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Abstract
In this work, we propose a 3D style transfer framework,
3DStyleMerge, that transfers style elements from style to
content 3D objects. We apply a combination of learning-
based and geometric-based approaches to perform style trans-
fer. Our approach ensures that the functionality of the content
3D object is preserved, by allowing only compatible opera-
tions. To evaluate the proposed 3D style transfer framework,
we conduct a user study with 3D designers. Our evaluation re-
sults demonstrate that our approach effectively generates new
designs and the generated designs aid in designers’ creativity.

Introduction
As we move towards product customization, additive man-
ufacturing, and extended reality environments, the demand
for 3D models is ever increasing. The global 3D mapping
and modeling market size was valued at USD 13.49 billion
in 2020 and is expected to grow at a CAGR of 20.9% over
the period 2021-2026 (Intelligence 2021). The increasing
need for VFX technologies in movies, 3D applications in
games, and the huge shift towards Virtual Reality are major
growth factors for the 3D mapping and modeling market.
This increasing demand has given rise to multiple 3D design
softwares. These softwares help in modeling, analyzing, and
translating 3D models. However, there is still a lack of tools
that aid in designers’ creativity. In this paper, we present an
approach for 3D style transfer to bridge this gap.

One of the ways to generate stylized design variants is by
leveraging the concept of Neural style transfer (NST) (Jing
et al. 2019). A considerable amount of research has been
conducted in the field of Neural style transfer for 2D im-
ages and videos (Jing et al. 2019). 2D Neural style transfer
has seen enormous success in the fields of fashion, gaming,
interior designing, virtual reality, etc. In addition, applying
style from a 2D image to a 3D object has seen some progress
(Berkiten et al. 2017). However, the process of identifying
the style of a 3D object and applying it to another 3D ob-
ject is still an active research area. 3D style transfer can
be achieved through transfer of shape, texture or 2D pat-
terns. We propose to advance the existing landscape of style
transfer by merging compatible elements from two 3D ob-
jects to create stylized 3D objects. In the field of image
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and video processing, Convolutional neural networks (CNN)
have been successfully applied to generate novel stylized
images. However, the usage of these methods for 3D ob-
jects is not straightforward due to the unstructured repre-
sentations of 3D models such as point clouds, meshes, etc.
Hence, efficient geometric representations are required to
use style transfer concepts for three-dimensional shapes. In
recent years, we witnessed an increased focus on proposing
Deep neural network (DNN) models for 3D object classifi-
cation (Hanocka et al. 2019), part segmentation (Hanocka
et al. 2019), reconstruction, etc. However, there has been
very little attention on synthesizing 3D models.

In this work, we propose a 3D style transfer framework,
3DStyleMerge, that transfers style elements from style to
content 3D objects. We apply a combination of learning-
based and geometric-based approaches to achieve this. We
first segment the 3D objects into their components, then
compute the compatibility between the components, and fi-
nally perform style transfer. Our approach ensures that the
functionality of the content 3D object is preserved, by al-
lowing only compatible operations. Next, we demonstrate
the results of our style transfer framework. To evaluate our
approach, we conduct a user study with 3D designers. Our
evaluation results show that our approach effectively gen-
erates stylized designs and the generated designs aid in de-
signers’ creativity.

The remainder of this paper is structured as follows: Sec-
tion 2 discusses the related work. In Section 3, we describe
our approach for style transfer on 3D models. We describe
the dataset and discuss results in Section 4. Finally, Section
5 concludes with future work.

Related Work
Prior works on style transfer mainly focus on 2D-to-2D style
transfer on images and videos (Jing et al. 2019). We find few
2D-to-3D style transfer approaches which aim at applying
specific textures or colors from 2D samples to 3D objects
(Berkiten et al. 2017). Hu et al. (Hu et al. 2017) present a
method for defining elements that characterize a given style,
where the elements are co-located across the shapes of the
style. Stornaiuolo et al. (Stornaiuolo et al. 2020) present a
3D-to-3D topology transfer paradigm based on transforma-
tions in 3D space. They develop a 3D conditional Genera-
tive Adversarial Network, Vox2Vox, that performs volumet-



Figure 1: 3DStyleMerge approach

ric transformations to modify the internal structure of any
3D object while maintaining its overall shape. Guan et al.
(Guan et al. 2020) develop a 3D shape modeling tool based
on functionality-aware model evolution. The tool generates
new shapes via part recombination, possibly across object
categories. They introduce the concept of functionality par-
tial matching, which analyzes the functional plausibility of
new shapes not as a whole, but in parts, with respect to
learned functionality models. Liu et al. (Liu and Jacobson
2019) present a 3D stylization algorithm that can deform an
input 3D shape into the style of a cube while maintaining
the content of the original shape. Ma et al. (Ma et al. 2014)
apply the analogy approach to 3D shapes. Rather than sim-
ply transferring the style of an exemplar to a base shape,
they take as input a source shape similar to the exemplar
and a target shape and synthesize a new shape that follows
the structure of the target but possesses the style of the ex-
emplar. Their approach requires a correspondence between
the source and base shapes and an analogy relationship be-
tween the source and target. Lun et al. (Lun et al. 2016)
propose a geometric-based approach for synthesizing shapes
by transferring style between 3D objects. Given an exem-
plar and a target shape, the approach generates an output
that preserves the target shape’s structure and functionality,
while minimizing the style distance between the output and
the exemplar. They perform element-level geometric oper-
ations - substitution, addition, removal, and deformation to
achieve style transfer. However, these works require a spe-
cific formulation of analogy between the different parts of
the analyzed objects that limits their application to few col-
lections of 3D models. Our work is closely related to (Lun
et al. 2016) which applies geometric-based approaches to
transfer style elements from style 3D object to content 3D
object. Unlike Lun et al. (Lun et al. 2016), we apply a com-
bination of learning-based and geometric-based approaches
to perform style transfer.

3DStyleMerge: 3D Shape Transfer
In this section, we introduce 3DStyleMerge - our proposed
3D Style merge framework, which transfers style elements
from style to content 3D objects. Our approach (as shown in
Figure 1) consists of three steps:

1. 3D Part Segmentation: Part Segmentation of 3D content
and style objects

2. 3D Shape Compatibility: Evaluation of compatibility be-
tween segmented parts

3. Style Merge: Merging components from style to content
3D object

We discuss each of them in the subsequent sub-sections.

3D Part Segmentation
For part segmentation, we leverage the state-of-the-art 3D
segmentation approach, MeshCNN, to segment the compo-
nents of the 3D objects. We apply MeshCNN, a Convo-
lutional neural network designed specifically for triangular
meshes, which operates directly on the mesh edges. The net-
work learns to classify the edges into different segments.
The network combines specialized convolution and pooling
layers that operate on the mesh edges, by leveraging their
intrinsic geodesic connections. Mesh Convolutions are ap-
plied on every edge and the four edges of its incident trian-
gles, and mesh pooling is applied via an edge collapse oper-
ation that retains surface topology, thereby generating new
mesh connectivity for the subsequent convolutions. Due to
space limitations, we present only the necessary details of
MeshCNN. For a detailed understanding, please refer to the
paper (Hanocka et al. 2019).

3D Shape Compatibility
We evaluate compatibility between pairs of segments to as-
sess the impact of the merge operation on the functionality
of the content object. Shapes are deemed to be more stylis-
tically similar if they share more geometrically similar ele-
ments, i.e., common shape characteristics. The compatibility
operation is specifically designed to maintain the content ob-
ject’s structure by preserving element connectivity and func-
tionality during merge operations. Earlier approaches (Lun
et al. 2016) have focused on compatibility computation by
defining several metrics and descriptors to capture features.
We use a data-driven approach to measure the compatibility
between 3D components. We use Siamese neural network to
achieve this. Siamese networks consist of two identical sub-
networks with shared weights, i.e., they consist of the same
network copied with a Contrastive loss function. Figure 2



Figure 2: Siamese neural network for part compatibility with MeshCNN (Hanocka et al. 2019) as identical subnetwork

shows the architecture of our proposed Siamese network.
We use MeshCNN as our subnetwork to extract the feature
representation (embedding) for 3D components. MeshCNN
network consists of a series of Mesh Convolution and Mesh
Pooling blocks, followed by an Average Pooling and a Lin-
ear layer. The components of MeshCNN are discussed in
Section 3.1. The training set for a Siamese network consists
of triplets (x1, x2, y), where x1 and x2 are 3D components
and y ∈ 0, 1 indicates whether x1 and x2 are compatible (y =
1) or not compatible (y = 0). The output of the Linear layer
are 100-dimensional embedding representations v1 and v2
for input 3D components x1 and x2 respectively. The net-
work loss can be formalized as the Contrastive loss function
which measures the ability of the function to place compat-
ible parts nearby and keep incompatible parts further apart.
The objective of the Contrastive loss function is to minimize
the positive pairwise (compatible parts) distance and max-
imize the negative pairwise (incompatible parts) distance.
Mathematically, Contrastive loss L is

L = y∗||v1−v2||2+(1−y)∗max(0,m−||v1−v2||)2 (1)
where v1 is the vector representation (embedding) for in-

put x1, v2 is the vector representation (embedding) for input
x2, and y is the label (0/1).

Style Merge
After calculating the compatibility of segments in the con-
tent and style objects, the next step is to substitute a compat-
ible style segment in the content object. We achieve this by
adopting a geometric based approach using Blender Python
API (Blender 2021). The below 4 steps are involved to
achieve this merge operation:
1. Convert content and style segments to a uniform scale
2. Align the center of geometry of the content segment with

its substitute compatible style segment

3. Substitute the content segment with the style segment
4. Fill any gaps that may appear after substitution

Experiments and Results
In this section, we discuss the dataset and results.

Dataset
We experiment with the well-known Shape COSEG dataset
for part segmentation, which is a collection of CAD mod-
els belonging to 10 object categories. The ground truth la-
bels are only available for two categories - chairs and vases,
which consist of 700 objects.

There is no open-source dataset available for computing
compatibility. We curate our own dataset by manually tag-
ging pairs of 3D components as compatible (y=1) or incom-
patible (y=0) with the help of 3D designers and subject mat-
ter experts. We collect datasets from various open-source
databases such as GrabCAD (GrabCAD 2021), 3D Ware-
house, etc. The dataset consists of a total of 500 pairs of
data points, of which 250 pairs are compatible and the other
250 pairs are incompatible.

Evaluation and Results
Our approach consists of three major components - 3D
Part Segmentation, 3D Shape Compatibility, and 3D Style
Merge. In this section, we discuss the evaluation of these
components.

3D Part Segmentation: We evaluate the performance of
the part segmentation network on the COSEG dataset. We
split the dataset into train (85%) and test (15%) sets for each
category. We observe an accuracy of 99% for chairs and 97%
for vases on the test set (same as reported in (Hanocka et al.
2019)).



Table 1: 3D Style Merge results for a single style source

Content 3D Object Style 3D Object Stylized 3D Object

3D Shape compatibility: We evaluate the performance of
our 3D Shape compatibility model. We split the dataset into
train (80%) and test (20%) sets. We observe an accuracy of
92.4% on the training set and 88.2% on the test set. The re-
sults show that our approach is effectively able to find com-
patible pairs.

3D Style Merge: We conduct a user study with ten de-
signers to qualitatively evaluate the generated style merged
3D objects. The designers have experience working on var-
ious 2D and 3D design tools such as Autodesk Maya,
Zbrush, Photoshop, Arnold, Substance Painter, Autodesk
Fusion 360, Rhinoceros 3D, AutoCAD, Blender, Autodesk
3DS Max, Keyshot and Marmoset. We present 10 randomly
sampled style merged designs (along with their content and
style 3D models) to each designer and ask them to provide
their feedback along two aspects:

1. Do you see a style transfer from style to content 3D ob-
ject (Yes/No)?

2. Rate the clarity of output (on a Likert scale of 1-5)

We apply majority voting for categorical parameters and

averaging for numerical parameters to aggregate the design-
ers’ responses. We observe that all the designers see a style
transfer from the style to content 3D objects. The design-
ers’ rating for clarity of outputs has a median value of 4.3.
The designers are aware of tools that can achieve style trans-
fer for 2D images. However, they are not aware of any such
tools for automated 3D style transfer. We measure the inter-
rater agreement amongst designers on whether they see a
style transfer using Fleiss’ Kappa (McHugh 2012). We ob-
serve the κ coefficient to be 0.98 which indicates a level of
strong agreement among the designers. The results demon-
strate that our approach is effectively able to generate styl-
ized designs by merging the elements from a style to a con-
tent 3D object.

We perform a quantitative analysis to evaluate the quality
of the stylized 3D object. There are certain metrics proposed
to evaluate the stylized output of 2D style transfer (Jing et al.
2019). However, there is no single metric established to eval-
uate the output of 3D style transfer. In recent years, there
has been an attempt to propose metrics to evaluate the qual-
ity of 3D meshes using reference (or ground truth) samples



Table 2: 3D Style Merge results for multiple style sources

Content 3D Object Style 3D Object - 1 Style 3D Object - 2 Stylized 3D Object

(Abouelaziz, El Hassouni, and Cherifi 2016). These metrics
mainly leverage the spatial deformation between the refer-
ence and distorted samples. However, these metrics cannot
be directly applied to our case, as they capture the distortion
in the generated sample with respect to the reference object.
We propose a metric, Quality score, to evaluate the quality
of style transfer. We apply a supervised approach to clas-
sify the 3D mesh model as “Noisy” or “Clean”. We leverage
the MeshCNN classification network (as shown in Subnet-
work of Figure 2), except the last layer which we change
from Softmax to Sigmoid activation function to achieve this.
We curate a dataset of noisy and clean meshes from vari-
ous open-source databases - LIRIS/EPFL General-Purpose
Database (Lavoué et al. 2006) and GrabCAD (GrabCAD
2021). The dataset contains 600 samples (300 samples for
noisy meshes and 300 samples for clean meshes), belong-
ing to different categories such as vases, chair, boxes, etc.
Out of the 600 samples, 100 samples were already labelled
and 3D designers manually labelled the remaining 500 sam-
ples as “Noisy” or “Clean”. We randomly split the dataset
into train (80%) and test (20%) sets. We train the model for

100 epochs. We observe a training accuracy of 86.8% and
a test accuracy of 83.2%. The trained model is used to pre-
dict whether the stylized 3D model (generated by our style
merge approach) is “Noisy” or “Clean”. We define Quality
score as the predicted probability of the stylized 3D model
being “Clean”. Our approach doesn’t require any reference
object to assess the quality of a 3D mesh. We observe the
mean Quality score as 0.82 (with the maximum score be-
ing 0.87 and the minimum score being 0.74) for stylized 3D
designs generated by our approach. The evaluated Quality
score implies that the proposed framework has successfully
transferred style elements to the content with good quality.
Our work is closely related to (Lun et al. 2016), which ap-
plies geometric based approach for style transfer. They eval-
uated their results through qualitative analysis by conducting
user studies. They did not propose any metrics to evaluate
the quality of their outputs. As there is no baseline metrics,
we are unable to compare our results with the existing work.



Conclusion and Future Work
In this work, we propose a 3D style transfer framework,
3DStyleMerge, that transfers style elements from style to
content 3D objects. We apply a combination of learning-
based and geometric-based approaches to perform style
transfer. Our approach ensures that the functionality of the
content 3D object is preserved by allowing only compatible
operations. We demonstrate the results of our style trans-
fer framework. We conduct a user study with 3D designers
to evaluate our stylized 3D designs. Our evaluation results
demonstrate that our approach effectively generates stylized
designs and the generated designs aid in designers’ creativ-
ity. As future work, we plan to improve the quality of the
generated stylized 3D models.
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