscale framework leverages the nesting condition to localize supervision. The hierarchy begins with a coarse-level SDF f_1 , modeled by a compact SIREN. Finer levels f_2, f_3, \dots are added as residual SIRENs with progressively higher-frequency capacity, controlled by increasing values of the sinusoidal parameter ω_0 .

Training proceeds in stages: first, the base SDF f_1 is trained over the full domain $\Omega_0 := \Omega$; then, each subsequent level f_{i+1} (for $i = 1, 2$) is trained within the restricted band $\Omega_i := [|f_i| < \delta_i]$. Each

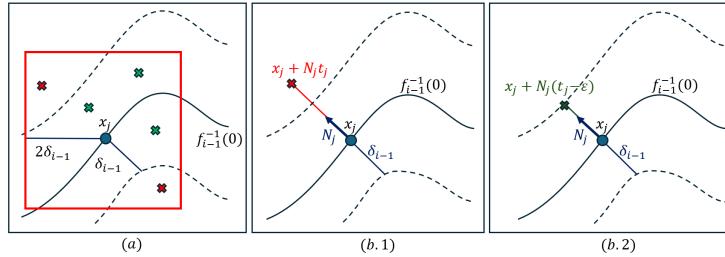
216 SDF f_i is optimized using a combination of data and Eikonal losses:
 217

$$218 \quad \mathcal{L}_i(f_i) = \frac{1}{n} \sum_j [f_i(x_j)^2 + (1 - \langle \nabla f_i(x_j), N_j \rangle)] + \int_{\Omega_{i-1}} (\|\nabla f_i(x)\| - 1)^2 dx. \quad (4)$$

220 To ensure that $\{x_j\}$ lies within Ω_{i-1} at each stage i , we set the band threshold δ_i adaptively following:
 221

$$222 \quad \delta_i = (1 + \varepsilon) \cdot \max_j |f_i(x_j)|, \text{ with } \varepsilon > 0 \text{ a small threshold.} \quad (5)$$

224 **Sampling.** To discretize the Eikonal term over Ω_{i-1} , we employ dithering-based sampling around
 225 the input points $\{x_j\}$, perturbing each coordinate by a random value in the interval $(-2\delta_{i-1}, 2\delta_{i-1})$.
 226 Samples falling outside Ω_{i-1} are rejected using the condition $|f_{i-1}(x)| < \delta_{i-1}$; see Fig. 3(a).
 227



236 Figure 3: (a) Dithering-based sampling around each input point x_j , where each coordinate is perturbed
 237 by a random value in $(-2\delta_{i-1}, 2\delta_{i-1})$, followed by filtering to retain only points in the valid band
 238 Ω_{i-1} (green points denote those that are kept and red those rejected). (b.1) Computation of the
 239 displacement vector $t_j N_j$, where the offset point $x_j + t_j N_j$ lies just outside the narrow band Ω_{i-1} .
 240 (b.2) Final accepted sample $x_j + N_j(t_j - \varepsilon)$, located inside Ω_{i-1} , used to supervise the data term.

241 Adding extra samples to accelerate
 242 SDF training is a common strat-
 243 egy (Novello et al., 2022), but it often
 244 requires evaluating a large MLP over
 245 the entire domain, leading to ineffi-
 246 ciencies and costly inference. In con-
 247 trast, M-plicits uses residual MLPs
 248 that are trained only within a narrow
 249 band around the input data, allowing
 250 for efficient sampling. To enrich su-
 251 pervision of the data term in Equa-
 252 tion 4, we propose sampling along
 253 the normal N_j of each point x_j , as
 254 shown in Fig. 3(b). Specifically, we
 255 compute a scalar $t_j \leq \delta_{i-1}$ such that
 256 for all $t \in [0, t_j]$, the offset point
 257 $x_j + tN_j$ lies at a distance t from the
 258 surface. This allows us to supervise both the SDF value and its gradient: $f_i(x_j + tN_j) = t$ and
 259 $\nabla f_i(x_j + tN_j) = N_j$, providing richer sampling near the surface. We determine each t_j via a
 260 simple iterative scheme: starting from $t_j = \delta_{i-1}$, we reduce it by a small step until the distance from
 261 $x_j + t_j N_j$ to the point cloud $\{x_j\}$ equals t_j , ensuring that the offset point lies inside the band.

262 **Rendering and mesh extraction** To render the zero level set $f^{-1}(0)$ of an SDF f , it is common
 263 to use either sphere tracing (ST) or marching cubes for mesh extraction followed by standard mesh
 264 rendering. When the SDF is represented using M-plicits, both strategies become more efficient.

265 We first introduce a **multiscale ST**. Given a view ray $\gamma(t) = p_0 + tv$, with origin at a point p_0 and
 266 direction v , intersecting $f^{-1}(0)$, standard ST approximates the first intersection point by iterating
 267 $p_{i+1} = p_i + v f(p_i)$ along γ . However, querying a large MLP at each step may be expensive. To reduce
 268 this cost, we exploit the multiscale SDF hierarchy $\{f_i\}$, using coarser networks to guide early steps.
 269 Thanks to the nesting condition in Equation 3, coarse levels can be used to trace offset surfaces before
 switching to finer levels near the surface. The ray starts tracing $f_1^{-1}(\delta_1)$ with f_1 , then proceeds to

270 $f_2^{-1}(\delta_2)$ using f_2 , and finally reaches the target surface $f_3^{-1}(0)$ with f_3 . Each coarser level uses
 271 offset tracing via $p_{i+1} = p_i + v(f_j(p_i) - \delta_j)$, ensuring convergence avoiding high-cost evaluations.
 272 The values δ_i (Equation 5) play a crucial role in rendering. Using distinct values at each level helps
 273 prevent issues such as missed ray-surface intersections: if δ_1 is too small, parts of $f_2^{-1}(0)$ might lie
 274 outside the region bounded by $f_1^{-1}(\delta_1)$; Fig. 4 shows some of these issues.

275 M-plicits also accelerates mesh extraction using **marching cubes**.
 276 We adopt an adaptive grid inference strategy by first evaluating the
 277 coarse SDF f_1 to cull grid vertices, and querying finer SDFs only
 278 for vertices inside the δ_1 -neighborhood. This reduces the number of
 279 voxel evaluations, thereby accelerating mesh extraction (Fig. 5).
 280

281 **Normal and texture mapping.** Let S be a surface nested within a
 282 δ -neighborhood of the zero-level set of a neural SDF f . Assuming
 283 f is a finer-level neural SDF, we define the *neural normal mapping*
 284 by assigning to each point $p \in S$ the attribute $g(p) := \nabla f(p)$. If S
 285 corresponds to the zero-level set of a coarser neural SDF, this neural
 286 normal mapping allows us to bypass additional sphere tracing (ST)
 287 iterations, reducing computational overhead.

288 Similarly, we define a network $g: \mathbb{R}^3 \rightarrow \mathcal{C}$ to encode a *texture* within
 289 the δ -neighborhood of f , where \mathcal{C} is typically the RGB color space. We refer to the attribute mapping
 290 defined by the triple $\{S, f, g\}$ as a *neural texture mapping*. To train the parameters ϕ of g , we
 291 optimize $\mathcal{T}(\phi) = \int_{f^{-1}(0)} (g - q)^2 dx + \int_{\{f \leq \delta\}} \langle \nabla g, \nabla f \rangle^2 dx$, where the first term ensures that g
 292 fits the ground-truth texture q , while the second term regularizes g to remain constant along the
 293 gradient flow of f , effectively propagating texture information throughout the δ -neighborhood.

294 **GEMM-based normal calculation.** To ensure real-time rendering performance, we compute
 295 normals without the need of auto-differentiation nor computational graphs. It works as a forward
 296 pass on the MLP and is implemented on the GPU using only a GEMM library, resulting in a 2X
 297 performance improvement over `torch.autograd`. Implementation details are in Section E.
 298

4 EXPERIMENTS

301 This section presents experiments to evaluate the proposed method comprehensively, both in comparison
 302 to the state of the art and with ablations designed to understand the importance of its different
 303 components. We also demonstrate several applications of our method, showcasing its versatility.

304 **Implementation details.** All experiments are conducted on an NVidia RTX 5090. For sphere tracing,
 305 we fix the number of iterations to 20 for coarse and 5 for each residual level, for better control of the
 306 parallelism. The ω_0 SIREN parameters are 40 for coarse, 80 for medium, and 100, 128 or 180 for
 307 fine, depending on complexity. We use PyTorch’s Adam optimizer for training (Paszke et al., 2019).

308 **Evaluation protocol.** All input point clouds were centered and normalized to the unit sphere. For
 309 evaluation, we extracted the zero-level set of each Neural SDF using marching cubes at a resolution
 310 of 512^3 , followed by re-normalization for consistency. We then uniformly sampled 500K points on
 311 the reconstructed meshes and computed the L2 Chamfer Distance (CD) against the input point cloud
 312 using PyTorch3D’s implementation (Ravi et al., 2020). Importantly, although widely adopted in SDF
 313 benchmarks, CD values are not directly comparable across papers, as they depend on choices such
 314 as normalization (sphere vs. box), metric (L1 vs. L2), and sampling strategy. Establishing a robust
 315 evaluation protocol remains challenging in the field and outside the scope of this work.

316 **MLP notation.** (N, d) refers to a MLP with d hidden layers of the form $\mathbb{R}^N \rightarrow \mathbb{R}^N$. Additionally,
 317 $(64, 2) \triangleright (128, 2) \triangleright (256, 2)$ refers to a multiscale SDF with coarse, medium, and fine MLPs with two
 318 $\mathbb{R}^{64} \rightarrow \mathbb{R}^{64}$, $\mathbb{R}^{128} \rightarrow \mathbb{R}^{128}$, and $\mathbb{R}^{256} \rightarrow \mathbb{R}^{256}$ hidden layers, respectively.

320 4.1 MAIN RESULTS

322 **Surface reconstruction.** We compare our neighborhood nesting approach against SoTA methods for
 323 surface representation on the Stanford dataset (Curless & Levoy, 1996). We compare with NGLOD
 and Instant-NGP (Müller et al., 2022), focusing on real-time rendering performance, as well as

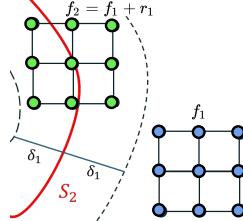


Figure 5: Adaptive marching cubes. For grid vertices outside the δ_1 neighborhood (blue), only the coarse SDF f_1 is evaluated. The residual f_2 is added for other points (green).

324 Table 1: **Surface reconstruction: comparison to the state of the art.** Best values are **bold**, second
 325 best are underlined, and third best are *italic*. Chamfer Distance (CD) considers 500K samples.
 326 Sampling time is measured on a 512³ grid. Real-time renderer throughput considers 512² images.
 327 M-plicits has the best CD metrics, with competitive parameter count and training time. Its runtime
 328 performance is highlighted by the best sampling times and real-time renderer throughput. NGLOD
 329 has a real-time setup that considerably compromises surface quality, as shown by the CD column.

Input	Method	CD \downarrow	# params \downarrow	Training (min) \downarrow	Sampling (s) \downarrow	Renderer FPS \uparrow
Thai statue	iNGP fine	8.60E-03	9,113,760	0	N/A	<u>103</u>
	iNGP coarse	8.86E-03	2,040,864	0	N/A	<u>100</u>
	NGLOD coarse	3.84E-03	8.737	162.68	<u>3.81</u>	40
	NGLOD fine	<u>3.52E-03</u>	10,146,213	179.18	6.82	N/A
	IDF	5.18E-04	1,191,943	<u>20.57</u>	28.10	N/A
	BACON	<u>1.95E-03</u>	530,953	84.00	8.00	N/A
	Ours coarse	<u>4.36E-03</u>	<u>17.153</u>	<u>11.73</u>	1.25	315
Asian Dragon	Ours fine	4.14E-03	<u>132,865</u>	39.68	<u>1.73</u>	70
	iNGP fine	1.46E-02	9,113,760	0	N/A	<u>87</u>
	iNGP coarse	1.47E-02	2,040,864	0	N/A	<u>83</u>
	NGLOD coarse	7.25E-03	8.737	113.83	<u>3.70</u>	40
	NGLOD fine	6.91E-03	10,146,213	127.28	6.80	N/A
	IDF	4.40E-04	1,191,943	21.03	28.60	N/A
	BACON	<u>2.97E-05</u>	530,953	38.10	8.30	N/A
Lucy	Ours coarse	<u>3.05E-05</u>	17.153	<u>8.60</u>	1.25	315
	Ours fine	1.03E-05	<u>132,865</u>	28.70	<u>1.71</u>	70
	iNGP fine	9.50E-03	9,113,760	0	N/A	<u>92</u>
	iNGP coarse	9.46E-03	2,040,864	0	N/A	<u>98</u>
	NGLOD coarse	3.44E-03	<u>8.737</u>	44.70	<u>3.57</u>	40
	NGLOD fine	3.27E-03	10,146,213	61.13	6.58	N/A
	IDF	2.46E-06	1,191,943	<u>9.06</u>	66.87	N/A
Armadillo	BACON	6.07E-04	530,953	165.33	7.77	N/A
	Ours coarse	<u>3.28E-04</u>	4,481	<u>1.81</u>	0.69	315
	Ours fine	<u>6.83E-05</u>	<u>162,401</u>	10.36	<u>1.07</u>	70
	iNGP fine	1.93E-02	9,113,760	0	N/A	<u>71</u>
	iNGP coarse	1.88E-02	2,040,864	0	N/A	<u>63</u>
	NGLOD coarse	1.44E-02	<u>8.737</u>	14.20	<u>3.80</u>	40
	NGLOD fine	1.43E-02	10,146,213	31.58	6.85	N/A
354	IDF	6.55E-04	1,191,943	<u>2.23</u>	37.68	N/A
	BACON	8.27E-05	530,953	40.88	8.28	N/A
	Ours coarse	<u>1.38E-04</u>	2,593	<u>4.97</u>	0.50	315
	Ours fine	<u>2.06E-04</u>	67,073	5.42	<u>0.99</u>	70

355
 356 with Implicit Displacement Fields (IDF)(Wang et al., 2022), which disentangles shape and detail to
 357 capture fine surface structure. Finally, we include BACON (Lindell et al., 2021), a well-established
 358 multiscale approach, where we report results from its 8th hidden layer. Tab. 1 summarizes the results.
 359 Despite enabling real-time rendering and achieving the fastest sampling times, our method shows
 360 training times comparable to IDF, which relies on mesh extraction for rendering. Training is up
 361 to one order of magnitude faster than NGLOD at similar surface detail, and up to 4.5 \times faster in
 362 fine-scale reconstructions. Importantly, our approach does not sacrifice surface quality for efficiency:
 363 it consistently achieves the best, second-best, or third-best Chamfer Distance (CD) across all cases.
 364 Fig. 6 shows render comparisons using the Armadillo. NGLOD level 0 is able to render geometry
 365 in real time, however, it presents significantly lower details compared to the others. To avoid this,
 366 we use an NGLOD level 5 configuration, which has less discretization artifacts, albeit forgoing its
 367 real-time rendering capability. M-plicits achieves real-time rendering performance, while maintaining
 368 a detailed smooth surface, unlike NGLOD. Also, IDF requires mesh extraction, thus not being directly
 369 renderable in real-time. Instant-NGP offers extremely fast training and real-time rendering but at
 370 the cost of higher CD and parameter counts—up to two orders of magnitude larger than ours. For
 371 fairness, we compared against both a coarse Instant-NGP setup with 3 levels of detail and a fine setup
 372 with 16 levels. Note that none of these competitor methods support textures.

373 Although the coarse and fine cases have close CD for some surfaces, Figure 17 (cols. 1 and 3) shows
 374 that they are very different perceptually. Moreover, our approach is able to map normals from detailed
 375 surfaces to include detail faster (col. 2).

376 **Normals.** We compare our GEMM normal calculation against `torch.autograd`. Our method
 377 performs 2 \times faster across 6 different INRs trained for the Armadillo, Buddha and Lucy, with
 architectures varying between 2 and 3 hidden layers. More details are provided in Tab. 10.

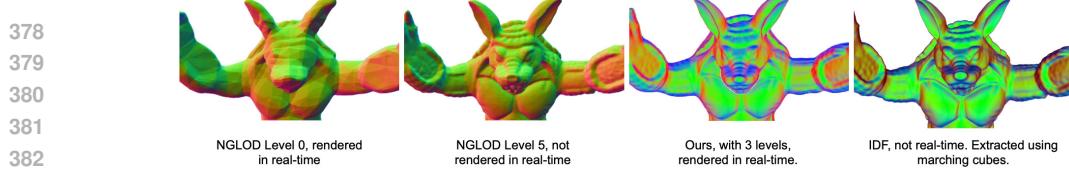


Figure 6: Armadillo renderings using different methods. From the left: NGLOD levels 0, 5, our method, and IDF. Note that NGLOD level 0 and our method are rendered in real time with sphere tracing. NGLOD level 5 is not real time. IDF was rendered using the rasterization pipeline after running marching cubes.

4.2 ABLATIONS AND ADDITIONAL EXPERIMENTS

Residuals. To evaluate our nested neighborhood scheme and loss design, we compare against a **baseline** residual variant $f_2 = f_1 + r_1$, where both f_1 and r_1 are trained using SIREN’s original loss and sampling strategy, following the baseline in IDF (Wang et al., 2022). In contrast, our method employs the loss in Equation 4 together with *nested neighborhoods* to supervise the ground-truth SDF within a narrow band around the previous stage’s zero level set. This exploits the property $f(\mathbf{x}_j + t \mathbf{N}_j) = t$ within a tubular neighborhood, enabling supervision beyond the original samples \mathbf{x}_j to improve stability and prevent error growth. This strategy also reduces network complexity, allowing us to use much smaller architectures: a base network with a single hidden layer of 128 neurons ($\omega_0 = 30$) and r_1 with a single hidden layer of 256 neurons ($\omega_0 = 45$).

We compare this baseline with M-plicits on the Thingi32 dataset, where the baseline achieves an average CD of 6.2E-2, while our method reaches 1.2E-2, demonstrating that M-plicits yields substantially better reconstructions. We also evaluate the residual approach qualitatively. Fig. 8 shows that residuals eliminate spurious components when combined with neighborhood training. We further exploit this property to accelerate marching cubes in scenarios where mesh extraction is required.

Neural normal mapping and multiscale ST. Fig. 7 shows the case where the coarse surface is the zero-level of a neural SDF (left) and when it is a triangle mesh (middle), showing that our representation can also be beneficial for rendering meshes. An overall evaluation of the algorithm with other models is provided in the appendix. In all cases, normal mapping increases fidelity. The result may be improved using the multiscale ST, as shown in Fig. 7 (right). Adding ST iterations using a neural SDF with a better approximation of the surface improves the silhouette (right).

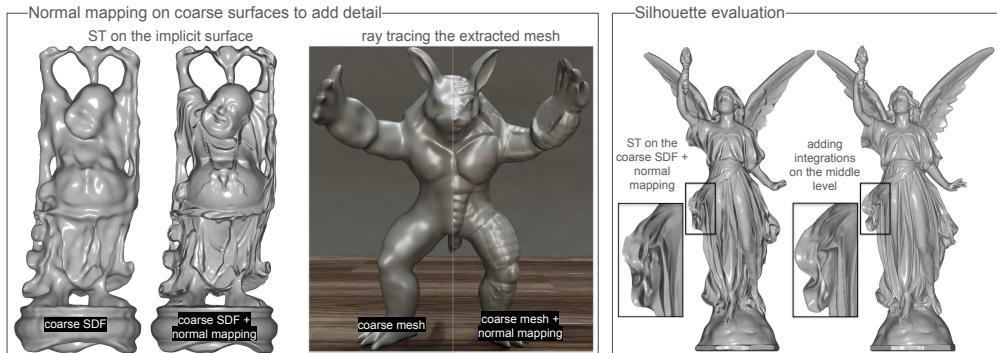


Figure 7: Left: neural normal mapping onto a neural SDF. First, the coarse (64, 1) SDF. Then, the neural normal mapping of the (256, 3) SDF onto the (64, 1). Middle: neural normal mapping onto half of a triangle mesh. The normals of the (256, 3) SDF are used. The mesh is the marching cubes of the (64, 1) SDF. The *mean square error* (MSE) is 0.00262 for the coarse case and 0.00087 for the normal mapping, an improvement of 3×. The baseline is the marching cubes of the (256, 3) SDF. Right: Silhouette evaluation. First a (64, 1)▷(256, 3), then a (64, 1)▷(256, 2)▷(256, 3) configuration. Notice how the silhouette improves with the additional (256, 2) level.

Real-time renderer. We evaluate a GPU version implemented in a CUDA renderer, using neural normal mapping, multiscale ST, and the GEMM-based analytical normal calculation (implemented using CUTLASS). Tab. 2 shows the results. Notice that the framework achieves real-time performance and that using neural normal mapping and multiscale ST improves performance considerably.

The flexibility of our multiscale SDF representation enables additional applications, including integration into differentiable pipelines and fast mesh extraction using the marching cubes algorithm.

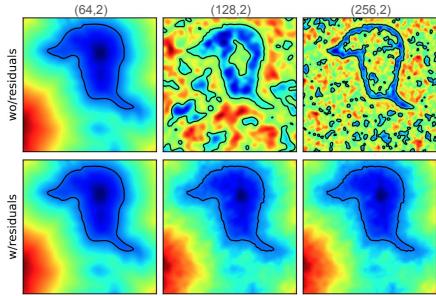


Figure 8: Evaluation of the residual approach. Note that training the SDFs in the neighborhoods (first row: center, right) results in spurious components outside the region as would be expected. Using the residual approach eliminates those components (second row: center, right).

Mesh extraction. Experiments show that M-plicits improves the performance of grid evaluation by avoiding inference at finer levels far from the level set. Tab. 3 presents a maximum performance improvement of $5\times$, and surface reconstructions are given in Fig. 19. For all cases, the baseline SDF is approximated by a single MLP $(256, 4)$, while the multiscale SDFs have a configuration of $(64, 1) \triangleright (128, 2) \triangleright (256, 2)$. Note that surfaces occupying smaller domain regions have a greater speedup since the number of vertices in their nesting neighborhoods decreases.

Textures. We define textures directly in a neighborhood of the surface, removing the need for a UV map. This formulation produces visually convincing appearance while decoupling texture from geometry in a compositional way. To assess accuracy, we compared our approach against traditional UV-textured meshes by measuring the MSE between rendered images. Across five test models—Spot, Bob, Bunny, Egg, and Earth—we obtained MSEs of 0.0329, 0.0434, 0.0720, 0.0291, and 0.0033, respectively. Figure 9 illustrates neural texture mapping applied to coarse surfaces.

Figure 9: Neural texture mapping. All networks are $(256, 3)$, except for the the earth, which is $(512, 3)$. The surfaces are marching cubes of $(64, 1)$ SDFs, except for the bunny, which is $(128, 2)$.

Robustness to noise. To evaluate the robustness of M-plicits to noisy point clouds, we test it on a perturbed version of the *Lucy* model, where all vertices are randomly perturbed in the direction of the normal by at most 1.0% of the model bounding box. As shown in Figure 10, the coarse level of M-plicits acts as a low-pass filter, removing most of the high-frequency noise and providing a clean geometric prior that benefits the subsequent residual levels. In contrast, Instant-NGP struggles under this noise regime and fails to recover a smooth and coherent surface. We choose Instant-NGP because it is a strong baseline for real-time models.

Scene scale test. We also evaluated our method on a scene-scale point cloud (Figure 16). M-plicits successfully reconstructs the entire scene across all scales, whereas Instant-NGP fails in our tests. The Chamfer distance further corroborates these observations: M-plicits achieves 2–3 orders of magnitude lower Chamfer distance.

Table 2: In-depth ablation of the real-time CUDA renderer using multiscale ST, GEMM normals, and normal mapping. The number of iterations is 20 for the first neural SDF and 5 for the subsequent ones. (NM) indicates normal mapping and no ST iterations for the last SDF. Images are 512^2 . Size is in KB. Note that the residual approach allows smaller networks and that all cases result in speedups. M-plicits are very small and flexible, being easily adaptable to different performance budgets.

Model	FPS	Speedup	Size
$(256, 4)$ (SIREN baseline)	37	1.0X	777
$(64, 2)$ (coarse)	315	8.5X	11
$(64, 2) \triangleright (128, 2)$ (NM)	177	4.1X	79
$(64, 2) \triangleright (128, 2)$	150	4.1X	79
$(64, 2) \triangleright (256, 2)$ (NM)	94	2.5X	274
$(64, 2) \triangleright (256, 2)$	75	2.0X	274
$(64, 2) \triangleright (128, 2) \triangleright (256, 2)$ (NM)	86	2.3X	342
$(64, 2) \triangleright (128, 2) \triangleright (256, 2)$	70	1.9X	342

Table 3: Marching cubes runtime comparison in seconds. The baseline is a SIREN network with 4 hidden layers with 256 neurons. Using our multiscale surface representation results in up to $5\times$ speedup compared to baseline.

Model	Baseline	No culling	Culling	Speedup
Arm.	4.87	4.10	0.99	4.92 ×
Lucy	4.87	7.49	1.07	4.56 ×
Dragon	4.88	7.28	1.71	2.85 ×
Thai	4.89	7.28	1.73	2.82 ×

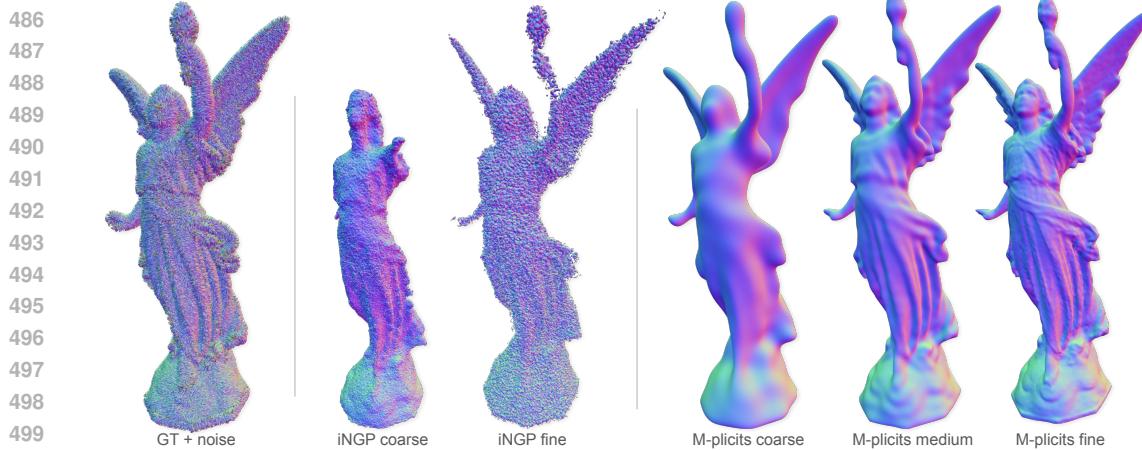


Figure 10: **Robustness to noise.** Comparison of reconstructions from a noisy point cloud of the *Lucy* model. Instant-NGP (coarse/fine) fails to denoise the input and produces highly irregular surfaces. In contrast, the coarse level of M-plicits removes most of the noise, while the medium and fine levels progressively refine the geometry.

Quantitative results for three models using Chamfer, Hausdorff, and IoU further confirm the robustness of our approach, as shown in Table 4.

5 CONCLUSION

We propose an INR framework to render surfaces in real-time using neural SDFs endowed with smooth normals and textures. It uses spatial neighborhoods and residual training, achieving real-time performance without the need for spatial data structures. The multiscale sphere tracing accelerates surface evaluation, the neural attribute mapping transfers surface attributes between surfaces, and the GEMM-based normal computation gives smooth normals without the need of auto-grad. Moreover, we show that our multiscale SDF can be used to accelerate mesh extraction using marching cubes.

Limitations and future work. As is common for SDF-based representations, our approach is not suited to represent very sharp edges. This is a natural consequence of the function smoothness and may be solved by incorporating local features into the function, a path we would like to explore in future work. The multiscale ST could probably be applied into neural SDF-based 3D reconstruction or inverse rendering tasks to reduce the training time. Nested neighborhoods could be adapted for unsigned distance functions too. Improvements can be done for further performance optimization. For example, using fully fused GEMMs may decrease the overhead of GEMM setup (Müller, 2021).

REFERENCES

Marcelo Bertalmio, Li-Tien Cheng, Stanley Osher, and Guillermo Sapiro. Variational problems and partial differential equations on implicit surfaces. *Journal of Computational Physics*, 174(2):

540 759–780, 2001. 3
 541

542 Jules Bloomenthal and Brian Wyvill. Interactive techniques for implicit modeling. *ACM Siggraph*
 543 *Computer Graphics*, 24(2):109–116, 1990. 2

544 Edwin Earl Catmull. *A subdivision algorithm for computer display of curved surfaces*. The University
 545 of Utah, 1974. 3

546 Jonathan Cohen, Marc Olano, and Dinesh Manocha. Appearance-preserving simplification. In
 547 *Proceedings of the 25th annual conference on Computer graphics and interactive techniques*, pp.
 548 115–122, 1998. 3

549 Brian Curless and Marc Levoy. A volumetric method for building complex models from range images.
 550 In *Proceedings of the 23rd annual conference on Computer graphics and interactive techniques*,
 551 pp. 303–312, 1996. 6

552 Thomas Davies, Derek Nowrouzezahrai, and Alec Jacobson. On the Effectiveness of Weight-
 553 Encoded Neural Implicit 3D Shapes. *arXiv preprint arXiv:2009.09808*, 2020. URL <http://arxiv.org/abs/2009.09808>. 3

554 Jack J Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain S Duff. A set of level 3 basic linear
 555 algebra subprograms. *ACM Transactions on Mathematical Software (TOMS)*, 16(1):1–17, 1990. 2,
 556 15

557 Yishun Dou, Zhong Zheng, Qiaoqiao Jin, and Bingbing Ni. Multiplicative fourier level of detail.
 558 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 559 1808–1817, 2023. 3

560 Rizal Fathony, Anit Kumar Sahu, Devin Willmott, and J Zico Kolter. Multiplicative filter networks.
 561 In *International Conference on Learning Representations*, 2020. 3

562 Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen, Kangxue Yin, Daiqing Li, Or Litany, Zan
 563 Gojcic, and Sanja Fidler. Get3d: A generative model of high quality 3d textured shapes learned
 564 from images. *Advances In Neural Information Processing Systems*, 35:31841–31854, 2022. 3

565 Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. Implicit geometric regular-
 566 ization for learning shapes. *arXiv preprint arXiv:2002.10099*, 2020. 2, 3, 17

567 John C Hart. Sphere tracing: A geometric method for the antialiased ray tracing of implicit surfaces.
 568 *The Visual Computer*, 12(10):527–545, 1996. 3

569 John C Hart, Daniel J Sandin, and Louis H Kauffman. Ray tracing deterministic 3-D fractals. In
 570 *Proceedings of the 16th Annual Conference on Computer Graphics and Interactive Techniques*, pp.
 571 289–296, 1989. 1, 15

572 Rasmus Jensen, Anders Dahl, George Vogiatzis, Engin Tola, and Henrik Aanaes. Large scale
 573 multi-view stereopsis evaluation. In *Proceedings of the IEEE Conference on Computer Vision and*
 574 *Pattern Recognition (CVPR)*, June 2014. 17, 18

575 Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface reconstruction. In *Proceed-
 576 ings of the fourth Eurographics symposium on Geometry processing*, volume 7, 2006. 1

577 David B. Lindell, Dave Van Veen, Jeong Joon Park, and Gordon Wetzstein. BACON: Band-limited
 578 Coordinate Networks for Multiscale Scene Representation. *arXiv preprint arXiv:2112.04645*,
 579 2021. URL <http://arxiv.org/abs/2112.04645>. 3, 7

580 William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface construction
 581 algorithm. *ACM siggraph computer graphics*, 21(4):163–169, 1987. 1, 3, 15

582 Ives Macêdo, João Paulo Gois, and Luiz Velho. Hermite interpolation of implicit surfaces with radial
 583 basis functions. In *2009 XXII Brazilian Symposium on Computer Graphics and Image Processing*,
 584 pp. 1–8, 2009. doi: 10.1109/SIBGRAPI.2009.11. 2

594 Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger.
 595 Occupancy networks: Learning 3d reconstruction in function space. In *Proceedings of the*
 596 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 4460–4470, 2019. 2
 597

598 Thomas Müller. Tiny CUDA neural network framework, 2021. <https://github.com/nvlabls/tiny-cuda->
 599 nn. 10

600 Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics
 601 primitives with a multiresolution hash encoding. *ACM Transactions on Graphics (ToG)*, 41(4):
 602 1–15, 2022. 2, 6, 14
 603

604 Tiago Novello, Guilherme Schardong, Luiz Schirmer, Vinícius da Silva, Hélio Lopes, and Luiz Velho.
 605 Exploring differential geometry in neural implicits. *Computers & Graphics*, 108, 2022. ISSN 0097-
 606 8493. doi: <https://doi.org/10.1016/j.cag.2022.09.003>. URL https://dsilvavinicioius.github.io/differential_geometry_in_neural_implicits/. 5, 17
 607

608 Tiago Novello, Vinícius da Silva, Guilherme Schardong, Luiz Schirmer, Hélio Lopes, and Luiz Velho.
 609 Neural implicit surface evolution. In *Proceedings of the IEEE/CVF international conference on*
 610 *computer vision*, 2023. 18, 19
 611

612 Tiago Novello, Diana Aldana, Andre Araujo, and Luiz Velho. Tuning the frequencies: Robust training
 613 for sinusoidal neural networks. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 614 *and Pattern Recognition*, 2025. 1
 615

616 Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo Strauss, and Andreas Geiger. Texture
 617 fields: Learning texture representations in function space. In *Proceedings of the IEEE/CVF*
 618 *International Conference on Computer Vision*, pp. 4531–4540, 2019. 3
 619

620 Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. Deepsdf:
 621 Learning continuous signed distance functions for shape representation. In *Proceedings of CVPR*,
 622 pp. 165–174, 2019. 2
 623

624 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 625 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
 626 Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
 627 Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
 628 library, 2019. URL <https://arxiv.org/abs/1912.01703>. 6
 629

630 Hallison Paz, Daniel Perazzo, Tiago Novello, Guilherme Schardong, Luiz Schirmer, Vinícius Da Silva,
 631 Daniel Yukimura, Fabio Chagas, Hélio Lopes, and Luiz Velho. Mr-net: Multiresolution sinusoidal
 632 neural networks. *Computers & Graphics*, 114:387–400, 2023. 3
 633

634 Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo, Justin Johnson, and
 635 Georgia Gkioxari. Accelerating 3d deep learning with pytorch3d. *arXiv:2007.08501*, 2020. 6
 636

637 Lu Sang, Zehranaz Canfes, Dongliang Cao, Florian Bernard, and Daniel Cremers. Implicit neural
 638 surface deformation with explicit velocity fields, 2025. URL <https://arxiv.org/abs/2501.14038>. 2
 639

640 Vishwanath Saragadam, Jasper Tan, Guha Balakrishnan, Richard G Baraniuk, and Ashok Veeraraghavan.
 641 Miner: Multiscale implicit neural representation. In *European Conference on Computer*
 642 *Vision*, pp. 318–333. Springer, 2022. 3
 643

644 Luiz Schirmer, Tiago Novello, Vinícius da Silva, Guilherme Schardong, Daniel Perazzo, Hélio Lopes,
 645 Nuno Gonçalves, and Luiz Velho. Geometric implicit neural representations for signed distance
 646 functions. *Computers & Graphics*, 125:104085, 2024. 1
 647

648 Roberto Scopigno, Marco Callieri, Paolo Cignoni, Massimiliano Corsini, Matteo Dellepiane, Federico
 649 Ponchio, and Guido Ranzuglia. 3d models for cultural heritage: Beyond plain visualization.
 650 *Computer*, 44(7):48–55, 2011. 1

648 Akhmedkhan Shabanov, Shrisudhan Govindarajan, Cody Reading, Lily Goli, Daniel Rebain,
 649 Kwang Moo Yi, and Andrea Tagliasacchi. Banf: Band-limited neural fields for levels of de-
 650 tail reconstruction. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 651 *recognition*, pp. 20571–20580, 2024. 3

652 Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
 653 plicit neural representations with periodic activation functions. *Advances in Neural Information*
 654 *Processing Systems*, 33, 2020. 1, 2, 3

655 Wei Sun, Binil Starly, Jae Nam, and Andrew Darling. Bio-cad modeling and its applications in
 656 computer-aided tissue engineering. *Computer-aided design*, 37(11):1097–1114, 2005. 1

657 Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek Nowrouzezahrai,
 658 Alec Jacobson, Morgan McGuire, and Sanja Fidler. Neural Geometric Level of Detail: Real-time
 659 Rendering with Implicit 3D Shapes. In *Proceedings of the IEEE/CVF conference on computer*
 660 *vision and pattern recognition*, pp. 11353–11362. IEEE, jun 2021. ISBN 978-1-6654-4509-2. doi:
 661 10.1109/CVPR46437.2021.01120. URL <https://ieeexplore.ieee.org/document/9578205/.2>

662 Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
 663 Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier fea-
 664 tures let networks learn high frequency functions in low dimensional domains. In
 665 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neu-*
 666 *ral Information Processing Systems*, volume 33, pp. 7537–7547. Curran Associates, Inc.,
 667 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/55053683268957697aa39fba6f231c68-Paper.pdf. 1

668 Anastasia Tkach, Mark Pauly, and Andrea Tagliasacchi. Sphere-meshes for real-time hand modeling
 669 and tracking. *ACM Transactions on Graphics (ToG)*, 35(6):1–11, 2016. 1

670 Luiz Velho, Jonas Gomes, and Luiz H de Figueiredo. *Implicit objects in computer graphics*. Springer
 671 Science & Business Media, 2007. 2

672 Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang. Neus:
 673 Learning neural implicit surfaces by volume rendering for multi-view reconstruction. *arXiv*
 674 *preprint arXiv:2106.10689*, 2021. 1, 17

675 Yifan Wang, Lukas Rahmann, and Olga Sorkine-Hornung. Geometry-consistent neural shape
 676 representation with implicit displacement fields. In *The Tenth International Conference on Learning*
 677 *Representations*. OpenReview, 2022. 3, 7, 8

678 Thomas Whelan, Renato F Salas-Moreno, Ben Glocker, Andrew J Davison, and Stefan Leutenegger.
 679 Elasticfusion: Real-time dense slam and light source estimation. *The International Journal of*
 680 *Robotics Research*, 35(14):1697–1716, 2016. 1

681 Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth
 682 anything: Unleashing the power of large-scale unlabeled data. In *Proceedings of the IEEE/CVF*
 683 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 10371–10381, June 2024.
 684 18

685 Kai Zhang, Sai Bi, Hao Tan, Yuanbo Xiangli, Nanxuan Zhao, Kalyan Sunkavalli, and Zexiang Xu.
 686 Gs-lrm: Large reconstruction model for 3d gaussian splatting. *European Conference on Computer*
 687 *Vision*, 2024. 19

688

689

690

691

692

693

694

695

696 **A ADDITIONAL COMPARISONS**

697

698 **Quantitative results in homogenized setups.** We performed additional experiments on a subset of
 699 the Thingi32 dataset using a homogenized setup. For all meshes, we employed a coarse model with
 700 a single hidden layer of 128 neurons and $\omega_0 = 30$, a medium model with a single hidden layer of
 701 256 neurons and $\omega_0 = 45$, and a fine model with a single hidden layer of 400 neurons and $\omega_0 = 128$.
 702 Each stage was trained for 1000 epochs, for a total of 3000 epochs per mesh. We compare against

Instant NGP (Müller et al., 2022). This setup allows for relatively fast training (5–10 minutes on an RTX 4090), with a memory footprint of 4–6 GB (batch sizes of 125k and 75k for the medium and fine levels, respectively). The results in terms of CD are shown in Table 5. Our method achieves better metrics across all meshes. It is important to note, however, that this dataset does not match the quality of the Stanford dataset, as it contains self-intersections, holes, and poorly triangulated regions.

Table 5: Comparison with Instant NGP using a homogenized setup on a subset of the Thingi32 dataset. The iNGP-coarse model has 3 detail levels and the iNGP-fine model has 16 levels.

Mesh Id	M-plicits (ours)	iNGP-coarse	iNGP-fine
47984	1.17E-03	3.83E-02	3.98E-02
68380	8.44E-03	2.58E-02	2.54E-02
354371	1.69E-03	2.08E-02	2.10E-02
398259	6.00E-04	1.22E-01	1.25E-01
527631	1.45E-03	2.74E-03	3.03E-03

B ABLATION STUDIES

We performed two additional ablation studies for our approach: (i) loss term assessment, (ii) δ influence over the reconstructions. Tables 6, 7, and 8 show the ablation results of our loss function using different weights for each component, while maintaining the remaining hyper-parameters fixed. We performed these studies both for a single intermediate level (medium) and an additional refinement level beyond it (fine). Note that all studies used the Lucy mesh as a baseline. Table 9 shows the results for varying the delta values while maintaining the remaining hyper-parameters fixed.

Table 6: Gradient constraint ablation studies.

(a) Gradient constraint fine level		(b) Gradient constraint medium level	
Gradient constraint	Approx. Error	Gradient Constraint	Approx. Error
0.0	0.0013	0.0	0.0086
10.0	0.0013	10.0	0.0084
30.0	0.0013	30.0	0.0082
100.0	0.0012	100.0	0.0078
300.0	0.0013	300.0	0.0074
1000.0	0.0014	1000.0	0.0069
3000.0	0.0017	3000.0	0.0073
10000.0	0.0022	10000.0	0.0087
30000.0	0.0030	30000.0	0.0116

Table 7: Normal constraint ablation studies.

(a) Normal constraint fine level.		(b) Normal constraint medium level.	
Normal Constraint	Approx. Error	Normal Constraint	Approx. Error
0.0	0.0017	0.0	0.0073
10.0	0.0013	10.0	0.0074
30.0	0.0013	30.0	0.0077
100.0	0.0013	100.0	0.0081
300.0	0.0013	300.0	0.0083
1000.0	0.0013	1000.0	0.0085
3000.0	0.0013	3000.0	0.0086
10000.0	0.0013	10000.0	0.0087
30000.0	0.0013	30000.0	0.0087

Normals: We compare our GEMM normal calculation against `torch.autograd`. As shown in Tab. 10, ours performs 2× faster. We tested 6 different INRs trained for Armadillo, Buddha, and Lucy, varying between 2-3 hidden layers.

756
757
758 Table 8: SDF constraint ablation studies.
759
760
761
762
763
764
765
766

(a) SDF constraint fine level.		(b) SDF constraint medium level.	
SDF Constraint	Approx. Error	SDF Constraint	Approx. Error
0.0	0.0076	0.0	0.0490
10.0	0.0013	10.0	0.0080
30.0	0.0013	30.0	0.0079
100.0	0.0013	100.0	0.0079
300.0	0.0013	300.0	0.0080
1000.0	0.0012	1000.0	0.0081
3000.0	0.0013	3000.0	0.0080
10000.0	0.0013	10000.0	0.0082
30000.0	0.0013	30000.0	0.0082

767
768 Table 9: Ablation studies of the delta factor. We multiply the delta by the values in the first column
769 and measure the SDF error compared to the Open3D calculated SDF, which we use as ground-truth.
770
771
772
773
774
775
776

Max delta fraction	Medium level error	Fine level error
1.01	0.0098	0.0048
1.05	0.0098	0.0048
1.10	0.0100	0.0049
1.20	0.0101	0.0049
1.30	0.0103	0.0050
1.50	0.0106	0.0051
2.00	0.0113	0.0053
5.00	0.0139	0.0066

777
778 C RENDERING AND MESH EXTRACTION
779780
781 To render the zero level set $f^{-1}(0)$ of a SDF f , two common strategies can be used: **sphere**
782 **tracing** (ST) Hart et al. (1989), which directly traces rays through the SDF field, and **marching**
783 **cubes** Lorensen & Cline (1987), which extracts an explicit mesh followed by standard rasterization.
784 When the SDF is represented using M-plicits, both rendering approaches become more efficient.785 We first introduce a **multiscale sphere tracing** scheme. Given a view ray $\gamma(t) = p_0 + tv$, with origin
786 at point p_0 , unit direction v , and intersecting the zero level set $f^{-1}(0)$, the standard sphere tracing
787 (ST) approximates the first intersection point by iterating

788
789
$$p_{i+1} = p_i + vf(p_i)$$

790 along γ . However, querying a high-capacity neural SDF at each step can be computationally expensive.
791 To reduce this cost, we leverage the multiscale SDF hierarchy $\{f_i\}$, using coarser networks to guide
792 the early steps of the tracing process. Thanks to the nesting condition introduced in Eq. 3 of the paper,
793 coarse levels can safely be used to trace offset surfaces before switching to finer levels closer to the
794 surface. The ray initially traces the offset surface $f_1^{-1}(\delta_1)$ using f_1 , proceeds to $f_2^{-1}(\delta_2)$ with f_2 ,
795 and finally goes to the target surface $f_3^{-1}(0)$ using f_3 . Each coarser level performs offset tracing via

796
797
$$p_{i+1} = p_i + v(f_j(p_i) - \delta_j),$$

798 which ensures convergence toward the true surface with minimal reliance on high-cost evaluations.
799 Figure 11 illustrates this procedure, focusing on how the ray reaches S_3 by tracing within the
800 neighborhood $\{|f_2| < \delta_2\}$. For neural SDF inference, we use the GEMM algorithm (Dongarra et al.,
801 1990).802 Importantly, if $\gamma \cap S_3 \neq \emptyset$, the multiscale ST approximates the first intersection point between γ and
803 S_3 . This is guaranteed by the nesting condition, which implies that if $\gamma \cap S_3 \neq \emptyset$, then necessarily
804 $\gamma \cap f_2^{-1}(\delta_2) \neq \emptyset$, and thus also $\gamma \cap f_1^{-1}(\delta_1) \neq \emptyset$. The values δ_i play a critical role in this process, as
805 setting them appropriately helps avoid failures, as illustrated in Fig. 4 of the paper. Equation 5 (in the
806 main paper) provides a principled definition of δ_i , linking them to network training.807 Finally, M-plicits also accelerates mesh extraction via **marching cubes**. We propose an adaptive grid
808 inference strategy: we first evaluate the coarse SDF f_1 to cull grid vertices, and only evaluate finer
809 SDFs for vertices inside the δ_1 -neighborhood. This yields efficient and focused SDF sampling, as
depicted in Fig. 5 of the paper. Fig. 19 shows reconstructions using this approach.

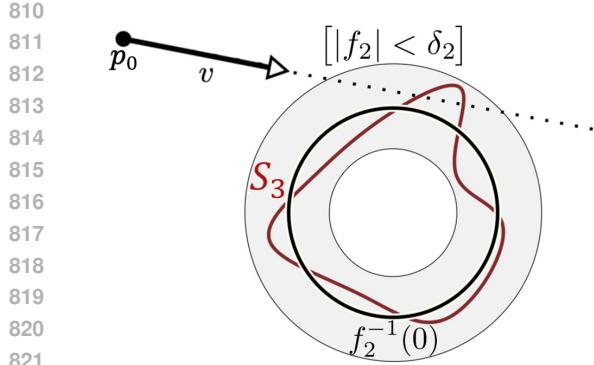


Figure 11: Ray intersecting S_3 nested in a δ -neighborhood of a coarse SDF f_2 . Notice that sphere tracing f_2 directly would lead to a false negative, thus we use $[|f_2| < \delta_2]$ instead.

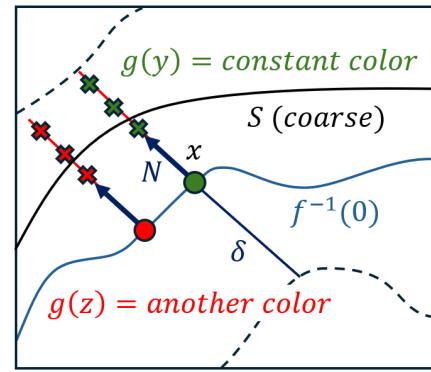


Figure 12: Volumetric texture mapping. The texture g should be constant along the normals N near the coarse surface S (red/green). Having such volumetric representation in the δ -neighborhood ensures that g can be assigned to any point in the coarse surface S .

D NORMAL AND TEXTURE MAPPING

Let S be a surface nested within a δ -neighborhood of the zero level set of a neural SDF f , i.e., $S \subset [|f| \leq \delta]$. Assume f is a finer neural SDF. Then, the *neural normal mapping* assigns to each point $p \in S$ the attribute

$$g(p) := \nabla f(p).$$

This corresponds to restricting ∇f to S , effectively transferring the normal of $f^{-1}(0)$ along the shortest path connecting it to p . Since f is a signed distance function, the gradient ∇f remains constant along such paths.

We consider two cases. First, let S be a triangle mesh. We use neural normal mapping to transfer detailed normals from the level sets of f onto S . This approach is analogous to classical normal mapping, which typically relies on UV parameterizations. However, since our method is volumetric, such parameterizations are not required (see Fig. 7 in the paper, middle).

In the second case, let S be the zero level set of a coarser neural SDF. Here, neural normal mapping allows us to bypass additional sphere tracing iterations (see Fig. 7 in the paper, left). In this case, surface extraction via marching cubes is not necessary.

Similarly, we define a neural network $g : \mathbb{R}^3 \rightarrow \mathcal{C}$ to encode a *texture* over the δ -neighborhood of f , where the codomain \mathcal{C} is the RGB color space. The attribute mapping associated with the triple $\{S, f, g\}$ is referred to as *neural texture mapping*.

To train the parameters ϕ of g , we use the following loss functional:

$$\mathcal{T}(\phi) = \int_{f^{-1}(0)} (g - g)^2 dx + \int_{[|f| \leq \delta]} \langle \nabla g, \nabla f \rangle^2 dx,$$

where the first term encourages g to match the *ground-truth* texture g , and the second term enforces consistency of g along the gradient paths of f , regularizing the network within the δ -neighborhood. Figure 12 illustrates the texture mapping scheme.

E GEMM-BASED ANALYTICAL NORMAL CALCULATION FOR MLPs

We propose a GEMM-based analytical computation of normals, which are continuous and do not need auto-differentiation, resulting in smooth normals. To compute them, we recall that a MLP with $n - 1$ hidden layers has the following form $f(x) = W_n \circ h_{n-1} \circ \dots \circ h_0(x) + b_n$, where $h_i(x_i) = \varphi(W_i x_i + b_i)$ is the i -layer. The *activation* φ is applied on each coordinate of the linear map $W_i : \mathbb{R}^{N_i} \rightarrow \mathbb{R}^{N_{i+1}}$ translated by $b_i \in \mathbb{R}^{N_{i+1}}$. The gradient of f is given using the *chain rule*:

$$\nabla f(x) = W_n \cdot \mathbf{J}h_{n-1}(x_{n-1}) \cdot \dots \cdot \mathbf{J}h_0(x), \quad \text{with} \quad \mathbf{J}h_i(x_i) = W_i \odot \varphi' [a_i | \dots | a_i] \quad (6)$$

864 **J** is the *Jacobian*, $x_i := h_{i-1} \odot \dots \odot h_0(x)$, \odot is the *Hadamard* product, and $a_i = W_i(x_i) + b_i$. Eq. 6 is
 865 used in (Gropp et al., 2020; Novello et al., 2022) to compute the level set normals analytically.
 866

867 We now use Eq. 6 to derive a GEMM-based algorithm for computing the normals (∇f) in real-
 868 time. The gradient ∇f is given by a sequence of matrix multiplications which is not appropriate
 869 for a GEMM setting because $\mathbf{J}h_0(x) \in \mathbb{R}^{3 \times N_1}$. The GEMM algorithm organizes the input points
 870 into a matrix, where its lines correspond to the points and its columns organize them and enable
 871 parallelism. We can solve this problem using three GEMMs, one for each normal coordinate.
 872 Therefore, each GEMM starts with a column of $\mathbf{J}h_0(x)$, eliminating one of the dimensions. The
 873 resulting multiplications can be asynchronous since they are completely independent.
 874

875 The j -coord of ∇f is given by $G_n = W_n \cdot G_{n-1}$, where G_{n-1} is given by iterating $G_i = \mathbf{J}h_i(x_i) \cdot G_{i-1}$, with
 876 the initial condition $G_0 = W_0[j] \odot \varphi'(a_0)$. The vector $W_0[j]$ denotes the j -column of W_0 . We
 877 use a kernel and a GEMM to compute G_0 and G_n . For G_i with $0 < i < n$, observe that
 878

$$G_i = (W_i \odot \varphi'[a_i] \dots | a_i]) \cdot G_{i-1} = (W_i \cdot G_{i-1}) \odot \varphi'(a_i).$$

879 The first equality comes from Eq. 6 and the second from a commutative property of the Hadamard
 880 product. The second expression needs fewer computations and is solved using a GEMM followed by
 881 a kernel.
 882

883 Algorithm 1 presents the gradient computation for a batch of points. The input is a matrix $P \in \mathbb{R}^{3 \times k}$
 884 with columns storing the k points generated by the GEMM version of the sphere tracing algorithm.
 885 The output is a matrix $\nabla f_\theta(P) \in \mathbb{R}^{3 \times k}$, where its j -column is the gradient of f_θ evaluated at $P[j]$.
 886 Lines 2 – 5 are responsible for computing G_0 , Lines 6 – 11 compute G_{n-1} , and Line 13 provides the
 887 result gradient G_n . Table 10 shows a comparison between this algorithm and automatic differentiation
 888 using PyTorch.
 889

890 Table 10: Runtime comparison, in seconds, between Pytorch autograd and our algorithm to
 891 calculate the normals. Ours performs 2× faster.
 892

Model	Autograd	Ours	Resolution
Armadillo 256x2	0.007	0.003	512x512
Armadillo 256x2	0.024	0.010	1024x1024
Armadillo 256x3	0.010	0.005	512x512
Armadillo 256x3	0.025	0.012	1024x1024
Buddha 256x2	0.008	0.005	512x512
Buddha 256x2	0.021	0.014	1024x1024
Buddha 256x3	0.011	0.005	512x512
Buddha 256x3	0.024	0.012	1024x1024
Lucy 256x2	0.007	0.004	512x512
Lucy 256x2	0.021	0.012	1024x1024
Lucy 256x3	0.011	0.007	512x512
Lucy 256x3	0.025	0.015	1024x1024

ALGORITHM 1: Normal computation

Input: neural SDF f_θ , positions P
Output: Gradients $\nabla f_\theta(P)$

```

1 for  $j = 0$  to  $2$  (async) do
2   using a GEMM: // Input Layer
3    $A_0 = W_0 \cdot P + b_0$ 
4   using a kernel:
5    $G_0 = W_0[j] \odot \varphi'(A_0); P_0 = \varphi(A_0)$ 
// Hidden layers
6   for layer  $i = 1$  to  $n - 1$  do
7     using GEMMs:
8      $A_i = W_i \cdot P_{i-1} + b_i;$ 
9      $G_i = W_i \cdot G_{i-1}$ 
10    using a kernel:
11     $G_i = G_i \odot \varphi'(A_i); P_i = \varphi(A_i)$ 
12  end
13  using a GEMM: // Output layer
14   $G_n = W_n \cdot G_{n-1}$ 
15 end

```

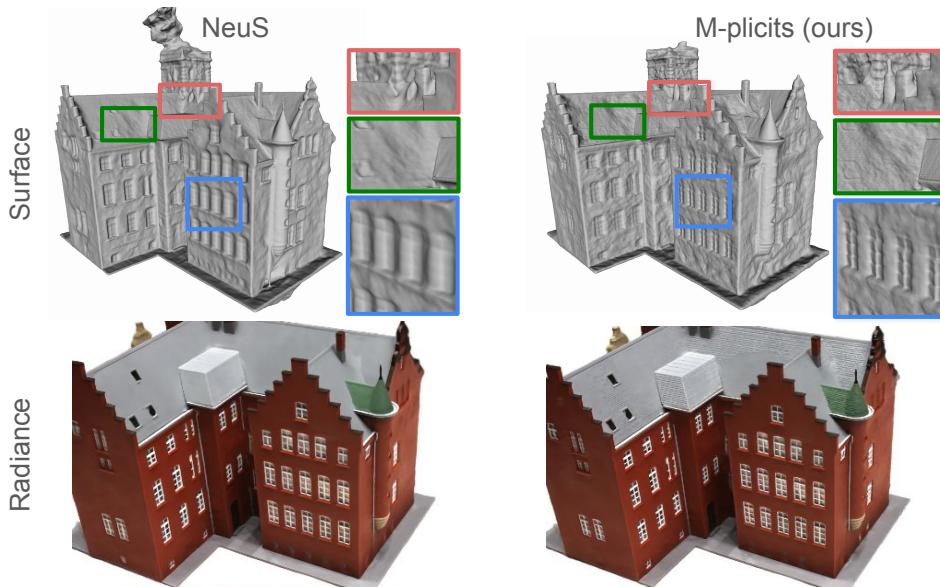
906 **F SURFACE RECONSTRUCTION FROM POSED IMAGES**
 907

908 We demonstrate that M-plicits can be seamlessly integrated into image-based reconstruction pipelines,
 909 such as NeuS Wang et al. (2021). To this end, we replace the standard neural SDF used in NeuS with
 910 our multiscale SDF architecture, composed of two neural networks: a coarse-level network and a
 911 higher-resolution refinement network. We compare our modified pipeline against the baseline NeuS to
 912 evaluate the impact of our approach both quantitatively and qualitatively. Specifically, we implement
 913 the coarse network with 4 hidden layers of 128 neurons each, and the fine-level network with 5 hidden
 914 layers of 256 neurons. Despite having 37% fewer parameters than the original NeuS architecture,
 915 our multiscale approach achieves improved performance. Quantitatively, under the default volume
 916 rendering configuration, our method yields an average PSNR improvement of 3.74% across models
 917 from the DTU dataset Jensen et al. (2014). Table 11 summarizes the PSNR comparisons between our
 918 approach and the baseline NeuS.

918
 919 Table 11: PSNR comparison between the baseline NeuS and our multiscale method on selected scans
 920 from the DTU dataset Jensen et al. (2014). Our method consistently improves reconstruction quality
 921 while using fewer network parameters. All values are reported in dB.
 922

	Scan 24	Scan 37	Scan 40	Scan 55	Scan 63	Avg.
NeuS	28.20	27.10	28.13	28.80	32.05	28.86
Ours	31.50	26.50	27.78	29.01	34.89	29.94

923
 924
 925
 926 Figure 13 presents a comparison between NeuS and our multiscale variant on Scan 24 of the
 927 DTU dataset. The top row shows the reconstructed mesh geometry, including zoomed-in insets
 928 that highlight fine surface details. The bottom row displays renderings showing that ours provide
 929 reconstruction with sharp details. Our method yields improved geometric fidelity and cleaner surface
 930 reconstructions, especially in regions with architectural features.
 931



927
 928 Figure 13: Comparison between baseline NeuS and our multiscale variant on Scan 24 of the DTU
 929 dataset. Top: extracted surface meshes with zoomed-in details. Bottom: rendered appearance.
 930 Our approach recovers finer geometric details, as evident in architectural structures and window
 931 boundaries.
 932

933 G NEURAL IMPLICIT SURFACE EVOLUTION

934 Note that neural SDFs provide a smooth representation of a static scene. By adding an additional
 935 input coordinate, we can encode time into the representation. We leverage this approach to train
 936 dynamic evolutions of static neural SDFs, following the training schemes introduced in (Novello
 937 et al., 2023). Fig. 14 presents an example of interpolation between the Spot and Bob models using
 938 this method. Importantly, the implicit model handles topology changes, demonstrating that our
 939 representation can be integrated into differentiable pipelines. The visualization is in real-time (120
 940 FPS) using an extension of our multiscale ST to dynamic SDFs.
 941

942 G.1 ADDITIONAL EXPERIMENTS

943 **Point cloud from images:** Fig 15 shows our model trained with a point cloud reconstructed from
 944 an image. We use Depth Anything (Yang et al., 2024) to generate the depth of the pixels and use that
 945 depth to create the point cloud based on the view.
 946

972

973

974

975

976

977

978

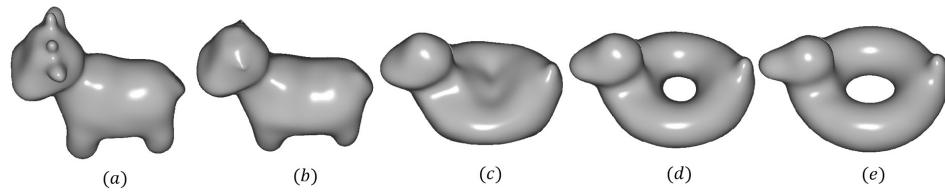


Figure 14: A dynamic multiscale SDF is trained using the pipeline from (Novello et al., 2023). Note the change in topology (c-d), which is challenging to handle using meshes. Also, octree/mesh-based approaches require generating a surface for each time, an overhead that our model avoids.

982

983

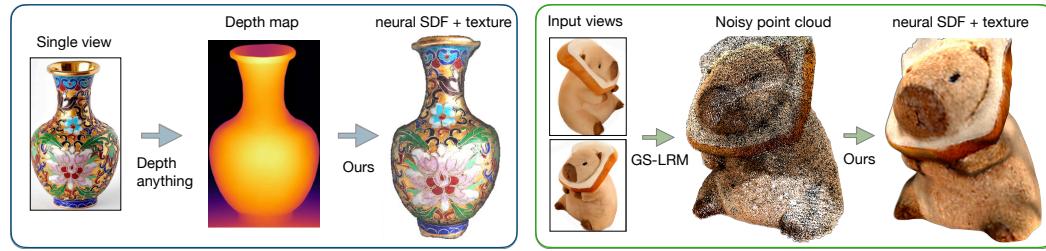


Figure 15: Training a textured SDF from images/noisy point cloud. On the left, our model (neural SDF + texture) is trained using the unprojection of a depth map, which is computed from a single view using Depth Anything. The resulting vase is rendered at 32.1 FPS. On the right, we show a reconstruction derived from a noisy point cloud, extracted from multiple views using GS-LRM (Zhang et al., 2024). By combining our method with this feed-forward 3D model (GS-LRM), we achieve fast reconstruction of the SDF with texture.

998

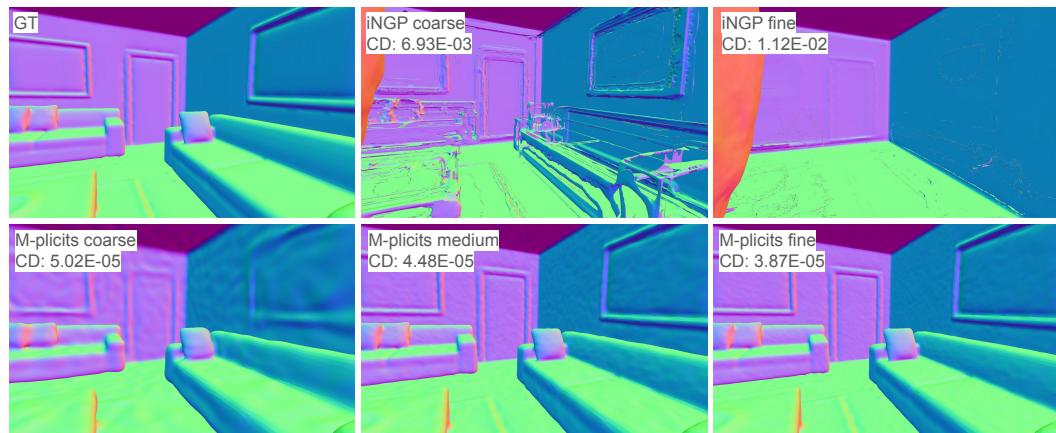
999

1000

Scene-scale point cloud. We also evaluated our method on a scene-scale point cloud containing more than 10 million points. Figure 16 shows that M-plicits successfully reconstructs the entire scene across all scales (coarse, medium, and fine), whereas Instant-NGP fails in our tests using both 3 levels (coarse) and 16 levels (fine). The Chamfer distance further corroborates these observations: M-plicits achieves 2–3 orders of magnitude lower Chamfer distance compared to Instant-NGP.

1005

1006



1012

1013

1014

1015

1016

1017

1018

1019

Figure 16: **Scene-scale reconstruction (10M+ points).** Comparison between Instant-NGP (coarse and fine) and M-plicits at three scales (coarse, medium, fine). Instant-NGP fails to reconstruct large regions of the geometry and introduces strong artifacts, even when increasing the number of levels. In contrast, M-plicits yields accurate and stable reconstructions at all scales, closely matching the ground-truth surface, as reflected in the reported Chamfer distances.

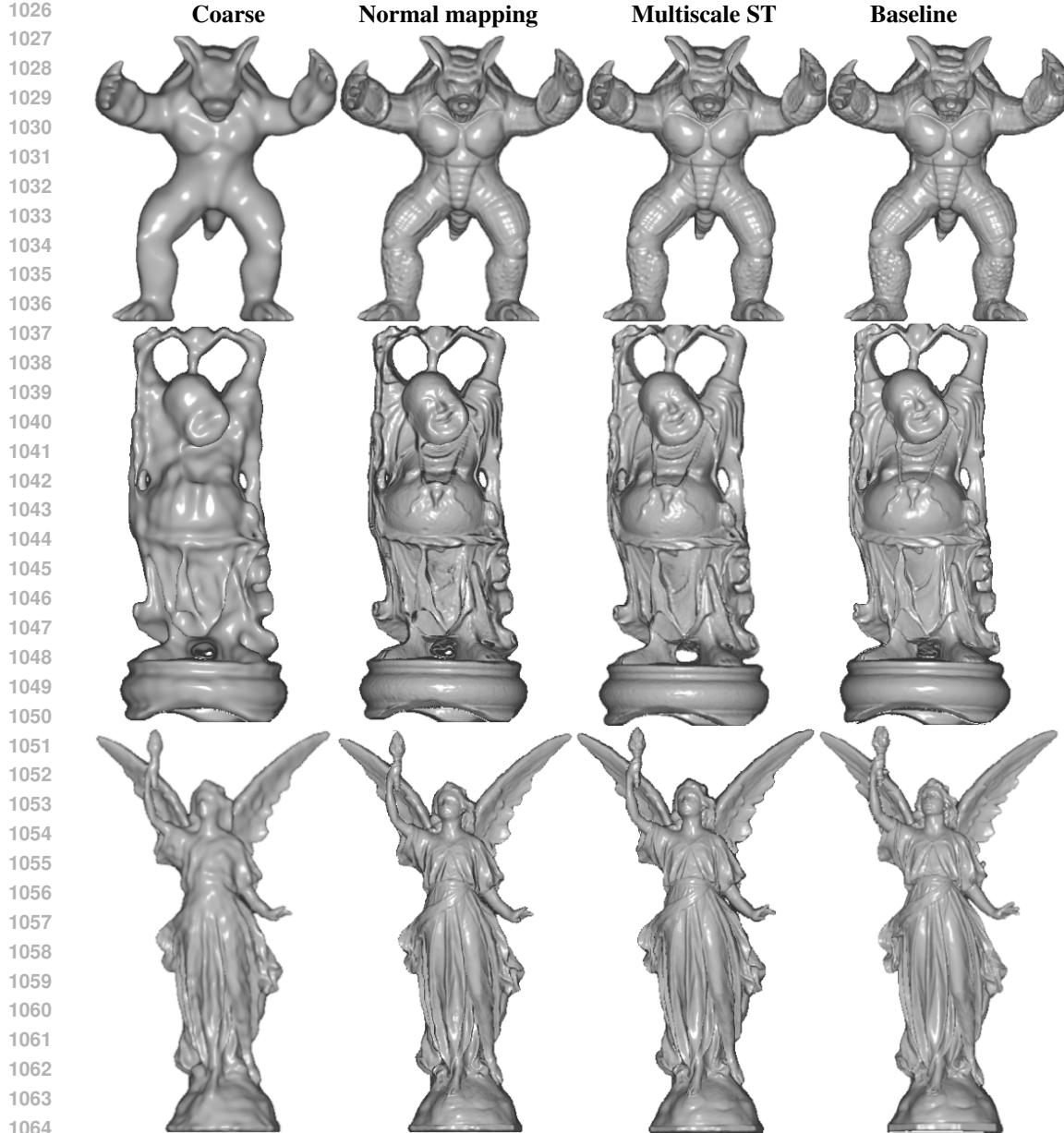


Figure 17: Comparison between our method and the SIREN baseline. The columns represent different configurations. From left to right: $(64, 2)$, $(64, 2) \triangleright (256, 2)$, and the baseline $(256, 4)$. The second column uses neural normal mapping and the third uses multiscale sphere tracing. Notice that fidelity is improved in the second column and the third column refines the results.

Broader perceptual evaluation: Fig. 17 shows a broader perceptual evaluation of the multiscale sphere tracing and the neural normal mapping using several models. Fig. 18 also shows the images we use to calculate the MSE to compare the neural texture mapping with the rendering baseline.

Accelerated Marching Cubes qualitative evaluation: Fig. 19 shows high-fidelity reconstructions computed using our acceleration for the marching cubes algorithm.

Figure 18: Images we use to calculate the MSE between the ground-truth textured meshes and our approach.

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168

1169 Figure 19: From left to right: Marching cubes reconstruction of Armadillo, Buddha and Lucy using
1170 our proposed grid culling method.

1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187