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ABSTRACT

Encoding input coordinates with sinusoidal functions into multi-layer perceptrons
(MLPs) has proven effective for implicit neural representations (INRs) of surfaces
defined as zero-level sets. This approach enables the capture of high-frequency
detail and supports geometric regularization through MLP derivatives, such as the
Eikonal constraint for signed distance function (SDF) fitting. However, existing
methods typically rely on a single large MLP to learn the surface across the entire
domain — a design that hinders efficient modeling of fine-grained details. Scaling
the model may enable enhanced surface modeling, but at the cost of a larger number
of MLP parameters and expensive inference, since mesh extraction or sphere tracing
requires querying the MLP at many off-surface points. To address these issues, we
propose M-plicits (Multiscale Implicit Neural surfaces), a multiscale framework
for representing and training INRs to encode surfaces as SDFs, enabling both high-
quality reconstruction and efficient inference. To increase representational capacity,
we model the INR as a residual sum of MLPs, where each component captures a
specific level of detail, modulated by the sinusoidal input encodings. To improve
efficiency, a small MLP captures coarse geometry, while finer residual MLPs are
trained within a sequence of nested neighborhoods around the zero-level set. This
design concentrates modeling capacity near the surface, improving reconstruction
and reducing computation by relying on coarse approximations for off-surface
points. Experiments show that M-plicits achieves state-of-the-art accuracy in
surface reconstruction across standard benchmark datasets, while maintaining a
compact representation. Our method also supports real-time sphere tracing and
efficient high-resolution mesh extraction. Code and models will be released.

1 INTRODUCTION

Reconstructing surfaces from point clouds is a long-standing problem in vision and graphics (Kazhdan
et al., 2006), with applications in augmented/virtual reality (Tkach et al., 2016), digital twins (Sun
et al., 2005), cultural heritage preservation (Scopigno et al., 2011), and autonomous robotics (Whelan
et al., 2016)—where high-quality 3D geometry is essential for perception, interaction, and decision-
making. The emergence of high-resolution depth sensors has further motivated the development of
accurate and efficient surface reconstruction methods. Representing the surfaces as zero-level sets of
multi-layer perceptrons (MLPs) has became a prominent approach, due to their strong representational
capacity and the ability to incorporate geometric regularizations (Wang et al., 2021). To enhance
model expressiveness, input coordinates are projected into a set of sinusoidal functions (Tancik et al.,
2020; Novello et al., 2025), allowing the network’s bandlimit to be controlled through appropriate
frequency initialization. For geometric regularization, it is common to assume that the underlying
function represents a signed distance function (SDF) of the ground-truth surface (Schirmer et al.,
2024), which satisfies the Eikonal equation. Incorporating this constraint into the implicit neural
representation (INR) loss function serves as a geometric regularizer, helping to prevent overfitting.

Most existing INRs rely on a single large MLP to model the SDF across the entire domain. While
scaling up the network can capture finer geometric details through high-frequency components, it
also leads to large models with prohibitive inference costs, making them impractical for fast or
real-time applications. This is especially limiting for level set extraction methods—such as marching
cubes (Lorensen & Cline, 1987) or sphere tracing (Hart et al., 1989)—which require dense off-surface
evaluations. For instance, SIREN (Sitzmann et al., 2020) requires full MLP evaluation at every
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Figure 1: We introduce M-plicits, a multiscale INR framework for SDFs, based on a nested neighbor-
hood scheme. (Left) Geometry is decomposed into base and residual SIRENs, trained at progressively
finer scales with localized, near-surface sampling. (Top-right) M-plicits supports real-time sphere
tracing (ST) with high fidelity, outperforming NGLOD (Takikawa et al., 2021) in both quality and
rendering speed. (Bottom-right) M-plicits supports downstream tasks such as normal mapping.
query point, regardless of proximity to the surface, leading to substantial computational overhead.
To alleviate this, grid-based MLPs have been proposed (Müller et al., 2022), enabling localized
evaluations. However, introducing grid dependencies may limit surface smoothness and remain
unsuitable for real-time rendering with high geometric fidelity.

To address these limitations, we introduce M-plicits (Multiscale Implicit Neural Surfaces), an INR
framework for encoding SDFs in multiscale for efficient training and inference. M-plicits models the
SDF of a surface as a residual sum of MLPs, where each MLP captures a different level of detail
modulated by sinusoidal input encodings. A small, coarse MLP gives the global shape across the
whole domain, while finer residual MLPs are trained within a sequence of nested neighborhoods
around the previous zero-level sets. This multiscale strategy concentrates modeling capacity near the
zero-level set, enhancing surface reconstruction accuracy and computational efficiency. In addition
to geometry, M-plicits also models surface attributes—such as normals and textures—within the
same neighborhood structure, ensuring smooth and consistent outputs. For real-time rendering,
we introduce multiscale sphere tracing and a normal computation based on the General Matrix
Multiplication (GEMM) (Dongarra et al., 1990) that leverages efficient matrix operations on the GPU.
M-plicits supports fast surface extraction and integrates naturally into point clouds pipelines. Figure 1
showcases M-plicits’s results on fitting and rendering SDFs, demonstrating significant improvements
over prior methods in accuracy and inference speed. In summary, our contributions are:

• A compact and efficient multiscale INR model for accurate SDF representation, formulated
as a residual sum of MLPs, each capturing a specific frequency band—achieving high
representational capacity with fast inference for detailed surface modeling.

• A nested neighborhood training strategy that refines each residual component by supervising
only near the previous zero-level set, enhancing geometric fidelity and improving data
efficiency for oriented point clouds.

• M-plicits enables fast inference through real-time multiscale sphere tracing, a GEMM-based
technique for normal computation, and efficient mesh extraction with support for normal
and texture mapping, delivering SoTA performance in surface rendering and extraction.

2 RELATED WORK

Implicit representations are central to graphics and vision (Velho et al., 2007; Macêdo et al., 2009;
Mescheder et al., 2019), with SDFs serving as a fundamental tool for modeling and manipulating
surfaces (Bloomenthal & Wyvill, 1990; Sang et al., 2025). Recently, MLPs have been shown effective
as INRs to model SDFs (Park et al., 2019; Gropp et al., 2020), including SIRENs (Sitzmann et al.,
2020), which use periodic activations to capture high-frequency details.
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Multiscale Neural SDFs. Various methods have investigated multiscale or frequency-aware training
to enhance the expressiveness of INRs. BACON (Lindell et al., 2021) employs multiplicative filter
networks (MFNs) (Fathony et al., 2020) to band-limit the spectrum of INRs. However, this approach
introduces artifacts due to hard spectral truncation, and the lack of non-linear activations limits
the capacity to represent fine details with small networks. Dou et al. (2023) improves the use of
MFNs by integrating a feature grid and small architectural changes. BANF (Shabanov et al., 2024),
MINER Saragadam et al. (2022), and MRNet (Paz et al., 2023) follow a multiscale design using a
Laplacian pyramid. BANF uses grid-based MLPs, which increases memory usage and introduces a
dependency on spatial grids. Also, these methods supervise off-surface regions at all scales, limiting
their efficiency and making real-time inference more challenging. In contrast, our approach constructs
a residual sum of SIRENs, with each component supervised to capture a distinct frequency band
improving geometric fidelity and data efficiency by concentrating learning near the surface.

Inference and Rendering. Traditional visualization of SDFs relies on marching cubes (Lorensen &
Cline, 1987) or sphere tracing (ST) (Hart, 1996). Performance-focused approaches such as (Davies
et al., 2020) leverage ST to enable real-time rendering of INR level sets. NGLOD, in particular,
interpolates hierarchical features from a sparse voxel octree, which are decoded by shallow MLPs.
However, this interpolation results in discontinuous gradients, which impair normal estimation. Also,
it cannot render highly-detailed level sets in real time. M-plicits addresses these issues by representing
each frequency band explicitly using SIRENs, enabling smooth and efficient inference.

Attribute Mapping. Finally, classical attribute mapping techniques, such as normal mapping (Cohen
et al., 1998), enhance surface detail but require explicit parameterizations and are sensitive to
geometric distortions. Recent neural approaches (Wang et al., 2022) extend these ideas by propagating
learned features off-surface using convolutional modules. Our method simplifies this process by
avoiding interpolation entirely: inspired by variational inpainting techniques (Bertalmıo et al., 2001),
we regularize attribute fields to remain smooth along normals near the surface. For texture mapping,
traditional parameterized approaches (Catmull, 1974) and neural texture fields (Oechsle et al., 2019;
Gao et al., 2022) require known meshes or image-depth pairs and often involve complex training. In
contrast, we define texture fields directly from colored point clouds using compact MLPs, regularized
along the surface, enabling fast, texture-aware rendering without dense supervision or UV mapping.

3 M-PLICITS

Our goal is to model SDFs using a multiscale INR based on a residual sum of SIRENs, where each
component captures a distinct level of detail. We train these networks using a nested neighborhood
strategy: each residual is supervised only near the current zero-level set, concentrating learning near
the surface. This improves geometric details and enables fast inference. Additionally, we introduce
an attribute mapping scheme that leverages the SDF structure to support textures and normals without
relying on mesh parameterizations or interpolation. Figure 2 gives an overview of our method.

3.1 PRELIMINARIES

Given an oriented point cloud {xj , Nj}nj=1, consisting of surface points xj and their normals Nj , our
goal is to reconstruct the underlying surface S as the zero level set of a signed distance function (SDF)
f : R3 → R, i.e., S = f−1(0) = {x | f(x) = 0}, with the additional condition that f(xj) ≈ 0 and
∇f(xj) ≈ Nj . To regularize the solution away from the input data, we also recall that true SDFs
satisfy the Eikonal equation: ∥∇f(x)∥ = 1 for all x ∈ Ω in the training domain Ω. Enforcing this
condition during training improves generalization in unsupervised regions. Finally, combining the
data constraints with the Eikonal regularization leads to a loss function (Gropp et al., 2020):

L(f) =
1

n

∑
j

[
f(xj)

2 +
(
1−

〈
∇f(xj), Nj

〉)]
+

∫
Ω

(∥∇f(x)∥ − 1)2 dx. (1)

The first two terms ensure that the network fits the input points and aligns the gradient with the ground-
truth normals. The third term enforces the Eikonal constraint, providing geometric regularization
over Ω. To capture fine geometric detail, it is common to parameterize the SDF f using a sinusoidal
MLP (SIREN). A SIREN with n−1 hidden layers is defined as:

f(x) = Wn ◦ hn−1 ◦ · · · ◦ h0(x) + bn, where hi(x) = sin
(
ω0(Wix+ bi)

)
. (2)

Here, ω0 is a frequency parameter controlling the network’s capacity to model high-frequency
details (Sitzmann et al., 2020), and each Wi, bi are the learnable weight matrices and biases.
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Figure 2: Overview of M-plicits. Starting from an oriented point cloud with colors, we combine
sampling techniques and loss regularizations (B and N) to create a base, a medium , and a fine
SDF to implicitly represent the SDF in multiscale. The base SDF is defined for the entire domain,
while the others are residuals, defined in (nested) neighborhoods of the surface. The colors are also
trained in a neighborhood, regularized (by T) to be constant along normals. The resulting multiscale
representation can be rendered using novel sphere tracing and attribute mapping algorithms.

This architecture enables the network to fit both surface constraints f(xj) ≈ 0 and normal alignment
∇f(xj) ≈ Nj , while providing high representational capacity for complex geometries. However,
relying on a single large MLP to represent the entire domain is inefficient, especially for high-
resolution surfaces, as it leads to high computational cost during inference.

3.2 MULTISCALE MODELING OF NEURAL SDFS

Standard neural SDFs typically rely on large MLPs to capture fine surface details, leading to fitting
inefficiencies and high inference costs. To address this, we propose a multiscale SDF representation
by recursively refining a coarse base network. Specifically, we define a sequence of neural SDFs
{fi}ni=1 via a sum of residual MLPs: fi+1 = fi + ri, for i = 1, 2, where f1 is a compact base
MLP trained over the full domain, and each residual ri refines fi by capturing higher-frequency
components, modulated by the SIREN frequency parameter ω0. We refer to the sequence {fi} as
multiscale SDFs, each approximating the SDF of S at an increasing level of detail. While this
formulation naturally extends to an arbitrary number of residuals, we focus on the case of three MLPs
for simplicity and because this configuration performs well in our experiments.

To enable efficient learning and real-time inference, we impose a nesting condition between successive
SDF levels. Specifically, each refined surface Si = f−1

i (0), for i = 2, 3 is constrained to lie within a
narrow band around the previous level set Si−1, that is,

S3 ⊂
[
|f2| < δ2

]
⊂

[
|f1| < δ1

]
(3)

This is enforced during training by supervising the residual MLP ri only within this δi-neighborhood,
a strategy we call nested neighborhood training. This condition ensures that each residual captures
localized corrections, promotes coarse-to-fine refinement, and supports efficient applications such as
progressive sphere tracing and surface-aware attribute mapping (see Section C). The choice of δi is
tied to the training regime and is discussed in Section 3.2.

Training with nested neighborhoods. In standard SIREN-based SDF fitting, the loss in Equation 1
is applied across the entire domain Ω. In contrast, our multiscale framework leverages the nesting
condition to localize supervision. The hierarchy begins with a coarse-level SDF f1, modeled by a
compact SIREN. Finer levels f2, f3, . . . are added as residual SIRENs with progressively higher-
frequency capacity, controlled by increasing values of the sinusoidal parameter ω0.

Training proceeds in stages: first, the base SDF f1 is trained over the full domain Ω0 := Ω; then,
each subsequent level fi+1 (for i = 1, 2) is trained within the restricted band Ωi := [|fi| < δi]. Each
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SDF fi is optimized using a combination of data and Eikonal losses:

Li(fi) =
1

n

∑
j

[
fi(xj)

2 +
(
1−

〈
∇fi(xj), Nj

〉)]
+

∫
Ωi−1

(∥∇fi(x)∥ − 1)2 dx. (4)

To ensure that {xj} lies within Ωi−1 at each stage i, we set the band threshold δi adaptively following:

δi = (1 + ε) ·max
j

|fi(xj)|, with ε > 0 a small threshold. (5)

Sampling. To discretize the Eikonal term over Ωi−1, we employ dithering-based sampling around
the input points {xj}, perturbing each coordinate by a random value in the interval (−2δi−1, 2δi−1).
Samples falling outside Ωi−1 are rejected using the condition |fi−1(x)| < δi−1; see Fig. 3(a).

Figure 3: (a) Dithering-based sampling around each input point xj , where each coordinate is perturbed
by a random value in (−2δi−1, 2δi−1), followed by filtering to retain only points in the valid band
Ωi−1 (green points denote those that are kept and red those rejected). (b.1) Computation of the
displacement vector tjNj , where the offset point xj + tjNj lies just outside the narrow band Ωi−1.
(b.2) Final accepted sample xj +Nj(tj − ε), located inside Ωi−1, used to supervise the data term.

Figure 4: (a) Using too large δ1=δ2 may result in holes (the
ray does not reach the surface). More iterations would be
needed using the finer SDF to fill those holes, defeating the
idea of minimizing iterations. (b) Conversely, reducing the
deltas δ1=δ2 may miss parts of the silhouette since the target
surface may not be inside the previous neighborhood (the
hand). (c) Using δ1 and δ2 suited for the nesting condition
implies in no holes and a better silhouette capture.

Adding extra samples to accelerate
SDF training is a common strat-
egy (Novello et al., 2022), but it often
requires evaluating a large MLP over
the entire domain, leading to ineffi-
ciencies and costly inference. In con-
trast, M-plicits uses residual MLPs
that are trained only within a narrow
band around the input data, allowing
for efficient sampling. To enrich su-
pervision of the data term in Equa-
tion 4, we propose sampling along
the normal Nj of each point xj , as
shown in Fig. 3(b). Specifically, we
compute a scalar tj ≤ δi−1 such that
for all t ∈ [0, tj ], the offset point
xj + tNj lies at a distance t from the
surface. This allows us to supervise both the SDF value and its gradient: fi(xj + tNj) = t and
∇fi(xj + tNj) = Nj , providing richer sampling near the surface. We determine each tj via a
simple iterative scheme: starting from tj = δi−1, we reduce it by a small step until the distance from
xj + tjNj to the point cloud {xj} equals tj , ensuring that the offset point lies inside the band.

Rendering and mesh extraction To render the zero level set f−1(0) of an SDF f , it is common
to use either sphere tracing (ST) or marching cubes for mesh extraction followed by standard mesh
rendering. When the SDF is represented using M-plicits, both strategies become more efficient.

We first introduce a multiscale ST. Given a view ray γ(t)=p0 + tv, with origin at a point p0 and
direction v, intersecting f−1(0), standard ST approximates the first intersection point by iterating
pi+1=pi+vf(pi) along γ. However, querying a large MLP at each step may be expensive. To reduce
this cost, we exploit the multiscale SDF hierarchy {fi}, using coarser networks to guide early steps.
Thanks to the nesting condition in Equation 3, coarse levels can be used to trace offset surfaces before
switching to finer levels near the surface. The ray starts tracing f−1

1 (δ1) with f1, then proceeds to
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f−1
2 (δ2) using f2, and finally reaches the target surface f−1

3 (0) with f3. Each coarser level uses
offset tracing via pi+1=pi+v (fj(pi)−δj), ensuring convergence avoiding high-cost evaluations.
The values δi (Equation 5) play a crucial role in rendering. Using distinct values at each level helps
prevent issues such as missed ray-surface intersections: if δ1 is too small, parts of f−1

2 (0) might lie
outside the region bounded by f−1

1 (δ1); Fig. 4 shows some of these issues.

f2=f1+r1

f1Figure 5: Adaptive march-
ing cubes. For grid vertices
outside the δ1 neighborhood
(blue), only the coarse SDF f1
is evaluated. The residual f2 is
added for other points (green).

M-plicits also accelerates mesh extraction using marching cubes.
We adopt an adaptive grid inference strategy by first evaluating the
coarse SDF f1 to cull grid vertices, and querying finer SDFs only
for vertices inside the δ1-neighborhood. This reduces the number of
voxel evaluations, thereby accelerating mesh extraction (Fig. 5).

Normal and texture mapping. Let S be a surface nested within a
δ-neighborhood of the zero-level set of a neural SDF f . Assuming
f is a finer-level neural SDF, we define the neural normal mapping
by assigning to each point p ∈ S the attribute g(p) := ∇f(p). If S
corresponds to the zero-level set of a coarser neural SDF, this neural
normal mapping allows us to bypass additional sphere tracing (ST)
iterations, reducing computational overhead.

Similarly, we define a network g : R3 → C to encode a texture within
the δ-neighborhood of f , where C is typically the RGB color space. We refer to the attribute mapping
defined by the triple {S, f, g} as a neural texture mapping. To train the parameters ϕ of g, we
optimize T(ϕ) =

∫
f−1(0)

(g − g)2 dx +
∫
[|f |≤δ]

⟨∇g,∇f⟩2 dx, where the first term ensures that g
fits the ground-truth texture g, while the second term regularizes g to remain constant along the
gradient flow of f , effectively propagating texture information throughout the δ-neighborhood.

GEMM-based normal calculation. To ensure real-time rendering performance, we compute
normals without the need of auto-differentiation nor computational graphs. It works as a forward
pass on the MLP and is implemented on the GPU using only a GEMM library, resulting in a 2X
performance improvement over torch.autograd. Implementation details are in Section E.

4 EXPERIMENTS

This section presents experiments to evaluate the proposed method comprehensively, both in compar-
ison to the state of the art and with ablations designed to understand the importance of its different
components. We also demonstrate several applications of our method, showcasing its versatility.

Implementation details. All experiments are conducted on an NVidia RTX 5090. For sphere tracing,
we fix the number of iterations to 20 for coarse and 5 for each residual level, for better control of the
parallelism. The ω0 SIREN parameters are 40 for coarse, 80 for medium, and 100, 128 or 180 for
fine, depending on complexity. We use PyTorch’s Adam optimizer for training (Paszke et al., 2019).

Evaluation protocol. All input point clouds were centered and normalized to the unit sphere. For
evaluation, we extracted the zero-level set of each Neural SDF using marching cubes at a resolution
of 5123, followed by re-normalization for consistency. We then uniformly sampled 500K points on
the reconstructed meshes and computed the L2 Chamfer Distance (CD) against the input point cloud
using PyTorch3D’s implementation (Ravi et al., 2020). Importantly, although widely adopted in SDF
benchmarks, CD values are not directly comparable across papers, as they depend on choices such
as normalization (sphere vs. box), metric (L1 vs. L2), and sampling strategy. Establishing a robust
evaluation protocol remains challenging in the field and outside the scope of this work.

MLP notation. (N, d) refers to a MLP with d hidden layers of the form RN→RN . Additionally,
(64, 2)▷ (128, 2)▷(256, 2) refers to a multiscale SDF with coarse, medium, and fine MLPs with two
R64→R64, R128→R128, and R256→R256 hidden layers, respectively.

4.1 MAIN RESULTS

Surface reconstruction. We compare our neighborhood nesting approach against SoTA methods for
surface representation on the Stanford dataset (Curless & Levoy, 1996). We compare with NGLOD
and Instant-NGP (Müller et al., 2022), focusing on real-time rendering performance, as well as

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Surface reconstruction: comparison to the state of the art.. Best values are bold, second
best are underlined, and third best are italic. Chamfer Distance (CD) considers 500K samples.
Sampling time is measured on a 5123 grid. Real-time renderer throughput considers 5122 images.
M-plicits has the best CD metrics, with competitive parameter count and training time. Its runtime
performance is highlighted by the best sampling times and real-time renderer throughput. NGLOD
has a real-time setup that considerably compromises surface quality, as shown by the CD column.

Input Method CD ↓ # params ↓ Training (min) ↓ Sampling (s) ↓ Renderer FPS ↑

Thai statue

iNGP fine 8.60E-03 9,113,760 0 N/A 103
iNGP coarse 8.86E-03 2,040,864 0 N/A 100
NGLOD coarse 3.84E-03 8,737 162.68 3.81 40
NGLOD fine 3.52E-03 10,146,213 179.18 6.82 N/A
IDF 5.18E-04 1,191,943 20.57 28.10 N/A
BACON 1.95E-03 530,953 84.00 8.00 N/A
Ours coarse 4.36E-03 17,153 11.73 1.25 315
Ours fine 4.14E-03 132,865 39.68 1.73 70

Asian Dragon

iNGP fine 1.46E-02 9,113,760 0 N/A 87
iNGP coarse 1.47E-02 2,040,864 0 N/A 83
NGLOD coarse 7.25E-03 8,737 113.83 3.70 40
NGLOD fine 6.91E-03 10,146,213 127.28 6.80 N/A
IDF 4.40E-04 1,191,943 21.03 28.60 N/A
BACON 2.97E-05 530,953 38.10 8.30 N/A
Ours coarse 3.05E-05 17,153 8.60 1.25 315
Ours fine 1.03E-05 132,865 28.70 1.71 70

Lucy

iNGP fine 9.50E-03 9,113,760 0 N/A 92
iNGP coarse 9.46E-03 2,040,864 0 N/A 98
NGLOD coarse 3.44E-03 8,737 44.70 3.57 40
NGLOD fine 3.27E-03 10,146,213 61.13 6.58 N/A
IDF 2.46E-06 1,191,943 9.06 66.87 N/A
BACON 6.07E-04 530,953 165.33 7.77 N/A
Ours coarse 3.28E-04 4,481 1.81 0.69 315
Ours fine 6.83E-05 162,401 10.36 1.07 70

Armadillo

iNGP fine 1.93E-02 9,113,760 0 N/A 71
iNGP coarse 1.88E-02 2,040,864 0 N/A 63
NGLOD coarse 1.44E-02 8,737 14.20 3.80 40
NGLOD fine 1.43E-02 10,146,213 31.58 6.85 N/A
IDF 6.55E-04 1,191,943 2.23 37.68 N/A
BACON 8.27E-05 530,953 40.88 8.28 N/A
Ours coarse 1.38E-04 2,593 4.97 0.50 315
Ours fine 2.06E-04 67,073 5.42 0.99 70

with Implicit Displacement Fields (IDF)(Wang et al., 2022), which disentangles shape and detail to
capture fine surface structure. Finally, we include BACON (Lindell et al., 2021), a well-established
multiscale approach, where we report results from its 8th hidden layer. Tab. 1 summarizes the results.
Despite enabling real-time rendering and achieving the fastest sampling times, our method shows
training times comparable to IDF, which relies on mesh extraction for rendering. Training is up
to one order of magnitude faster than NGLOD at similar surface detail, and up to 4.5× faster in
fine-scale reconstructions. Importantly, our approach does not sacrifice surface quality for efficiency:
it consistently achieves the best, second-best, or third-best Chamfer Distance (CD) across all cases.
Fig. 6 shows render comparisons using the Armadillo. NGLOD level 0 is able to render geometry
in real time, however, it presents significantly lower details compared to the others. To avoid this,
we use an NGLOD level 5 configuration, which has less discretization artifacts, albeit forgoing its
real-time rendering capability. M-plicits achieves real-time rendering performance, while maintaining
a detailed smooth surface, unlike NGLOD. Also, IDF requires mesh extraction, thus not being directly
renderable in real-time. Instant-NGP offers extremely fast training and real-time rendering but at
the cost of higher CD and parameter counts—up to two orders of magnitude larger than ours. For
fairness, we compared against both a coarse Instant-NGP setup with 3 levels of detail and a fine setup
with 16 levels. Note that none of these competitor methods support textures.

Although the coarse and fine cases have close CD for some surfaces, Figure 17 (cols. 1 and 3) shows
that they are very different perceptually. Moreover, our approach is able to map normals from detailed
surfaces to include detail faster (col. 2).

Normals. We compare our GEMM normal calculation against torch.autograd. Our method
performs 2× faster across 6 different INRs trained for the Armadillo, Buddha and Lucy, with
architectures varying between 2 and 3 hidden layers. More details are provided in Tab. 10.
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Figure 6: Armadillo renderings using different methods. From the left: NGLOD levels 0, 5, our method, and
IDF. Note that NGLOD level 0 and our method are rendered in real time with sphere tracing. NGLOD level 5 is
not real time. IDF was rendered using the rasterization pipeline after running marching cubes.

4.2 ABLATIONS AND ADDITIONAL EXPERIMENTS

Residuals. To evaluate our nested neighborhood scheme and loss design, we compare against a
baseline residual variant f2 = f1 + r1, where both f1 and r1 are trained using SIREN’s original loss
and sampling strategy, following the baseline in IDF (Wang et al., 2022). In contrast, our method
employs the loss in Equation 4 together with nested neighborhoods to supervise the ground-truth
SDF within a narrow band around the previous stage’s zero level set. This exploits the property
f(xj + tNj) = t within a tubular neighborhood, enabling supervision beyond the original samples
xj to improve stability and prevent error growth. This strategy also reduces network complexity,
allowing us to use much smaller architectures: a base network with a single hidden layer of 128
neurons (ω0 = 30) and r1 with a single hidden layer of 256 neurons (ω0 = 45).

We compare this baseline with M-plicits on the Thingi32 dataset, where the baseline achieves
an average CD of 6.2E-2, while our method reaches 1.2E-2, demonstrating that M-plicits yields
substantially better reconstructions. We also evaluate the residual approach qualitatively. Fig. 8 shows
that residuals eliminate spurious components when combined with neighborhood training. We further
exploit this property to accelerate marching cubes in scenarios where mesh extraction is required.

Neural normal mapping and multiscale ST. Fig. 7 shows the case where the coarse surface is
the zero-level of a neural SDF (left) and when it is a triangle mesh (middle), showing that our
representation can also be beneficial for rendering meshes. An overall evaluation of the algorithm
with other models is provided in the appendix. In all cases, normal mapping increases fidelity. The
result may be improved using the multiscale ST, as shown in Fig. 7 (right). Adding ST iterations
using a neural SDF with a better approximation of the surface improves the silhouette (right).

Normal mapping on coarse surfaces to add detail
ray tracing the extracted meshST on the implicit surface

coarse SDF coarse SDF +
normal mapping

coarse mesh coarse mesh +
normal mapping

Silhouette evaluation

ST on the
coarse SDF +

normal
mapping

adding
integrations

on the middle
level

Figure 7: Left: neural normal mapping onto a neural SDF. First, the coarse (64, 1) SDF. Then, the
neural normal mapping of the (256, 3) SDF onto the (64, 1). Middle: neural normal mapping onto half
of a triangle mesh. The normals of the (256, 3) SDF are used. The mesh is the marching cubes of the
(64, 1) SDF. The mean square error (MSE) is 0.00262 for the coarse case and 0.00087 for the normal
mapping, an improvement of 3×. The baseline is the marching cubes of the (256, 3) SDF. Right:
Silhouette evaluation. First a (64, 1)▷(256, 3), then a (64, 1)▷(256, 2)▷(256, 3) configuration.
Notice how the silhouette improves with the additional (256, 2) level.

Real-time renderer. We evaluate a GPU version implemented in a CUDA renderer, using neural
normal mapping, multiscale ST, and the GEMM-based analytical normal calculation (implemented
using CUTLASS). Tab. 2 shows the results. Notice that the framework achieves real-time performance
and that using neural normal mapping and multiscale ST improves performance considerably.

The flexibility of our multiscale SDF representation enables additional applications, including
integration into differentiable pipelines and fast mesh extraction using the marching cubes algorithm.
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(64,2) (128,2) (256,2)

Figure 8: Evaluation of the residual ap-
proach. Note that training the SDFs in the
neighborhoods (first row: center, right) re-
sults in spurious components outside the
region as would be expected. Using the
residual approach eliminates those com-
ponents (second row: center, right).

Table 2: In-depth ablation of the real-time CUDA ren-
derer using multiscale ST, GEMM normals, and normal
mapping. The number of iterations is 20 for the first neu-
ral SDF and 5 for the subsequent ones. (NM) indicates
normal mapping and no ST iterations for the last SDF.
Images are 5122. Size is in KB. Note that the residual
approach allows smaller networks and that all cases result
in speedups. M-plicits are very small and flexible, being
easily adaptable to different performance budgets.

Model FPS Speedup Size
(256, 4) (SIREN baseline) 37 1.0X 777
(64, 2) (coarse) 315 8.5X 11
(64, 2) ▷ (128, 2) (NM) 177 4.1X 79
(64, 2) ▷ (128, 2) 150 4.1X 79
(64, 2) ▷ (256, 2) (NM) 94 2.5X 274
(64, 2) ▷ (256, 2) 75 2.0X 274
(64, 2) ▷ (128, 2) ▷ (256, 2) (NM) 86 2.3X 342
(64, 2) ▷ (128, 2) ▷ (256, 2) 70 1.9X 342

Table 3: Marching cubes runtime comparison
in seconds. The baseline is a SIREN network
with 4 hidden layers with 256 neurons. Using
our multiscale surface representation results
in up to 5× speedup compared to baseline.

Model Baseline No culling Culling Speedup

Arm. 4.87 4.10 0.99 4.92×
Lucy 4.87 7.49 1.07 4.56×
Dragon 4.88 7.28 1.71 2.85×
Thai 4.89 7.28 1.73 2.82×

Mesh extraction. Experiments show that M-plicits
improves the performance of grid evaluation by avoid-
ing inference at finer levels far from the level set.
Tab. 3 presents a maximum performance improve-
ment of 5×, and surface reconstructions are given in
Fig. 19. For all cases, the baseline SDF is approxi-
mated by a single MLP (256, 4), while the multiscale
SDFs have a configuration of (64, 1) ▷ (128, 2) ▷
(256, 2). Note that surfaces occupying smaller do-
main regions have a greater speedup since the number
of vertices in their nesting neighborhoods decreases.

Textures. We define textures directly in a neighborhood of the surface, removing the need for a
UV map. This formulation produces visually convincing appearance while decoupling texture from
geometry in a compositional way. To assess accuracy, we compared our approach against traditional
UV-textured meshes by measuring the MSE between rendered images. Across five test models—Spot,
Bob, Bunny, Egg, and Earth—we obtained MSEs of 0.0329, 0.0434, 0.0720, 0.0291, and 0.0033,
respectively. Figure 9 illustrates neural texture mapping applied to coarse surfaces.

Figure 9: Neural texture mapping. All networks are (256, 3), except for the the earth, which is
(512, 3). The surfaces are marching cubes of (64, 1) SDFs, except for the bunny, which is (128, 2).

Robustness to noise. To evaluate the robustness of M-plicits to noisy point clouds, we test it on a
perturbed version of the Lucy model, where all vertices are randomly perturbed in the direction of
the normal by at most 1.0% of the model bounding box. As shown in Figure 10, the coarse level of
M-plicits acts as a low-pass filter, removing most of the high-frequency noise and providing a clean
geometric prior that benefits the subsequent residual levels. In contrast, Instant-NGP struggles under
this noise regime and fails to recover a smooth and coherent surface. We choose Instant-NGP because
it is a strong baseline for real-time models.

Scene scale test. We also evaluated our method on a scene-scale point cloud (Figure 16). M-plicits
successfully reconstructs the entire scene across all scales, whereas Instant-NGP fails in our tests.
The Chamfer distance further corroborates these observations: M-plicits achieves 2–3 orders of
magnitude lower Chamfer distance.
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GT + noise iNGP coarse iNGP fine M-plicits coarse M-plicits medium M-plicits fine

Figure 10: Robustness to noise. Comparison of reconstructions from a noisy point cloud of the Lucy
model. Instant-NGP (coarse/fine) fails to denoise the input and produces highly irregular surfaces. In
contrast, the coarse level of M-plicits removes most of the noise, while the medium and fine levels
progressively refine the geometry.

Table 4: Quantitative robustness to noise. Chamfer dis-
tance (↓), Hausdorff distance (↓), and IoU (↑) for three mod-
els under vertex noise perturbation. Best values are bold,
second best are italic, and third best are underlined.

Model Chamfer (↓) Hausdorff (↓) IoU (↑)

Armadillo

Ours coarse 1.83E-03 1.18E-02 5.68E-02
Ours medium 5.86E-05 7.18E-04 4.89E-01
Ours fine 2.37E-03 1.21E-02 5.09E-02
iNGP coarse 1.75E-02 1.05E-01 3.54E-02
iNGP fine 1.93E-02 9.49E-02 3.34E-02

Asian Dragon

Ours coarse 3.49E-04 1.55E-02 2.97E-01
Ours medium 2.02E-04 4.10E-03 3.70E-01
Ours fine 1.69E-04 2.76E-03 4.00E-01
iNGP coarse 2.35E-02 2.21E-01 4.70E-03
iNGP fine 1.62E-02 1.52E-01 6.68E-03

Lucy

Ours coarse 3.33E-04 2.21E-02 3.02E-01
Ours medium 4.39E-05 8.31E-04 5.18E-01
Ours fine 3.45E-05 8.54E-04 5.98E-01
iNGP coarse 2.36E-02 1.36E-01 0.00E+00
iNGP fine 1.12E-02 7.57E-02 1.00E-03

Quantitative results for three models
using Chamfer, Hausdorff, and IoU
further confirm the robustness of our
approach, as shown in Table 4.

5 CONCLUSION

We propose an INR framework to ren-
der surfaces in real-time using neu-
ral SDFs endowed with smooth nor-
mals and textures. It uses spatial
neighborhoods and residual training,
achieving real-time performance with-
out the need for spatial data struc-
tures. The multiscale sphere trac-
ing accelerates surface evaluation, the
neural attribute mapping transfers sur-
face attributes between surfaces, and
the GEMM-based normal computa-
tion gives smooth normals without
the need of auto-grad. Moreover, we
show that our multiscale SDF can be
used to accelerate mesh extraction us-
ing marching cubes.

Limitations and future work. As is common for SDF-based representations, our approach is not
suited to represent very sharp edges. This is a natural consequence of the function smoothness and
may be solved by incorporating local features into the function, a path we would like to explore in
future work. The multiscale ST could probably be applied into neural SDF-based 3D reconstruction
or inverse rendering tasks to reduce the training time. Nested neighborhoods could be adapted for
unsigned distance functions too. Improvements can be done for further performance optimization.
For example, using fully fused GEMMs may decrease the overhead of GEMM setup (Müller, 2021).
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A ADDITIONAL COMPARISONS

Quantitative results in homogenized setups. We performed additional experiments on a subset of
the Thingi32 dataset using a homogenized setup. For all meshes, we employed a coarse model with
a single hidden layer of 128 neurons and ω0 = 30, a medium model with a single hidden layer of
256 neurons and ω0 = 45, and a fine model with a single hidden layer of 400 neurons and ω0 = 128.
Each stage was trained for 1000 epochs, for a total of 3000 epochs per mesh. We compare against
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Instant NGP (Müller et al., 2022). This setup allows for relatively fast training (5–10 minutes on an
RTX 4090), with a memory footprint of 4–6 GB (batch sizes of 125k and 75k for the medium and fine
levels, respectively). The results in terms of CD are shown in Table 5. Our method achieves better
metrics across all meshes. It is important to note, however, that this dataset does not match the quality
of the Stanford dataset, as it contains self-intersections, holes, and poorly triangulated regions.

Table 5: Comparison with Instant NGP using a homogenized setup on a subset of the Thingi32 dataset.
The iNGP-coarse model has 3 detail levels and the iNGP-fine model has 16 levels.

Mesh Id M-plicits (ours) iNGP-coarse iNGP-fine

47984 1.17E-03 3.83E-02 3.98E-02
68380 8.44E-03 2.58E-02 2.54E-02
354371 1.69E-03 2.08E-02 2.10E-02
398259 6.00E-04 1.22E-01 1.25E-01
527631 1.45E-03 2.74E-03 3.03E-03

B ABLATION STUDIES

We performed two additional ablation studies for our approach: (i) loss term assessment, (ii) δ
influence over the reconstructions. Tables 6,7, and 8 show the ablation results of our loss function
using different weights for each component, while maintaining the remaining hyper-parameters
fixed. We performed these studies both for a single intermediate level (medium) and an additional
refinement level beyond it (fine). Note that all studies used the Lucy mesh as a baseline. Table 9
shows the results for varying the delta values while maintaining the remaining hyper-parameters
fixed.

Table 6: Gradient constraint ablation studies.

(a) Gradient constraint fine level

Gradient constraint Approx. Error

0.0 0.0013
10.0 0.0013
30.0 0.0013

100.0 0.0012
300.0 0.0013

1000.0 0.0014
3000.0 0.0017

10000.0 0.0022
30000.0 0.0030

(b) Gradient constraint medium level

Gradient Constraint Approx. Error

0.0 0.0086
10.0 0.0084
30.0 0.0082

100.0 0.0078
300.0 0.0074

1000.0 0.0069
3000.0 0.0073

10000.0 0.0087
30000.0 0.0116

Table 7: Normal constraint ablation studies.

(a) Normal constraint fine level.

Normal Constraint Approx. Error

0.0 0.0017
10.0 0.0013
30.0 0.0013

100.0 0.0013
300.0 0.0013

1000.0 0.0013
3000.0 0.0013

10000.0 0.0013
30000.0 0.0013

(b) Normal constraint medium level.

Normal Constraint Approx. Error

0.0 0.0073
10.0 0.0074
30.0 0.0077

100.0 0.0081
300.0 0.0083

1000.0 0.0085
3000.0 0.0086

10000.0 0.0087
30000.0 0.0087

Normals: We compare our GEMM normal calculation against torch.autograd. As shown in
Tab. 10, ours performs 2× faster. We tested 6 different INRs trained for Armadillo, Buddha, and
Lucy, varying between 2-3 hidden layers.
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Table 8: SDF constraint ablation studies.

(a) SDF constraint fine level.

SDF Constraint Approx. Error

0.0 0.0076
10.0 0.0013
30.0 0.0013

100.0 0.0013
300.0 0.0013

1000.0 0.0012
3000.0 0.0013

10000.0 0.0013
30000.0 0.0013

(b) SDF constraint medium level.

SDF Constraint Approx. Error

0.0 0.0490
10.0 0.0080
30.0 0.0079

100.0 0.0079
300.0 0.0080

1000.0 0.0081
3000.0 0.0080

10000.0 0.0082
30000.0 0.0082

Table 9: Ablation studies of the delta factor. We multiply the delta by the values in the first column
and measure the SDF error compared to the Open3D calculated SDF, which we use an ground-truth.

Max delta fraction Medium level error Fine level error

1.01 0.0098 0.0048
1.05 0.0098 0.0048
1.10 0.0100 0.0049
1.20 0.0101 0.0049
1.30 0.0103 0.0050
1.50 0.0106 0.0051
2.00 0.0113 0.0053
5.00 0.0139 0.0066

C RENDERING AND MESH EXTRACTION

To render the zero level set f−1(0) of a SDF f , two common strategies can be used: sphere
tracing (ST) Hart et al. (1989), which directly traces rays through the SDF field, and marching
cubes Lorensen & Cline (1987), which extracts an explicit mesh followed by standard rasterization.
When the SDF is represented using M-plicits, both rendering approaches become more efficient.

We first introduce a multiscale sphere tracing scheme. Given a view ray γ(t) = p0 + tv, with origin
at point p0, unit direction v, and intersecting the zero level set f−1(0), the standard sphere tracing
(ST) approximates the first intersection point by iterating

pi+1 = pi + vf(pi)

along γ. However, querying a high-capacity neural SDF at each step can be computationally expensive.
To reduce this cost, we leverage the multiscale SDF hierarchy {fi}, using coarser networks to guide
the early steps of the tracing process. Thanks to the nesting condition introduced in Eq. 3 of the paper,
coarse levels can safely be used to trace offset surfaces before switching to finer levels closer to the
surface. The ray initially traces the offset surface f−1

1 (δ1) using f1, proceeds to f−1
2 (δ2) with f2,

and finally goes to the target surface f−1
3 (0) using f3. Each coarser level performs offset tracing via

pi+1 = pi + v (fj(pi)− δj) ,

which ensures convergence toward the true surface with minimal reliance on high-cost evaluations.
Figure 11 illustrates this procedure, focusing on how the ray reaches S3 by tracing within the
neighborhood {|f2| < δ2}. For neural SDF inference, we use the GEMM algorithm (Dongarra et al.,
1990).

Importantly, if γ ∩ S3 ̸= ∅, the multiscale ST approximates the first intersection point between γ and
S3. This is guaranteed by the nesting condition, which implies that if γ ∩ S3 ̸= ∅, then necessarily
γ ∩ f−1

2 (δ2) ̸= ∅, and thus also γ ∩ f−1
1 (δ1) ̸= ∅. The values δi play a critical role in this process, as

setting them appropriately helps avoid failures, as illustrated in Fig. 4 of the paper. Equation 5 (in the
main paper) provides a principled definition of δi, linking them to network training.

Finally, M-plicits also accelerates mesh extraction via marching cubes. We propose an adaptive grid
inference strategy: we first evaluate the coarse SDF f1 to cull grid vertices, and only evaluate finer
SDFs for vertices inside the δ1-neighborhood. This yields efficient and focused SDF sampling, as
depicted in Fig. 5 of the paper. Fig. 19 shows reconstructions using this approach.
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Figure 11: Ray intersecting S3 nested in a δ-
neighborhood of a coarse SDF f2. Notice that
sphere tracing f2 directly would lead to a false
negative, thus we use

[
|f2| < δ2

]
instead.

Figure 12: Volumetric texture mapping. The
texture g should be constant along the normals
N near the coarse surface S (red/green). Hav-
ing such volumetric representation in the δ-
neighborhood ensures that g can be assigned to
any point in the coarse surface S.

D NORMAL AND TEXTURE MAPPING

Let S be a surface nested within a δ-neighborhood of the zero level set of a neural SDF f , i.e.,
S ⊂

[
|f | ≤ δ

]
. Assume f is a finer neural SDF. Then, the neural normal mapping assigns to each

point p ∈ S the attribute
g(p) := ∇f(p).

This corresponds to restricting ∇f to S, effectively transferring the normal of f−1(0) along the
shortest path connecting it to p. Since f is a signed distance function, the gradient ∇f remains
constant along such paths.

We consider two cases. First, let S be a triangle mesh. We use neural normal mapping to transfer
detailed normals from the level sets of f onto S. This approach is analogous to classical normal
mapping, which typically relies on UV parameterizations. However, since our method is volumetric,
such parameterizations are not required (see Fig. 7 in the paper, middle).

In the second case, let S be the zero level set of a coarser neural SDF. Here, neural normal mapping
allows us to bypass additional sphere tracing iterations (see Fig. 7 in the paper, left). In this case,
surface extraction via marching cubes is not necessary.

Similarly, we define a neural network g : R3 → C to encode a texture over the δ-neighborhood of
f , where the codomain C is the RGB color space. The attribute mapping associated with the triple
{S, f, g} is referred to as neural texture mapping.

To train the parameters ϕ of g, we use the following loss functional:

T(ϕ) =

∫
f−1(0)

(g − g)2 dx+

∫[
|f |≤δ

]⟨∇g,∇f⟩2 dx,

where the first term encourages g to match the ground-truth texture g, and the second term enforces
consistency of g along the gradient paths of f , regularizing the network within the δ-neighborhood.
Figure 12 illustrates the texture mapping scheme.

E GEMM-BASED ANALYTICAL NORMAL CALCULATION FOR MLPS

We propose a GEMM-based analytical computation of normals, which are continuous and do not
need auto-differentiation, resulting in smooth normals. To compute them, we recall that a MLP
with n − 1 hidden layers has the following form f(x) = Wn ◦ hn−1 ◦ · · · ◦ h0(x) + bn, where
hi(xi)=φ(Wixi+bi) is the i-layer. The activation φ is applied on each coordinate of the linear map
Wi :RNi→RNi+1 translated by bi∈RNi+1 . The gradient of f is given using the chain rule:

∇f(x)=Wn · Jhn−1(xn−1) · · · · · Jh0(x), with Jhi(xi) = Wi ⊙ φ′[ai| · · · |ai] (6)
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J is the Jacobian, xi :=hi−1◦· · ·◦h0(x), ⊙ is the Hadamard product, and ai=Wi(xi)+bi. Eq. 6 is
used in (Gropp et al., 2020; Novello et al., 2022) to compute the level set normals analytically.

We now use Eq. 6 to derive a GEMM-based algorithm for computing the normals (∇f ) in real-
time. The gradient ∇f is given by a sequence of matrix multiplications which is not appropriate
for a GEMM setting because Jh0(x) ∈ R3×N1 . The GEMM algorithm organizes the input points
into a matrix, where its lines correspond to the points and its columns organize them and enable
parallelism. We can solve this problem using three GEMMs, one for each normal coordinate.
Therefore, each GEMM starts with a column of Jh0(x), eliminating one of the dimensions. The
resulting multiplications can be asynchronous since they are completely independent.

The j-coord of ∇f is given by Gn=Wn·Gn−1, where Gn−1 is given by iterating Gi=Jhi(xi)·Gi−1,
with the initial condition G0 = W0[j]⊙ φ′(a0). The vector W0[j] denotes the j-column of W0. We
use a kernel and a GEMM to compute G0 and Gn. For Gi with 0<i<n, observe that

Gi=(Wi ⊙ φ′ [ai| · · · |ai]) ·Gi−1=(Wi ·Gi−1)⊙ φ′(ai).

The first equality comes from Eq. 6 and the second from a commutative property of the Hadamard
product. The second expression needs fewer computations and is solved using a GEMM followed by
a kernel.

Algorithm 1 presents the gradient computation for a batch of points. The input is a matrix P ∈ R3×k

with columns storing the k points generated by the GEMM version of the sphere tracing algorithm.
The output is a matrix ∇fθ(P ) ∈ R3×k, where its j-column is the gradient of fθ evaluated at P [j].
Lines 2− 5 are responsible for computing G0, Lines 6− 11 compute Gn−1, and Line 13 provides the
result gradient Gn. Table 10 shows a comparison between this algorithm and automatic differentiation
using PyTorch.

Table 10: Runtime comparison, in seconds, be-
tween Pytorch autograd and our algorithm to
calculate the normals. Ours performs 2× faster.

Model Autograd Ours Resolution

Armadillo 256x2 0.007 0.003 512x512
Armadillo 256x2 0.024 0.010 1024x1024
Armadillo 256x3 0.010 0.005 512x512
Armadillo 256x3 0.025 0.012 1024x1024
Buddha 256x2 0.008 0.005 512x512
Buddha 256x2 0.021 0.014 1024x1024
Buddha 256x3 0.011 0.005 512x512
Buddha 256x3 0.024 0.012 1024x1024
Lucy 256x2 0.007 0.004 512x512
Lucy 256x2 0.021 0.012 1024x1024
Lucy 256x3 0.011 0.007 512x512
Lucy 256x3 0.025 0.015 1024x1024

ALGORITHM 1: Normal computation
Input: neural SDF fθ , positions P
Output: Gradients ∇fθ(P )

1 for j = 0 to 2 (async) do
2 using a GEMM: // Input Layer
3 A0 = W0 · P + b0
4 using a kernel:
5 G0 = W0[j]⊙ φ′(A0); P0 = φ(A0)

// Hidden layers
6 for layer i = 1 to n− 1 do
7 using GEMMs:
8 Ai = Wi · Pi−1 + bi;

Gi = Wi ·Gi−1

9 using a kernel:
10 Gi = Gi ⊙ φ′(Ai); Pi = φ(Ai)
11 end
12 using a GEMM: // Output layer
13 Gn = Wn ·Gn−1

14 end

F SURFACE RECONSTRUCTION FROM POSED IMAGES

We demonstrate that M-plicits can be seamlessly integrated into image-based reconstruction pipelines,
such as NeuS Wang et al. (2021). To this end, we replace the standard neural SDF used in NeuS with
our multiscale SDF architecture, composed of two neural networks: a coarse-level network and a
higher-resolution refinement network. We compare our modified pipeline against the baseline NeuS to
evaluate the impact of our approach both quantitatively and qualitatively. Specifically, we implement
the coarse network with 4 hidden layers of 128 neurons each, and the fine-level network with 5 hidden
layers of 256 neurons. Despite having 37% fewer parameters than the original NeuS architecture,
our multiscale approach achieves improved performance. Quantitatively, under the default volume
rendering configuration, our method yields an average PSNR improvement of 3.74% across models
from the DTU dataset Jensen et al. (2014). Table 11 summarizes the PSNR comparisons between our
approach and the baseline NeuS.
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Table 11: PSNR comparison between the baseline NeuS and our multiscale method on selected scans
from the DTU dataset Jensen et al. (2014). Our method consistently improves reconstruction quality
while using fewer network parameters. All values are reported in dB.

Scan 24 Scan 37 Scan 40 Scan 55 Scan 63 Avg.

NeuS 28.20 27.10 28.13 28.80 32.05 28.86
Ours 31.50 26.50 27.78 29.01 34.89 29.94

Figure 13 presents a comparison between NeuS and our multiscale variant on Scan 24 of the
DTU dataset. The top row shows the reconstructed mesh geometry, including zoomed-in insets
that highlight fine surface details. The bottom row displays renderings showing that ours provide
reconstruction with sharp details. Our method yields improved geometric fidelity and cleaner surface
reconstructions, especially in regions with architectural features.

M-plicits (ours)NeuS

S
ur

fa
ce

R
ad

ia
nc

e

Figure 13: Comparison between baseline NeuS and our multiscale variant on Scan 24 of the DTU
dataset. Top: extracted surface meshes with zoomed-in details. Bottom: rendered appearance.
Our approach recovers finer geometric details, as evident in architectural structures and window
boundaries.

G NEURAL IMPLICIT SURFACE EVOLUTION

Note that neural SDFs provide a smooth representation of a static scene. By adding an additional
input coordinate, we can encode time into the representation. We leverage this approach to train
dynamic evolutions of static neural SDFs, following the training schemes introduced in (Novello
et al., 2023). Fig. 14 presents an example of interpolation between the Spot and Bob models using
this method. Importantly, the implicit model handles topology changes, demonstrating that our
representation can be integrated into differentiable pipelines. The visualization is in real-time (120
FPS) using an extension of our multiscale ST to dynamic SDFs.

G.1 ADDITIONAL EXPERIMENTS

Point cloud from images: Fig 15 shows our model trained with a point cloud reconstructed from
an image. We use Depth Anything (Yang et al., 2024) to generate the depth of the pixels and use that
depth to create the point cloud based on the view.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 14: A dynamic multiscale SDF is trained using the pipeline from (Novello et al., 2023). Note
the change in topology (c-d), which is challenging to handle using meshes. Also, octree/mesh-based
approaches require generating a surface for each time, an overhead that our model avoids.

Ours

Input views

GS-LRM

Noisy point cloud neural SDF + texture

OursDepth 
anything

Single view
Depth map neural SDF + texture

Figure 15: Training a textured SDF from images/noisy point cloud. On the left, our model (neural
SDF + texture) is trained using the unprojection of a depth map, which is computed from a single
view using Depth Anything. The resulting vase is rendered at 32.1 FPS. On the right, we show a
reconstruction derived from a noisy point cloud, extracted from multiple views using GS-LRM (Zhang
et al., 2024). By combining our method with this feed-forward 3D model (GS-LRM), we achieve fast
reconstruction of the SDF with texture.

Scene-scale point cloud. We also evaluated our method on a scene-scale point cloud containing
more than 10 million points. Figure 16 shows that M-plicits successfully reconstructs the entire scene
across all scales (coarse, medium, and fine), whereas Instant-NGP fails in our tests using both 3 levels
(coarse) and 16 levels (fine). The Chamfer distance further corroborates these observations: M-plicits
achieves 2–3 orders of magnitude lower Chamfer distance compared to Instant-NGP.

GT
  

M-plicits coarse
CD: 5.02E-05

M-plicits medium
CD: 4.48E-05

M-plicits fine
CD: 3.87E-05

iNGP coarse
CD: 6.93E-03

iNGP fine
CD: 1.12E-02

Figure 16: Scene-scale reconstruction (10M+ points). Comparison between Instant-NGP (coarse
and fine) and M-plicits at three scales (coarse, medium, fine). Instant-NGP fails to reconstruct large
regions of the geometry and introduces strong artifacts, even when increasing the number of levels.
In contrast, M-plicits yields accurate and stable reconstructions at all scales, closely matching the
ground-truth surface, as reflected in the reported Chamfer distances.
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Coarse Normal mapping Multiscale ST Baseline

Figure 17: Comparison between our method and the SIREN baseline. The columns represent different
configurations. From left to right: (64,2), (64,2) ▷▷▷ (256,2), and the baseline (256,4). The
second column uses neural normal mapping and the third uses multiscale sphere tracing. Notice that
fidelity is improved in the second column and the third column refines the results.

Broader perceptual evaluation: Fig. 17 shows a broader perceptual evaluation of the multiscale
sphere tracing and the neural normal mapping using several models. Fig. 18 also shows the images
we use to calculate the MSE to compare the neural texture mapping with the rendering baseline.

Accelerated Marching Cubes qualitative evaluation: Fig. 19 shows high-fidelity reconstructions
computed using our acceleration for the marching cubes algorithm.
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Baseline Ours

Figure 18: Images we use to calculate the MSE between the ground-truth textured meshes and our
approach.
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Figure 19: From left to right: Marching cubes reconstruction of Armadillo, Buddha and Lucy using
our proposed grid culling method.
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