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Abstract

Distributed high dimensional mean estimation is a common aggregation routine used often
in distributed optimization methods. Most of these applications call for a communication-
constrained setting where vectors, whose mean is to be estimated, have to be compressed
before sharing. One could independently encode and decode these to achieve compression,
but that overlooks the fact that these vectors are often close to each other. To exploit these
similarities, recently Suresh et al., 2022, Jhunjhunwala et al., 2021, Jiang et al, 2023, proposed
multiple correlation-aware compression schemes. However, in most cases, the correlations
have to be known for these schemes to work. Moreover, a theoretical analysis of graceful
degradation of these correlation-aware compression schemes with increasing dissimilarity
is limited to only the fs-error in the literature. In this paper, we propose four different
collaborative compression schemes that agnostically exploit the similarities among vectors in
a distributed setting. Our schemes are all simple to implement and computationally efficient,
while resulting in big savings in communication. The analysis of our proposed schemes show
how the /5, /., and cosine estimation error varies with the degree of similarity among vectors.

1 Introduction

We study the problem of estimating the empirical mean, or average, of a set of high-dimensional vectors in a
communication-constrained setup. We assume a distributed problem setting, where m clients, each with a
vector g; € R?, are connected to a single server (see, Fig. . Our goal is to estimate their mean g on the
server, where

92 g (1)

We use [m] to denote the set {1,2,...,m}. The clients can communicate with the server via a communication
channel which allows limited communication. The server does not have access to data but has relatively more
computational power than individual clients.

This problem, referred to as distributed mean estimation (DME), is an important subroutine in several dis-
tributed learning applications. One common application is distributed training or federated learning (McMahan,
et al.l |2016; McMahan & Ramage, 2017, when different clients correspond to different edge devices.

The typical learning task for DME is supervised learning via gradient-based methods (Bottou & Bousquet),
2007; Robbins & Monrol [1951)). In this case, the vectors g; correspond to the gradient updates for each
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Figure 1: Compression for Distributed Mean Estimation

client i computed on its local training data, and g is the average gradient over all clients. On the other
hand, distributed mean estimation is also used in unsupervised learning problems such as distributed
KMeans (Liang et all, [2013)), distributed PCA (Liang et al., [2014)) or distributed power iteration (Li et al.|
. In distributed KMeans and distributed power iteration, g; corresponds to estimates of the cluster
center and the top eigenvector, respectively, on the i*" client.

The naive strategy of clients sending their vectors g; to the server for DME incurs no error; however, it
has a high communication cost, rendering it burdensome in most of the real-world network applications.
A principled way to tackle this is to use compression: each client ¢ € [m] compresses its vector g; into an
efficient encoding b; € B; which can then be sent to the server; The server forms an estimate § of the mean
g using the encodings {Ei}ie[m]. We can then compute the error of the estimate § and the number of bits
required to communicate b (i.e., log,y |B;|) to analyze the efficiency of the compression scheme. As opposed
to distributed statistical inference (Braverman et al., 2016} |Garg et al., 2014)), we do not assume that g; are
sampled from a distribution, and instead the estimation error of these schemes is computed in terms of g;.

One way to approach this compression paradigm is when each client compresses its vector oblivious to others,
and the server separately decodes the vectors before aggregating (Figure . We call this independent
compression and several existing works (Konecny & Richtérik, 2018} [Suresh et al 2017 [Safaryan et al.
2021} [Gandikota et all, [2022; [Vargaftik et al., 2021} Ghosh et al., |2021) use such a compression scheme. The
simplest example of this scheme is RandK (Kone¢ny & Richtérikl 2018)), where each client sends only K € N
coordinates as b;, and the server estimates g as the average of K-sparse vectors from each client. As K < d,
this scheme requires less communication than sending the full vector g; from each client i € [m].

However, independent compressors suffer from a significant drawback, especially when the vectors to be
aggregated are similar /not-too-far, which is often the case for gradient aggregation in distributed learning.
Consider the case when two distinct clients 4, j € [m] have different vectors g; # g;, but they differ in only one
coordinate. Then, independent compressors like RandK will end up sending b; and Bj which are very similar
(in fact, same with high probability) to each other, and therefore wasting communication. Collaborative
compressors (Suresh et al., 2022; |Szlendak et al., 2021} |Jhunjhunwala et al., 2021; |Jiang et al., |2023) can
alleviate this problem. Figure [1b|describes a collaborative compressor, where the encodings {; }ic[m) may not
be independent of each other and a decoding function jointly decodes all encodings to obtain the mean estimate
g. Clearly, this opens up more possibilities to reduce communication - but also the error of collaborative
compressors can be made to scale as the variability of the vectors.

The amount of required communication also depends on the metric for estimation error. Among the existing
schemes for collaborative compressors, most provide guarantees on the /5 error ||§ — g||3 (Suresh et al., 2022}
[Szlendak et al., 2021} |Jhunjhunwala et all [2021}; Jiang et al., 2023)). Also, in collaborative compressors, the
error must ideally be dependent on some measure of correlation/distance among the vectors, which is indeed
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Table 1: Theoretical results for our proposed collaborative compression schemes. Ag, Afadamard, Areg and Acorr are
measures of average dissimilarity between vectors {g;}ic[m defined in Theorems and Lemma [l| respectively.
For NoisySign, o > 0 is an algorithm parameter. For HadamardMultiDim, we assume ||gi||cc < B,Vi € [m]. For
SparseReg, we assume ||gi||2 < B,Vi € [m] and L is an algorithm parameter. For OneBit, g is the unit vector along

1 m ) ~ . 3 .
the average -~ 21:1 g; and § is also a unit vector.

the case for all of these schemes. In this paper, the measure of such a distance is denoted with A, with some
subscript signifying the exact measure; the vectors in question have high similarity as A — 0. The estimation
error naturally grows with the dimension d, and decays with the number of clients m (due to an averaging).
One of our major contributions is to design a compression scheme that has significantly improved dependence
on the number of clients m to counter the effect of growing dimension d.

If one were to estimate the unit vector in the direction of the average vector % > gi, which is often
important for gradient descent applications, using an estimate of the mean with low {5 error can be highly
sub-optimal as the £5 error might be large even if all the vectors point in the same direction but have different
norms. For this, the cosine distance arccos(%) is a better measure, which has not been studied in the
literature. We also give a compression scheme specifically tailored for this error metric. Another interesting
metric is the ¢o-error which has also not been studied except for in (Suresh et all |[2022). There as well, we

give an improved dependence of the estimation error on m.

Further drawback of existing collaborative compressors such as, (Jhunjhunwala et al., 2021} |Jiang et al.l
2023) is that they require the knowledge of correlation between vectors before employing their compression.
Without this knowledge, their error guarantees do not hold.

Notation. We use [a,b] to denote [a,a + 1,a+2,...,b] for a,b € N. We use g\%),j € [d] to denote the j*"
coordinate of a vector g € R For a permutation p on [m], p*) denotes mapping of i € [m] under p. We use
II,, to denote the uniform distribution over all permutations of [m]. We use exp(a) to denote ¢©(®) for any
a € R. For any matrix A € R™*" A for k € [m] refers to the k' row of A.

Our contributions. We provide four different collaborative compressors, which are communication-efficient,
give error guarantees for different error metrics (¢2 error, £, error and cosine distance), and exhibit optimal
dependence on the number of clients m and the diameter of ambient space B. To see the advantage of
collaboration, we define few natural similarity metrics. All our schemes show graceful degradation of error with
the similarity metric between different clients. Our schemes have three subroutines: Init which corresponds
to initialization/setting up a protocol, Encode which is performed individually at each client to obtain their
encoding b;, and Decode which is performed at the server on all the encodings to obtain estimate of mean §.

Below our main contributions are summarized. The theoretical guarantees for our algorithms are provided in
Table [T For each of our proposed compressors, increasing m increases the total communication required
(which is a product of m and the # Bits/client), but reduces the estimation error in the appropriate error
metric up to a constant A that depends on the deviation between client vectors.

1. We provide a simple collaborative scheme based on the popular signSGD (Bernstein et al., [2018a)) scheme,
NoisySign (Algorithm , where sign of each coordinate of a vector is sent after adding Gaussian noise. An
advantage of this scheme, compared to others is that we can infer the vector g with an ¢, error guarantee
increasing with ||g||o and decreasing with m, without the knowledge of ||g||oo itself. The dissimilarity is
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Compressor Error # Bits/client Notes

RandK (Konecény & Richtarik|[2018) (’)(%552)~ 32K + Klogd Independent

SRQ (Suresh et al.||2017) O(m&"("idl)2432) Kd Independent

Kashin (Safaryan et al.|[2021) (’)((\}%\_/?)) B?) 31+ M\d Independent

Drive (Vargaftik et al.| [2021) O(B?%) 32+d Independent

PermK (Szlendak et al.| 2021) O((1 — max{0, Z=4})A,) 32K + Klogd Collaborative
RandKSpatial (Jhunjhunwala et al.||2021) O(=4-A») 32K + Klogd Needs Correlation
RandKSpatialProj (Jiang et al.|[2023) O(ﬁAQ) 32K + Klogd Needs Correlation
Correlated SRQ (Suresh et al.|[2022) o (% min{\/aATgoB, 0?22 }) 2dlog K + Klogd ||gill2 < B,Vi € [m)]

Table 2: Comparison of existing independent and collaborative compressors in terms of £z error and bits commu-
nicated. K is the number of coordinates communicated for sparsification methods(RandK, PermK, RandKSpatial,
RandKSpatialProj) and the number of quantization levels for quantization methods (SRQ, vqSGD, Correlated SRQ).
The constant X is a parameter of the Kashin scheme. Further, B?> = % ZZ’;IHgZH%, Ay = % Z:’;lﬂgl — g||§7 and
Ao = max;e(q = Ell|g§j) — ¢\, Tt is also assumed that a real is equivalent to 32 bits, which is an informal norm
in this literature.

Ay = OG5 1|9 — gilleo), where o is the variance of the noise added (Theorem . This scheme is

mao

described in Section 21

2. ({w-guarantee) For vectors with £, norm bounded by B, we propose a collaborative compression scheme,
HadamardMultiDim (Algorithm [3) which performs coordinate-wise collaborative binary search. We obtain
the best dependence on m and B for the /o, error (O(B - exp(—m))) while suffering from an extra error
term Apgadamard, Which is a measure of average dissimilarity between compressed vectors. Agadamard lies in
the range [As, Aso max] where Ay = max;cg) %n 2211‘91(]) — g9 and Ao max = maxje[d],ie[m]\ggj) — g
(Theorem . In Section we provide a practical example where value of Agadgamara can be approximated
and use it compare theoretical guarantees of HadamardMultiDim with those of baselines in Table

3. (¢3-guarantee) For vectors with ¢ norm bounded by B, we provide a collaborative compression scheme
SparseReg (Algorithm [4]) based on Sparse Regression Codes (Venkataramanan et al.| [2014bja). We obtain
the best dependence on B and m for the {5 error (O(B exp(—m/d))) while compressing to much less than d
bits (in fact, to a constant number of bits) per client. The error consists of a penalty for the dissimilarity,
Areg, the average dissimilarity between compressed vectors which lies in the range [Ag, Ag max] where
Ay = L5 g — gill3 and Az max = max;e(m||lg — gi/3 (see, Theorem .

4. (cosine-guarantee) For unit norm vectors {g;}ic[m], We estimate the unit vector g in the direction of
the average - > | g;. For this, motivated by one-bit compressed sensing (Boufounos & Baraniuk, 2008),
our collaborative compression scheme, OneBit (Algorithm [5)), sends the sign of the inner product between
the vector g; and a random Gaussian vector. By establishing an equivalence to halfspace learning with
malicious noise, we propose two decoding schemes: the first one is based on (Shen, [2023) which is optimal
for halfspace learning but harder to implement and a second one, based on (Kalai et al., 2008)) which is easy
to implement. Both schemes are computationally efficient, and have an extra dissimilarity term in the error,
Acorr = = > cos~!((g, g;)), which is the appropriate dissimilarity between unit vectors (see Theorem [4)).

5. (Experiments) We perform a simulation for DME with our schemes as the dissimilarities vary and
compare the three different error metrics from above with various existing baselines (Fig . We also used
our DME subroutines in the downstream tasks of KMeans, power iteration, and linear regression on real (and
federated) datasets (Fig[2d}2i). Our schemes have lowest error in all metrics for low dissimilarity regime.

Organization. In the next subsection, we present related works in distributed mean estimation. The
NoisySign algorithm is given in Algorithm [I} and its analysis can be found in Section [2] In Section |3 we
present the two schemes obtaining optimal dependence on m, HadamardMultiDim in Subsection [3.1] and
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SparseReg in Subsection [3.2] In Section [4] we analyze the OneBit compression scheme. Finally, in Section [5
we provide experimental results for our schemes.

1.1 Related Works

Compressors in Distributed Learning. Starting from (Konecny et al. [2016) most compression schemes
in distributed learning involve either quantization or sparsification. In quantization schemes, the real valued
input space is quantized to specific levels, and each input is mapped to one of these quantization levels. A
theoretical analysis for unbiased quantization was provided in (Alistarh et al., [2017). Subsequently, the
distributed mean estimation problem with limited communication was formulated in (Suresh et al., [2017))
where two schemes, stochastic rotated quantization (SRQ) and variable length coding, were proposed. These
schemes matched the lower bound for communication and 5 error in terms of B2 = 2 3™ ||g;||3. Performing
a coordinate-wise sign is also a quantization operation, introduced in (Bernstein et al., [2018b). Further
advances in quantization include multiple quantization levels (Wen et al.,[2017), probabilistic quantization with
noise (Chen et all [2020; Jin et al.| 2021; [Safaryan & Richtarik, 2021)), vector quantization (Gandikota et al.,
2022} |Zhu et al., 2023), and applying structured rotation before quantization (Vargaftik et al., [2021; [Safaryan|
et al.,|2021)). Sparsification involves selecting only a subset of coordinates to communicate. Common examples
include RandK (Koneény & Richtdrikl 2018), TopK (Stich et al., [2018)) and their combinations
et al.|, M Note, for all independent compressors, the £5 error scales as B2.

Collaborative Compressors. PermK (Szlendak et al., |2021)) was the first collaborative compressor, where
each client would send a different set of K coordinates. Their error scales with the empirical variance,
Ay = L3 |lg; — g||3. If Ao is known, or one of the vectors g; is known, the lattice-based quantizer in
(Davies et al., 2021)) and correlated noise based quantizer in (Mayekar et al., |2021)) obtains ¢, error in terms of
A,. Further, RandKSpatial (Jhunjhunwala et al., [2021) and RandKSpatialProj (Jiang et al. 2023) utilize the
correlation information to obtain the correct normalization coefficients for RandK with rotations, obtaining
guarantees in terms of A,. In absence of correlation information, they propose a heuristic. A quantizer also
based on correlated noise, was proposed in (Suresh et al.| [2022)) which achieves the lower bound for scalars.
However, for d-dimensional vectors of £3-norm at most B, their dependence on dimension d and number of
clients m can be improved by our schemes.

We provide a summary of existing compressors in Table [2] along with their error guarantees.

2 NoisySign for unbounded ||g;||oo

In this section, we utilize collaborative compression to use sign compressor when ||g;||oo is unbounded. The
sign-compressor (Bernstein et al., [2018al) applies the sign function coordinate-wise, where sign(z) = +1 if
x > 0 and —1 otherwise. For this section, we will focus on a single coordinate j € [d]. Note that for any
(j)|

i

1 € [m], sign(gl(j )) does not have information about |g Existing compressors dKarimireddy et al.|7 |2020|)

remedy this by sending | ggj )| separately, or assuming that | gl(j )| is bounded by some constant B (Safaryan
|& Richtarikl, 2021} |Jin et al., [2023} |Tang et all |2023). In the second case, the maximum error that can be
incurred is g. This can be improved by adding uniform symmetric noise before taking signs 1,

|2020|; |Chzhen & SchechtmanL |2023|) depending on g. However, if no information is available about |gij |, we

cannot provide an estimate of gi(J ),

We utilize the concept of adding noise before taking signs, however, to accommodate possibly unbounded
| gl(j ) |, we add symmetric noise with unbounded support. One choice for such noise is the Gaussian distribution
N(0,02) for some o € R. For €7 ~ N(0,02), we send b7 = sign(g"?) + £7)) as the encoding. Note that
]E[BEJ)] = @U(gl(j)), where ®,(t) = 2Prypnr(0,02)[r > —t] =1 = erf(ﬁ), and erf is the error function for
the unit normal distribution. A single ZN)Z gives us information about ggj ), however, using it to decode ggj )
might incur a very large variance. However, assuming that all g(j ) are close to g for i € [m], % iy EEJ ) is

a good estimator for ®,(g"")). So, to estimate gi¥), we can use ®;1(L 37, b)), This scheme performed
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coordinate-wise is the NoisySign algorithm described in Algorithm We provide estimation error for
recovering g using this scheme.

Theorem 1 (Estimation error of noisy sign). With probability 1 — 2dm™°¢, for some constant ¢ > 0, the
estimation error of Algorithm[1] is

p A<I>+ 2clogm -t
R e e e )

a([lglls)

where Ag £ maxepq| L S0, @a(ggj)) —®,(gY)] and a(u) £ 1 — ®,(u). Further, for small Ay and ”gclfl‘”,
and large m,

15— gllse = O (exp(l1g1[2 /%) - (A +/Togm/m)) . 3)

Applying ®_ ! to estimate g makes our scheme collaborative, as an independent scheme would have individually
decoded each client’s Bz and thus would not take advantage of concentration over m machines. To gain insight
into the error, note that (1 — z)~! — 1 ~ x, for small . The error increases with the increase in ||g||s as we
are compressing unbounded variables g; into the bounded domain [—1,1] which is the range of the function
®,.The number of clients m determines the resolution with which we can measure on this domain, as the
value % 27;1 b; can only be in multiples of % Therefore, increasing m decreases the error. As m — oo,

the {-error approaches Ag exp(”ff#). Note that Ag determines the average separation between vectors in
terms of the ®, operator. If vectors g; are similar to each other, Ag is small, and the error is small as a
result. Further, Ag can be bounded by more interpretable quantities if the average separation between g;
and ¢ is small:

2 1
Ag < /22— = o 4
@<y ig[m]llg gll (4)

Note that Ag is always < 2, so if the average error in terms of /o, norm is much smaller than o, then the
above bound makes sense. Combining Eq with Eq , we can find an asymptotic expression for the
estimation error. A large value of ¢ can help us reduce this upper bound on Ay as well as the impact of
a(|]g]loc) on the estimation error. One can tune the value of ¢ if additional information is known, for instance
a large upper bound on ||g||o and = 3™ ||g; — g||sc. However, even without this information, we can run
our algorithm. In contrast, the value of max;cim)||g||s is required to even run vanilla sign compression
algorithms. Additionally, it yields a constant error of O(max;c(m)||gill~), as each sign would need to be
accurate. If an upper bound is known for max;em1||gi||oc, then the error scales with this upper bound. In
contrast, for large m and small Ag, knowledge of a large upper bound helps us to set a large ¢ and thus

our collaborative compressor performs much better. Proofs for this section are provided in Appendix [A]

Algorithm 1 NoisySign Algorithm 3 HadamardMultiDim
Encode(g;) .
7 Init )
Sﬁmpl.e & ~N(0,0%1a) Sample a random permutation p ~ II,,.
bi t: mgn%gi +&i) Clients and server share p.
return ;. Encode(g;)
Decode ({b; }ic[m)) ' for j € |d] do
GV e (L3 5i(J)),j =1,....d 57 Hadamard1DEnc(g”, p(?)
return g end for _
return b;
Decode ({b; }ic[m))
Algorithm 2 Hadamard1DEnc for j € [d] do )
Input: Scalar s, Level K g = iy bi = ZPQ%
Sz_(:Uiigl—l[fBJr22§?1,—B+(22’3f7_123} end for
return —1 if s € S else +1 return g
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For NoisySign, collaboration ensured concentration over m. In the next section, we utilize collaboration to
obtain optimal dependence on m.

3 Optimal Dependence on m

If ||g]|oo OF ||gl]2 is bounded, we can obtain an almost optimal exponential decay with m. We provide two
schemes that obtain optimal ¢, ( by modifying the sign compressor) and ¢5 error dependence in terms of m
and the diameter of the space B. The proofs for this section are provided in Appendix

3.1 HadamardMultiDim

When the vectors have bounded ¢, norm, instead of obliviously using the sign compressor on every coordinate
on every client, one may be able to divide their range and cleverly select bits to encode the most information.
We call our algorithm Hadamard scheme, because the binary-search method involved is akin to the rows of a
Hadamard-type matrix.

Assumption 1 (Bounded domain). ||gi||cc < B,Vi € [m)].

This would imply that for any j € [d], gi(J ) e [~ B, B],Vi € [m]. Now, consider the i'" client and the scalar
gi(j ) and assume that we are allowed to encode this using m bits. The best error that we can achieve is zm%,
by performing a binary search on the range [—B, B] for gl(] ), sending one bit per level of the binary search.
However, this scheme is not collaborative. To obtain a collaborative scheme, for some permutation p on the
set of clients [m], the it" client can perform binary search until level p() and sends its decision at level p(*).
In this case, each client sends only 1 bit per coordinate. To decode G, we take a weighted sum of the signs
obtained from different clients weighed by their coefficients 20(% This is the core subroutine (Algorithm .
The full compression scheme for d coordinates applies this coordinate-wise in Algorithm [3] Note that the
clients and the server should share the permutation p before encoding and decoding, which need not change
over different instantiations of the mean estimation problem. To understand the core idea of the scheme,
consider the case when all vectors g; = g. Then, sending a different level from a different client is equivalent
to doing a full binary search to quantize g. As long as g;s are close to g, we hope that this scheme should
give us a good estimate of g. Let Bijlz denotes the encoding of ggj ) at level k Vi, k € [m],j € [d]. Therefore, if

3
. B
we were to use binary search to encode gl(j ), then >0, =t would be it’s decoded value.

Theorem 2 (HadamardMultiDim Error). Under Assumptions the estimation error for Algorithm@ 1s

- B .
IE',mvl_Im[ |g - g||oo} < W + mln{AHadamard; Ac>o,max}a (5)

_ 1 m
where AHadamard = MaXre(d) ]/ mz 2o 00 Djet
1<i#j<m

BET) -5\ )
(2'21” , and Aoo,max = MaXy¢[d],ic[m] |gi(r) - g( )|

As we allow full collaboration between clients, in the worst case, we might have to incur a cost Asg max Which
is the worst case dissimilarity among clients. However, if client vectors are close, we might end up paying a
much lower cost of AHadamard-

3.2 Sparse regression coding

In this part, we extend the coordinate-wise guarantee of the HadamardMultiDim to ¢s error between
d-dimensional vectors of bounded f3-norm.

Assumption 2 (Norm Ball). ||g;||2 < B,Vi € [m].

To extend the idea of binary search and full collaboration from HadmardMultiDim, we first need a compression
scheme which performs binary search on d dimensional vectors with {5 error guarantees. Sparse Regression
codes (Venkataramanan et al., 2014bga)), which are known to achieve the optimal rate-distortion tradeoff
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for a Gaussian source, fit our requirements. Let A € R™E*4 be a matrix for some parameter L > 0, where
Ay denotes the kth row of A. To compress a single vector g by Sparse Regression codes with the matrix
A, we use mlog L bits to find the closest vector to g in the first L rows of A; say the index of this vector
is by. Similar to binary search, we subtract c14;, from g, where ¢; is given in @ to obtain an updated
g. We repeat the process using the next set of L rows. Here, each set of L rows corresponds to a single
level of binary search, with the coefficients ¢; obtained from Eq @D having a decaying exponent. Although
(Venkataramanan et al., |2014b)) requires A to be a random matrix with iid Gaussian entries, if A satisfies the
following definition, then we can apply the theoretical guarantees of (Venkataramanan et al., [2014b)).

Definition 1 ((d,d2,T)-Cover). A matriz A € R™EX4 s q (8, 62,T)-Cover for 81,02 € (0,1) and T > 0, if
for each k € [m], Jex, vk, Tx € R, such that

|4;]]2 < VA + ) [[Aj — Ajrll2 < T

max
j#73'€[(k—1)L+1,kL]

(v, A;) > /2log L(1 + ¢),

max
JE[(k—1)L+1,kL]

Yo e S471 max
jel(k—1)L+1,kL]

m m
Sl s Sl gt maxr, <
Pt m P m ke[m]

By the above definition, for each k € [m], the L consecutive rows of A, which correspond to {4;,j €

[(k—1)L + 1,kL]}, form a e-net (Vershynin, 2018, Chapter 4.2) of S¥~! with ¢ = {/2(1 — 1/%). By

carefully selecting the parameters in the proof of (Venkataramanan et al., [2014b, Theorem 1), we can show
that this scheme obtains ¢5 error Bexp(—m) as long as A is a (d1, 02, ')-cover. Note that the matrix A is
deterministically constructed with m sets of e-nets. The choice of Gaussian A in (Venkataramanan et al.|
2014b)) can now be understood from the fact that such random Gaussian matrices are in fact e-nets. The
following remark summarizes this.

Remark 1 (Gaussian A). If each entry of the matriz A is sampled iid from N(0,1) then, for any d1,82,03 €
[0,1) and T% = 2d + 4, /dlog(%) + 4log(m5—’;“2), the matriz A is a (01,02, I")-Cover with probability 1 — d3 —

ds? —m
27 ,——L L2%2
2m=Le™ s m (logL .

Note that the expressions for d1,d2 can be obtained from (Venkataramanan et al.,|2014b) and the proof for
I is provided in Appendix For d = Q(logm), the probability of error in the above Remark can be made
arbitrarily close to 1 for large m.

We now extend the scheme based on sparse regression codes in (Venkataramanan et al. 2014b) to our setting
of distributed mean estimation, similar to HadamardMultiDim. Each client i € [m] encodes at level p(*)
where p is a permutation on [m] and the server computes the weighted sum of the encodings from each client
with corresponding coefficients c,¢:). Here, l;i,,k denotes the encoding of g; at level k Vi, k € [m]. If we were to
use Sparse Regression codes to encode only g; then Z;nzl CkA(kfl)L+l~77‘, , would be it’s decoded value. The
full scheme in described in Algorithm [f] and we compute it’s ¢ estimation error in the next theorem. In this
scheme, each client only needs to send a single index I;Z o+ As pis known to the server, this index is in the
range [L] and each client uses only log L bits for communication.

Theorem 3 (SparseReg Error). Under Assumption@ the following statements hold for g, the output of
Algorithm |Z|f0r any matriz A € RmLxd,

Ep,, [llg = 3ll3] = 117 = 113 + Areg, (6)

1 m 9 ) B 1 m m
where, Ayeg = 3 Z Z chHA(k_l)L_H;M - A(k_l)LJrgjkaQ and g = p. Z ZCkA(k‘_l)L‘i’Ei,k'
ZaJe[m]v'L#J k=1 i=1 k=1

In addition, if the matriz A is a (61,02,1)-Cover, then,
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PNH [||g g|| ] <A+ A, ,max; and, ||§ - g”% < Aa (7)
10log L mo 2 2log L\
where, A = B? (1 + zg g (61 + 62)) (1 - c;g )

2B2T2log L 2log L = -
By EEL 5 50 (12 ) 1bus # by 3)

i,JE€[m],i#j k=1
Remark 2 (Growth of A with m). By expanding the squares, we can see that A can be bounded by 3 terms.

misz  20B%log L 100B%log® L
A < B%e” e + 205" gL dOg (01 + d2)e™ T + 10057 log” L dQOg (01 + 52)2.
The first and the second terms decrease exponentially with m. The third term is a small constant independent

of m, depending on 01,62 < 1 that can be made arbitrarily small.

The proof is provided in Appendix [B:2] Similar to HadmardMultiDim, the first term in the estimation error,
A, has an exponential dependence on m and is obtained from the existing results of Sparse Regression Codes
from (Venkataramanan et al., 2014b). In terms of ¢5 error this dependence on m is better than all the prior
methods. Note that if our matrix A is a (0,0, T')-Cover, i.e., 6; = d2 = 0, then A decreases exponentially with
m. As mentioned in Remark |1} we can can achieve very small (but nonzero) values for d1,do with Gaussian
matrices.

By combining Egs @ and , we can bound the squared /5 estimation error by A 4+ min{Acg, Ao max}-
Note that this error resembles Theorem [2} as it contains an exponentially decreasing term of m along with a
minimum of two terms, one of which is the maximum deviation between any client and the other(Ag max)
and the other is the average difference of encoded values across all pairs of clients ( (Ayeg)). Further, even the
dissimilarity term A,c, has a similar structure to Apadamard as it is the pairwise difference between encodings
of two different vectors at all levels, where the difference at level k is proportional to e~ *. If the client vectors
are not close to each other, we might incur the worst possible error Ay nax, but if they are close, we will pay
an average price in terms of Aeg.

The upper bound on A,e, in Eq depends on A only via the encoded values {Bi,k}i,ke[m]- For this upper

bound, the corresponding terms for each level, here denoted by k, decrease geometrically with k. The term
212
%, ensures that A,eq is of the correct scale as in the worst case when all encodings are different for

ﬁ) which results in an overall A,eg of the scale of B2. From

(Venkataramanan et al., [2014a)), for each k € [m], all encodings upto and including the kth encoding, i.e.,
{Bi,k’}k’glm form an estimate of g; that has error scaling as Be™ . , which is similar to the error scaling

of HadamardMultiDim for a single dimension.

all pairs of clients, the summation gives us O(

While both the HadmardMultiDim and SparseReg schemes achieve very low communication rate, that comes
at the price of O(m) computing in the Encode step. This higher cost in computing is to be expected when
one wants to exploit the full potential of collaborative compression (e.g., (Jiang et al.| |2023), where the
Decode step takes O(m?) time).

3.3 Benefits of HadmardMultiDim and SparseReg

We now provide a example to show that for practical scenarios, the error terms Ay and Axedamard are much
smaller than their worst case values A max and Ag max and have similar behavior as their average values,
Ay = L5 g — gl13 and AxcAs = max,efg) = >oie 1|g(r) g")| respectively. Consider the scenario of
Theorem [2| (¢ error) and set d = 1. Assume that the first ¢ vectors are ¢} and the remaining m — ¢ vectors
are gh, for some constant ¢ < m. In this case, Ao max = (1= 2)|g] — gh| = |g} — g5/, while Ay ~ 2¢|g} — gb|.
In this scenario, if the compressed values b for ¢} and g} according to the HadamardMultiDim differ at

k € K C [m] levels , then, Apadamard = \/ﬁ Sperc(B/2k1)2 < \/C:%2 SR e 2720 < ;—;ﬂk*’%l, where
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k* = mingexc k and we upper bound the sum over the set X by the sum of a geometric series. As Agadamard
averages over all machines, it decreases with m similar to A; and should be much smaller
than A nax. The only case when it is not smaller than A, max is when ¢f and g} are very close, so that
Asomax = O(Vm™1), but the first level where they differ (mingex k) is very small. One such example is
when the quantized values of ¢; in the set K sorted by the levels in increasing order are (+1,—1,—1,—1)
and that of g4 are (—1,+1,+1,4+1). As the vectors are extremely close in this case, the estimation error
with Ao max is not very large. Further, if we assume a distributional assumption on the vectors g;, similar
to how we generate Figure obtaining vectors where Apadamard > Aoco,max, happens with low probability.

Algorithm 4 SparseReg 2log L 2log L\ !
Init() ¢ =D 2 ( T T4 ) 9)
Clients and server share A € R™*4 and a per-
mutation p ~ I, Algorithm 5 OneBit
Encode(g;) .

ﬁ Init()
i 9 i Clients and server share unit vectors {z; }icim-
for j € [pV] do [m]
L , Encode(g;)
b; j < arg maX,e[r] <A(j—1)L+m9¢> = .
gz/' — g; - CjA(j,l)Lg. . bi < Slgn~(<giazi>)
end for 7 return b;
by (}Z e Decode ({b; }ic[m))
return b , (Shenl |2023| Algorithm 1) (Tech. I)
2 g | o =
]i)ecode({bi}ie[m]) - > zibi (Tech. II)
94 Dietm) o0 A 1) L4, g d/llgll

Using this example, we can compare the error of our proposed schemes to baselines mentioned in Table [2]
Assume a modification of the above example where each vector is d-dimensional, and all of it’s coordinates
are either ¢g{¥, or gj. Consider any ¢5 compressor whose error is either proportional to UB2 or WA,
and it sends v bits/client for some constants 1), ¥ > 0. The fy error is defined as E[||g — g||3] and the
l+ error is defined as E[||§ — g||oo], therefore the corresponding £, error of these compressors is v ¥ B or
VWA,. Now, consider the example that we just presented with d > 1 and all coordinates being equal for
each vector. Therefore, Ay =~ CRd|g’2 — ¢1|?, and plugging this in, the ¢y error of the schemes is VUB or

\I/f—r‘f lg5 — ¢1|. HadamardMultiDim sends d bits/client; therefore, to compare with any of these schemes, we
set ¢ = d. For RandK, this would mean setting K = g57—5. Now, if [gi|,[g5| = B but |g5 — gi| < B, then
B ~ /dB. Using these approximations, the error of RandK is 1/(32 + logd)dB as ¥ = % = 32 +logd. This
is much larger than the ¢ error of HadamardMultiDim, as the first term is B - 2™~ ! and the second term
AHadamard ~ \/% lgh — g1]- A similar argument holds for all independent compression schemes, as their £
error scales as B, which in the worst case is VdB.

For compressors whose error scales as WA, (PermK, RandKSpatial, RandKSpatialProj), we obtain the same
number of bits/client as HadamardMultiDim scheme by setting K = W‘fogd. Consider RandKSpatialProj,

. 32+log d)d
where U = ?’2+Tlogd, and the error for our example is c%

than Apadamara by constant terms. A similar argument holds for RandKSpatial and PermK. Additionally,
note that the theoretical guarantees for RandKSpatial and RandKSpatialProj do not hold if the correlation is
unknown. Without this information, the heuristics they use do not result in theoretical guarantees, and their
error might be as bad as RandK. CorrelatedSRQ achieves the lower bound for collaborative compressors
for d = 1, and is based on a coordinate-wise scheme, hence the A, in its error guarantees. However,
for d > 1, its error scales poorly. For the example described above, ||gi||2 < VdB, therefore, the £

error for CorrelatedSRQ is % min{ dAIggB, d;£2 }. Even for K = 2, correlated SRQ requires double the
number of bits/client as HadamardMultiDim. The first term of HadamardMultiDim is B - 2™~ which
is much smaller than any of these terms, while Agadamard = /%Aoo for our example. Therefore, as long

lgb—g4|. Aslong as d > m, this error is larger

10
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< Ay < ‘{na;(B, AHadamard 18 smaller than ¢, error of CorrelatedSRQ. The size of this

. (m2K)1/(2d71)
cdB

interval for A, increases as d increases.

With the above example and analysis, we have specified the exact scenarios when HadamardMultiDim
outperforms baselines, and this can be easily extended to SparseReg.

4 One-bit Schemes

In this section, our vectors are assumed to belong on the unit sphere S¥~1. Further, our goal is to recover the
unit vector in the direction of the average vector g = (- >icm) 9)/ll1 % > icim) ill2-

Assumption 3 (Unit vectors). g; € ST, Vi € [m].

Consider the collaborative compressor where each client has sample z; ~ Unif(S?~!) (which are also available
to the server apriori). Client i sends the single bit b; = sign({(g;, z;)) to the server. To recover g, consider the
trivial case when all vectors g;s were equal. Then, each b; = sign({g, z;)), and to recover g, the server needs
to learn the halfspace corresponding to g from a set of m labeled datapoints. Applying the same method to
when g;s are not all the same, we can estimate g by solving the following optimization problem.

i (5 # sign((1.9)) (10)

Here, 1(-) denotes the indicator function. We can intuitively view as a halfspace learning problem with
a groundtruth g, but in the presence of noise, as g; # g. Learning halfspaces in the presence of noise is hard
in general (Guruswami & Raghavendray, [2006)). In our setting, if we sample z; from the intersection of the

halfspaces with normal vectors g and g;, then the label is sign({g, z;)), otherwise, it is —sign({(g, z;)). We can
consider this to be under the malicious noise model, wherein a fraction of datapoints are corrupted.

Lemma 1 (Malicious Noise). If z; ~ Unif(S%~!) and b; = sign({zi, 9i)), Vi € [m], then, with probability 1 —
O(exp(—mAcorr)), ¢, the fraction of the set of datapoints {(2;, ;) }icm) satisfying sign({(z;, gi)) # sign((g, z))
is equal to O(Acorr), where Acory = % o arccos((gi, 9))-

The proof of the lemma is provided in Appendix Our methods will use Ao to measure the deviation
between clients. For small A, we obtain better performance. If (g, g;) > 0,Vi € [m], then

cos(mAcorr) > \/rln + % ZZ (9i+95)- (11)

1<i<j<m

As long as the corruption level, { < %, we can hope to recover the halfspace g. We provide two techniques —
Techniques I and II, to recover g, thus yielding two corresponding Decode procedures.

The first decoding procedure (Technique I) is a linear time algorithm for halfspace learning in the presence of
malicious noise (Shen) 2023, Theorem 3) that provides optimal sample complexity and noise tolerance.

Theorem 4 (Error of Technique I). If ¢ defined in Lemma (1] is less than %, after running Algorithm @

with Technique I, with probability 1 — 6 — O(exp(—mAcorr)), we obtain a hyperplane § such that, (g,g) >
cos(m(Acorr + %polylog(d, %, %))

The algorithm itself is fairly complicated. It assigns weights to different points based on how likely they are
to be corrupted. The algorithm proceeds in stages, wherein each stage decreases the weights of the corrupted
points and solves the weighted version of . The key technique is to use matrix multiplicative weights
update (MMWU) (Arora et al., |2012) to yield linear time implementation of both these steps, instead of
(Awasthi et al., |2017)) which used polynomial time linear programs for this purpose.

Technique II is the simple average algorithm of (Servedio, |2002), which obtains suboptimal error guarantees
for halfspace learning.

11
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Theorem 5 (Error of Technique II). If ¢ defined in in Lemma is less than 3 5, after running Algomthm@
with Technique II, with probability 1 — 6 — O(exp(—mAcorr)), we obtain a hyperplane § such that, (g, g) >

COS(TF(\/&ACOI‘I' + \/%\/bgT%)))

The performance of both techniques improves with decrease in Ay Since we have only m bits to infer a
d-dimensional vector, we require m > d, with Technique II requiring m > d2. If we send ¢ bits per client in
OneBit, then the number of samples for the halfspace learning is mt, thus obtaining the guarantee in Table
The main benefit of OneBit schemes is their extreme communication efficiency. Existing quantization and
sparsification schemes require sending at least log K or log d, where K is the number of quantization levels.
The proofs for this section are provided in Appendix [C]

Comparison to /5 compressor. Note that, we can use compressor for {5 error to first decode the mean
and then normalize it to obtain its unit vector. If such a scheme uses ¢ bits and has Zg error either AAy
or AB? then its cosine similarity m >1- 2H9 o2 for ||¢'||2 = ||gll2, where ¢ = L3> g; and § is

the estimate of ¢’. To compare this with OneBit Technique I, we send A bits per client to obtain the same
communication budget. The cosine similarity of this scheme is cos(m(Acorr + 72)). We can lower bound

this similarity by 1 — 272A2

corr

obtained for /;-compressor, as long as 2m?A2_ + 272 2—62 < A, OneBit Technique I performs better. For

+ 272 2 t2 as cos(z) > 1 — Z-. Comparing this cosine similarity with that

corr
any sparsification scheme sending K coordinates, A is at least —%-. If we set ¢t = 32K + K logd, OneBit
Technique T outerperforms the sparsification scheme as long as Acorr is small.

5 Experiments

Setup. To compare the performance of our proposed algorithms, we perform DME for three different
distributions which correspond to the three error metrics covered by our schemes — {5, /-, and cosine distance.
Then, we run our algorithms as the DME subroutine for four different downstream distributed learning tasks
— KMeans, power iteration, linear regression and logistic regression. KMeans and power iteration are run on
MNIST (LeCun & Cortes), 2010) and FEMNIST (Caldas et al., [2018) datasets, and we report the KMeans
cost and top eigenvalue as the metrics. For linear regression, we run gradient descent on UJIndoorLoc (Torres;
Sospedra et al., [2014) and a Synthetic mixture of regressions dataset, with low dissimilarity between the
mixture components, and report the test MSE. For logistic regression, we run gradient descent on the
HAR (Reyes-Ortiz et al., |2012)) dataset and report the training loss and test accuracy for binary classification.
We compare against all baselines in Table 2] for 5 random seeds and report the methods which perform the
best. For DME experiemnts, the shaded corresponds to 2 standard deviations around the mean, while for all
downstream tasks, it corresponds to 1 standard deviation. The results for KMeans, power iteration and linear
regression are reported in Fig|2] while the results for logistic regression are reported in Fig[3] Additional
details for our experimental setup are deferred to Appendix [D]

Results. Distributed Mean Estimation. From Fig[2a] and [2b] HadamardMultiDim and SparseReg, whose
error is optimal in m, obtain the best performance in terms of £, and £5 error for low dissimilarity. Especially,
for HadamardMultiDim in Fig [2B] the gap in £ error to next best scheme is very large. NoisySign obtains
competitive performance to other baselines as we use a large 0. The performance of OneBit for cosine
distance metric (Fig shows that compressors with /5 error guarantees perform poorly in terms of cosine
distance. For all collaborative compression schemes, including our proposed schemes, performance degrades
as dissmilarity increases. From Fig [2a] and 2B} the rate of this decrease is more severe for SparseReg than
HadamardMultiDim. For large dissimilarity, HadamardMultiDim and SparseReg can perform worse than
certain baselines.

KMeans and Power iteration. For MNIST dataset, where dissimilarity is low, HadamardMultiDim performs
best for KMeans and close to the best baseline for power iteration (Fig[2d|and . Most of our collaborative
compression schemes do not perform as well as RandK on FEMNIST, due to higher client dissimilarity.
OneBit is very communication-efficient, so running it for the same communication budget as our baselines
ensures that it still remains competitive for KMeans(Fig . By increase in confidence intervals for the same
baselines from MNIST to FEMNIST, we can see that FEMNIST dataset is much more heterogeneous.

12
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Figure 2: Performance of DME(Distributed Mean Estimation), KMeans, Power iteration and linear regression for
the same communication budget. For each experiment, we report the best compressors. Lin. Reg. refer to Linear
Regression. For power iteration, higher top eigenvalue is better. For all other experiments, we report the error, so
lower is better.

Linear Regression. From Fig and2i all collaborative compressors perform better than independent
compressors as UJIndoorLoc and synthetic datasets have low dissimilarity among clients as compared to
FEMNIST. Our schemes can take full advantage of this low dissimilarity, so HadamardMultiDim and
SparseReg outperform baselines on both datasets. As the Synthetic dataset has lower dissimilarity than
UlJIndoorLoc, even the NoisySign performs better than other baselines. Further, OneBit obtains best
performance.

Logistic Regression. From Fig[3] our compressors, Onebit, Sparsereg, and HadamardMultDim, are the best,
second, and fourth best compressors, respectively, in terms of both training loss and test accuracy. Further,
among the top 4 best-performing schemes, only one baseline, RandKSpatialProj, comes in third. This shows
the benefit of using collaborative compressors.

Stability of Our Algorithms. Among all our proposed algorithms, OneBit and SparseReg are the most stable
with respect to different random seeds followed by HadamardMultiDim and NoisySign. The most stable
algorithms among all baselines seems to be RandKSpatialProj. OneBit and Sparsereg are slightly less stable
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Figure 3: Performance of compressors for Logistic regression on HAR (Reyes-Ortiz et al., 2012)) dataset. Left:
Training Logistic loss, Right : Test Accuracy.

than it. However, all our algorithms except NoisySign are much more stable than most other baselines like
SRQ, Correlated SRQ and RandK.

6 Conclusion

We proposed four communication-efficient collaborative compression schemes to obtain error guarantees
in ¢y-error (SparseReg), {o-error (NoisySign, HadamardMultiDim) and cosine distance (OneBitAvg). The
estimation error of our schemes improves with number of clients, and degrades with increasing dissimilarity
between clients. Our schemes are biased and our dissimilarity metrics (Areg, AHadamara) depend on the
quantization levels. However, these drawbacks can be removed by using existing techniques for converting
biased compressors to unbiased ones (Beznosikov et al., |2022), and adding noise before quantization (Tang
et al., 2023; |Chzhen & Schechtmanl [2023). Schemes such as error feedback (Karimireddy et al., |2019)) reduces
the error of independent compressors, and it will be interesting to check if it works for our collaborative
COMPpressors.
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A Proofs for Section

A.1 Proof of Theorem [I]

As all operations are coordinate-wise, we restrict our focus to only a single dimension j € [d].

Ee,[0)] = @,(91"), Vi € [m]

Note that ®,(t) = erf(-L

E) and ®;1(t) = V20 erf ' (t). By Hoeffding’s inequality for bounded random

variables we have,

1 ~ () ) o2
Pr“% Z(bz ’ _(I)cr(gz(j))” > ] <2 2

If we set t = 4/ %g(m), for some ¢ > 0 in the above inequality, then with probability 1 — 2m™¢, we have,

R
=30~ @o(g) <t

i=1
We can represent Z l;z ®,(g), as D, is an invertible function. To find the difference between g and g,
we find the difference o, (g) ®,(g). With probability 1 — 2m™¢, we have,
[2,(9) — 2, (g9 Z@ (97) = Bo(g")] + ¢

To remove the terms of ®,, we can apply the function ®,! on g9, As ®! is not Lipschitz, we need
to perform its Taylor’s expansion around ®,(gV)) to account for the linear terms in the error. If Ay =

% 2211|<I>0(g£j)) — ®,(gY))|, then we obtain,

G\ — )] < max N (u)|(Agp +t 12
B -g < @ @A+ ) (12)

We now obtain an appropriate upper bound on (®!)'(u) as we do not have a closed-form expression for it. We
will use the properties of erf to obtain a suitable bound. First, note that ®, and ®. ! are both odd functions,
therefore, |®~1(u)| = |®~!(|u])|, so we consider the bound for u > 0. Note that (®71)"(u) = m. For
u > 0, we have,

S 1
(@51 (u) = \/Ze(éa (w)?/(20?) S\/Zemg(lu)/? = gl —
U
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For the first step, we use an upper bound on the complementary error function. For the third step, we use
the fact that if f(x) < g(x), then f=1(y) > g~ 1(y).

Using the following upper bound in Eq (12)), we obtain,

39 — g9 < max \/?A<I> +1
WE[B, (g))—Ag—t, P, (g))+Ag+t] V 2 1 — |u\

< \//7T Ap +t
V2T (B, (g0) — g — 11,8, (g0) T Ap 711}

We use max{|®,(¢g")) — Ag — t|,|P,(g")) + Ag +t|} < ®,(|g]) + Ag +t, as ®, is an increasing odd

function.
T Ao + 1 -t
g(j)_g(j)|§\/7 1 ~—®7° -1
2 1—@,(lgW))

We extend the bound to d dimensions by taking a union bound, yielding a probability of error 2dm™

C

A.2 Proof of Equation (3]

First, note that the term of (1+z)~*—1 = ;2= < O(z) when 2 < ¢ for some constant ¢ € [0, 1]. The conditions
required for this are Ag to be small and both m and a(||g]|so) to be large. Note that a(]|g]lec) = 1—Po(||9]]c0),

lgllee
g

so it is small when the ratio is small. The bound on estimation error after this step is the following.

+ /IOE;Tn

17 = 9llee =0 | —r——
a([lgll0)

Now, we lower bound the term a(||g||«). Note that a(z) =1 — @, (z) = (1 — erf( —)) for any = € Ry
where erf is the error function. Here, 1 — erf(z) is the complementary error functlon for any x > 0 and it is

lower bounded by Q(e*ﬂ'zg) for 8/ > 1 (Chang et al., [2011). Plugging in this lower bound, we complete the
proof for a 3= '/2 > 1.

A.3  Proof of Equation (4)

The proof follows from using the triangle inequality and a Taylor’s expansion for each @, (gl(j )) around ¢/,
Note that, for some ugj ) between ¢(@) and gz(] ). we have,

(u (]))2

. . 2 ) _— (J) 202 )
B, (o) = 0, (g) + 272000

()
,(67) - 0, g0 < 21870

(J)>2
We use the fact that e” 22 < 1. By using triangle inequality for any coordinate j € [m], we obtain,
Agp <max — (g9) (g < = max ®,(g) — @, (gD
s Jed]m,z' ) Z 20(5)) ~ 2o(g9)

2 1 } : |g(j)*9(])‘ /2 1 }: Hg g7.||oo
< = Tt
. Illél)(
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B Proofs for Section 3

B.1 Proof of Theorem [2]

To prove this Lemma, we first consider a single dimension j € [d]. Note that the collaborative compression

i(]) lies in the range [¢\9) — Apay, 99 + Apay], therefore, we

must decode one of the elements which has error atmost Ay + Qm%. Since this is true for each coordinate
individually, therefore, it holds for the /., norm.

scheme has precision 2,,1%. Since, for each client g

Consider a single dimension j € [d]. Let gl(j ) be the j'" coordinate of g; and p; be the permutation selected

for the coordinate j. We omit j from ggj ) and p; to simplify the notation. Let l~)i7p be the estimate of g; after

decoding it for p levels where p € [m]. Therefore, the estimator § = > .., l;p" B Let Gi =Y 1y b;,;—’iff be the

decoded value of g; till level m and g = = > g, = >, Qb,f—,Bl, where by, = Ly bi -

We compute the expected error for coordinate j, where the expectation is wrt the permutation p;. Note that
Ep~m,, [:] = g-

Byt [l9 = 3l = ) Eperr, llg — 32 < \/Bper, lg = 912 < \/Bprr, |5 — 52 + 19 — 512
— S IR _ —
VEpom1,19 =91 +lg—gl < — > 1gi = Gil + \/Epn,, |5 — 512
=1
B _
< Smot TV Eoemalg — 912

IN

We use Jensen’s inequality for the first inequality. For the second inequality, we use bias-variance decomposition
for the random variable g, where the first term is its variance, and the second term is its bias wrt the term g.
We then use va + b < /a + v/b for any a,b > 0. To handle the term |g — g|, we expand both terms as a
summation over m clients, followed by a triangle inequality. As each estimator g; is at least % away from
gi, each term in the difference |g; — g;| has the upperbound zm%-

We now bound the variance term separately. Note that

EpNHm|§ - §|2 = E/JNHrn|g|2 - §2
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We first evaluate the second moment E,p,, [|?.

2

m 7 m 7 7
b; o, b? bi . bio.
~12 2,04 _ 7/)1 2 2,04 J5P.
IEp’"Hm|g| - EPNHm 2 : 2Pi*1 - : :EPNHM [ 22p -2 + B : : : : EPNH [2/’1‘1 2Pj]1‘|
i=1 i=1 1<i#j<m
bi e bip;
_ 2 Z Z ipi Opj |
- 2k; 2 B E/J’L PNHm [2P11 2ij1 pl‘|‘|
1<i#j<m

MS ?M§

~ m B 1
sz 2 + B ZZEW 2p:p—11m Z
k=1 1<i#j<m 1,l#p; ]
m B2 7 m 6 T
- Z 9ok T ZZ Z Z
k=1 1<z75]<m k=1 ]
bik
55“ zz@:)( )
1<z;ﬁ]<m k=1 =1

m ng b
T 2 2

1<z;£j<m k=1

o 32 B b’L kbj k
- Z ok T m(m ZZ 9i9j — ZZ Z 92k—2
k=1

1<7,;£J<m 1<7,7£]<mk 1

m?[gl? - S [l B (il + bl = 2bib.1)
= 522 > poreT

m(m - 1) 1<z;£j<mk 1

mo o > |gil ik — bjk)
- - Zall L sy > (Bl

1<17$j<m k=1

2

Note that we expand the square of the sum of terms where E?] = 1. For the second term, we use the law of
total expectation by conditioning on the value of p;. To evaluate the inner expectation, we note that p; can
take any value other than that of p; with equal probability. To evaluate the outer expectation, note that
pi can take any value in [m] with equal probability. In the fourth equation, we subtract the term where
I = k. Then, we can factorize the remaining terms to obtain g; and §;. Note that the sum of the product
terms g;g; can be expressed as [>_ ., Gi|?, with the square terms subtracted. Further, we express the term

B2 B2 (|bi,k |2 +1b;,5 2 7.2 :
sm=z = »,», — Sm=r2t— as |bjx|° = 1. Finally, we complete the squares for each term k.
1<i#j<m

Using the above value of second moment E,r,, | d|?, we can compute the variance,

o o op 0P R S Blbix — b))’
Epott, | = 91 = Eput, 3% - [ = T2 T Sy > (P
1<7,;£J<mk 1
bik)\
. i,k — Yik
sz 23 > (Bt

1<i#j<m k=1

oz 2
_ - - - B(bi x—b;
Weuse g < LS5 = 5k S5 6i- )2 50 5 Sy, (20Ek)

1<i£j<m 1<i#j<m

To simplify this bound, we need to incorporate the difference in the actual gradient vectors. For this
purpose, we try to bound the differences |b; ; — b; x| in terms of A;; L \g; —gil. If A;; = |gi — g;|, then

bik = by, Yk = log ().
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B.2 Proof for Theorem 3]

We first show how to obtain the coefficients ¢; and the bound on the term A in Eq (7). To obtain the

coefficients c¢;, we replace set L = m,n =d,R = % and o2 = BTZ in (Venkataramanan et al., [2014b|

Eq 2). Note that the terms ¢; and d5 can be directly applied in (Venkataramanan et al.,2014b, Section V)
with the same values of €5 and 7. Note that the bound on A in (Venkataramanan et al., 2014bl Theorem 1)
is for gaussian sources with a fixed variance, however, their proof in (Venkataramanan et al., 2014b, Section
V) only uses the fact that the squared ¢ norm of the source is bounded, which is exactly our case from
Assumption [2]

The proof of Eq @ is same as Theorem [2| for a single dimension, with the coefficients 23-% replaced by c¢;

and BETIE replaced by A(,%l) L+, .- Following Appendix we can write down the /o error.

Eprr,, 119 = 9l13] = Eprr,, [llg — Epor,, [91113) + Epom,, 17 — Eper,, [31113]

Elgl =g= L >, g, where g; = i A 1)L+5, ;- BY triangle inequality, the first term is LS g —

gi||3, which is bounded individually by A = B?(1 + 101OgL mogL((Sl + 62))? ( %) by setting

L=m,n=d,R= %,02 = 372 and dp = 0 in (Venkataramanan et all 2014b, Theorem 1).

For the second term, we need to bound E[||7||3].

E[l|l13) ZZCQIIAU DA

’Lljl

+ Z Z Ep~r,, {Cwmcﬂ(a‘)<A<ﬂ<z‘>71>L+éi,w<i>7A(wu)flméj,m)ﬁ
1<i#j<m

Rt
_ E ZZC?||A(‘j71)L+Ei,j

i=1 jfl
Z Z Ep~r,, [Cw( )Cr( )<A(7r(i)—1)L+l~)i,,r(i)7A(Tr(j)—l)L+l~)j,,,(j)>}

1<z7£]<m

m2|\§7||2 - i \|gi||
o rfL(m — I)l : ZZ Z ckHA(k Vitby ~ Ae—1)L+48s, ,€||2

1<z;£]<m k=1

3

5

The remainder of the proof follows proof of Theorem [2] with |-|? replaced by ||-||3.

For the first equation in Eq , since the collaborative compression scheme has precision A, for each client,
the vector g; lies in a ball around g of radius Ag max = maxX;epm||gi — g|l2. Therefore, if we use sparse
regression codes to individually encode each vector g;, it’s decoded value g; must lie either in the same ball
or be at most A ¢y distance away from some vector in this ball. Since this set is convex, and the vector g is
also obtained as a convex combination of vectors inside this ball or at most A away from it, the vector g also
lies inside this ball or is at most A away from it.

This proves Eq .

B.3 Proof of Equation and Remark [1]

To bound Ayg, we need to bound the terms of the form |[A,_1 115, = Ag—1)L48,, ||3 for clients i # j € [m)]
and at level k € [m]. Note that if b, , = b; &, then this difference is 0. If b; , # b; 1., then this is 2 from the
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definition of (61, d2,I")-Cover. This results in the following upper bound for A,.4.

2 m
Doy € SOS S0 1l £ by = 28l e 2<1_21°gL> 1Bk # by

i,j€[m],izj k=1 i,j€[m],i#j k=1

FQB logL Ty Z (1 _ 210gL> 1(bi g # bjin)

i,JE€[m],i#£j k=1

We use the value of ¢ in the second inequality and then simplify the terms.

To prove the bound of T' for the case of Gaussian A in Remark [T} note that T' is an upper bound on the
the squared ¢5 norm of the difference of two gaussian random vectors. For any rq1,ry € [L] with 71 # 7o,
A=) L, — Ak=1)Ltrs ~ N(0,21;) as each vector is d-dimensional, they are sampled independently, and
each element in each vector is sampled from a unit normal. Therefore, %HA(kfl)Lwl — A(k,l)LHQH% is a X?l
random variable. Note that the scaling of % is to normalize the covariance to I;. By concentration of X?I
random variables from (Laurent & Massart, 2000]), we know that, with probability 1 — 4,

HA—1)L4+r — A1) L4 |13 < 2d + 41/dlog(1/6) + 41og(1/6)

(L=1)

Since 1,75 € [L], we can take a union bound over all £ 5— unique pairs of (rq,72). Further, we can take a

union bound over all levels k € [m]. These would set the probability of error to M' Setting d3 to this

value, we obtain § = % and the following bound Vk € [m],r1 # ro € [L],

mlL? mIL?
IAG—1) L4y = A1) L4213 < 2d + 44 [ dlog( 5 ) +4log( 5 ) £ 12

We upper bound ( —1) by L2.

B.4 Improving HadamardMultiDim and SparseReg with Repetitions

Let gr = % 25:1 g(r) be estimator after R repetitions where g(r) is the estimator after 1 repetition of
either HadamardMultiDim or SparseReg. To compute the error for both Theorem [2] and Theorem
we use a bias-variance decomposition of the squared estimation error. Consider SparseReg where we
bound E,11,,[||g — ¢/|3]. Note that even with the new definition of §, it’s mean wrt p remains the same as
Epom,, 7] = % Zle Epom,, [9(r)] = & Zle g = g. This contributes to the term with exponential dependence
on m and it remains the same. Note that the variance term, however, decreases with R.

o 1 ) ) 1 i .
Eper,, 117 = 9131 = 53 > Eoer, [[13(r) — 3113] = Epem,, [113(1) — g13] =
R R R

Similarly for HadamardMultiDim, the term Apaqamard 1S replaced by AHL\/%“”‘*, as we take square root of the
variance in it’s analysis. Note that the Ag nax and Ao max terms are not affected by R as it’s analysis does
not use p.

C Proofs for Section [

C.1 Proof of Lemmalll

To prove this Lemma, note that b; = sign({(g:, z:)) # sign({g, z;)) only if z; is sampled from the symmetric
difference of g; and g. The probability that a z; sampled uniformly from S?~! lies in this symmteric difference
is given by arccos({(g,9:))/x. If we set Acoyr = % Zie[m] arccos({g, g;))

Let ¢ be the fraction of z; such that b; # sign((g, z;)). Then, by Chernoff bound, we have,

2
yZmAcorr

Pri¢ > (1 +7)Acor] <€~ 2%
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By setting v to be any small constant, we obtain, with probability 1 — O(exp(—mAcorr)), atmost ¢ = O(Acorr)
fraction of datapoints are not generated from the halfspace with normal g and are thus corrupted.

C.2 Proofs of Theorem [4] and

To prove Theorem (4] I, we utilize the guarantees of (Shen, 2023, Theorem 3), where the sample complexity
requirement ensures that the error is O(). Further, (Shen|[2023, Theorem 3) obtains error guarantee linear
in the noise rate of the samples which is obtained from Lemma m The error guarantee is in terms of the
symmetric difference between § and g wrt the uniform distribution on the unit sphere. Since this is equal to
the angle between these two vectors divided by 7, this gives us a bound on the inner product of these two
unit vectors.

To prove Theorem from (Kalai et al., |2008 Theorem 12), the sample complexity provides the term \/%

while the noise tolerance provides the term \/EACO”.

C.3 Proof of Equation (1)

To prove this remark, note that arccos(z) is concave for > 0. Therefore, by applying Jensen’s inequality,
we obtain,

1 1 m
Beoe == 3 arecos((g1,0)) < ( Zgz, ) arccos<|2gl| (,9)

1€[m] i=1

1 1 1 Yiem)(9i9i) 2
S;MCCOS ”E_Z gill3 ZEaYCCOS Hi‘*‘ﬁZZ(gi,gﬁH
1€[m] 1<i<j<m
1 1 2
:; arccos \/m + 2 ZZ <givgj>
1<i<j<m

D Additional Experiment Details

Baselines We implement all the baselines mentioned in Table[2] As all these baselines are suited to ¢o error,
for the DME experiment on gaussians, where 5 error is the correct metric, compare SparseReg (Algorithm
to all these baselines. For {., error uniform distribution, we implement NoisySign (Algorithm and
HadamardMultiDim (Algorithm [3]) and compare it to Correlated SRQ (Suresh et al., 2022), as it’s guarantees
hold in single dimensions. We also add comparisons to its independent variant, SRQ (Suresh et al.;|2017)), and
Drive (Vargaftik et al.l |2021)), which performs coordinate-wise signs. For the unit vector case, we implement
OneBit (Algorithm [5| Technique IT) and SparseReg(Algorithm |4)) and compare it with one independent
compressor (SRQ (Suresh et all 2017)) and one collaborative compressor (RandKSpatialProj (Jiang et al.l
2023))). Note that we set d = 512 throughout our experiments and tune the parameters (number of coordinates
sent (Koneény & Richtarik, [2018}; [Jhunjhunwala et al., [2021]) or the quantization levels in (Suresh et al.,
2017} 2022))) so that all compressors have the same number of bits communicated. For compressors without
tunable parameters, we repeat them to match the communication budget. The communication budget is
2375 4 25 bits/client for each compressor every round. It is often not possible for two different forms of
compressors, like sparsification methods and quantization methods to achieve the exact same communication
budget even after tuning hence we allow a small range of communication budgets.

Datasets For the distributed mean estimation task, we generate d dimensional vectors on m = 100 clients.
To compare £ error, we generate g with ||g||2 = 100. Then, each client generates g; from a N'(0, A2), where
A, € ]0.001,100]. To compare £, error, we generate g uniformly from a hypercube [~ B, B]? where B = 100.
Each client generates g; from a smaller hypercube [~A ., Ay ]? centered at g where A, € [1072,10%]. To
compare cosine distance, we generate g uniformly from the unit sphere, and each client generates g; uniformly
from the set of unit vectors at a cosine distance A, from the g, Here, A.opr € [0.01,0.4].
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For KMeans and power iteration, we set m = 50. FEMNIST is a real federated dataset where each client
has handwritten digits from a different person. We apply dimensionality reduction to set d = 512. We run
20 iterations of Lloyd’s algorithm (Lloyd, [1982) for KMeans and 30 power iterations. For distributed linear
regression, the Synthetic dataset is a mixture of linear regressions, with one mixture component per client.
The true model w; € R? for each component is obtained from DME setup for gaussians with Ay = 4. Then,
we generate n = 1000 datapoints on each client, where the features x are sampled from standard normal,
while the labels y are generated as y = (w;, ) + £, where £ is the zero-mean gaussian noise with variance
10~2. For UJIndoorLoc, we use the first d = 512 of the 520 features following (Jiang et al., 2023). The task
for UJIndoorLoc dataset is to predict the longitude of a phone call. For both the linear regression datasets,
we run 50 iterations of GD. For MNIST and UJIndoorLoc, we split the dataset uniformly into m chunks one
per client.

For logistic regression for binary classification, we select the last 2 classes of the HAR and label them with +1.
We split the dataset into m = 20 clients iid. HAR dataset has 561 features which we reduce by PCA to d = 512.
We run distributed gradient descent with learning rate 0.001 for 7" = 200 iterations on the logistic loss, where
the logistic loss for any data point (z,y) € R? x {£1} is defined as £(w, (z,y)) = log(1 + exp(—(w, z) - y) for
any weight w € R,

Metrics With the same number of bits, we can directly compare the error of baselines. For mean estimation,
we measure {5 error, £, error and cosine distance for gaussian, uniform and unit vectors respectively. For
KMeans, we report the KMeans objective. For power iteration, we report the top eigenvalue. For linear
regression, we provide the mean squared error on a test dataset. For logistic regression, we report the
training logistic loss and test accuracy for binary classification. For all experiments except power iteration
and test accuracy logistic regression, lower value of the reported metric implies better performance. For
power iteration, higher implies better performance, as we need to find the eigenvector corresponding to the
top eigenvalue. For logistic regression, higher test accuracy implies better performance.

We provide the code in the supplementary material and all the experiments took 6 days to run on a single 20
core machine with 25 GB RAM.

E Distributed Gradient Descent with SparseReg Compressor

This section uses our {» compressor, SparseReg, for running FedAvg. Each client i € [m] contains a local
objective function f; : W — R. We define the global objective function f(w) = % S fi(w), Yw € W C R
The goal is to find w* € argmin,,¢yy, f(w). Note that Vf(w) = L 3" V f;(w), therefore, in our case, the

vector g; correspond to V f;(w). We describe the algorithm in Algorithm |§|

Algorithm 6 Distributed Projected Gradient Descent with SparseReg compressor

Require: Initial iterate w® € W, Step size v > 0
Server
SparseReg-Init ()
fort=0toT —1do
Send w' to all clients i € [m].

Receive b;' from clients i € [m].
gt + SparseReg-Decode ({b! };cm))
witl «— projW(wt _ ntét)
end for
Client (i) at iteration ¢
Receive w' from server.
b; + SparseReg-Encode(V f;(w?))
Send b! to server.

We first state the assumptions required for applying the SparseReg compressor.

Assumption 4 (Bounded Gradient). For all w € W, i € [m], we assume that ||V f;(w)]]2 < B.
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By this assumption, we ensure that for each iteration ¢ in Algorithm @, l|g:ll2 = ||V fi(w?)|]2 is bounded.
Further, bounded gradients imply that each f; is Lipschitz. By triangle inequality, we can also establish the
following corollary.

Corollary 1. The objective function f(w) is B-Lipschitz, Yw € W.

From the above assumptions, it is clear that local objective functions need to be Lipschitz. From (Bubeck,
2015, Theorem 3.2), if the domain of iterates, W is bounded and f(w) is also convex, then gradient descent
can converge at a rate O(1/+/T). We use these two assumptions, and establish a O(1/v/T) rate along with a

error obtained from Theorem [3] We define Ayeq(t) and Ag max(t) from Theorem [3[to be the corresponding
errors for g; = V f;(w'),Vi € [m] for any ¢ > 0.

Assumption 5 (Bounded domain). The set W is closed and conver with diameter R?.

Assumption 6 (Convexity). The objective function f(w) is convex Yw € W.

We now state our convergence result.

Theorem 6. Under Assumptions @ @ rUnning Algom'thm@for T iterations with step size ny = B—%,

with probability 1 — 2m2 LT exp(—ddé3/8) — mT (5;2)  we have,

E[f(@")] = f(w*) < R(QZi;}F + TR, where, T = t=0

10log L log L 2 2log L\ ™ 13
I'n=B?(1+ Olog exp mog (61 + 62) 128 ) (13)
d d d
I'y = max min{Areg(t), A2 max(t)}

te{0,1,....,T—1}

From the above theorem, we can see that the high probability terms and I'; and I's are obtained from
Theorem [3| Note that I' = O(B? exp(—m/d)), therefore, for large m, the additional bias term of Ry/T is
very small. Further, the term I'y < B2, therefore, I'; only affects constant terms in the convergence rate
due to v/T in the denominator. If exp(— m/d) O(1/VT) or m = Q(dlogT), the final convergence rate of
Algorithm |E| is O(RB/V/T) which is the rate for distributed GD without compression.

We provide the proof for the above theorem, which modifies the proof of (Bubeckl 2015, Theorem 3.2) to
handle a biased gradient oracle. We can also extend our analysis to other function classes, for instance
strongly convex functions, by using existing works on biased gradient oracles (Ajalloeian & Stich| |2020).
Extending the proof to FedAvg from distributed GD would require using biased gradient oracles in (Li et al.
2020). Further, these proofs can also be extended to HadamardMultiDim compressor, with an additional v/d
factor in the corresponding error terms from Theorem [2| to account for conversion from ¢, to £ norm.

E.1 Proof of Theorem

At any iteration ¢ > 0, we use §' to denote the estimate of Vf(w!). From the proof of Theorem
[|E¢[g] — Vf(wh)|]l2 < VT1, and Var(gt|w') < TVt > 0, where E; and Var, are the expectation and
variance wrt the randomness in the SparseReg compressor at iteration t. We take a union bound over the
high probability terms in Theorem [3] over all iterations ¢t = 0 to T — 1.

We can write the following equation by convexity of f(w?).

f') = fw*) (Vf(w),w' —w”) = (7w’ —w*) + (Vf(w') - §",w' —w")

1 N
Sﬂ(\lwt—w*llg—Hwt—ngt—w*l\g)Jrnll g'll3/2 +(Vf(w') - 7' w' —w)
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In the second line, we use 2(a, b) = ||a||3 + ||b||3 — ||a — b]|3. Now, taking expectation wrt the randomness in
SparseReg at iteration ¢, we obtain,

%(Hwt—w*llg—Et[llwt—nfzt—w*l\§])+nEtH|§tII§]/2

+H(V(w') —Edg'], v’ —w*)
S%(Hwt—w*llg—Et[Ilwt“—w*llg])+n(llEt[ 113 + Vary(3"))/2
HIIV (") = Ee[g']]]2 - [Jw" —w|l2

1
Sﬂ(Hwt — w3 = Eef[Jw™*" —w*|3]) + n(B* +T2)/2+ VT1R

Ee[f(w')] = f(w”) <

In the second line, we use the non-expansiveness of projections on a convex set, ||w! — ngt — w*||2 >
||projyy (wt — ngt — w*)||2, the decomposition of 2"? moment into square of mean and variance, and cauchy-
schwartz inequality. In the third line, we plug in bounds of I'y,I's, diameter of the set and by triangle
inequality, argue that E[g!] also lies in an ¢5 ball of radius B.

Finally, we take expectations wrt all random variables, unroll the recursion from ¢ = 0 to T, and divide both
sides by T'.

Ly ¢ oo B2 n(B?+Ts) R(2B% +T)
ZE[f(w)]—f(w)SM—TJrij\ERSWjLﬁR

We obtain the final inequality by plugging in the step size n = 5 f By convexity of f, for wT Et o wh,
we obtain,

R(2B*+T1)
flw) < +vI1R
« fw?) = " 9BVT

=
KH-
Q)
j
'ﬂ\
M|
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