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ABSTRACT

Visual brain decoding aims to decode visual information from human brain activ-
ities. Despite the great progress, one critical limitation of current brain decoding
research lies in the lack of generalization capability to unseen subjects. Prior
works typically focus on decoding brain activity of individuals based on the ob-
servation that different subjects exhibit different brain activities, while it remains
unclear whether brain decoding can be generalized to unseen subjects. This study
is designed to answer this question. We first consolidate an image-fMRI dataset
consisting of stimulus-image and fMRI-response pairs, involving 177 subjects in
the movie-viewing task of the Human Connectome Project (HCP). This dataset
allows us to investigate the brain decoding performance with the increase of par-
ticipants. We then present a learning paradigm that applies uniform processing
across all subjects, instead of employing different network heads or tokenizers
for individuals as in previous methods, which can accommodate a large number
of subjects to explore the generalization capability across different subjects. We
conduct a series of experiments and find the following: First, the network exhibits
clear generalization capabilities with the increase of training subjects. Second,
the generalization capability is common to popular network architectures (MLP,
CNN and Transformer). Third, the generalization performance is affected by the
similarity between subjects. Our findings reveal the inherent similarities in brain
activities across individuals. With the emerging of larger and more comprehensive
datasets, it is possible to train a brain decoding foundation model in the future.

1 INTRODUCTION

Visual brain decoding (Kay et al., 2008; Kamitani & Tong, 2005; Naselaris et al., 2011) aims to
decode visual information from human brain activities, including tasks of brain-image classification
(Kaur & Gandhi, 2019; Zhou et al., 2024), retrieval (Scotti et al., 2024a; Xia et al., 2024) and recon-
struction (Takagi & Nishimoto, 2023; Ozcelik & VanRullen, 2023; Ferrante et al., 2024; Scotti et al.,
2024a), and so on. It involves analyzing neural patterns collected via brain imaging techniques like
functional magnetic resonance imaging (fMRI) (Schirrmeister et al., 2017; Benchetrit et al., 2023;
Kamitani & Tong, 2005) or electroencephalography (EEG) (Schirrmeister et al., 2017; Vallabhaneni
et al., 2021) to infer the visual information received by the participants. Among them, fMRI is fa-
vored by researchers because of its more informative depiction of the whole brain activity, which has
resulted in a number of important decoding works (Allen et al., 2022; Takagi & Nishimoto, 2023;
Scotti et al., 2024a) with the help of deep learning techniques.

A major limitation of current brain decoding research, however, lies in the lack of generalization
capability to unseen subjects. That is, the trained decoding models can hardly be applied to new,
unseen individuals. Such a limitation can be owed to two reasons. First, there are individual dif-
ferences of the brain activities across subjects (Haxby et al., 2020). Therefore, it is assumed that
brain decoding cannot be generalized and hence they are focused on developing subject-specific
models. Second, commonly used brain visual decoding datasets are built upon only a small number
of participants. For example, the Natural Scenes Dataset (NSD) dataset (Allen et al., 2022) includes
only 8 subjects. Most NSD-based studies (Kaur & Gandhi, 2019; Scotti et al., 2024a) employ only
4 of the 8 subjects, and use the NSDGeneral data, which contain only the manually mapped brain
region, rather than the entire brain data (See more detailed discussions in Sec. 3.1). Even those
studies attempting to leverage multiple subjects are typically limited to less than 10 participants, and
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Figure 1: The performance on unseen subjects with the increase of the number of training subjects.

their networks are designed to handle only a small number of individuals. For instance, MindEye2
(Scotti et al., 2024b) and UMBRAE (Xia et al., 2024) use separate heads or tokenizers for different
subjects. Therefore, the model becomes increasingly complex as the increase of subject number,
which is hard to scale up to a larger number of subjects.

In this work, we aim to address this limitation and answer the question that whether brain decoding
can be generalized to unseen subjects. To this end, we first consolidated an image-fMRI dataset,
which consists of pairs of the stimulus image and the corresponding brain fMRI response. We build
this dataset using the data from the Human Connectome Project (HCP) (Van Essen et al., 2013),
which contains human brain neuroimages for various tasks. Among them, 177 subjects participated
in the movie-viewing task, which provides the largest number of subjects available for extracting
image-fMRI pairs for visual decoding study. In total, we collected 3,127 data pairs from 4 films
watched by the 177 subjects. Compared to the commonly used datasets like NSD (8 subjects) (Allen
et al., 2022) and BOLD5000 (4 subjects) (Chang et al., 2019), this dataset enables us to explore brain
decoding performance with a much larger number of subjects. We consequently propose a new
learning paradigm. Following MindEye1 (Scotti et al., 2024a), we use CLIP to encode the images,
and employ a brain decoding network to map brain activities (characterized by fMRI voxels) into the
same CLIP space by contrastive learning. To handle the varying fMRI voxel sizes across subjects,
we simply normalize them to a common size through upsampling. Unlike previous methods that
rely on specially designed input heads or subject-specific tokenizers, our paradigm uses the same
processing for all subjects so that it can handle a large number of subjects without increasing the
model complexity and parameters.

We perform experiments on the fundamental retrieval task, which reflects well the capabilities of de-
coding models. (Our method can be extended to reconstruction or grounding tasks with additional
modules such as Stable Diffusion (Rombach et al., 2022).) Through detailed experimentation, we
uncover several important and intriguing findings. First, as shown in Fig. 1, the network demon-
strates clear generalization ability as the number of training subjects increases, with top-1 accuracy
rising from 2% (1 training subject) to 45% (167 training subjects) on unseen subjects (100 image-
fMRI pairs). The accuracy can be further improved to 50% with additional training strategies.
Second, the generalization capability holds for different network architectures. Using MLP, CNN
and Transformer as the backbone, we achieve top-1 accuracies of 45%, 42%, and 34%, respectively,
with 167 training subjects. Third, the generalization performance is influenced by subject similarity.
We observe a bias when training on distinct groups, such as gender. The model trained on 50 males
achieves 36% top-1 accuracy on an unseen male subject, while the model trained on 50 females
only obtains 27% top-1 accuracy on this test. Even gender which represents one of the most easily
identifiable similarity categories, can introduce noticeable bias. Therefore, to explore further, we
design an algorithm to calculate the similarity of fMRI responses among 167 individuals and train
two models on the 20 most similar and 20 least similar subjects. The models achieve 21% and 2%
top-1 accuracy, respectively, on an unseen subject, indicating the degree of similarity across subjects
greatly affects the generalization performance. Our findings reveal that human brain activities share
similarities, which is worth of further exploration. It may be possible to train a large foundation
model for brain decoding as bigger and more comprehensive datasets emerge.

2 RELATED WORK

Visual Brain Decoding. With the advancement of deep learning (Radford et al., 2021; He et al.,
2016; Vaswani et al., 2017; Rombach et al., 2022) and the emergence of high-quality fMRI datasets
(Allen et al., 2022; Chang et al., 2019; Van Essen et al., 2013), many brain decoding methods with
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promising performance have been proposed. Takagi & Nishimoto (2023) utilized a latent diffusion
model, specifically Stable Diffusion (Ho et al., 2020; Sohl-Dickstein et al., 2015), to reconstruct
high-resolution images from fMRI data, preserving semantic fidelity without requiring additional
training or fine-tuning. Brain-Diffuser (Ozcelik & VanRullen, 2023) improves the reconstruction
process by first reconstructing basic image properties from fMRI signals and then refining the im-
ages using a latent diffusion model conditioned on multimodal features. Moreover, MindEye (Scotti
et al., 2024a) encodes images using CLIP and then maps the corresponding fMRI data to the CLIP
feature space, enabling strong image retrieval or reconstruction performance. However, most ex-
isting methods focus on decoding stimuli for individual subjects. While effective for individual
decoding, they lack the generalization capability to new, unseen subjects.

Visual Brain Decoding on Multiple Subjects. Some brain decoding methods have been devel-
oped to leverage multiple subjects, which can be categorized into two categories based on their
objectives: (1) using multiple subjects to enhance subject-specific models, and (2) developing mod-
els that handle multiple subjects directly. For the first category, a straightforward way is to pre-train
models on multiple subjects and then fine-tune them for individual subjects (Scotti et al., 2024b;
Jiang et al., 2024; Qian et al., 2023; Ferrante et al., 2024). For example, MindEye2 (Scotti et al.,
2024b) pre-trains the model on 7 subjects from the NSD dataset (Allen et al., 2022) and fine-tunes
it on a different subject, using only 1/40 of the original data while achieving similar performance.
The second category of methods aim to train a model with multiple subjects so that its performance
on each subject (included in the training set) surpasses the models trained on each single subject.
CLIP-MUSED (Zhou et al., 2024) and UMBRAE (Xia et al., 2024) are methods of this kind. How-
ever, most methods in this category still require separate heads or tokenizers for each subject. As
the number of subjects increases, their training costs and model parameters grow linearly, making
this approach impractical for larger subject pools. These multi-subject methods generally involve
a limited number of subjects (less than 10), which are not enough for sufficient exploration. More
importantly, while these methods demonstrate that certain information can be shared across subjects,
they cannot generalize to unseen subjects.

Subjects Alignment. Some methods have been proposed to align new subjects to pre-trained mod-
els, known as subject alignment, to handle unseen subjects. Based on the alignment approach, these
methods can be categorized into anatomical alignment (Jenkinson et al., 2002) and functional align-
ment (Haxby et al., 2011; Lorbert & Ramadge, 2012; Xu et al., 2012; Chen et al., 2015), among
others. In visual brain decoding, the mainstream methods fall under functional alignment, which di-
rectly aligns the neural activity patterns across different subjects. For instance, Ferrante et al. (2024)
used 1,000 common images viewed by 8 subjects from the NSD dataset to train an alignment model
that maps other subjects to Subject 1. During inference, the brain signals of other subjects are con-
verted into the format of Subject 1 and fed into the model trained on Subject 1. This approach can
process new subjects with the model of some existing subjects at a lower cost, yet it requires shared
data for alignment. In this work, we aim to achieve model generalization without such alignment.

3 METHODS

In this section, we first describe how we consolidate the dataset for exploring generalizable visual
brain decoding in Sec. 3.1. Then, we describe the proposed learning paradigm in Sec. 3.2. Finally,
in Sec. 3.3 we outline how we calculate the subject similarity in the experiments.

3.1 DATASET CONSOLIDATION

Most previous studies (Scotti et al., 2024a;b; Xia et al., 2024; Zhou et al., 2024) are conducted on
datasets with fewer than ten participants, which cannot be used to study whether visual decoding
can be generalizable. Therefore, to explore the generalization capabilities of brain decoding models,
the first step is to collect a dataset with a larger number of subjects. However, as shown in Tab. 1,
current publicly available image-viewing datasets are limited in size. For example, the NSD dataset
involves only 8 subjects (Allen et al., 2022) and BOLD5000 involves only 4 subjects (Chang et al.,
2019). This is mainly due to the high costs, time demands, and challenges in keeping participants
engaged during the long fMRI scanning sessions. Furthermore, these existing datasets are hard to be
combined due to their significant differences in scanning equipment, resolution, and post-processing
methods. Even combined, the total number of subjects remains very small.
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Table 1: Summary of commonly used visual brain decoding datasets.

Dataset Task Scanner Subjects Works Based on This Dataset

BOLD5000 (Chang et al. (2019)) image-viewing 3T 4 Chen et al. (2023); Prince et al. (2022);
Sexton & Love (2022)

GOD (Horikawa & Kamitani (2017)) image-viewing 3T 5 Chen et al. (2023); Du et al. (2023)

NSD (Allen et al. (2022)) image-viewing 7T 8
MindEye1&2 (Scotti et al., 2024a;b); Gu
et al. (2022); Ferrante et al. (2024); Qian

et al. (2023); Han et al. (2024)
Raiders (Haxby et al. (2011)) movie-viewing 3T 21 Chen et al. (2015); Shvartsman et al. (2018)

Forrest Gump (Hanke et al. (2014)) movie-viewing 7T 20 Chen et al. (2015); Wagner et al. (2022);
Huang et al. (2022)

Budapest (Matteo et al. (2020)) movie-viewing 3T 25 Matteo et al. (2021); Busch et al. (2021)
HCP (Van Essen et al. (2013)) movie-viewing 7T 177 Zhou et al. (2024); Lu et al. (2024)
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Figure 2: Dataset reconstruc-
tion from the HCP data. We
extract the last frame i in
each second of the movie
clip as the stimulus image,
and average the fMRI voxels
in the subsequent 4 seconds
(due to hemodynamic delay)
as the corresponding neural
response v to obtain image-
fMRI pairs.

We then turn to the movie-viewing task, which provides continuous, causally-related visual inputs
over a short period. Compared to the image-viewing task, movie-viewing can yield much more
data pairs in the same time-frame while keeping participants more engaged. Therefore, movie-
viewing experiments can involve more subjects, as shown in Tab. 1. Actually, some works have been
proposed to extract video frames for visual brain retrieval Schneider et al. (2023) and classification
Zhou et al. (2024). Therefore, we propose to extract image-fMRI pairs from the movie-viewing
task to build our dataset. Specifically, we choose the movie-viewing task in the HCP dataset, which
involves 177 participants, making it the largest movie-viewing dataset available for visual decoding
research. In data collection, the participants watched four audiovisual films, and the fMRI responses
were captured with a repetition time (TR) of 1 second using a high-resolution 7T scanner. The
volumetric images are registered to 1.6mm MNI space, with dimensions of 113 × 136 × 113 per TR.

As shown in Fig. 2, to extract the corresponding image-fMRI pairs, we extract the last frame i of
each second of the film as the stimulus image, whose corresponding fMRI response voxel is denoted
as v,i. Following the 4-second hemodynamic delay suggested by Khosla et al. (2020), we average
the fMRI signals from the subsequent four seconds to represent the neural response to each stimulus
image (e.g, average v,1 - v,5 to obtain v1 for i1), resulting in a total of 3,127 image-fMRI pairs for
each subject. Finally, the reconstructed dataset includes 177 subjects with 177 × 3,127 image-fMRI
pairs. By leveraging this dataset, we can explore the generalization capabilities of brain decoding
models across a broader population. Our experiments in Sec. 4.2 demonstrate that generalization
will emerge when a sufficient number of subjects are involved in training. This dataset provides a
valuable foundation for researchers to investigate the behaviours of brain decoding models.

3.2 LEARNING PARADIGM

Prior studies are typically focused on decoding brain activity of individuals, while little work has
been done on exploring the model generalization capability to unseen subjects. With our consoli-
dated dataset in Sec. 3.1, we propose a learning paradigm to investigate the generalizability of visual
brain decoding based on three core principles: (1) utilization of whole-brain data; (2) simple and
flexible pipeline; (3) applicability to a large number of diverse subjects.

Utilization of the Whole-Brain Data. As shown in Tab. 1, most recent visual brain decoding
studies rely on the NSD dataset, which provides two types of training data: NSDGeneral data and
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Subj1 Subj2 Subj3 Subj4

Figure 3: The visualization of scanned brain data in NSD dataset. The highlighted regions indicate
the manually labeled NSDGeneral data. Compared to the whole brain, the NSDGeneral regions
show significant variations across different subjects.

whole-brain data. As illustrated in Fig. 3, the whole-brain data contain the fMRI voxels (about
800K elements) of the entire brain, while the NSDGeneral data comprise 1D vectors (flattened
voxels) of only 10k–20k elements, which are manually labeled as vision-related brain regions, called
NSDGeneral regions (see the highlighted areas). Since NSDGeneral data are directly related to
brain regions in charge of visual processing, they often result in better visual decoding performance
in the studies focused on single subjects. However, for research investigating the generalization
capability across multiple subjects, we believe whole-brain data are more appropriate. First, the
NSDGeneral data require manual segmentation, and hence they are difficult to scale across a large
number of subjects, limiting their suitability for generalization studies. Note that most datasets, such
as the HCP, only provide whole-brain data. Second, as can be seen in Fig. 3, the manually labeled
NSDGeneral regions show significant variations across different subjects, while the whole brain
show much less variations in shape. It is thus more difficult to train a common model to multiple
subjects using the NSDGeneral data than the whole-brain data (See Sec.4.6). Third, the NSDGeneral
data exclude other brain regions, such as those in charge of memory or contextual understanding.
Ignoring those regions may prevent a more comprehensive decoding of brain activities Zhou et al.
(2024). Therefore, we advocate for using whole-brain data in the study of on model generalization,
rather than data limited to specific brain regions.

Simple and Flexible Pipeline. A simple and flexible learning pipeline is preferred to verify that
generalizability is a fundamental property of visual brain decoding, minimizing the factors brought
by complex network designs. Our learning pipeline is shown in the left part of Fig. 4. The core idea
is to project the paired stimulus-image I and fMRI-voxel V into the same feature space, where they
could be as similar as possible. Following Scotti et al. (2024a); Xia et al. (2024), we use the CLIP
ViT-L/14 model to encode the images into features FI , while the visual brain decoding network is
trained to map fMRI-voxels to FV in the same feature space. The feature size of the CLIP embedding
space is 257× 1024, which retains detailed image information compared to the high-level semantic
content of the final CLS token in CLIP. Contrastive learning is employed to align FI with FV using
the CLIP Loss:

L =
1

2N

(
N∑
i=1

− log
exp(sim(F i

I , F
i
V )/τ)∑N

j=1 exp(sim(F i
I , F

j
V )/τ)

+

N∑
i=1

− log
exp(sim(F i

V , F
i
I )/τ)∑N

j=1 exp(sim(F i
V , F

j
I )/τ)

)
,

(1)
where F i

I and F i
V are the embeddings of the ith image and fMRI voxel, τ is the temperature param-

eter, and sim(x, y) represents the cosine similarity between x and y:

sim(x, y) =
x · y

∥x∥∥y∥
. (2)

During inference, retrieval is performed by calculating the cosine similarity and taking the most
similar pairs. We use MLP as the decoding network in most of our experiments, while the network
architecture can be changed to CNN and Transformer (See Sec.4.3), and the model performance can
be further improved with additional strategies (See Sec.4.5).

Applicability to Many Diverse Subjects. Previous studies are mostly focused on a small number
of participants, and they use separate heads or tokenizers for different subjects to improve per-
formance. While being effective in small scale studies, these approaches become impractical and
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Figure 4: The overview of our learning pipeline (left) and visual brain decoding network (right).

cannot scale up as the number of subjects increases. To explore model generalizability, we employ
the same decoding network (see the right part of Fig. 4) to accommodate a large number of subjects
without requiring specific adaptations for each individual. Due to the structural differences in brain
anatomy, the size of fMRI voxels, even for the same brain activity, can vary across subjects, which
cannot be directly batched for network training. To solve this issue, we apply simple upsampling to
resize the voxels to a standardized larger size. This method is simple and straightforward and can be
done in the processing of the dataset. Experimental results show that this unified approach does not
compromise performance in whole-brain decoding and can even enhance performance across mul-
tiple subjects (See Sec.4.6). As shown in the right of Fig. 4, our final network design involves an
upsample layer to normalize voxel sizes for all subjects, followed by feeding the data into a unified
network without requiring any subject-specific adaptations.

3.3 GENERALIZATION PERFORMANCE VS. SUBJECT SIMILARITY

During experiments, we notice some performance biases of models trained on different gender
groups, which represent one of the most easily identifiable similarity categories. It inspires us to
hypothesize that the degree of similarity among subjects might impact the model generalization per-
formance. To test this hypothesis, we need to identify which subjects are more similar to the given
subjects. For a target subject St, given a set of images I viewed by N different subjects SN , for each
image i, we can calculate the cosine similarity (refer to Eq. 2) between the fMRI voxel vi,St of target
subject and the voxel vi,Sn of subject Sn ∈ SN as follow: Sim scorei,St,Sn = sim(vi,St , vi,Sn).
The similarity score reflects the likeness between the two subjects (St and Sn) based on a given
image i. The overall similarity score of the two subjects can be obtained by averaging over all im-
ages I . However, the outlier images can make the averaged score less robust. Therefore, we use a
rank-based method. For each image i, we calculate Sim scorei,St,Sn

and rank the N scores from
highest to lowest. Then, we select the top 10 subjects based on their ranks and award them one
rank credit. After repeating this process for all images, subjects with higher total rank credits are
considered more similar to the target subject St. The process to calculate the rank credit of Sn for
St can be formulated as:

Rank Credit(St, Sn) =
∑I

i=1
1(Sn ∈ top 10 rank(Sim scorei,St,Sj

for j = 1, 2 . . . , N)), (3)

where 1(·) is an indication function that assigns 1 if Sn is among the top 10 most similar subjects
to St based on image i, otherwise 0. Finally, we use models trained on both similar and dissimilar
subjects to explore how subject similarity influences the generalization performance. The results are
shown in Sec. 4.4.
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Table 2: Results of models trained on our consolidated HCP dataset with different number of training
subjects. TOP1 Acc. and TOP3 Acc. are averaged over the unseen subjects (Subjs 1-10). TOP1
Acc. (seen) is averaged over all seen subjects participated in training.

Training Subjects No. of Training Subjects TOP1 Acc. TOP3 Acc. TOP1 Acc. (seen)
Subj 11 1 2% 5% 79%

Subjs 11-12 2 2% 6% 84%
Subjs 11-30 20 15% 29% 83%
Subjs 11-60 50 29% 43% 83%
Subjs 11-110 100 37% 52% 82%
Subjs 11-177 167 45% 61% 82%

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We implement all models using PyTorch (Paszke et al., 2017). Except specifically indicated, we
employ MLP and 3D CNN as the backbone for feature extraction when using whole-brain data. The
detailed network structure can be found in the supplementary file. During training, we employ the
CLIP loss (Radford et al., 2021) and the AdamW optimizer (Loshchilov & Hutter, 2017) to optimize
the models (β1 = 0.9, β2 = 0.999). We set the batch size to 300, and apply the OneCycleLR strategy
with a warm-up phase to adjust the learning rate, with a maximum learning rate of 1 × 10−4. The
HCP dataset we consolidated includes 177 subjects, each subject having 3,127 image-fMRI pairs.
we randomly choose 100 images and the corresponding fMRI voxels as the test pairs, and use the
rest as the training pairs. Note that the test pairs of all subjects are from the same 100 images. Subjs
1-10 are designated as unseen subjects, with the remaining 167 subjects as seen subjects.

In our experiments, several models will be trained on different numbers of subjects. For convenience
of expression, we define one training epoch based on the number of image-fMRI pairs of a single
subject; that is, one epoch contains 3,027 image-fMRI pairs. The epochs of models trained on 1, 2,
20, 50, 100, and 167 seen subjects are 200, 200, 400, 600, 800, and 1,000 epochs, respectively. For
the experiment on the NSD dataset, which includes 8 subjects, we follow the standard train/test split
with 1,000 test images (Allen et al., 2022), and select Subj 2 and Subj 5 as unseen subjects. We train
the models with 1 and 6 seen subjects for 120 and 360 epochs, respectively, and each epoch includes
9,000 image-fMRI pairs.

4.2 MAIN RESULTS ON GENERALIZATION PERFORMANCE

As describe in Sec. 4.1, we train models on 1, 2, 20, 50, 100 and 167 subjects and evaluate them
on 10 unseen subjects (Subjs 1-10). The results are shown in Tab. 2. We can clearly see that as
the number of training subjects increases, the model’s generalization capability on unseen subjects
improves. When only one or two subjects are used in training, the generalization capability is weak.
When the number of training subjects reaches 167, the TOP1 and TOP3 accuracies improve to
45% and 61%, respectively. Considering that our test set contains 100 image-fMRI pairs, such a
generalization performance is highly encouraging. Fig. 1 plots the curve of TOP1 accuracy vs. the
number of training subject. We observe that the generalization performance continues to improve
steadily. Even with 167 subjects, it does not reach a plateau. This suggests that the models hold
potential for further improvement if more subjects can be introduced for training.

We also provide in Tab. 2 the results of our model on seen subjects for reference. The test pairs are
from the subjects involved in the training process. We can see that the TOP1 accuracies are very
close for different number of training subjects. This is reasonable because the testing data share
similar distribution with the training data, no matter 1 or 167 subjects are involved, and the network
is able to fit the distribution via sufficient training.
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Backbones TOP1 Acc. TOP3 Acc. TOP1 Acc. (seen)
MLP 45% 61% 82%

1D CNN 42% 58% 80%
3D CNN 40% 57% 80%

Transformer 34% 52% 77%

Table 3: Results of models with differ-
ent backbones trained on 167 subjects.
TOP1 and TOP3 Acc. are averaged over
ten unseen subjects (Subjs 1-10). TOP1
Acc. (seen) is averaged over all seen
subjects.

4.3 THE GENERALIZATION PERFORMANCE WITH DIFFERENT BACKBONES

In Sec. 4.2, we used MLP as the backbone and validated the generalization capability our models
trained on more subjects. Here, we validate whether this conclusion holds for other popular net-
work architectures, such as CNN and Transformer networks. The details of the employed network
architectures can be found in the supplementary file. The results are shown in Table 3, which
demonstrates that even if there are some differences in performance, the generalization capability is
consistently achieved across different network architectures. Specifically, the MLP achieves the best
generalization performance, with 45% TOP1 accuracy on unseen subjects and 82% on seen subjects,
followed closely by 1D CNN and 3D CNN, which yield comparable results. The Transformer net-
work exhibits the lowest performance, which may be attributed to the fact that Transformer typically
needs larger training datasets to exhibit its superiority, whereas our current dataset for visual brain
decoding is relatively small, making CNNs and MLPs more effective in this case.

4.4 GENERALIZATION VS. SUBJECT SIMILARITY

From the experiments in previous sections, we have seen that the network could exhibit obvious
generalization capability when enough subjects are used in training. During our experiments, inter-
estingly, we notice some performance biases of models trained on different gender groups. Gender
is one of the most commonly observed characteristics of sample similarity, which inspires us that
the similarity among subjects might impact the model generalization performance. To be specific,
we train three models using data from 50 male subjects, 50 female subjects, and a mixed group of
25 male and 25 female subjects, respectively. Then, we evaluate these models on unseen male Subj
1 and female Subj 2, and the results are shown in Tab. 4. One can see that the model trained on male
subjects achieves the best retrieval performance on the unseen male subject (Subj 1) with 36% TOP1
accuracy and 60% TOP3 accuracy, but it performs the worst on the unseen female subject (Subj 2)
with 25% TOP1 accuracy and 37% TOP3 accuracy. In contrast, the model trained on female subjects
shows the opposite behaviour, performing better on Subj 2 and worse on Subj 1. Meanwhile, the
model trained on the mixed group always obtain the intermediate result on the unseen subjects. Such
results suggest that the generalization capability should be related to the similarity among subjects.

Therefore, we further explore this phenomenon by finding similar and dissimilar subjects to Subj
1 and Subj 2. Utilizing the method mentioned in Sec. 3.3, we identify 20 most similar subjects
and 20 least similar subjects to Subj 1, as well as 20 most similar and least similar subjects to
Subj 2. As shown in Tab. 4, the model trained on the 20 subjects most similar to Subj 1 achieves
the best performance on Subj 1, with a TOP1 accuracy of 21% and a TOP3 accuracy of 36%. In
contrast, the model trained on the 20 most dissimilar subjects performs significantly worse, with a
TOP1 accuracy of 8% and a TOP3 accuracy of 14%. A similar trend can be observed for Subj 2,
where the model trained on the 20 most similar / dissimilar subjects achieves the highest / lowest
performance. Additionally, the model trained on Subjs 11-30, as a reference for randomly selected
20 subjects, yields moderate performance on both Subj 1 and Subj 2. This demonstrates that the
similarity between subjects can largely affect the generalization performance. Even with 20 subjects
in training, if the subjects are highly dissimilar, the model can achieve little generalization capability,
such as 2% TOP1 Acc. on Subj 2. We also train models on a mixed set of 20 similar and 20 dissimilar
subjects for Subj 1 and Subj 2. The results closely match the performance of models trained on the
20 similar subjects alone.

The above experimental results show that when the subjects are similar, the models achieve better
generalization performance, and vice versa. On the other hand, when a mix of similar and dissimilar
subjects are used for training, generalization remains stable, with performance approaching to the
models trained on similar subjects. This suggests that generalization capability depends on learning

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Results of models trained on subjects that have different gender or similarity. All the
training subjects are from Subj 3-167. Best and worst results are marked by red and blue.

Training Subjects TOP1 Acc. on
Subj 1 (male)

TOP3 Acc. on
Subj 1 (male)

TOP1 Acc. on
Subj 2 (female)

TOP3 Acc. on
Subj 2 (female)

50 male 36% 60% 25% 37%
50 female 27% 40% 30% 42%

25 male + 25 female 32% 49% 27% 40%
20 similar to Subj 1 21% 36% - -

20 dissimilar to Subj 1 8% 14% - -
20 similar to Subj 2 - - 21% 31%

20 dissimilar to Subj 2 - - 2% 7%
Subjs 11-30 (20) 17% 31% 18% 23%

20 similar + 20 dissimilar to Subj 1 21% 30% - -
20 similar + 20 dissimilar to Subj 2 - - 20% 28%

Table 5: Results of models trained with different training strategies. TOP1 Acc. are averaged over
unseen subjects (Subjs 1-10). TOP1 Acc. (seen) is averaged over all seen subjects during training.

Trainging Subjects Subject Number Strategies TOP1 Acc. TOP1 Acc. (seen)
Subj 11 1 CLIP / BiMixCo+SoftCLIP 2% / 6% 79% / 83%

Subjs 11-177 167 CLIP / BiMixCo+SoftCLIP 45% / 50% 82% / 84%

inherent commonalities among human brains, with substantial tolerance for dissimilarities. It also
explains why increasing the number of subjects enhances generalization — a larger dataset are more
likely to include subjects with higher similarities.

4.5 TRAINING STRATEGY

In our main experiments, in order to prove that the generalization capability does not come from
some specific strategies, we use the simplest contrastive learning pipeline and the CLIP loss to
verify our approach on commonly used network architectures. In this section, we demonstrate that
the model performance can be further enhanced if stronger training strategies can be employed. In
particular, we adopt the BiMixCo+SoftCLIP training strategy from MindEye1 (Scotti et al., 2024a).
The BiMixCo+SoftCLIP strategy incorporates a data augmentation technique, extending the mixup
approach with the InfoNCE loss He et al. (2020). Additionally, we replace the CLIP loss with the
SoftCLIP loss, which leverages softmax probability distributions rather than hard labels. Details of
these methods can be found in the supplementary file.

As shown in Tab. 5, the adoption of BiMixCo+SoftCLIP leads to a noticeable improvement in
generalization performance for both single-subject models (TOP1 accuracy improves from 2% to
6%) and multiple-subject models (TOP1 accuracy improves from 45% to 50%). This strategy also
enhances the retrieval accuracy on seen subjects. These results suggest that better learning strategies
can be designed to boost the model generalization capabilities, highlighting the potential of our
approach for visual brain decoding.

4.6 EXPERIMENTAL RESULTS ON THE NSD DATASET

To demonstrate the flexibility of our pipeline, we also train the model on the NSD dataset, including
both NSDGeneral and whole-brain data. The results are shown in Tab. 6. We see that the models
trained on Subj 1 using NSDGeneral data with both the original data format (i.e, 1 × 15,724 in
MindEye1) and our normalized data format (i.e, 1 × 18,000) achieve similar TOP1 accuracy, i.e,
85% and 86%, respectively. (The TOP1 accuracy reported in the original paper of MindEye1 (Scotti
et al., 2024a) is 84%.) The results on Subj 7 can yield similar conclusion. This demonstrates that our
pipeline can be well applied to the individual-specific scenario using NSDGeneral data. However,
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Table 6: Results of models trained on NSD dataset. As in previous works, we randomly extracted
300 pairs from 1,000 pairs of the test set to perform the testing, and run 30 times the experiments to
take the average. ‘MindEye1’ means our implemented model of MindEye1 (Scotti et al., 2024a).

NSDGeneral Data NSD Whole-brain Data
Models Training Subjects Testing Subjects Data Format TOP1 Acc. Data Format TOP1 Acc.

MindEye1 Subj 1 Subj 1 1 × 15,724 85% 83 × 104 × 81 35%
Ours Subj 1 Subj 1 1 × 18,000 86% 113 × 136 × 113 46%

MindEye1 Subj 7 Subj 7 1 × 12,682 70% 81 × 95 × 78 23%
Ours Subj 7 Subj 7 1 × 18,000 70% 113 × 136 × 113 29%
Ours Subjs 1,3,4,6,7,8 Subj 1 1 × 18,000 83% 113 × 136 × 113 49%
Ours Subjs 1,3,4,6,7,8 Subj 7 1 × 18,000 69% 113 × 136 × 113 35%
Ours Subjs 1,3,4,6,7,8 Subjs 2,5 1 × 18,000 1% 113 × 136 × 113 1%

by using simple interpolation based upsampling to normalize the data format as a 1 × 18,000 vector,
we can train models on multiple subjects with different original NSDGeneral data sizes. As shown
in the bottom three rows of Tab. 6, by training on subjs 1,3,4,6,7,8 and testing on subj 1 or subj 7,
83% and 69% TOP1 accuracy can still be obtained since subj 1 or subj 7 are included in the training
data. However, when testing on the unseen subjs 2 and 5, only 1% TOP1 accuracy is obtained.
This is because the NSD dataset has only 8 subjects in total, which is too few to ensure the model
generalization performance.

Let’s then evaluate the models trained with whole-brain data. The up right panel of Tab. 6 shows
the results on Subj 1 and Subj 7 by MindEye1, which uses the original whole-brain data format, and
our model, which uses the normalized data format (i.e, 113 × 136 × 113). We see that in the case of
whole-brain data, the simple normalization of data size can improve much the TOP1 accuracy from
35% to 46% for subj 1 and from 23% to 29% for subj 7, this may because the larger size bring more
model parameters. The accuracy is lower than that on NSDGeneral data because the NSDGeneral
data are manually labeled brain visual regions. Again, the normalized data size enables us to train
models on multiple subjects with different original data sizes, which cannot be done by MindEye1.
As shown in the bottom right panel of Tab. 6, our model trained on six subjects achieves 49% TOP1
accuracy on Subj 1 and 35% on Subj 7, outperforming single-subject models trained on Subj 1
(46%) and Subj 7 (29%) with the same parameter number, respectively. In contrast, on NSDGeneral
data, the multiple-subject models perform slightly worse than their single-subject counterparts. This
discrepancy highlights the individual-specific nature of NSDGeneral data, as discussed in Sec. 3.1
and shown in Fig. 3. We also report the generalization performance of models trained on six
subjects on unseen Subjs 2 and 5. Again, the model shows weak generalization ability due to the
small number of training subjects in NSD dataset.

5 CONCLUSION

Previous visual brain decoding studies typically focused on individual subjects, or training with
multiple-subjects but decoding on seen subjects, while little work has been done on exploring the
possibility of generalizing visual brain decoding to unseen subjects. We made an attempt to achieve
this goal by leveraging a large dataset from the Human Connectome Project (HCP), constructing 177
× 3,127 image-fMRI pairs from 177 subjects. Using this dataset, we proposed a learning paradigm,
which utilized whole-brain data and a simple and uniformed pipeline for processing all subjects,
without requiring individual-specific adaptations. Via extensive experiments, we found that the
model generalization capability appeared with the increase of training subjects, and such general-
ization capability held across different network architectures. In addition, the similarity between
subjects also played a role in improving the generalization capability. These findings revealed the
inherent similarity in brain activities across individuals, which has significant implications for future
studies. As larger, more diverse datasets become available, this work may provide basis for training
a brain encoding foundation model in the future.
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