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Abstract

As machine learning (ML) algorithms are used in applications that involve humans, concerns
have arisen that these algorithms may be biased against certain social groups. Counterfac-
tual fairness (CF) is a fairness notion proposed in Kusner et al. (2017) that measures the
unfairness of ML predictions; it requires that the prediction perceived by an individual in
the real world has the same marginal distribution as it would be in a counterfactual world, in
which the individual belongs to a different group. Although CF ensures fair ML predictions,
it fails to consider the downstream effects of ML predictions on individuals. Since humans
are strategic and often adapt their behaviors in response to the ML system, predictions
that satisfy CF may not lead to a fair future outcome for the individuals. In this paper,
we introduce lookahead counterfactual fairness (LCF), a fairness notion accounting for the
downstream effects of ML models which requires the individual future status to be counter-
factually fair. We theoretically identify conditions under which LCF can be satisfied and
propose an algorithm based on the theorems. We also extend the concept to path-dependent
fairness. Experiments on both synthetic and real data validate the proposed method.

1 Introduction

The integration of machine learning (ML) into high-stakes domains (e.g., lending, hiring, college admissions,
healthcare) has the potential to enhance traditional human-driven processes. However, it may introduce
the risk of perpetuating biases and unfair treatment of protected groups. For instance, the violence risk
assessment tool SAVRY has been shown to discriminate against males and foreigners (Tolan et al., 2019);
Amazon’s previous hiring system exhibited gender bias (Dastin, 2018); the accuracy of a computer-aided
clinical diagnostic system varies significantly across patients from different racial groups (Daneshjou et al.,
2021). Numerous fairness notions have been proposed in the literature to address unfairness issues, including
unawareness fairness that prevents the explicit use of demographic attributes in the decision-making process,
parity-based fairness that equalizes certain statistics (e.g., accuracy, true/false positive rate) across different
groups (Hardt et al., 2016b), preference-based fairness that ensures a group of individuals, as a whole, regard
the results or consequences they receive from the ML system more favorably than those received by another
group (Zafar et al., 2017; Do et al., 2022). Unlike these notions that overlook the underlying causal structures
among different variables Kusner et al. (2017) introduced the concept of counterfactual fairness (CF), which
requires that an individual should receive a consistent treatment distribution in a counterfactual world where
their sensitive attributes differs. Since then many approaches have been developed to train ML models that
satisfy CF (Chiappa, 2019; Zuo et al., 2022; Wu et al., 2019; Xu et al., 2019; Ma et al., 2023).

However, CF is primarily studied in static settings without considering the downstream impacts ML deci-
sions may have on individuals. Because humans in practice often adapt their behaviors in response to the
ML system, their future status may be significantly impacted by ML decisions (Miller et al., 2020; Shavit
et al., 2020; Hardt et al., 2016a). For example, individuals receiving approvals in loan applications may
have more resources and be better equipped to improve their future creditworthiness (Zhang et al., 2020).
Content recommended in digital platforms can steer consumer behavior and reshape their preferences (Dean
& Morgenstern, 2022; Carroll et al., 2022). As a result, a model that satisfies CF in a static setting without
accounting for such downstream effects may lead to unexpected adverse outcomes.
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Although the downstream impacts of fair ML have also been studied in prior works (Henzinger et al., 2023a;
Ge et al., 2021; Henzinger et al., 2023b; Liu et al., 2018; Zhang et al., 2020), the impact of counterfactually
fair decisions remain relatively unexplored. The most related work to this study is (Hu & Zhang, 2022),
which considers sequential interactions between individuals and an ML system over time and their goal
is to ensure ML decisions satisfy path-specific counterfactual fairness constraint throughout the sequential
interactions. However, Hu & Zhang (2022) still focuses on the fairness of ML decisions but not the fairness of
the individual’s actual status. Indeed, it has been well-evidenced that ML decisions satisfying certain fairness
constraints during model deployment may reshape the population and unintentionally exacerbate the group
disparity (Liu et al., 2018; Zhang et al., 2019; 2020). A prime example is Liu et al. (2018), which studied
the lending problem and showed that the lending decisions satisfying statistical parity or equal opportunity
fairness (Hardt et al., 2016b) may actually cause harm to disadvantaged groups by lowering their future
credit scores, resulting in amplified group disparity. Tang et al. (2023) considered sequential interactions
between ML decisions and individuals, where they studied the impact of counterfactual fair predictions on
statistical fairness but their goal is still to ensure parity-based fairness at the group level.

In this work, we focus on counterfactual fairness evaluated over individual future status (label), which ac-
counts for the downstream effects of ML decisions on individuals. We aim to examine under what conditions
and by what algorithms the disparity between individual future status in factual and counterfactual worlds
can be mitigated after deploying ML decisions. To this end, we first introduce a new fairness notion called
“lookahead counterfactual fairness (LCF)." Unlike the original counterfactual fairness proposed by Kusner
et al. (2017) that requires the ML predictions received by individuals to be the same as those in the coun-
terfactual world, LCF takes one step further by enforcing the individual future status (after responding to
ML predictions) to be the same.

Given the definition of LCF, we then develop algorithms that learn ML models under LCF. To model the
effects of ML decisions on individuals, we focus on scenarios where individuals subject to certain ML decisions
adapt their behaviors strategically by increasing their chances of receiving favorable decisions; this can be
mathematically formulated as modifying their features toward the direction of the gradient of the decision
function (Rosenfeld et al., 2020). We first theoretically identify conditions under which an ML model can
satisfy LCF, and then develop an algorithm for training ML models under LCF. We also extend the algorithm
and theorems to path-dependent LCF, which only considers unfairness incurred by the causal effect from
the sensitive attribute to the outcome along certain paths.

Our contributions can be summarized as follows:

• We propose lookahead counterfactual fairness (LCF), a novel fairness notion that evaluates coun-
terfactual fairness over individual future status (i.e., actual labels after responding to ML systems).
Unlike the original CF notion that focuses on current ML predictions, LCF accounts for the subse-
quent impacts of ML decisions and aims to ensure fairness over individual actual future status. We
also extend the definition to path-dependent LCF.

• For scenarios where individuals respond to ML models by changing features toward the direction
of the gradient of decision functions, we theoretically identify conditions under which an ML model
can satisfy LCF. We further develop an algorithm for training ML models under LCF.

• We conduct extensive experiments on both synthetic and real data to validate the proposed algo-
rithm. Results show that compared to conventional counterfactual fair predictors, our method can
improve disparity with respect to the individual actual future status.

2 Problem Formulation

Consider a supervised learning problem with a training dataset consisting of triples (A, X, Y ), where
A ∈ A is a sensitive attribute distinguishing individuals from multiple groups (e.g., race, gender),
X = [X1, X2, ..., Xd]T ∈ X is a d-dimensional feature vector, and Y ∈ Y ⊆ R is the target variable in-
dicating individual’s underlying status (e.g., Y in lending identifies an applicant’s ability to repay the loan,
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Y in healthcare may represent patients’ insulin spike level). The goal is to learn a predictor from training
data that can predict Y given inputs A and X. Let Ŷ denote the output of the predictor.

We assume (A, X, Y ) is associated with a structural causal model (SCM) (Pearl et al., 2000)M = (V, U, F ),
where V = (A, X, Y ) represents observable variables, U includes unobservable (exogenous) variables that
are not caused by any variable in V , and F = {f1, f2, . . . , fd+2} is a set of d + 2 functions called structural
equations that determines how each observable variable is constructed. More precisely, we have the following
structural equations,

Xi = fi(pai, Upai), ∀i ∈ {1, · · · , d},
A = fA(paA, UpaA

),
Y = fY (paY , UpaY

), (1)

where pai ⊆ V , paA ⊆ V and paY ⊆ V are observable variables that are the parents of Xi, A, and
Y , respectively. Upai

⊆ U are unobservable variables that are the parents of Xi. Similarly, we denote
unobservable variables UpaA

⊆ U and UpaY
⊆ U as the parents of A and Y , respectively.

2.1 Background: counterfactuals

If the probability density functions of unobserved variables are known, we can leverage the structural equa-
tions in SCM to find the marginal distribution of any observable variable Vi ∈ V and even study how
intervening certain observable variables impacts other variables. Specifically, the intervention on vari-
able Vi is equivalent to replacing structural equation Vi = fi(pai, Upai

) with equation Vi = v for some v.
Given new structural equation Vi = v and other unchanged structural equations, we can find out how the
distribution of other observable variables changes as we change value v.

In addition to understanding the impact of an intervention, SCM can further facilitate counterfactual
inference, which aims to answer the question “what would be the value of Y if Z had taken value z in the
presence of evidence O = o (both Y and Z are two observable variables)?” The answer to this question is
denoted by YZ←z(U) with U following conditional distribution of Pr{U = u|O = o}. Given U = u and
structural equations F , the counterfactual value of Y can be computed by replacing the structural equation
of Z with Z = z and replacing U with u in the rest of the structural equations. Such counterfactual is
typically denoted by YZ←z(u). Given evidence O = o, the distribution of counterfactual value YZ←z(U) can
be calculated as follows,1

Pr{YZ←z(U) = y|O = o} =
∑

u

Pr{YZ←z(u) = y}Pr{U = u|O = o}. (2)

Example 2.1 (Law school success). Consider two groups of college students distinguished by gender
A ∈ {0, 1} whose first-year average (FYA) in college is denoted by Y . The FYA of each student is causally
related to (observable) grade-point average (GPA) before entering college XG, entrance exam score (LSAT)
XL, and gender A. Suppose there are two unobservable variables U = (UA, UXY ), e.g., UXY may be
interpreted as the student’s knowledge. Consider the following structural equations:

A = UA, XG = bG + wA
GA + UXY ,

XL = bL + wA
L A + UXY , Y = bF + wA

F A + UXY ,

where (bG, wA
G, bL, wA

L , bF , wA
F ) are know parameters of the causal model. Given observation XG = 1, A = 0,

the counterfactual value can be calculated with an abduction-action-prediction procedure Glymour et al.
(2016): (i) abduction that finds posterior distribution Pr{U = u|XG = 1, A = 0}. Here, we have UXY = 1−bG

and UA = 0 with probability 1; (ii) action that performs intervention A = 1 by replacing structural equations
of A; (iii) prediction that computes distribution of YA←1(U) given XG = 1, A = 0 using new structural
equations and the posterior. We have:

YA←1(U) = bf + wA
F + 1− bG with probability 1.

1Given structural equations equation 1 and the marginal distribution of U , Pr{U = u, O = o} can be calculated using the
Change-of-Variables Technique and the Jacobian factor. As a result, Pr{U = u|O = o} = Pr{U=u, O=o}

Pr{O=o} can also be calculated.
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2.2 Counterfactual Fairness

Counterfactual Fairness (CF) was first proposed by Kusner et al. (2017); it requires that for an individual
with (X = x, A = a), the prediction Ŷ in the factual world should be the same as that in the counterfactual
world in which the individual belongs to a different group. Mathematically, CF is defined as follows: ∀a, ǎ ∈
A, X ∈ X , y ∈ Y,

Pr
(

ŶA←a(U) = y|X = x, A = a
)

= Pr
(

ŶA←ǎ(U) = y|X = x, A = a
)

,

While the CF notion has been widely used in the literature, it does not account for the downstream impacts
of ML prediction Ŷ on individuals in factual and counterfactual worlds. To illustrate the importance of
considering such impacts, we provide an example below.
Example 2.2. Consider automatic lending where an ML model is used to decide whether to issue a loan
to an applicant based on credit score X and sensitive attribute A. As highlighted in Liu et al. (2018),
issuing loans to unqualified people who cannot repay the loan may hurt them by worsening their future
credit scores. Assume an applicant in the factual world is qualified for the loan and does not default. But
in a counterfactual world where the applicant belongs to another group, he/she is not qualified. Under
counterfactually fair predictions, both individuals in the factual and counterfactual worlds should receive
the loan with the same probability. Suppose both are issued a loan, then the one in the counterfactual world
would have a worse credit score in the future. Thus, it is crucial to consider the downstream effects when
learning a fair ML model.

2.3 Characterize downstream effects

Motivated by Example 2.2, this work studies CF in a dynamic setting where the deployed ML decisions may
affect individual behavior and change their future features and statuses. Formally, let X ′ and Y ′ denote an
individual’s future feature vector and status, respectively. We use an individual response r to capture the
impact of ML prediction Ŷ on individuals, as defined below.
Definition 2.1 (Individual response). An individual response r : U × V × Y 7→ U × V is a map from
the current exogenous variables U ∈ U , endogenous variables V ∈ V, and prediction Ŷ ∈ Y to the future
exogenous variables U ′ and endogenous variables V ′.

One way to tackle the issue in Example 2.2 is to explicitly consider the individual response and impose
a fairness constraint on future status Y ′ instead of the prediction Ŷ . We call such a fairness notion the
Lookahead Counterfactual Fairness (LCF) and present it in Section 3.

3 Lookahead Counterfactual Fairness

Figure 1: Causal graph in
Example 3.1.

We consider the fairness over the individual’s future outcome Y ′. Given struc-
tural causal modelM = (U, V, F ), individual response r, and data (A, X, Y ),
we define lookahead counterfactual fairness below.
Definition 3.1. We say an ML model satisfies lookahead counterfactual
fairness (LCF) under a response r if the following holds ∀a, ǎ ∈ A, X ∈
X , y ∈ Y:

Pr (Y ′A←a(U) = y|X = x, A = a) = Pr (Y ′A←ǎ(U) = y|X = x, A = a) , (3)

LCF implies that the subsequent consequence of ML decisions for a given
individual in the factual world should be the same as that in the counterfactual world where the individual
belongs to other demographic groups. Note that CF may contradict LCF: even under counterfactually fair
predictor, individuals in the factual and counterfactual worlds may end up with very different future statuses.
We show this with an example below.
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Example 3.1. Consider the causal graph in Figure 1 and the structural functions as follows:

X = fX(U1) = U1, Y = fY (U2, X, A) = U2 + X + A,

U ′1 = r(U1, Ŷ ) = U1 +∇U1 Ŷ , U ′2 = r(U2, Ŷ ) = U2 +∇U2 Ŷ ,

X ′ = fX(U ′1) = U ′1, Y ′ = fY (U ′2, X ′, A) = U ′2 + X ′ + A.

Based on Kusner et al. (2017), a predictor that only uses U1 and U2 as input is counterfactually fair.2
Therefore, Ŷ = h(U1, U2) satisfies CF. Let U1 and U2 be uniformly distributed over [−1, 1]. Note that
the response r(U1, Ŷ ) and r(U2, Ŷ ) imply that individuals make efforts to change feature vectors through
changing the unobservable variables, which results in higher Ŷ in the future. It is easy to see that a CF
predictor h(U1, U2) = U1 + U2 minimizes the MSE loss E{(Y − Ŷ )2} if A ∈ {−1, 1} and Pr{A = 1} = 0.5.
However, since ∇U1 Ŷ = ∇U2 Ŷ = 1, we have:

Pr (Y ′A←a(U) = y|X = x, A = a) = δ(y − a− x− 2)
Pr (Y ′A←ǎ(U) = y|X = x, A = a) = δ(y − ǎ− x− 2)

where δ(y) = 1 if y = 0 and δ(y) = 0 otherwise. It shows that although the decisions in the factual and
counterfactual worlds are the same, the future statuses Y ′ are still different and Definition 3.1 does not hold.

Theorem 3.1 below identifies more general scenarios under which LCF can be violated with a CF predictor.
Theorem 3.1 (Violation of LCF under a CF predictor). Consider a causal model M = (U, V, F ) and
individual response r in the following form:

U ′ = r(U, Ŷ )
X ′i = r(Xr, Ŷ ), Xi ⊂ V are the root nodes

If the response r is a function and the status Y in factual and counterfactual worlds have different distribu-
tions, i.e.,

Pr(YA←a(U) = y|X = x, A = a) ̸= Pr(YA←ǎ(U) = y|X = x, A = a),

then imposing a model that satisfies CF will violate LCF, i.e.,

Pr(Y ′A←a(U)|X = x, A = a) ̸= Pr(Y ′A←ǎ(U) = y|X = x, A = a).

4 Learning under LCF

This section introduces an algorithm for learning a predictor under LCF. In particular, we focus on a special
case with the causal model and the individual response defined below.

Given sets of unobservable variables U = {U1, ..., Ud, UY } and observable variables {X1, ..., Xd, A, Y }, we
consider causal model with the following structural functions:

Xi = fi(Ui, A), Y = fY (X1, ..., Xd, UY ) (4)

where fi is an invertible function3, and fY is invertible w.r.t. UY . After receiving the ML prediction Ŷ , the
individual’s future features X ′ and status Y ′ change accordingly. Specifically, we consider scenarios where
individual unobservable variables U change based on the following

U ′i = ri(Ui, Ŷ ) = Ui + η∇Ui Ŷ , ∀i ∈ {1, ..., d}
U ′Y = rY (UY , Ŷ ) = UY + η∇UY

Ŷ (5)

and the future attributes X ′i and status Y ′ also change accordingly, i.e.,

X ′i = fi(U ′i , A),
Y ′ = fY (X ′1, ..., X ′d, U ′Y ) (6)

2Note that U1 and U2 can be generated for each sample (X, A). See Section 4.1 of (Kusner et al., 2017) for more details.
3Several works in causal inference also consider invertible structural function, e.g., bijective causal models introduced in

Nasr-Esfahany et al. (2023).
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Figure 2: A causal graph and individual
responses with two features X1, X2. The
black arrows represent the connections de-
scribed in structural functions. The red ar-
rows represent the response process. The
green dash arrows are the potential connec-
tion to prediction Ŷ .

The above scenario implies that individuals respond to ML
model by strategically moving features toward the direction
that increases their chances of receiving favorable de-
cisions, step size η > 0 controls the magnitude of data change
and can be interpreted as the effort budget individuals have on
changing their data. Note that this type of response has been
widely studied in strategic classification literature (Rosenfeld
et al., 2020; Hardt et al., 2016a). The above process with d = 2
is visualized in Figure 2.

Our goal is to train an ML model under LCF constraint. Before
presenting our method, we first define the notion of counter-
factual random variables.
Definition 4.1 (Counterfactual random variable). Let x and
a be realizations of random variables X and A, and ǎ ̸= a. We
say X̌ := XA←ǎ(U) and Y̌ := YA←ǎ(U) are the counterfactual
random variables associated with (x, a) if U follows the condi-
tional distribution Pr{U |X = x, A = a} as given by the causal
model M. The realizations of X̌, Y̌ are denoted by x̌ and y̌.

The following theorem constructs a predictor g that satisfies
LCF, i.e., deploying the predictor g in Theorem 4.1 ensures the future status Y ′ is counterfactually fair.
Theorem 4.1 (Predictor with perfect LCF). Consider causal model M = (U, V, F ), where U = {UX , UY },
UX = [U1, U2, ..., Ud]T, V = {A, X, Y }, X = [X1, X2, ..., Xd]T, and the structural equations are given by,

X = α⊙ UX + βA, Y = wTX + γUY , (7)

where α = [α1, α2, ..., αd]T, β = [β1, β2, ..., βd]T, w = [w1, w2, .., wd]T, and ⊙ denotes the element wise
production. Then, the following predictor satisfies LCF,

g(Y̌ , U) = p1Y̌ 2 + p2Y̌ + p3 + h(U), (8)

where p1 = T
2 with T := 1

η(||w⊙α||22+γ2) , and Y̌ is the counterfactual random variable associated with Y . Here,
p2 and p3 and function h(.) are arbitrary and can be trained to improve prediction performance.

The above theorem implies that g should be constructed based on the counterfactual random variable Y̌
and U . Even though U is unobserved, it can be obtained from the inverse of structural equations. Quantity
T in Theorem 4.1 depends on the step size η in individual response, and parameters α, γ, w in structural
functions. When p1 = T

2 , we can achieve perfect LCF.

It is worth noting that Definition 3.1 can be a very strong constraint and imposing Y ′A←a(U) and Y ′A←ǎ(U)
to have the same distribution may degrade the performance of the predictor significantly. To tackle this, we
may consider a weaker version of LCF.
Definition 4.2 (Relaxed LCF). We say Relaxed LCF holds if ∀(a, ǎ) ∈ A2, a ̸= ǎ, X ∈ X , y ∈ Y, we have:

Pr
({
|Y ′A←a(U)− Y ′A←ǎ(U)| < |YA←a(U)− YA←ǎ(U)|

}∣∣X = x, A = a
)

= 1. (9)

Definition 4.2 implies that after individuals respond to ML model, the difference between the future status Y ′

in factual and counterfactual worlds should be smaller than the difference between original status Y in factual
and counterfactual worlds. In other words, it means that the disparity between factual and counterfactual
worlds must decrease over time. In Section 6, we empirically show that constraint in equation 9 is weaker
than the constraint in equation 3 and can lead to a better prediction performance.
Corollary 4.1 (Relaxed LCF with predictor in equation 8). Consider the same causal model defined in
Theorem 4.1 and the predictor defined in equation 8. Relaxed LCF holds if p1 ∈ [0, T ].
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Apart from relaxing p1 in predictor as shown in equation 8, we can also relax the form of the predictor to
satisfy Relaxed LCF, as shown in Theorem 4.2.
Theorem 4.2 (Predictor under Relaxed LCF). Consider the same causal model defined in Theorem 4.1. A
predictor g(Y̌ , U) satisfies Relaxed LCF if g has the following three properties:

(i) g(y̌, u) is strictly convex in y̌.

(ii) g(y̌, u) can be expressed as g(y̌, u) = g1(y̌) + g2(u).

(iii) The derivative of g(y̌, u) w.r.t. y̌ is K-Lipschitz continuous in y̌ with K < 2
η(||w⊙α||22+γ2) , i.e.,∣∣∣∣∂g(y̌1, u)

∂y̌
− ∂g(y̌2, u)

∂y̌

∣∣∣∣ ≤ K |y̌1 − y̌2| .

Theorems 4.1 and 4.2 provide insights on designing algorithms to train a predictor with perfect or Relaxed
LCF. Specifically, given training data D = {(x(i), y(i), a(i))}n

i=1, we first estimate the structural equations.
Then, we choose a parameterized predictor g that satisfies the conditions in Theorem 4.1 or 4.2. An example
is shown in Algorithm 1, which finds an optimal predictor in the form of g(y̌, u) = p1y̌2 + p2y̌ + p3 + hθ(u)
under LCF, where p1 = 1

2η(||w⊙α||22+γ2) , θ is the training parameter for function h, and p2, p3 are two other
training parameters. Under Algorithm 1, we can find the optimal values for p2, p3, θ using training data D.
If we only want to satisfy Relaxed LCF (Definition 4.2), p1 can be a training parameter with 0 < p1 < T .

Algorithm 1 Training a predictor with perfect LCF
Input: Training data D = {(x(i), y(i), a(i))}n

i=1, response parameter η.
1: Estimate the structural equations 7 using D to determine parameters α, β, w, and γ.
2: For each data point (x(i), y(i), a(i)), draw m samples

{
u(i)[j]}m

j=1 from conditional distribution Pr{U |X =
x(i), A = a(i)} and generate counterfactual y̌(i)[j] associated with u(i)[j] based on structural equations 7.

3: Compute p1 ← 1
2η(||w⊙α||22+γ2) .

4: Solve the following optimization problem,

p̂2, p̂3, θ̂ = arg min
p2,p3,θ

1
mn

n∑
i=1

m∑
j=1

l
(

g
(

y̌(i)[j], u(i)[j]
)

, y(i)
)

where
g
(

y̌(i)[j], u(i)[j]
)

= p1

(
y̌(i)[j]

)2
+ p2y̌(i)[j] + p3 + hθ(u),

θ is a parameter for function h, and l is a loss function.
Output: p̂2, p̂3, θ̂

It is worth noting that the results in Theorems 4.1 and 4.2 are for linear causal models. When the causal
model is non-linear, it is hard to construct a model satisfying perfect LCF in Definition 3.1. Nonetheless, we
can still show that it is possible to satisfy Relaxed LCF (Definition 4.2) for certain non-linear causal models.
Theorem 4.3 below focuses on a special case when X is not linearly dependent on A and UX and it identifies
the condition under which Relaxed LCF can be guaranteed.
Theorem 4.3. Consider causal model M = (U, V, F ), where U = {UX , UY }, UX , UY are scalar attributes,
V = {A, X, Y }, X is a scalar, and the structural equations are given by,

X = f(αUX + βA), Y = wX + γUY ,

where f is a non-linear function. If f satisfies the following:

• f is strictly convex;
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• ∀s1, s2, s′1, s′2, if |s1 − s2| < |s′1 − s′2|, we have |f(s1)− f(s2)| < |f(s′1)− f(s′2)|;

• The derivative of f is K-Lipschitz continuous with K < 2
|λ1wηα2| , i.e.,∣∣∣∣df(s1)

ds
− df(s2)

ds

∣∣∣∣ ≤ K|s1 − s2|.

Then, the following predictor satisfies Relaxed LCF

g(Y̌ , U) = λ1Y̌ + λ2h(U)

where λ1, λ2 are learnable parameters, in which λ1 satisfies λ1w > 0, and h can be an arbitrary function
(e.g., neural network).

Theorems 4.2 and 4.3 show that designing a predictor under Relaxed LCF highly depends on the form of
causal structure and structural equations. To wrap up this section, we would like to identify conditions
under which Relaxed LCF holds in a causal graph that X is determined by the product of UX and A.
Theorem 4.4. Consider a non-linear causal model M = (U, V, F ), where U = {UX , UY }, UX =
[U1, U2, ..., Ud]T, V = {A, X, Y }, X = [X1, X2, ..., Xd]T, A ∈ {a1, a2} is a binary sensitive attribute. As-
sume that the structural functions are given by,

X = A · (α⊙ UX + β), Y = wTX + γUY (10)

where α = [α1, α2, ..., αd]T, β = [β1, β2, ..., βd]T, and ⊙ denotes the element wise production. A predictor
g(Y̌ ) satisfies Relaxed LCF if g and the causal model have the following three properties.

• The value domain of A satisfies a1a2 ≥ 0.

• g(y̌) is strictly convex.

• The derivate of g(y̌) is K-Lipschitz continuous with K ≤ 2
η(a1a2||w⊙α||22+γ2) , i.e.,∣∣∣∣∂g(y̌1)

∂y̌
− ∂g(y̌2)

∂y̌

∣∣∣∣ < K |y̌1 − y̌2| .

Although the structural equation associated with Y is still linear in X and UY , we emphasize that such a
linear assumption has been very common in the literature due to the complex nature of strategic classification
Zhang et al. (2022); Liu et al. (2020); Bechavod et al. (2022). For instance, Bechavod et al. (2022) assumed
the actual status of individuals is Y = βX, a linear function of features X. Zhang et al. (2022) assumed
that X itself may be non-linear in some underlying traits of the individuals, but the relationship between X
and P (Y = 1|X) is still linear. Indeed, due to the individual’s strategic response, conducting the theoretical
analysis accounting for such responses can be highly challenging. Nonetheless, it is worthwhile extending
LCF to non-linear settings and we leave this for future works.

5 Path-dependent LCF

An extension of counterfactual fairness called path-dependent fairness has been introduced in Kusner et al.
(2017). In this section, we also want to introduce an extension of LCF called path-dependent LCF. We will
also modify Algorithm 1 to satisfy path-dependent LCF.

We start by introducing the notion of path-dependent counterfactuals. In a causal model associated with a
causal graph G, we denote PGA

as a set of unfair paths from sensitive attribute A to Y . We define XPc
GA

as the set of features that are not present in any of the unfair paths. Under observation X = x, A = a, we
call YA←ǎ,XPc

GA

←xPc
GA

(U) path-dependent counterfactual random variable for Y , and its distribution can be
calculated as follows:

Pr{YA←ǎ,XPc
GA

←xPc
GA

(U) = y|X = x, A = a} =
∑

u

Pr{YA←ǎ,XPc
GA

←xPc
GA

(u) = y}Pr{U = u|X = x, A = a}.

8
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For simplicity, we use Y̌P D and y̌P D to represent a path-dependent counterfactual and the corresponding
realization. That is, Y̌P D = YA←ǎ,XPc

GA

←xPc
GA

(U) where U follows Pr{U |X = x, A = a}. We consider the
same kind of causal model described in Section 4, the future attributes X ′ and outcome Y ′ are determined
by equation 5 and equation 6. We formally define the path-dependent LCF in the following definition.
Definition 5.1. We say an ML model satisfies path-dependent lookahead counterfactual fairness w.r.t. the
unfair path set PGA

if the following holds ∀a, ǎ ∈ A, X ∈ X , y ∈ Y:

Pr
(

Ŷ ′A←a,XPc
GA

←xPc
GA

(U) = y
∣∣∣X = x, A = a

)
= Pr

(
Ŷ ′A←ǎ,XPc

GA

←xPc
GA

(U) = y
∣∣∣X = x, A = a

)
.

Then we have the following theorem.
Theorem 5.1. Consider a causal model and structural equations defined in Theorem 4.1. If we denote the
features on unfair path as XPGA

and remaining features as XPc
GA

, we can re-write structural equations as

XPGA
= αPGA

⊙ UXPGA
+ βPGA

A,

XPc
GA

= αPc
GA
⊙ UXPc

GA

+ βPc
GA

A,

Y = wT
PGA

XPGA
+ wT

Pc
GA

XPc
GA

+ γUY

Then, the following predictor satisfies path-dependent LCF,

g(Y̌P D, U) = p1Y̌ 2
P D + p2Y̌P D + p3 + h(U),

where p1 = T
2 with

T := 1
η(||wPGA

⊙ αPGA
||22 + ||wPc

GA
⊙ αPc

GA
||22 + γ2) ,

p2 and p3 are learnable parameters to improve prediction performance and h is an arbitary function.

6 Experiment

We conduct experiments on both synthetic and real data to validate the proposed method.

6.1 Synthetic Data

We generate the synthetic data based on the causal model described in Theorem 4.1, where we set d = 10
and generated 1000 data points. We assume UX and UY follow the uniform distribution over [0, 1] and the
sensitive attribute A ∈ {0, 1} is a Bernoulli random variable with Pr{A = 0} = 0.5. Then, we generate X
and Y using the structural functions described in Theorem 4.1.4 Based on the causal model, the conditional
distribution of UX and UY given X = x, A = a are as follows,

UX |X = x, A = a ∼ δ
(x− βa

α

)
UY |X = x, A = a ∼ Uniform(0, 1) (11)

Baselines. We used two baselines for comparison: (i) Unfair predictor (UF) is a linear model without
fairness constraint imposed. It takes feature X as input and predicts Y . (ii) Counterfactual fair predictor
(CF) only takes the unobservable variables U as the input and was proposed by Kusner et al. (2017).

Implementation Details. To find a predictor satisfying Definition 3.1, we train a predictor in the form
of Eq. 8. In our experiment, h(u) is a linear function. To train g(y̌, u), we follows Algorithm 1 with m = 100.
We split the dataset into the training/validation/test set at 60%/20%/20% ratio randomly and repeat the
experiment 5 times. We use the validation set to find the optimal number of training epochs and the learning
rate. Based on our observation, Adam optimization with a learning rate equal to 10−3 and 2000 epochs gives
us the best performance.

4The exact values for parameters α, β, w and γ can be found in the Appendix B.
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Metrics. We use three metrics to evaluate the methods. To evaluate the performance, we use the mean
squared error (MSE). Given a dataset {x(i), a(i), y(i)}n

i=1, for each x(i) and a(i), we generate m = 100 values
of u(i)[j] from the posterior distribution. MSE can be estimated as follows,5

MSE = 1
mn

n∑
i=1

m∑
j=1

∥∥∥y(i) − ŷ(i)[j]
∥∥∥2

, (12)

where ŷ(i)[j] is the prediction for data (x(i), a(i), u(i)[j]). Note that for the UF baseline, the prediction does
not depend on u(i)[j]. Therefore, ŷ(i)[j] does not change by j for the UF predictor. To evaluate fairness, we
define a metric called average future causal effect (AFCE),

AFCE = 1
mn

n∑
i=1

m∑
j=1

∣∣∣y′(i)[j] − y̌′(i)[j]
∣∣∣

It is the average difference between the factual and counterfactual future outcomes. To compare |Y − Y̌ |
with |Y ′ − Y̌ ′| under different algorithms, we use the unfairness improvement ratio (UIR) defined below.
The larger UIR implies a higher improvement in disparity.

UIR =
(

1−
∑n

i=1
∑m

j=1 |y′(i)[j] − y̌′(i)[j]|∑n
i=1
∑m

j=1 |y(i)[j] − y̌(i)[j]|

)
× 100%.

Table 1: Results on Synthetic Data: comparison with two baselines, unfair predictor (UF) and counterfactual
fair predictor (CF), in terms of accuracy (MSE) and lookahead counterfactual fairness (AFCE, UIR).

Method MSE AFCE UIR
UF 0.036 ± 0.003 1.296 ± 0.000 0% ± 0
CF 0.520 ± 0.045 1.296 ± 0.000 0% ± 0

Ours (p1 = T/2) 0.064 ± 0.001 0.000 ± 0.0016 100% ± 0

Results. Table 1 illustrates the results when we set η = 10 and p1 = T
2 . The results show that our

method can achieve perfect LCF with p1 = T
2 . Note that in our experiment, the range of Y is [0, 3.73],

and our method and UF can achieve similar MSE. Moreover, our method achieves better performance than
the CF method because Y̌ includes useful predictive information and using it in our predictor can improve
performance and decrease the disparity simultaneously. Because both CF and UF do not take into account
future outcome Y ′, |Y ′ − Y̌ ′| is similar to |Y − Y̌ |, leading to UIR = 0. Based on Corollary 4.1, the value of
p1 can impact the strength of fairness. We examine the tradeoff between accuracy and fairness by changing
the value of p1 from T

512 to T
2 under different η. Figure 3a shows the MSE as a function of AFCE. The results

show that when η = 1 we can easily control the accuracy-fairness trade-off in our algorithm by adjusting p1.
When η becomes large, we can get a high LCF improvement while maintaining a low MSE. To show how
our method impacts a specific individual, we choose the first data point in our test dataset and plot the
distribution of factual future status Y ′ and counterfactual future status Y̌ ′ for this specific data point under
different methods. Figure 4 illustrates such distributions. It can be seen in the most left plot that there is
an obvious gap between factual Y and counterfactual Y̌ . Both UF and CF can not decrease this gap for
future outcome Y ′. However, with our method, we can observe that the distributions of Y ′ and Y̌ ′ become
closer to each other. When p1 = T

2 (the most right plot in Figure 4), the two distributions become the same
in the factual and counterfactual worlds.

6.2 Real Data: The Law School Success Dataset

5Check Section 4.1 of Kusner et al. (2017) for details on why equation 12 is an empirical estimate of MSE.
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Figure 4: Density plot for Y ′ and Y̌ ′ in synthetic data. For a chosen data point, we sampled a batch of U
under the conditional distribution of it and plot the distribution of Y ′ and Y̌ ′.

Figure 5: Causal model for
the Law School Dataset.

We further measure the performance of our proposed method using the Law
School Admission Dataset Wightman (1998). In this experiment, the objective
is to forecast the first-year average grades (FYA) of students in law school using
their undergraduate GPA and LSAT scores.

Dataset. The dataset consists of 21,791 records. Each record is character-
ized by 4 attributes: Sex (S), Race (R), UGPA (G), LSAT (L), and FYA
(F ). Both Sex and Race are categorical in nature. The Sex attribute can be
either male or female, while Race can be Amerindian, Asian, Black, Hispanic,
Mexican, Puerto Rican, White, or other. The UGPA is a continuous variable
ranging from 0 to 4. LSAT is an integer-based attribute with a range of [0, 60].
FYA, which is the target variable for prediction, is a real number ranging from
−4 to 4 (it has been normalized). In this study, we consider S as the sensitive
attribute, while R, G, and L are treated as features.

Causal Model. We adopt the causal model as presented in Kusner et al. (2017), which can be visualized in
Figure 5. In this causal graph, K represents an unobserved variable, which can be interpreted as knowledge.
Thus, the model suggests that students’ grades (UGPA, LSAT, FYA) are influenced by their sex, race, and
underlying knowledge. We assume that the prior distribution for K follows a normal distribution, denoted
as N (0, 1). We adopt the same structural equations as Kusner et al. (2017):

G = N (wK
G K + wR

GR + wS
GS + bG, σG),

L = Poisson
(
exp

{
wK

L K + wR
L R + wS

LS + bL

})
,

F = N (wK
F K + wR

F R + wS
F S, 1).

11



Under review as submission to TMLR

0.0 0.2
Y

0

1

2

3

4

5

d
en

si
ty

Current

0.2 0.4
Y ′

0

1

2

3

4

5

d
en

si
ty

UF

1.0 1.2
Y ′

0

1

2

3

4

5

d
en

si
ty

CF

1.5 2.0
Y ′

0

1

2

3

d
en

si
ty

LCF(p1 = T
4 )

1.5 2.0
Y ′

0.0

0.5

1.0

1.5

2.0

2.5

d
en

si
ty

LCF(p1 = T
2 )

factual

counter
factual

Figure 6: Density plot for F ′ and F̌ ′ in law school data. For a chosen data point, we sampled K from the
conditional distribution of K and plot the distribution of F ′ and F̌ ′.

Implementation Details. Note that race is an immutable characteristic. Therefore, we assume that the
individuals only adjust their knowledge K in response to the prediction model Ŷ . That is K ′ = K + η∇K Ŷ .
In contrast to synthetic data, the parameters of structural equations are unknown, and we have to use the
training dataset to estimate them. Following the approach of Kusner et al. (2017), we assume that G and F
adhere to Gaussian distributions centered at wK

G K +wR
GR+wS

GS +bG and wK
F K +wR

F R+wS
F S, respectively.

Note that L is an integer, and it follows a Poisson distribution with the parameter exp{wK
L K +wR

L R+wS
LS +

bL}. Using the Markov chain Monte Carlo (MCMC) method Geyer (1992), we can estimate the parameters
and the conditional distribution of K given (R, S, G, L). For each given data, we sampled m = 500 different
k’s from this conditional distribution. We partitioned the data into training, validation, and test sets with
60%/20%/20% ratio.

Table 2: Results on Law School Data: comparison with two baselines, unfair predictor (UF) and counterfac-
tual fair predictor (CF), in terms of accuracy (MSE) and lookahead counterfactual fairness (AFCE, UIR).

Method MSE AFCE UIR
UF 0.393 ± 0.046 0.026 ± 0.003 0% ± 0
CF 0.496 ± 0.051 0.026 ± 0.003 0% ± 0

Ours (p1 = T/4) 0.493 ± 0.049 0.013 ± 0.002 50% ± 0
Ours (p1 = T/2) 0.529 ± 0.049 0.000 ± 0.000 100% ± 0

Results. Table 2 illustrates the results with η = 10 and p1 = T
4 and p1 = T

2 where T = 1/(wF
K)2. The

results show that our method achieves a similar MSE as the CF predictor. However, it can improve AFCE
significantly compared to the baselines. Figure 6 shows the distribution of Y and Y ′ for the first data point
in the test set in the factual and counterfactual worlds. Under the UF and CF predictor, the disparity
between factual and factual Y ′ remains similar to the disparity between factual and counterfactual Y . On
the other hand, the disparity between factual and counterfactual Y ′ under our algorithms gets better for both
p1 = T/2 and p1 = T/4. Figure 3b demonstrates that for the law school dataset, the trade-off between MSE
and AFCE can be adjusted by changing hyperparameter p1. Figure 6 show the factual and counterfactual
distributions in real data experiment. It can be seen that our method is the only way that can decrease the
gap between Y ′ and Y̌ ′ in an obvious way.

7 Conclusion

This work studied the impact of ML decisions on individuals’ future status using a counterfactual inference
framework. We observed that imposing the CF predictor may not decrease the group disparity in individuals’
future status. We thus introduced the lookahead counterfactual fairness (LCF) notion, which takes into
account the downstream effects of ML models and requires the individual future status to be counterfactually
fair. We proposed a method to train an ML model under LCF and evaluated the method through empirical
studies on synthetic and real data.
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Impact Statement

This paper advances the field of fair machine learning by studying the downstream effects of counterfactually
fair (CF) predictors. It highlights the risks of using CF predictors without considering the downstream effects
on individuals. Although this paper proposed LCF, a new fairness notion that requires individual future
status (after responding to ML models) to be counterfactual fair, we emphasize that LCF is not always the
appropriate notion to consider to pursue fairness. When using the proposed methods in the paper, we need
to first check the causal structure carefully and ensure all the conditions are met.
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A Proofs

A.1 Proof of Theorem 4.1 and Theorem 4.2

Proof. For any given x, a, we can find the conditional distribution UX |X = x, A = a and UY |X = x, A = a
based on causal modelM. Consider sample u = [uX , uY ] drawn from this conditional distribution. For this
sample, we have,

x̌ = α⊙ uX + βǎ

y̌ = wTx̌ + γuY

So, the gradient of g(y̌, uX , uY ) w.r.t. uX , uY are

∇uX
g = ∂g(y̌, uX , uY )

∂uX
+ ∂g(y̌, uX , uY )

∂y̌
⊙ w ⊙ α (13)

∇uY
g = ∂g(y̌, uX , uY )

∂uY
+ ∂g(y̌, uX , uY )

∂y̌
γ. (14)

Then, y′ can be calculated using response r as follows,

y′ = y + ηwT
(

α⊙ ∂g(y̌, uX , uY )
∂uX

)
+ η ||w ⊙ α| |22

∂g(y̌, uX , uY )
∂y̌

+

ηγ
∂g(y̌, uX , uY )

∂uY
+ ηγ2 ∂g(y̌, uX , uY )

∂y̌
. (15)

Similarly, we can calculate counterfactual value y̌′ as follows,

y̌′ = y̌ + ηwT
(

α⊙ ∂g(y, uX , uY )
∂uX

)
+ η ||w ⊙ α| |22

∂g(y, uX , uY )
∂y

+

ηγ
∂g(y, uX , uY )

∂uY
+ ηγ2 ∂g(y, uX , uY )

∂y
(16)

Note that the following hold for g,
∂g(y̌, uX , uY )

∂uX
= ∂g(y, uX , uY )

∂uX
(17)

∂g(y̌, uX , uY )
∂uY

= ∂g(y, uX , uY )
∂uY

(18)

Thus,

|y̌′ − y′| =
∣∣∣∣y̌ − y + η

(
||w ⊙ α||22 + γ2)(∂g(y, uX , uY )

∂y
− ∂g(y̌, uX , uY )

∂y̌

)∣∣∣∣ (19)

Given above equation, now we can prove Theorem 4.1 and Corollary 4.2,

• For g in Theorem 4.1, we have,

g(y̌, uX , uY ) = p1y̌2 + p2y̌ + p3 + h(u) (20)

∂g(y̌, uX , uY )
∂y̌

= 2p1y̌. (21)

Equations 19 and 21 together imply that,

|y′ − y̌′| = |y − y̌ + y̌ − y| = 0 (22)

Since, for any realization of u, the above equation holds, we can conclude that the following holds,

Pr(ŶA←a(U) = y|X = x, A = a) = Pr(ŶA←ǎ(U) = y|X = x, A = a) (23)
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• For g in Theorem 4.2, since g(y̌, ux, uy) is strictly convex in y̌, we have,

(y̌ − y)
(

∂g(y, uX , uY )
∂y

− ∂g(y̌, uX , uY )
∂y

)
< 0 (24)

Note that derivative of g(y̌, ux, uy) with respect to y̌ is K-Lipschitz continuous in y̌,∣∣∣∣∂g(y, uX , uY )
∂y

− ∂g(y̌, uX , uY )
∂y̌

∣∣∣∣ <
2|y − y̌|

η(||w ⊙ α||22 + γ2) (25)

we proved that

|y′ − y̌′| < |y − y̌| (26)

So we have

Pr({|Y ′A←a(U)− Y ′A←ǎ(U)| < |YA←a(U)− YA←ǎ(U)|}|X = x, A = a) = 1 (27)

A.2 Theorem 4.2 for non-binary A

Let {a} ∪ {ǎ[1], ǎ[2], ..., ǎ[m]} be a set of all possible values for A. Let Y̌ [j] be the counterfactual random
variable associated with ǎ[j] given observation X = x and A = a. Then, g

(
Y̌ [1]+···Y̌ [m]

m , U
)

satisfies LCF,
where g defined in Theorem 4.2.

Proof. For any given x, a, we assume the set of counterfactual a is {ǎ[1], ǎ[2], ..., ǎm}. Consider sample
u = [uX , uY ] drawn from the condition distribution of UX |X = x, A = a and UY |X = x, A = a, with a
predictor g

(
y̌[1]+···y̌[m]

m , u
)

, use the same way in A.1, we can get

∣∣y̌′[j] − y′∣∣ =
∣∣∣∣y̌[j] − y + η(||w ⊙ α||2 + γ2)

(
∂g(y̌[1] + · · · y̌[m], u)

∂y̌[1] + · · · y̌[m] − ∂g(y + y̌[1] + · · · + y̌[j−1] + y̌[j+1] · · · y̌[m], u)
∂y + y̌[1] + · · · y̌[j−1] + y̌[j+1] · · · y̌[m]

)∣∣∣∣
(28)

When y > y̌[j], we have

y̌[1] + · · · y̌[m] < y + y̌[1] + · · · y̌[j−1] + y̌[j+1] · · · y̌[m] (29)

and when y < y̌[j],

y̌[1] + · · · y̌[m] > y + y̌[1] + · · · y̌[j−1] + y̌[j+1] · · · y̌[m] (30)

Because g is strictly convex and Lipschitz continuous, we have

|y̌′[j] − y′| < |y̌[j] − y| (31)

So we proved that, for any j ∈ {1, 2, ..., m}

Pr({|Y ′A←a(U)− Y ′A←ǎ[j](U)| < |YA←a(U)− YA←ǎ[j](U)|}|X = x, A = a) = 1 (32)
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A.3 Proof of Theorem 4.3

Proof. For any given x, a, we can find the conditional distribution UX |X = x, A = a and UY |X = x, A = a
based on causal model M. Consider a sample u = [uX , uY ] drawn from this conditional distribution. For
this sample, we have

x̌ = f(αuX + βa) (33)

y̌ = wx̌ + γuY (34)

So, the gradient of g(y̌, uX , uY ) w.r.t. uX , uY are

∇uX
g = λ1wαf ′(αuX + βǎ) + λ2

∂g(uX , uY )
∂uX

(35)

∇uY
g = λ1γ + λ2

∂g(uX , uY )
∂uY

(36)

Then y′ can be calculated using response r as follows,

y′ =wf

(
αuX + λ1wηα2f ′(αuX + βǎ) + λ2α

∂g(uX , uY )
∂uX

+ βa

)
+ γ

(
uY + λ1ηγ + λ2η

∂g(uX , uY )
∂uY

)
(37)

Similarly, we can calculate counterfactual value y̌′ as follows,

y̌′ =wf

(
αuX + λ1wηα2f ′(αuX + βa) + λ2α

∂g(uX , uY )
∂uX

+ βǎ

)
+ γ

(
uY + λ1ηγ + λ2η

∂g(uX , uY )
∂uY

)
(38)

So,

|y′ − y̌
′| =|w| ·

∣∣∣f (αuX + λ1wηα
2
f

′(αuX + βǎ) + λ2α
∂g(uX , uY )

∂uX

+ βa

)
− f

(
αuX + λ1wηα

2
f

′(αuX + βa) + λ2α
∂g(uX , uY )

∂uX

+ βǎ

)∣∣∣
(39)

Since f is strictly convex,

[(αuX + βa)− (αuX − βǎ)] · [f ′(αuX + βa)− f ′(αuX − βǎ)] < 0 (40)

And because f ′ is Lipschitz continuous,∣∣∣∣(αuX + λ1wηα2f ′(αuX + βǎ) + λ2α
∂g(uX , uY )

∂uX
+ βa

)
−
(

αuX + λ1wηα2f ′(αuX + βa) + λ2α
∂g(uX , uY )

∂uX
+ βǎ

)∣∣∣∣
< |(αuX + βa)− (αuX − βǎ)|

(41)

From the second property of f , we know that

|y′ − y̌′| < |wf(αuX + βa)− wf(αuX − βǎ)| (42)

which is exactly |y − y̌|.
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A.4 Proof of Theorem 4.4

Proof. From the causal functions defined in Theorem 4.4, given any x, a, we can find the conditional distri-
bution UX |X = x, A = a and UY |X = x, A = a. Similar to the proof of Theorem 4.2, we have

x̌ = ǎ(α⊙ uX + β) (43)

y̌ = wTx̌ + γuY (44)

So, the gradient of g(y̌) w.r.t uX , uY are

∇uX
g = ∂g(y̌)

∂y̌
ǎw ⊙ α (45)

∇uY
g = ∂g(y̌)

∂y̌
γ (46)

Then, y′ can be calculated using the response r as follows,

y′ = y + η
(
aǎ||w ⊙ α||2 + γ2) ∂g(y̌)

∂y̌
(47)

In the counterfactual world,

y̌′ = y̌ + η(ǎa||w ⊙ α||2 + γ2)∂g(y)
∂y

(48)

So,

|y′ − y̌′| =
∣∣∣∣y − y̌ + η(aǎ||w ⊙ α||2 + γ2)(∂g(y̌)

∂y̌
− ∂g(y)

∂y
)
∣∣∣∣ (49)

Because A is a binary attributes, we have

aǎ = a1a2 (50)

From the property of g, we have

(y − y̌)(∂g(y̌)
∂y̌

− ∂g(y)
∂y

) < 0 (51)

Note that the derivate of g(y̌) is K-Lipschitz continuous,∣∣∣∣∂g(y̌)
∂y̌

− ∂g(y)
∂y

∣∣∣∣ <
2|y̌ − y|

η(aǎ||w ⊙ α||22 + γ2) (52)

which is to say, for every u sampled from the conditional distribution, |y̌′ − y′| < |y̌ − y|. So we proved

Pr({|Y ′A←a(U)− Y ′A←ǎ(U)| < |YA←a(U)− YA←ǎ(U)|}|X = x, A = a) = 1 (53)

A.5 Proof of Theorem 5.1

Proof. For any given x, a we can find the consitional distribution UX |X = x, A = a and UY |X = x, A = a
based on causal modelM. Consider sample u = [uX , uY ] drawn from this conditional distribution. For this
sample, we have,

x̌PGA
= αPGA

⊙ uXPGA
+ βPGA

ǎ (54)
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y̌P D = wT
PGA

x̌PGA
+ wT

Pc
GA

xPc
GA

+ γuY (55)

So, the gradient of g(y̌P D, uXPGA
, uXPc

GA

, uY ) w.r.t. uXPGA
, uXPc

GA

, uY are

∇uXPGA

g =
∂g(y̌P D, uXPGA

, uXPc
GA

, uY )

∂uXPGA

+
∂g(y̌P D, uXPGA

, uXPc
GA

, uY )

∂y̌
⊙ wPGA

⊙ αPGA
(56)

∇uXPc
GA

g =
∂g(y̌P D, uXPGA

, uXPc
GA

, uY )

∂uXPc
GA

+
∂g(y̌P D, uXPGA

, uXPc
GA

, uY )

∂y̌
⊙ wPc

GA
⊙ αPc

GA
(57)

∇uY
g =

∂g(y̌, uXPGA
, uXPc

GA

, uY )

∂uY
+

∂g(y̌, uXPGA
, uXPc

GA

, uY )

∂ ˇyP D
γ. (58)

Then, y′ can be calculated using response r as follows,

y′ =y + ηwT
PGA

α⊙
∂g(y̌P D, uXPGA

, uXPc
GA

, uY )

∂uXPGA

+ ηwT
Pc

GA

α⊙
∂g(y̌P D, uXPGA

, uXPc
GA

, uY )

∂uXPc
GA

+

η
∥∥∥wPGA

⊙ αPGA

∥∥∥2

2

∂g(y̌P D, uXPGA
, uXPc

GA

, uY )

∂y̌P D
+ η

∥∥∥wPc
GA
⊙ αPc

GA

∥∥∥2

2

∂g(y̌P D, uXPGA
, uXPc

GA

, uY )

∂y̌P D
+

ηγ
∂g(y̌P D, uXPGA

, uY , uY )
∂uY

+ ηγ2
∂g(y̌P D, uXPGA

, uY , uY )
∂y̌P D

. (59)

Similarly, we can calculate path-dependent counterfactual value y̌′P D as follows,

y̌′P D =y̌P D + ηwT
PGA

α⊙
∂g(y, uXPGA

, uXPc
GA

, uY )

∂uXPGA

+ ηwT
Pc

GA

α⊙
∂g(y, uXPGA

, uXPc
GA

, uY )

∂uXPc
GA

+

η
∥∥∥wPGA

⊙ αPGA

∥∥∥2

2

∂g(y, uXPGA
, uXPc

GA

, uY )

∂y
+ η

∥∥∥wPc
GA
⊙ αPc

GA

∥∥∥2

2

∂g(y, uXPGA
, uXPc

GA

, uY )

∂y
+

ηγ
∂g(y, uXPGA

, uY , uY )
∂uY

+ ηγ2
∂g(y, uXPGA

, uY , uY )
∂y

. (60)

Thus,

|y̌′P D − y′| =∣∣∣∣∣∣y̌P D − y + η(||wPGA
⊙ αPGA

||22 + ||wPc
GA
⊙ αPc

GA
||22 + γ2)

∂g(y, uXPGA
, uXPc

GA

, uY )

∂y
−

∂g(y̌P D, uXPGA
, uXPc

GA

, uY )

∂y̌P D

∣∣∣∣∣∣
(61)

We denote p1 = 1
2η(||wPGA

⊙αPGA
||22+||wPc

GA

⊙αPc
GA

||22+γ2) . Since we know the partial gradient of

g(y̌P D, uXPGA
, uXPc

GA

, uY ) is 2p1y̌P D, we know that |y′ − y̌′P D| = 0. Since for any realization of u, the
equation holds, we can conclude that the path-dependent LCF holds.

B Parameters for Synthetic Data Simulation

When generating the synthetic data, we used α = [0.37454012, 0.95071431, 0.73199394, 0.59865848,
0.15601864, 0.15599452, 0.05808361, 0.86617615, 0.60111501, 0.70807258]T. β =[0.02058449, 0.96990985,
0.83244264, 0.21233911, 0.18182497, 0.18340451, 0.30424224, 0.52475643, 0.43194502, 0.29122914]T.
w =[0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998, 0.78517596, 0.19967378, 0.51423444,
0.59241457, 0.04645041]T. γ = 0.60754485 (These values are generated randomly).
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