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Abstract

As a powerful framework for graph representation learning, Graph Neural Net-
works (GNNs) have garnered significant attention in recent years. However, to the
best of our knowledge, there has been no formal analysis of the logical expres-
siveness of GNNs as Boolean node classifiers over multi-relational graphs, where
each edge carries a specific relation type. In this paper, we investigate FOC2, a
fragment of first-order logic with two variables and counting quantifiers. On the
negative side, we demonstrate that the R2-GNN architecture, which extends the
local message passing GNN by incorporating global readout, fails to capture FOC2

classifiers in the general case. Nevertheless, on the positive side, we establish that
R2-GNN models are equivalent to FOC2 classifiers under certain restricted yet
reasonable scenarios. To address the limitations of R2-GNN regarding expressive-
ness, we propose a simple graph transformation technique, akin to a preprocessing
step, which can be executed in linear time. This transformation enables R2-GNN
to effectively capture any FOC2 classifiers when applied to the "transformed"
input graph. Moreover, we extend our analysis of expressiveness and graph trans-
formation to temporal graphs, exploring several temporal GNN architectures and
providing an expressiveness hierarchy for them. To validate our findings, we im-
plement R2-GNN and the graph transformation technique and conduct empirical
tests in node classification tasks against various well-known GNN architectures
that support multi-relational or temporal graphs. Our experimental results con-
sistently demonstrate that R2-GNN with the graph transformation outperform the
baseline methods on both synthetic and real-world datasets. The code is available
at https://github.com/hdmmblz/multi-graph.

1 Introduction

Graph Neural Networks (GNNs) have become a standard paradigm for learning with graph structured
data, such as knowledge graphs Park et al. [2019], Tena Cucala et al. [2021], Wang et al. [2023] and
molecules Hao et al. [2020], Gasteiger et al. [2021], Guo et al. [2021]. GNNs take as input a graph
where each node is labelled by a feature vector, and then they recursively update the feature vector of
each node by processing a subset of the feature vectors from the previous layer. For example, many
GNNs update a node’s feature vector by combining its value in the previous layer with the output of
some aggregation function applied to its neighbours’ feature vectors in the previous layer; in this case,
after k iterations, a node’s feature vector can capture structural information about the node’s k-hop
neighborhood. GNNs have proved to be very efficient in many applications like knowledge graph
completion and recommender systems. Most previous work on GNNs mainly revolves around finding
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GNN architectures (e.g. using different aggregation functions or graph-level pooling schemes) which
offer good empirical performance Kipf and Welling [2016], Xu et al. [2018], Corso et al. [2020]. The
theoretical properties of different architectures, however, are not yet well understood.

In Xu et al. [2018], the authors first proposed a theoretical framework to analyze the expressive power
of GNNs by establishing a close connection between GNNs and the Weisfeiler-Lehman (1-WL) test
for checking graph isomorphism. Similarly, Geerts and Reutter [2022] provides an elegant way to
easily obtain bounds on the separation power of GNNs in terms of the Weisfeiler-Leman (k-WL) tests.
However, the characterization in terms of the Weisfeiler-Lehman test only calibrates distinguishing
ability. It cannot answer which Boolean node classifier can be expressed by GNNs. To this end,
Barceló et al. [2020] consider a class of GNNs named ACR-GNNs proposed in Battaglia et al. [2018],
where the update function uses a “global” aggregation of the features of all nodes in the graph in
addition to the typical aggregation of feature vectors of neighbour nodes. Then, the authors of the
paper prove that in the single-relational 2 scenario, ACR-GNNs can capture every Boolean node
classifier expressible in the logic FOC2.

However, most knowledge graphs need multiple relation types. For example, in a family tree, there
are multiple different relation types such as "father" and "spouse". In this paper, we consider the
abstraction of a widely used GNN architecture called R-GCN Schlichtkrull et al. [2018], which
is applicable to multi-relational graphs. Following Barceló et al. [2020], we define R2-GNN as a
generalization of R-GCN by adding readout functions to the neighborhood aggregation scheme. We
show that although adding readout functions enables GNNs to aggregate information of isolated nodes
that can not be collected by the neighborhood-based aggregation mechanism, R2-GNN are still unable
to capture all Boolean node classifiers expressible as formulas in logic FOC2 in multi-relational
scenarios if applied “directly” to the input. This leaves us with the following questions: (1) Are there
reasonable and practical sub-classes of multi-relational graphs for which FOC2 can be captured by
R2-GNN? (2) Is there some simple way to encode input graphs, so that all FOC2 node classifiers can
be captured by R2-GNN for all multi-relational graphs?

In this paper, we provide answers to the above questions. Moreover, we show that our theoretical
findings also transfer to temporal knowledge graphs, which are studied extensively in Park et al.
[2022] and Gao and Ribeiro [2022]. In particular, we leverage the findings from Gao and Ribeiro
[2022] which shows that a temporal graph can be transformed into an “equivalent” static multi-
relational graph. Consequently, our results, originally formulated for static multi-relational graphs,
naturally extend to the domain of temporal knowledge graphs. Our contributions are as follows:

• We calibrate the logic expressiveness of R2-GNN as node classifiers over different sub-
classes of multi-relational graphs.

• In light of some negative results about the expressiveness of R2-GNN found in the multi-
relational scenario, there is a compelling need to boost the power of R2-GNN. To address this
challenge, we propose a graph transformation and show that such a transformation enables
R2-GNN to capture each classifier expressible as a FOC2 formula in all multi-relational
graphs.

• We expand the scope of expressiveness results and graph transformation from static multi-
relational graphs to temporal settings. Within this context, we propose several temporal
GNN architectures and subject them to a comparative analysis with frameworks outlined in
Gao and Ribeiro [2022]. Ultimately, we derive an expressiveness hierarchy.

2 Preliminaries

2.1 Multi-relational Graphs

A multi-relational graph is a 4-tuple G = (V, E , P1, P2), where V , P1, P2 are finite sets of nodes,
types and relations (a.k.a, unary/binary predicates)3, respectively, and E is a set of triples of the form
(v1, p2, v2) or (v, type, p1), where p1 ∈ P1, p2 ∈ P2, v1, v2, v ∈ V , and type is a special symbol.

Next, given arbitrary (but fixed) finite sets P1 and P2 of unary and binary predicates, respectively, we
define the following three kinds of graph classes:

2The “single-relational” means there is only one type of edges in the graph.
3For directed graphs, we assume P2 contains relations both in two directions (with inverse-predicates).

Moreover, we assume there exists an "equality relation" EQ ∈ P2 such that ∀x,y ∈ V, x = y ⇔ EQ(x,y) = 1.
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• a universal graph class can be any set of graphs of the form (V, E , P1, P2).
• a bounded graph class is a universal graph class for which there exists n ∈ N such that each

graph in the class has no more than n nodes;
• a simple graph class is a universal graph class where for each graph (V, E , P1, P2) in the

class, and for each pair of nodes v1, v2 ∈ V , there exists at most one triple in E of the form
(v1,p2,v2), where p2 ∈ P2.

We typically use symbols Gu, Gb, and Gs to denote universal, bounded, and simple graph classes,
respectively.
Definition 1. For a given graph class over predicates P1 and P2, a Boolean node classifier is a
function C such that for each graph G = (V, E , P1, P2) in that graph class, and each v ∈ V , C
classifies v as true or false.

2.2 Graph Neural Networks

Node Encoding We leverage a GNN as a Boolean node classifier for multi-relational graphs, which
cannot be directly processed by GNN architectures, requiring graphs where each node is labelled
by an initial feature vector. Therefore, we require some form of encoding to map a multi-relational
graph to a suitable input for a GNN. Such an encoding should keep graph permutation invariance
Geerts and Reutter [2021] since we don’t want a GNN to have different outputs for isomorphic
graphs. Inspired by Liu et al. [2021] for a multi-relational graph G = (V, E , P1,P2) and an ordering
p1, p2, · · · , pk of the predicates in P1, we define an initialization function I(·) which maps each node
v ∈ V to a Boolean feature vector I(v) = xv with a fixed dimension |P1|, where the ith component
of the vector is set to 1 if and only if the node v is of the type pi, that is, (xv)i = 1 if and only if
(v, type, pi) ∈ E . If P1 is an empty set, we specify that each node has a 1-dimension feature vector
whose value is 1. Clearly, this encoding is permutation invariant.

R-GNN R-GCN Schlichtkrull et al. [2018] is a widely-used GNN architecture that can be applied
to multi-relational graphs. By allowing different aggregation and combination functions, we extend

R-GCN to a more general form which we call R-GNN. Formally, let
{
{A(i)

j }|P2|
j=1

}L

i=1
and {C(i)}Li=1

be two sets of aggregation and combination functions. An R-GNN computes vectors x(i)
v for every

node v of the multi-relational graph G = (V, E , P1,P2) on each layer i, via the recursive formula

x(i)v = C(i)

(
x(i−1)
v ,

(
A

(i)
j ({{x(i−1)

u |u ∈ NG,j(v)}})
)|P2|

j=1

)
(1)

where x(0)v is the initial feature vector as encoded by I(·), {{·}} denotes a multiset, (·)|P2|
j=1 denotes a

tuple of size |P2|, NG,j(v) denotes the neighbours of v via a binary relation pj ∈ P2, that is, nodes
w ∈ V such that (v,pj ,w) ∈ E .

R2-GNN R2-GNN extends R-GNN by specifying readout functions {R(i)}Li=1 , which aggregates
the feature vectors of all the nodes in a graph. The vector x(i)

v of each node v in G on each layer i, is
computed by the following formula

x(i)
v = C(i)

(
x(i−1)
v ,

(
A

(i)
j ({{x(i−1)

u |u ∈ NG,j(v)}})
)|P2|

j=1
, R(i)({{x(i−1)

u |u ∈ V }})
)

(2)

Every layer in an R2-GNN first computes the aggregation over all the nodes in G; then, for every
node v, it computes the aggregation over the neighbors of v; and finally, it combines the features of v
with the two aggregation vectors; the result of this operation is the new feature vector for v. Please
note that an R-GNN can be seen as a special type of R2-GNN where the combination function simply
ignores the output of the readout function.

It is worth noting that R-GNN as well as R2-GNN is not a specific model architecture; it is a
framework that contains a bunch of different GNN architectures. In the paper, we mentioned it’s
generalized from R-GCN (Schlichtkrull et al. [2018]), but our primary objective is to establish a
comprehensive framework that serves as an abstraction of most Message-Passing GNNs (MPGNN).
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In the definitions (Equations (1) and (2)), the functions can be set as any functions, such as matrix
multiplications or QKV-attentions. Most commonly used GNN such as R-GCN (Schlichtkrull et al.
[2018]) and R-GAT (Busbridge et al. [2019]) are captured (upper-bounded) within our R-GNN
frameworks. Other related works, such as (Barceló et al. [2020], Huang et al. [2023], Qiu et al.
[2023]) also use intrinsically the same framework as our R-GNN/R2-GNN, which has been widely
adopted and studied within the GNN community. We believe that analyzing these frameworks can
yield common insights applicable to numerous existing GNNs

GNN-based Boolean node classifier In order to translate the output of a GNN to a Boolean value,
we apply a Boolean classification function CLS : Rd → {true,false}, where d is the dimension
of the feature vectors xLv . Hence, a Boolean node classifier based on an R2-GNN M proceeds in
three steps: (1) encode the input multi-relational graph G as described above, (2) apply the R2-GNN,
and (3) apply CLS to the output of the R2-GNN. This produces a true or false value for each node
of G. In what follows, we abuse the language and represent a family of GNN-based Boolean node
classifiers by the name of the corresponding GNN architecture; for example, R2-GNN is the set of all
R2-GNN-based Boolean node classifiers.

2.3 Logic FOC2 Formulas

In this paper, we focus on the logic FOC2, a fragment of first-order logic that only allows formulas
with at most two variables, but in turn permits to use counting quantifiers. Formally, given two finite
sets P1 and P2 of unary and binary predicates, respectively, a FOC2 formula φ is inductively defined
according to the following grammar:

φ ::= A(x) | r(x,y) | φ ∧ φ | φ ∨ φ | ¬φ | ∃≥ny(φ) where A ∈ P1 and r ∈ P2 (3)

where x/y in the above rules can be replaced by one another. But please note that x and y are the only
variable names we are allowed to use (Though we can reuse these two names). In particular, a FOC2

formula φ with exactly one free variable x represents a Boolean node classifier for multi-relational
graphs as follows: a node v is assigned to true iff the formula φv obtained by substituting x by v is
satisfied by the (logical) model represented by the multi-relational graph. Similarly as the GNN-based
Boolean node classifiers, in what follows, we abuse the language and represent the family of FOC2

Boolean node classifiers by its name FOC2.

2.4 Inclusion and Equality Relationships

In this paper, we will mainly talk about inclusion/non-inclusion/equality/strict-inclusion relationships
between different node classifier families on certain graph classes. To avoid ambiguity, we give
formal definitions of these relationships here. These definitions are all quite natural.
Definition 2. For any two sets of node classifier A,B, and graph class G, We say:

• A ⊆ B on G, iff for any node classifier a ∈ A, there exists some node classifier b ∈ B such
that for all graph G ∈ G and v ∈ V (G), it satisfies a(G,v) = b(G,v) (Namely, a and b
evaluate the same for all instances in G). It implies B is more expressive than A on G.

• A ⊈ B on G, iff the above condition in item 1 doesn’t hold.
• A ⊊ B on G, iff A ⊆ B but B ⊈ A. It implies B is strictly more expressive than A on G.
• A = B on G, iff A ⊆ B and B ⊆ A. It implies A and B has the same expressivity on G.

3 Related Work

The relationship between first-order logic and the Weisfeiler-Lehman test was initially established
by Cai et al. [1989]. Subsequently, more recent works such as Xu et al. [2018], have connected
the Weisfeiler-Lehman test with expressivity of GNN. This line of research has been followed by
numerous studies, including Maron et al. [2020], which explore the distinguishability of GNNs using
the Weisfeiler-Lehman test technique. In particular, Barceló et al. [2020] introduced the calibration
of logical expressivity in GNN-based classifiers and proposed a connection between FOC2 and
R2-GNN in single-relational scenario. This led to the emergence of related works, such as Huang
et al. [2023], Geerts and Reutter [2021], and Qiu et al. [2023], all of which delve into the logical
expressivity of GNNs. Moreover, the theoretical analysis provided in Gao and Ribeiro [2022] has
inspired us to extend our results to temporal graph scenarios.
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Node classifier: φ(x) := ∃≥1y(p1(x,y) ∧ p2(x,y)).

Figure 1: Multi-edge graphs G1 and G2, and a FOC2 formula φ(x) that distinguishes them; φ(x)
evaluates node a in G1 to true and node a in G2 to false.

4 Logic expressiveness of R2-GNN in multi-relational graphs

Our analysis begins with the observation that certain Boolean classifiers can be represented as FOC2

formulas, but remain beyond the expressiveness of any R2-GNN (and consequently, any R-GNN or
R-GCN). An illustrative example of this distinction is provided in Figure 1. In this example, we make
the assumption that P1 is empty, thereby ensuring that all nodes in both G1 and G2 possess identical
initial feature vectors. Additionally, P2 is defined to comprise precisely two relations, namely, p1
and p2. It is evident that no R2-GNN can distinguish the node a in G1 from node a in G2 – that
is, when an R2-GNN performs the neighbour-based aggregation, it cannot distinguish whether the
p1-neighbour of a and the p2-neighbour of a are the same. Moreover, the global readout aggregation
cannot help in distinguishing those nodes because all nodes have the same feature vector.

We proceed to formalize this intuition and, in the reverse direction, offer a corresponding result.
We demonstrate that there exist Boolean classifiers that fall within the scope of R2-GNN but elude
capture by any FOC2 formula.

Proposition 3. FOC2 ̸⊆ R2-GNN and R2-GNN ̸⊆ FOC2 on some universal graph class.

We prove Proposition 3 in the Appendix. Here, we give some intuition about the proof. The first result
is proved using the example shown in Figure 1, which we have already discussed. To show R2-GNN
̸⊆ FOC2, we construct a classifier c which classifies a node into true iff the node has a larger number
of r1-type neighbors than that of r2-type neighbors. We can prove that we can easily construct an
R2-GNN to capture c. However, for FOC2, this cannot be done, since we can only use counting
quantifiers expressing that there exist at most or at least a specific number of neighbours connected
via a particular relation, but our target classifier requires comparing indefinite numbers of neighbours
via two relations. Thus, we proceed by contradiction, assume that there exists a FOC2 classifier
equivalent to c, and then find two large enough graphs with nodes that cannot be distinguished by the
classifier (but can be distinguished by c).

In some real-world applications, it is often possible to find an upper bound on the size of any possible
input graph or to ensure that any input graph will contain at most one relation between every two
nodes. For this reason, we next present restricted but positive&practical expressiveness results on
bounded and simple graph classes.

Theorem 4. FOC2 ⊆ R2-GNN on any simple graph class, and FOC2 ⊊ R2-GNN on some simple
graph class.

The key idea of the construction is that we will first transform the FOC2 formula into a new form
which we call relation-specified FOC2 (an equivalent form to FOC2, see more details in our
Appendix), and then we are able to construct an equivalent R2-GNN inductively over the parser tree
of the transformed formula.

Having Theorem 4, one may wonder about the inclusion relationship of R2-GNN and FOC2 in
the backward direction. In Proposition 3, we showed that for arbitrary universal graph classes,
this inclusion relationship fails. However, given a bounded graph class, we can show that for each
R2-GNN Boolean node classifier, one can write an equivalent FOC2 classifier. An intuition about
why this is the case is that all graphs in a bounded graph class will have at most n constants, for some
known n ∈ N, so for each R2-GNN classifier, we can construct an equivalent FOC2 classifier with a
finite number of sub-formulas to recover the features obtained at different layers of R2-GNN.

Theorem 5. R2-GNN ⊆ FOC2 on any bounded graph class, and R2-GNN ⊊ FOC2 on some
bounded graph class.
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Figure 2: Graph Transformation.

Combining Theorem 4 and Theorem 5, we have the following corollary.
Corollary 5.1. R2-GNN = FOC2 on any bounded simple graph class.

At Last, one may be curious about the complexity of logical classifier in Theorem 5. Here we can
give a rather loose bound as follows:
Theorem 6. For any bounded graph class Gb. Suppose any G ∈ Gb has no more than N nodes, and
Gb has unary predicate set P1 and relation (binary predicate) set P2. Let m1 := |P1|,m2 := |P2|,
then for any node classifier c, suppose c can be represented as an R2-GNN with depth (layer number)
L, then by Theorem 5 there is a FOC2 classifier φ equivalent to c over Gb, and the following hold:

• The quantifier depth of φ is no more than L.
• The size of φ (quantified by the number of nodes of φ’s parse tree) is no more than 22f(L),

where f(L) := 22
2(N+1)f(L−1)

,f(0) = O(22
2(m1+m2)

).

The key idea of Theorem 6 is the following: First, by Lemma 27 in our appendix, the combination of
ALL FOC2 logical classifiers with quantifier depth no more than L can already distinguish accepting
and rejecting instances of c. Then by Proposition 26 (This is a key point of this bound; please refer
to our appendix), We know the number of intrinsically different bounded-depth FOC2 classifiers
is finite, so we only need to get an upper bound on this number. Finally, we can get the desired
bound by iteratively using the fact that a boolean combination of a set of formulas can be always
written as DNF (disjunctive normal form). The tower of power of two comes from L rounds of DNF
enumerations. Although the bound seems scary, it is a rather loose bound. We give a detailed proof
of Theorem 6 in the appendix along with the proof of Theorem 5.

5 R2-GNN capture FOC2 over transformed multi-relational graphs

As we pointed out in the previous section, one of the reasons why R2-GNN cannot capture FOC2

classifiers over arbitrary universal graph classes is that in multi-relational graphs, they cannot distin-
guish whether information about having a neighbour connected via a particular relation comes from
the same neighbour node or different neighbour nodes. Towards solving this problem, we propose a
graph transformation F (see Definition 7), which enables R2-GNN to capture all FOC2 classifiers
on multi-relational graphs. Similar transformation operations have also been used and proved to be
an effective way to encode multi-relational graphs in previous studies, e.g., MGNNs Tena Cucala
et al. [2021], Indigo Liu et al. [2021] and Time-then-Graph Gao and Ribeiro [2022].
Definition 7. Given a multigraph G = (V, E , P1, P2), the transformation F will map G to another
graph F (G) = (V ′, E ′, P ′

1, P
′
2) with changes described as follows:

• for any two nodes a, b ∈ V , if there exists at least one relation p ∈ P2 between a and b, we
add two new nodes ab and ba to V ′.

• we add a new unary predicate {primal} and two new binary predicates {aux1,aux2}. Hence,
F (P1) := P ′

1 = P1 ∪ {primal}, and F (P2) := P ′
2 = P2 ∪ {aux1, aux2}. For each node

v′ ∈ V ′, primal(v′) = 1 iff v′ is also in V ; otherwise, primal(v′) = 0;
• for each triplet of the form (a,p2, b) in E , we add to E ′ four new triples: (ab,aux1, a),
(ba,aux1, b) and (ab,aux2, ba) as well as (ab,p2, ba).

An example is in Figure 2. We can see that after applying the graph transformation, we need to
execute two more hops to propagate information from node a to node b. However, now we are
able to distinguish whether the information about different relations comes from the same node or
different nodes. This transformation can be implemented and stored in linear time/space complexity
O(|V |+ |E|), which is very efficient.
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Definition 8. Given a classifier C and a transformation function F , we define C ◦ F to be a new
classifier, an extension of C with an additional transformation operation on the input graph.

R2-GNN ◦F

R2-GNN FOC2

Figure 3: Relations of R2-GNN,
FOC2 and R2-GNN ◦F .

With graph transformation F , we get a more powerful class of
classifiers than R2-GNN. We analyze the logical expressiveness of
R2-GNN ◦F in multi-relational graphs, which means first transform
a graph G to F (G) and then run an R2-GNN on F (G). We will
see in the following that this transformation F boosts the logical
expressiveness of R2-GNN prominently.
Theorem 9. R2-GNN ⊆ R2-GNN ◦F on any universal graph class.

Theorem 10. FOC2 ⊆ R2-GNN ◦F on any universal graph class.

Theorem 9 demonstrates that R2-GNN with graph transformation
F have more expressiveness than R2-GNN; and Theorem 10 shows
the connection between FOC2 and R2-GNN equipped with graph
transformation F . We depict their relations in Figure 3. Theorem 9
is a natural result since no information is lost in the process of transformation, while Theorem 10 is
an extension on Theorem 4, whose formal proofs can be found in the Appendix. As for the backward
direction, we have the result shown in Theorem 11.
Theorem 11. R2-GNN ◦F ⊆ FOC2 on any bounded graph class.

The proof of the theorem is relatively straightforward based on previous results: by Theorem 5,
it follows that R2-GNN ◦F ⊆ FOC2 ◦ F on any bounded graph class. Then, it suffices to prove
FOC2 ◦ F ⊆ FOC2, which we do by using induction over the quantifier depth.

By combining Theorem 10 and Theorem 11, we obtain Corollary 11.1, stating that FOC2 and
R2-GNN ◦F have the same expressiveness with respect to bounded graph classes. Corollary 11.1
does not hold for arbitrary universal graph classes, but our finding is nevertheless exciting because, in
many real-world applications there are upper bounds over input graph size.
Corollary 11.1. R2-GNN ◦F = FOC2 on any bounded graph class.

To show the strict separation as in Figure 3, we can combine Proposition 3 and theorems 4 and 9 and
Theorem 10 to directly get the following:
Corollary 11.2. R2-GNN ⊊ R2-GNN ◦F on some universal graph class, and FOC2 ⊊ R2-GNN ◦F
on some simple graph class.

One may think after transformation F , the logic FOC2 ◦ F with new predicateds becomes stronger
as well. However by a similar proof as for Theorem 10 and Lemma 28, we can actually show
FOC2 ◦ F ⊆ FOC2 always holds, so F won’t bring added power for FOC2. However, it indeed
make R2-GNN strictly more expressive.

6 Temporal Graphs

As stated in Gao and Ribeiro [2022], a temporal knowledge graph, composed of multiple snapshots,
can consistently undergo transformation into an equivalent static representation as a multi-relational
graph. Consequently, this signifies that our theoretical results initially devised for multi-relational
graphs can be extended to apply to temporal graphs, albeit through a certain manner of transfer.

Following previous work Jin et al. [2019], Pareja et al. [2020], Park et al. [2022], Gao and Ribeiro
[2022], we define a temporal knowledge graph as a set of graph “snapshots” distributed over a
sequence of finite and discrete time points {1, 2, . . . , T}. Formally, a temporal knowledge graph is a
set G = {G1, · · · , GT } for some T ∈ N, where each Gt is a static multi-relational graph. All these
Gt share the same node set and predicate set.

In a temporal knowledge graph, a relation or unary fact between two nodes might hold or disappear
across the given timestamps. For example, a node a may be connected to a node b via a relation p in
the first snapshot, but not in the second; in this case, we have (a, p, b) in G1 not in G2. To keep track
of which relations hold at which snapshots, we propose temporal predicates, an operation which we
define in Definition 12.
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R2-TGNN

time-and-graph

R2-GNN◦H
R2-GNN◦F ◦H
R2-TGNN ◦FT

time-then-graph

⊊
⊊

⊊

⊈

Figure 4: Hierarchic expressiveness.

Definition 12. Given a temporal graph G = {G1, · · · , GT }, where each Gt is of the form
(Vt, Et, P1, P2), temporal predicates are obtained from G by replacing, for each t ∈ {1, . . . , T} and
each p ∈ P2, each triple (va, p, vb) ∈ Et with (va, p

t,vb), where pt is a fresh predicate, unique for p
and t. Similarly, each unary fact (va,q) ∈ Et, q ∈ P1 should be replaced by (va,q

t).

Note that temporalising introduces T × |P | new predicates in total. By temporalizing predicates, we
assign a superscript to each predicate and use it to distinguish relations over different timestamps.
Definition 13. Given a temporal knowledge graph G = {G1, . . . , GT }, the collapse function H
maps G to the static graph H(G) obtained by taking the union of graphs over all timestamps in the
temporalization of G.

As we have proved in Section 5, for multi-relational graphs, R2-GNN with graph transformation is
more powerful than the pure R2-GNN. Here, we transfer these theoretical findings in multi-relational
graphs to the setting of temporal knowledge graphs. To be more specific, after temporalizing
predicates, we apply a graph transformation to each graph snapshot.
Definition 14. We define FT to be the temporal graph transformation that takes any temporal
knowledge graph as input, applies graph transformation to each snapshot and outputs. Specially,
non-primal nodes, aux1 and aux2 edges added in any snapshot should be added into all snapshots.

R2-TGNN Gao and Ribeiro [2022] casts node representation in temporal graphs into two frame-
works: time-and-graph and time-then-graph. Due to space constraints, we refer interested readers to
Gao and Ribeiro [2022] for more details about the two frameworks. Here, we define a more general
GNN-based framework abbreviated as R2-TGNN, where each R2-TGNN is a sequence {At}Tt=1,
where each At is an R2-GNN model.Given a temporal knowledge graph G = {G1, . . . , GT }, where
Gt = (Vt, Et, P1, P2) for each t ∈ {1, . . . , T}. The updating rule is as follows:

xtv = At

(
Gt,v,yt

)
where ytv = [IGt(v) : xt−1

v ],∀v ∈ V (Gt) (4)

where IGt
(v) is the one-hot initial feature vector of node v at timestamp t, and At(Gt,v,yt) calculates

the new feature vector of v by running the R2-GNN model At onGt, but using yt as the initial feature
vectors. As shown in Theorem 15, R2-TGNN composed with FT have the same expressiveness as
time-then-graph4, while being more powerful than time-and-graph.
Theorem 15. time-and-graph ⊊ R2-TGNN ◦FT = time-then-graph.

We also establish the validity of Theorem 16, which asserts that R2-TGNN with graph transformation
maintains the same expressive power, whether it is applied directly to the temporal graph or to the
equivalent collapsed static multi-relational graph
Theorem 16. R2-TGNN ◦FT = R2-GNN ◦F ◦H

We also prove a strict inclusion that R2-TGNN ⊊ R2-TGNN◦H . Finally we get the following
hierarchy of these frameworks as in Figure 6. the proof of Theorem 17 is in the appendix.
Theorem 17. The following hold:

• R2-GNN ⊊ R2-GNN ◦H ⊊ R2-TGNN ◦F ◦H= R2-TGNN ◦FT = time-then-graph.
• time-and-graph ⊊ R2-TGNN ◦FT .
• R2-TGNN ⊈ time-and-graph.

4Since temporalized predicates and timestamps make the definitions of bounded/simple/universal graph class
vague, we no longer distinguish them in temporal settings. In theorem statements of this section, = , ⊆ always
hold for any temproral graph class, and ⊊ , ⊈ hold for some temporal graph class

8



FOC2 classifier φ1 φ2 φ3 φ4

Aggregation sum max mean sum max mean sum max mean sum max mean
Temporal Graphs Setting

R-TGNN 100 60.7 65.4 61.0 51.3 52.4 93.7 82.3 84.4 83.5 60.0 61.3
R2-TGNN 100 63.5 66.8 93.1 57.7 60.2 94.5 83.3 85.9 85.0 62.3 66.2
R2-TGNN ◦FT 100 67.2 68.1 99.0 57.6 62.2 100 88.8 89.2 98.1 73.4 77.5

Aggregated Static Graphs Setting
R-GNN ◦H 100 61.2 69.9 62.3 51.3 55.5 94.7 80.5 83.2 80.2 60.1 60.4
R2-GNN ◦H 100 62.7 66.8 92.4 56.3 58.5 95.5 84.2 85.2 81.0 58.3 64.5
R2-GNN ◦F ◦H 100 70.2 70.8 98.8 60.6 60.2 100 85.6 86.5 7 95.5 70.3 79.7

Table 1: Test set node classification accuracies (%) on synthetic temporal multi-relational graphs
datasets and their aggregated static multi-relational graphs datasets. The best results are highlighted
for two different settings.

7 Experiment

We empirically verify our theoretical findings for multi-relational graphs by evaluating and comparing
the testing performance of R2-GNN with graph transformation and less powerful GNNs (R-GNN
and R2-GNN). We did two groups of experiments on synthetic datasets and real-world datasets,
respectively. Details for datasets generation and statistical information as well as hyper-parameters
can be found in the Appendix.

7.1 Synthetic Datasets

We first define three simple FOC2 classifiers

φ1 := ∃≥2y(p11(x,y) ∧Red1(y)) ∧ ∃≥1y(p21(x,y) ∧Blue2(y))
φ2 := ∃[10,20]y(¬p21(x,y) ∧ φ1(y)) φ3 := ∃≥2y(p11(x,y) ∧ p21(x,y))

Besides, we define another complicate FOC2 classifier denoted as φ4 shown as follows:

φ4 :=
∨

3≤t≤10

(∃≥2y(Blackt(y)∧Redt−1(y)∧Bluet−2(y)∧pt1(x,y)∧pt−1
2 (x,y)∧pt−2

3 (x,y)∧φt(y))

where φt(y) := ∃≥2x(pt1(x,y) ∧Redt(x)) ∧ ∃≥1x(pt−1
2 (x,y) ∧Bluet−2(x))

For each of them, we generate an independent dataset containing 7k multi-relational graphs of size
up to 50-1000 nodes for training and 500 multi-relational graphs of size similar to the train set. We
tried different configurations for the aggregation functions and evaluated the node classification
performances of three temporal GNN methods (R-TGNNs, R2-TGNNs and R2-TGNNs ◦FT ) on
these datasets.

We verify our hypothesis empirically according to models’ actual performances of fitting these three
classifiers. Theoretically, φ1 should be captured by all three models because the classification result
of a node is decided by the information of its neighbor nodes, which can be accomplished by the
general neighborhood based aggregation mechanism. φ2 should not be captured by R-TGNN because
the use of ¬p21(x,y) as a guard means that the classification result of a node depends on the global
information including those isolated nodes, which needs a global readout. For φ3 and φ4, they
should only be captured by R2-TGNNs ◦FT . An intuitive explanation for this argument is that if we
temporalise predicates and then collapse the temporal graph into its equivalent static multi-relational
graph using H , we will encounter the same issue as in the Figure 1. Thus we can’t distinguish
expected nodes without graph transformation.

Results for temporal GNN methods and static GNN methods on four synthetic datasets can be found
in Table 1. We can see that R2-GNN with graph transformation achieves the best performance. Our
theoretical findings show that it is a more expressive model, and the experiments indeed suggest that
the model can exploit this theoretical expressiveness advantage to produce better results. Besides,
we can also see that R2-TGNN ◦F ◦H and R2-TGNN ◦FT achieve almost the same performance,
which is in line with Theorem 16.

9



Table 2: Results on temporal graphs.

Models Category Source Brain-10
sum max mean

GCRN-M2 time-and-graph Seo et al. [2018] 77.0 61.2 73.1
DCRNN time-and-graph Li et al. [2018] 84.0 70.1 66.5
TGAT time-then-graph Xu et al. [2020] 80.0 72.3 79.0
TGN time-then-graph Rossi et al. [2020a] 91.2 88.5 89.2
GRU-GCN time-then-graph Gao and Ribeiro [2022] 91.6 88.2 87.1

R-TGNN – – 85.0 82.3 82.8
R2-TGNN – – 94.8 82.3 91.0
R2-TGNN ◦FT – – 94.0 83.5 92.5

7.2 Real-world Datasets

Table 3: Results on two static multi-relational graphs.

Models AIFB MUTAG
sum max mean sum max mean

R-GNN 91.7 73.8 82.5 76.5 63.3 73.2
R2-GNN 91.7 73.8 82.5 85.3 62.1 79.5
R2-GNN ◦F 97.2 75.0 89.2 88.2 65.5 82.1
R-GCN 95.8 77.9 86.3 73.2 65.7 72.1

For real-world static multi-
relational graphs benchmarks, we
used AIFB and MUTAG from
Ristoski and Paulheim [2016].
Since open source datasets
for the node classification on
temporal knowledge graphs are
rare, we only tried one dataset
Brain-10 Gao and Ribeiro [2022]
for temporal settings.5

For static multi-relational graphs,
we compare the performances of
our methods with RGCN Schlichtkrull et al. [2018]. Note that RGCN assigns each node an index
and the initial embedding of each node is initialised based on the node index, so the initialisation
functional is not permutation-equivariant Chen et al. [2019a] and RGCN cannot be used to perform an
isomorphism test. However, from Table 3, we can see that R2-GNN with graph transformation still
achieves the highest accuracy while being able to be used for the graph isomorphism test. Besides,
R2-GNN ◦F also performs better compared with both R-GNN and R2-GNN. This again suggests
that the extra expressive power gained by adding a graph transformation step to R2-GNN can be
exploited by the model to obtain better results.

For temporal graphs, Gao and Ribeiro [2022] have classified existing temporal models into two
categories, time-and-graph and time-then-graph, and shown that time-then-graph models have better
performance. We choose five models mentioned in Gao and Ribeiro [2022] as our baseline and
include the best accuracy of the dataset Brain-10 reported in Gao and Ribeiro [2022]. As we expected,
R2-TGNNand R2-TGNN ◦FT achieve better performance than that of the baseline models and
R-TGNN accoring to Table 2. However, we observed that although in theory, R2-TGNN ◦FT has
stronger expressive power than R2-TGNN, we did not see an improvement when using R2-TGNN
◦FT (0.8% accuracy drop). To some extent, it may show that some commonly used benchmarks
are inadequate for testing advanced GNN variants. Similar phenomena have also been observed in
previous works Chen et al. [2019b], Barceló et al. [2020].

8 Conclusion

We analyze expressivity of R2-GNNs with and without graph transformation in multi-relational
graphs under different situations. Furthermore, we extend our theoretical findings to the temporal
graph setting. Our experimental results confirm our theoretical insights, particularly demonstrating
the state-of-the-art performance achieved by our graph transformation technique.

5The other three temporal dataset mentioned in Gao and Ribeiro [2022] are not released.
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A Preliminaries for Proofs

In this section, we give some preliminaries which will be used to prove the theorems, propositions
and lemmas shown in our main body. In what follows, we fix a unary predicate set P1 and a binary
predicate set P2.

Definition 18. For an R2-GNN, we say it is a 0/1-GNN if the recursive formula used to compute
vectors x(i)

v for each node v in a multi-relational graph G = {V, E , P1, P2} on each layer i is in the
following form

x(i)
v = f

(
C(i)

(
x(i−1)
v +

∑
r∈P2

∑
u∈V

A(i)
r x(i−1)

u +R(i)

(∑
u∈V

x(i−1)
u

)
+ b(i)

))
(5)

where C(i),A
(i)
j ,R(i) are all integer matrices of size di × di−1, b(i) is bias column vector with size

di × 1, where di−1 and di are input/output dimensions, and f is defined as max(0,min(x,1)).

Furthermore, we restrict the final output dimension be dL = 1. Since all matrices have inte-
ger elements, initial vectors are integer vectors by initialisation function I(·) (Section 2.2), and
max(0,min(x,1)) will map all integers to 0/1, it’s easy to see that the output of this kind of model is
always 0/1, which can be directly used as the classification result. We call such model 0/1-GNN. A
model instance can be represented by {C(i),(A

(i)
j )Kj=1,R

(i),b(i)}Li=1, where K = |P2|
Lemma 19. Regard 0/1-GNN as node classifier, then the set of node classifiers represented by
0/1-GNN is closed under ∧, ∨ ,¬.

Proof. Given two 0/1-GNN A1,A2, it suffices to show that we can construct ¬A1 and A1 ∧ A2 in
0/1-GNN framework. That’s because construction of A1 ∨ A2 can be reduced to constructions of
∧,¬ by De Morgan’s law, e.g., a ∨ b = ¬(¬a ∧ ¬b).
1. Construct ¬A1. Append a new layer to A1 with dimension dL+1 = 1. For matrices and
bias C(L+1),(A

(L+1)
j )Kj=1,R

(L+1),b(L+1) in layer L + 1, set CL+1
1,1 = −1 and bL+1

1 = 1 and

other parameters 0. Then it follows x
(L+1)
v = max(0,min(−x

(L)
v + 1,1)). Since x

(L)
v is the 0/1

classification result outputted by A1. It’s easy to see that the above equation is exactly x
(L+1)
v =

¬x(L)
v

2. Construct A1 ∧ A2. Without loss of generality, we can assume two models have same layer
number L and same feature dimension dl in each layer l ∈ {1......L}. Then, we can construct a
new 0/1-GNN A. A has L + 1 layers. For each of the first L layers, say l-th layer, it has feature
dimension 2dl. Let {C(l)

1 ,(A
(l)
j,1)

K
j=1,R

(l)
1 ,b

(l)
1 },{C(l)

2 ,(A
(l)
j,2)

K
j=1,R

(l)
2 ,b

(l)
2 } be parameters in layer l of

A1,A2 respectively. Parameters for layer l of A are defined below

C(l) :=

[
C(l)

1

C(l)
2

]
A(l)

j :=

[
A(l)

j,1

A(l)
j,2

]
R(l) :=

[
R(l)

1

R(l)
2

]
b(l) :=

[
b(l)
1

b(l)
2

]
(6)

Initialization function of A is concatenation of initial feature of A1,A2. Then it’s easy to see that
the feature xLv after running first L layers of A is a two dimension vector, and the two dimensions
contains two values representing the classification results outputted by A1,A2 respectively.

For the last layer L+1, it has only one output dimension. We just set CL+1
1,1 = CL+1

1,2 = 1,bL+1
1 = −1

and all other parameters 0. Then it’s equivalent to x
(L+1)
v = max(0,min(x

(L)
v,1 +x

(L)
v,2 − 1,1)) where

x
(L)
v,1 ,x

(L)
v,2 are output of A1,A2 respectively. It’s easy to see that the above equation is equivalent to

x
(L+1)
v = x

(L)
v,1 ∧ x

(L)
v,2 so the A constructed in this way is exactly A1 ∧ A2

Definition 20. A FOC2 formula is defined inductively according to the following grammar:

A(x), r(x,y), φ1 ∧ φ2, φ1 ∨ φ2,¬φ1,∃≥ny(φ1(x,y)) where A ∈ P1 and r ∈ P2 (7)
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Definition 21. For any subset S ⊆ P2, let φS(x,y) denote the FOC2 formula (
∧

r∈S r(x,y)) ∧
(
∧

r∈P2\S ¬r(x,y)). Note that φS(x,y) means there is a relation r between x and y if and only if
r ∈ S, so φS(x,y) can be seen as a formula to restrict specific relation distribution between two
nodes. RSFOC2 is inductively defined according to the following grammar:

A(x), φ1 ∧ φ2, φ1 ∨ φ2, ¬φ1,∃≥ny

(
φS(x,y) ∧ φ1(y)

)
where A ∈ P1 and S ⊆ P2 (8)

Next, we prove that FOC2 and RSFOC2 have the same expressiveness, namely, each FOC2 node
classifier can be rewritten in the form RSFOC2.

Lemma 22. FOC2 = RSFOC2.

Proof. Comparing the definitions of RSFOC2 and FOC2, it is obvious that RSFOC2 ⊆ FOC2

trivially holds, so we only need to prove the other direction, namely, FOC2 ⊆ RSFOC2. In
particular, a Boolean logical classifier only contains one free variable, we only need to prove that for
any one-free-variable FOC2 formula φ(x), we can construct an equivalent RSFOC2 formula ψ(x).

We prove Lemma 22 by induction over k, where k is the quantifier depth of φ(x).

In the base case where k = 0, φ(x) is just the result of applying conjunction, disjunction or negation
to a bunch of unary predicates A(x), where A ∈ P1. Given that the grammar of generating φ(x) is
the same in RSFOC2 and FOC2 when k = 0, so the lemma holds for k = 0.

For the indutive step, we assume that Lemma 22 holds for all RSFOC2 formula with quantifier
depth no more than m, we next need to consider the case when k = m+ 1.

We can decompose φ(x) to be boolean combination of a bunch of FOC2 formulas φ1(x), . . . ,φN (x),
each of which is in the form φi(x) := A(x) where A ∈ P1 or φi(x) := ∃≥ny(φ′(x,y)). See the
following example for reference.

Example 23. Assume φ(x) :=
(
A1(x) ∧ ∃y(r1(x,y))

)
∨
(
∃y
(
A2(y) ∧ r2(x,y)

)
∧∃y(r3(x,y))

)
. It

can be decomposed into boolean combination of four subformulas shown as follows:

• φ1(x) = A1(x)
• φ2(x) = ∃y(r1(x,y))
• φ3(x) = ∃y

(
A2(y) ∧ r2(x,y)

)
• φ4(x) = ∃y(r3(x,y))

We can see that grammars of FOC2 and RSFOC2 have a common part: A(x), φ1∧φ2, φ1∨φ2,¬φ1,
so we can only focus on those subformulas φi(x) in the form of ∃≥nyφ′(x,y). In other words, if we
can rewrite these FOC2 subformulas into another form satisfying the grammar of RSFOC2, we can
naturally construct the desired RSFOC2 formula ψ(x) equivalent to FOC2 formula φ(x).

Without loss of generality, in what follows, we consider the construction for φ(x) = ∃≥ny(φ′(x,y)).
Note that φ(x) has quantifier depth no more than m+ 1, and φ′(x,y) has quantifier depth no more
than m.

We can decompose φ′(x,y) into three sets of subformulas {φx
i (x)}

Nx
i=1,{φ

y
i (y)}

Ny

i=1,{ri(x,y)}
|P2|
i=1 ,

where Nx and Ny are two natural numbers, φx
i ,φ

y
i are its maximal subformulas whose free variable

is assigned to x and y, respectively. φ′(x) is the combination of these sets of subformulas using
∧, ∨ ,¬.

Example 24. Assume that we have a FOC2 formula in the form of φ′(x,y) =
(
r1(x,y) ∧

∃x(r2(x,y))
)
∨
(
∃y
(
∃x(r3(x,y)) ∨ ∃y(r1(x,y))

)
∧∃y

(
A2(y) ∧ r2(x,y)

))
It can be decomposed into the following subformulas:

• φx
1(x) := ∃y

(
∃x(r3(x,y)) ∨ ∃y(r1(x,y))

)
;

• φx
2(x) := ∃y

(
A2(y) ∧ r2(x,y)

)
;

• φy
1(y) := ∃x(r2(x,y));

• r1(x,y)
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Assume that N := {1, . . . , Nx}, we construct a RSFOC2 formula φx
T (x) := (

∧
i∈T φ

x
i (x)) ∧

(
∧

i∈N\T ¬φx
i (x)), where T ⊆ N . It is called the x-specification formula, which means φx

T (x) is
true iff the following condition holds: for all i ∈ T , φx

i (x) is true and for all i ∈ N \ T , φx
i (x) is

false.

By decomposing φ′(x,y) into three subformula sets, we know Boolean value of φ′(x,y) can be
decided by Boolean values of these formulas {φx

i (x)}
Nx
i=1,{φ

y
i (y)}

Ny

i=1,{ri(x,y)}
|P2|
i=1 . Now for any

two specific subsets S ⊆ P2, T ⊂ N , we assumeφS(x,y) andφx
T (x) are all true (Recall the definition

of φS(x,y) in Definition 21). Then Boolean values for formulas in {φx
i (x)}

Nx
i=1,{ri(x,y)}

|P2|
i=1 are

determined and Boolean value of φ′(x,y) depends only on Boolean values of {φy
i (y)}

Ny

i=1. Therefore,
we can write a new FOC2 formula φy

S,T (y) which is a boolean combination of {φy
i (y)}

Ny

i=1. This
formula should satisfy the following condition: For any graphG and two nodes a,b on it, the following
holds,

φS(a,b) ∧ φx
T (a) ⇒

(
φ′(a,b) ⇔ φy

S,T (b)
)

(9)

By our inductive assumption, φ′(x,y) has a quantifier depth which is no more than m, so
{φx

i (y)}
Nx
i=1,{φ

y
i (y)}

Ny

i=1 also have quantifier depths no more than m. Therefore, each of them
has RSFOC2 correspondence. Furthermore, since ∧, ∨ ,¬ are allowed operation in RSFOC2,
φx
T (x) and φy

S,T (y) can also be rewritten as RSFOC2 formulas.

Given that φS(x,y) and φx
T (y) specify the boolean values for all {φx

i (y)}
Nx
i=1,{φr

i (x,y)}
|P2|
i=1 formulas,

so we can enumerate all possibilities over S ⊆ P2 and T ⊆ N . Obviously for any graph G and a
node pair (a,b), there exists an unique (S,T ) pair such that φS(a,b) ∧ φx

T (a) holds.

Hence, combining Equation (9), φ′(x,y) is true only when there exists a (S,T ) pair such that
φS(x,y) ∧ φx

T (x) ∧ φ
y
S,T (y) is true. Formally, we can rewrite φ′(x,y) as following form:

φ′(x,y) ≡
∨

S⊆P2,T⊆N

(
φS(x,y) ∧ φx

T (x) ∧ φ
y
S,T (y)

)
(10)

In order to simplify the formula above, let ϕT (x) denote the following formula:

ϕT (x,y) :=
∨

S⊆P2

(
φS(x,y) ∧ φy

S,T (y)
)

(11)

Then we can simplify Equation (10) to the following form:

φ′(x,y) ≡
∨

T⊆N

(
φx
T (x) ∧ ϕT (x,y)

)
(12)

Recall that φ(x) = ∃≥ny(φ′(x,y)), so it can be rewritten as:

φ(x) ≡ ∃≥ny

( ∨
T⊆N

(
φx
T (x) ∧ ϕT (x,y)

))
(13)

Since for any graph G and its node a, there exists exactly one T such that φx
T (a) is true. Therefore,

Equation (13) can be rewritten as the following formula:

φ(x) ≡
∨

T⊆N

(
φx
T (x) ∧ ∃≥ny(ϕT (x,y))

)
(14)

Let φ̂T (x) := ∃≥ny(ϕT (x,y)). Since ∧,∨ are both allowed in RSFOC2. If we want to rewrite
φ(x) in the RSFOC2 form, it suffices to rewrite φ̂T (x) as a RSFOC2 formula, which is shown as
follows,

φ̂T (x) := ∃≥ny(ϕT (x,y)) = ∃≥ny

( ∨
S⊆P2

(
φS(x,y) ∧ φy

S,T (y)
))

(15)

Similar to the previous argument, since for any graph G and of of its node pairs (a,b), the relation-
specification formula φS(x,y) restricts exactly which types of relations exists between (a,b), there is
exactly one subset S ⊆ P2 such that φS(a,b) holds.
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Therefore, for all S ⊆ P2, we can define nS as the number of nodes y such that φS(x,y) ∧ φy
S,T (y)

holds. Since for two different subsets S1,S2 ⊆ P2 and a fixed y, φS1(x,y) and φS2(x,y) can’t hold
simultaneously, the number of nodes y that satisfies φS(x,y)∧φy

S,T (y) is exactly the sum
∑

S⊆P2
nS .

Therefore, in order to express Equation (15), which means there exists at least n nodes y such that∨
S⊆P2

(
φS(x,y)∧φy

S,T (y)
)

holds, it suffices to enumerate all possible values for {nS |S ⊆ P2} that
satisfies (

∑
S⊆P2

nS) = n, nS ∈ N. Formally, we can rewrite φ̂T (x) as follows:

φ̂T (x) ≡
∨

(
∑

S⊆P2
nS)=n

( ∧
S⊆P2

∃≥nSy(φS(x,y) ∧ φy
S,T (y))

)
(16)

Note that ∃≥nSy(φS(x,y)∧φy
S,T (y)) satisfies the grammar of RSFOC2, so φ̂T (x) can be rewritten

as RSFOC2. Then, since φx
T (x) can also be rewritten as RSFOC2 by induction, combining

Equation (14) and Equation (15), φ(x) is in RSFOC2. We finish the proof.

B Proof of Proposition 3

Proposition 3. FOC2 ̸⊆ R2-GNN and R2-GNN ̸⊆ FOC2 on some universal graph class Gu.

Proof. First, we prove FOC2 ⊈ R2-GNN.

Consider the two graphs G1,G2 in Figure 1. (G1,a),(G2,a) can be distinguished by the FOC2

formula φ(x) := ∃≥1y(p1(x,y) ∧ p2(x,y)). However, we will prove that any R2-GNN can’t
distinguish any node in G1 from any node in G2.

Let’s prove it by induction over the layer number L of R2-GNN. That’s to say, we want to show that
for any L ≥ 0, R2-GNN with no more than L layers can’t distinguish any node of G1 from that of
G2.

For the base case where L = 0, since each node feature vector is initialized by the unary predicate
information, so the result trivially holds.

Assume any R2-GNN with no more than L = m layers can’t distinguish nodes of G1 from nodes of
G2. Then we want to prove the result for L = m+ 1.

For any R2-GNN model A with m+ 1 layers, let A′ denote its first m layers, we know outputs of A′

on any node from G1 or G2 are the same, suppose the common output feature is x(m).

Recall the updating rule of R2-GNN in Equation (2).We know the output of A on any node v in G1

or G2 is defined as follows,

x(m+1)
v = C(m+1)

(
x(m)
v ,

(
A

(m+1)
1 ({{x(m)

u1(v)
}})
)
,A

(m+1)
2 ({{x(m)

u2(v)
}})
)
, R(m+1)({{x(m)

a ,x
(m)
b ,x(m)

c ,x
(m)
d }})

)
(17)

Here C(m+1),A
(m+1)
1 ,A

(m+1)
2 ,R(m+1) are parameters in the layer m+ 1 of A, u1(v),u2(v) is the

only r1,r2-type neighbor of v, and a,b,c,d are nodes from the corresponding graph G1 or G2. From
Figure 1 we can see they are well defined.

By induction, since any node pairs from G1 and G2 can’t be distinguished by A′, we have
x
(m)
v ,x

(m)
u1(v)

,x
(m)
u2(v)

,x
(m)
a ,x

(m)
b ,x

(m)
c ,x

(m)
d are all the same feature x(m). Therefore, Equation (17)

have the same expression for all nodes v from G1 and G2, which implies any A with m+ 1 layers
can’t distinguish nodes from G1 and G2.

Next, we then prove R2-GNNs ⊈ FOC2.

Assume we want to construct a classifier c which classifies a node into true iff the node has a larger
number of r1-type neighbors than that of r2-type neighbors.

First, we prove that we can construct an 0/1-GNN A to capture c. It only has one layer with
parameters C(1),A

(1)
1 ,A

(1)
2 ,R(1), and feature dimension d0 = d1 = 1. We assume that each node has

the same initial feature vector, i.e., 1. We set A(1)
1,(1,1) = 1,A

(1)
2,(1,1) = −1, where A(1)

1,(1,1) denotes

the only element in A(1)
1 placed in the first row and first column (similar for A(1)

2,(1,1)) and all other
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2n+ 1 r2-type neighbors

2n r1-type neighbors

H(n) :

Figure 5: G(n) and H(n).

parameters 0. It’s easy to see that A is equivalent to our desired classifier c on any graph since we
have x

(1)
v = max(0,min(1,

∑
u∈NG,1(v)

1−
∑

u∈NG,2(v)
1)).

Next, we show FOC2 can’t capture c on Gs. In order to show that, for any natural number n, we can
construct two single-edge graphs G(n),H(n) as follows:

V (G(n)) = V (H(n)) = {1,2......4n+ 2}
E(G(n)) = {r1(1,i)|∀i ∈ [2,2n+ 2]} ∪ {r2(1,i)|i ∈ [2n+ 3,4n+ 2]}
E(H(n)) = {r1(1,i)|∀i ∈ [2,2n+ 1]} ∪ {r2(1,i)|i ∈ [2n+ 2,4n+ 2]}

We prove the result by contradiction. Assume there is a FOC2 classifier φ that captures the classifier
c, then it has to classify (G(n),1) as true and (H(n),1) as false for all natural number n. However,
in the following we will show that it’s impossible, which proves the non-existence of such φ.

Suppose threshold numbers used on counting quantifiers of φ don’t exceed m, then we only need to
prove that φ can’t distinguish (G(m),1),(H(m),1), which contradicts our assumption.

For simplicity, we use G,H to denote G(m),H(m). In order to prove the above argument. First, we
define a node-classification function CLS(·) as follows. It has G or H as subscript and a node of G
or H as input.

1. CLSG(1) = CLSH(1) = 1. It means the function returns 1 when the input is the center of
G or H .

2. CLSG(v1) = CLSH(v2) = 2,∀v1 ∈ [2,2m + 2],∀v2 ∈ [2,2m + 1], which means the
function returns 2 when the input is a r1-neighbor of center.

3. CLSG(v1) = CLSH(v2) = 3,∀v1 ∈ [2m + 3,4m + 2],∀v2 ∈ [2m + 2,4m + 2], which
means the function returns 3 when the input is a r2-neighbor of center.

Claim 1: Given any u1,v1 ∈ V (G), u2,v2 ∈ V (H), if (CLSG(u1),CLSG(v1)) =
(CLSH(u2),CLSH(v2)), then any FOC2 formula with threshold numbers no larger than m can’t
distinguish (u1,v1) and (u2,v2).

This claim is enough for our result. We will prove that for any constant d and any FOC2 formula
ϕ with threshold numbers no larger than m and quantifier depth d, ϕ can’t distinguish (u1,v1) and
(u2,v2) given that (CLSG(u1),CLSG(v1)) = (CLSH(u2),CLSH(v2))

The result trivially holds for the base case where d = 0. Now let’s assume the result holds for d ≤ k,
we can now prove the inductive case when d = k + 1.

Since ∧,∨,¬, r(x,y) trivially follows, we can only consider the case when ϕ(x,y) is in the form
∃≥Nyϕ′(x,y),N ≤ m or ∃≥Nxϕ′(x,y),N ≤ m, where ϕ′(x,y) is a FOC2 formula with threshold
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numbers no more than m and quantifier depth no more than k. Since these two forms are symmetrical,
without loss of generality, we only consider the case ∃≥Nyϕ′(x,y),N ≤ m.

Let N1 denote the number of nodes v′1 ∈ V (G) such that (G,u1,v′1) |= ϕ′ and N2 denote the number
of nodes v′2 ∈ V (H) such that (H,u2.v′2) |= ϕ′. Let’s compare values of N1 and N2. First, By
induction, since we have CLSG(u1) = CLSH(u2) from precondition, so for any v′1 ∈ V (G), v′2 ∈
V (H), which satisfies CLSG(v

′
1) = CLSH(v′2), ϕ

′(x,y) can’t distinguish (u1,v
′
1) and (u2,v

′
2).

Second, isomorphism tells us ϕ′ can’t distinguish node pairs from the same graph if they share the
same CLS values. Combining these two facts, there has to be a subset S ⊆ {1,2,3}, such that
N1 =

∑
a∈S NG(a) and N2 =

∑
a∈S NH(a), where NG(a) denotes the number of nodes u on G

such that CLSG(u) = a, (NH(a) is defined similarly).

It’s easy to see that NG(1) = NH(1) = 1, and NG(a),NH(a) > m for a ∈ {2,3}. Therefore, at
least one of N1 = N2 and m < min{N1,N2} holds. In neither case ∃≥Nyϕ′(x,y),N ≤ m can
distuigush (u1,v1) and (u2,v2).

Note that in the above proof our graph class {G(n),H(n)|n ∈ N} is actually a simple graph class, so
we can actually get the following stronger argument.

Corollary 24.1. R2-GNN ⊈ FOC2 on some simple graph class.

C Proof of Theorem 4

Theorem 4. FOC2 ⊆ R2-GNN on any simple graph class, and FOC2 ⊊ R2-GNN on some simple
graph class.

Proof. We just need to show FOC2 ⊆ R2-GNN on any simple graph class, and the second part can
be just concluded from Corollary 24.1. By Lemma 22, FOC2 = RSFOC2, so it suffices to show
RSFOC2 ⊆ 0/1-GNN. By Lemma 19, 0/1-GNN is closed under ∧, ∨ ,¬, so we can only focus on
formulas in RSFOC2 of form φ(x) = ∃≥ny(φS(x,y) ∧ φ′(y)),S ⊆ P2. If we can construct an
equivalent 0/1-GNN A for all formulas of above form, then we can capture all formulas in RSFOC2

since other generating rules ∧, ∨ ,¬ is closed under 0/1-GNN. In particular, for the setting of single-
edge graph class, φ is meaningful only when |S| ≤ 1. That’s because |S| > 2 implies that φ is just
the trivial ⊥ in any single-edge graph class Gs.

Do induction over quantifier depth k of φ(x). In the base case where k = 0, the result trivially holds
since in this situation, the only possible formulas that needs to consider are unary predicates A(x),
where A ∈ P1, which can be captured by the initial one-hot feature. Next, assume our result holds
for all formulas with quantifier depth k no more than m, it suffices to prove the result when quantifier
depth of φ(x) = ∃≥ny(φS(x,y) ∧ φ′(y)) is m + 1. It follows that quantifier depth of φ′(y) is no
more than m.

By induction, there is a 0/1-GNN model A′ such that A′ = φ′ on single-edge graph class. To
construct A, we only need to append another layer on A′. This layer L+ 1 has dimension 1, whose
parameters C(L+1),(A

(L+1)
j )Kj=1,R

(L+1),b(L+1) are set as follows:

1. When |S| = 1: Suppose S = {j}, set AL+1
j,(1,1) = 1,bL+1 = 1− n, where AL+1

j,(1,1) denotes

the element on the first row and first column of matrix A(L+1)
j . Other parameters in this

layer are 0. This construction represents x
(L+1)
v = max(0,min((

∑
u∈NG,j(v)

x
(L)
u ) −

(n − 1),1)). Since x
(L)
u is classification result outputted by A′ which is equivalent to φ′,∑

u∈NG,j(v)
x
(L)
u counts the number of j-type neighbor u of v that satisfies φ′(u). Therefore

x
(L+1)
v = 1 if and only if there exists at least n j-type neighbors satisfying the condition φ′,

which is exactly what φ(x) means.

2. When |S| = 0: Let K = |P2|, for all j ∈ [K], set AL+1
j,(1,1) = −1, R(L+1)

1,1 =

1,bL+1 = 1 − n and all other parameters 0. This construction represents x
(L+1)
v =

max(0,min((
∑

u∈V (G) x
(L)
u ) − (

∑K
j=1

∑
u∈NG,j(v)

x
(L)
u ) − (n − 1),1)). Since we only
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consider single-edge graph, (
∑

u∈V (G) x
(L)
u ) − (

∑K
j=1

∑
u∈NG,j(v)

x
(L)
u ) exactly counts

the number of nodes u that satisfies φ′(y) and doesn’t have any relation with v. It’s easy
to see that x(L+1)

v = 1 iff there exists at least n such nodes u, which is exactly what φ(x)
means.

Hence, we finish the proof for Theorem 4 – for each FOC2 formula over the single-edge graph class,
we can construct an R2-GNN to capture it.

D Proof of Theorem 5 and Theorem 6

Theorem 5. R2-GNN ⊆ FOC2 on any bounded graph class, and R2-GNN ⊊ FOC2 on some
bounded graph class.

Theorem 6. For any bounded graph class Gb. Suppose any G ∈ Gb has no more than N nodes, and
Gb has unary predicate set P1 and relation (binary predicate) set P2. Let m1 := |P1|,m2 := |P2|,
then for any node classifier c, suppose c can be represented as an R2-GNN with depth (layer number)
L, then by Theorem 5 there is a FOC2 classifier φ equivalent to c over Gb. Moreover, the followings
hold:

1. The quantifier depth of φ is no more than L.

2. The size of φ (quantified by the number of nodes of φ’s parse tree) is no more than 22f(L), where
f(L) := 22

2(N+1)f(L−1)

,f(0) = O(22
2(m1+m2))

).

For Theorem 5, we just need to show R2-GNN ⊆ FOC2 on any bounded graph class. The second
part can then be shown by the fact that the graph class {G1,G2} in Figure 1 is a bounded graph class
but FOC2 ⊈ R2-GNN still holds. In the following proof, we also show how to get the complexity
upper bound claimed in Theorem 6. If we want to prove R2-GNN ⊆ FOC2, it suffices to show that
for any R2-GNN A, there exists an equivalent FOC2 formula φ on any bounded graph class Gb. It
implies that for two graphs G1,G2 and their nodes a,b, if they are classified differently by A, there
exists some FOC2 formula φ that can distinguish them. Conversly, if a,b can’t be distinguished by
any FOC2 formula, then they can’t be distinguished by any R2-GNN as well.

Definition 25. For a set of classifiers Ψ = {ψ1......ψm}, a Ψ-truth-table T is a 0/1 string of length
m. T can be seen as a classifier, which classifies a node v to be true if and only if for any 1 ≤ i ≤ m,
the classification result of ψi on v equals to Ti, where Ti denotes the i-th bit of string T . We define
T (Ψ) := {0,1}m as the set of all Ψ-truth-tables. We have that for any graph G and its node v, v
satisfies exactly one truth-table T .

Proposition 26. Let FOC2(n) denote the set of formulas of FOC2 with quantifier depth no more
than n. For any bounded graph class Gb and n, only finitely many intrinsically different node
classifiers on Gb can be represented by FOC2(n). Furthermore, define N,m1,m2 as in Theorem 6,
the number of intrinsically different FOC2(n) node classifiers on Gb and their parse tree sizes are
all upper bounded by f(n) as defined in Theorem 6.

Proof. Suppose all graphs in Gb have no more than N constants, then for any natural number m > N ,
formulas of form ∃≥my(φ(x,y)) are always false. Therefore, it’s sufficient only to consider FOC2

logical classifiers with threshold numbers no more than N on Gb.

There are only m1 +m2 predicates, and each boolean combination of unary predicates using ∧, ∨ ,¬
can be rewritten in the form of Disjunctive Normal Form (DNF) (Davey and Priestley [2002]). So there
are only at most f(0) = 22

2(m1+m2)

intrinsically different formulas in FOC2 with quantifier depth
0. Note that 2(m1 +m2) is the number of terms, 22(m1+m2) is the number of different truth-table
conjunctions on these terms, and 22

2(m1+m2)

is the number of different DNFs on these conjunctions.
Each DNF has parse tree of size at most 1 + 22(m1+m2)(1 + 2m1 + 2m2) ≤ 1000 · 222(m1+m2)

.
Therefore, define f(0) = 1000 · 222(m1+m2)

= O(22
2(m1+m2)

), we know the number of different
FOC2 formulas with quantifier depth 0 and parse tree size of these formulas can both be upper
bounded by f(0).
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By induction, suppose there are only f(k) intrinsically different FOC2(k) formulas on Gb. and each
meaningful FOC2(k + 1) formula is generated by the following grammar

φ1 ∧ φ2,φ1 ∨ φ2,¬φ2,∃≥my(φ′(x,y)),m ≤ N (18)

where φ1,φ2 are FOC2(k + 1) formulas and φ′ is FOC2(k) formulas.

Given that only the rule ∃≥my(φ′(x,y)) can increase the quantifier depth from k to k + 1,
m ≤ N , and there are only f(k) intrinsically different φ′(x,y) ∈ FOC2(k) on Gb by induc-
tion. Therefore, there are only (2N + 2)f(k) intrinsically different FOC2(k + 1) formulas of
form ∃≥my(φ′(x,y)),∃≥mx(φ′(x,y)) or in FOC2(k) on Gb. Moreover, their boolean combination
using ∧, ∨ ,¬ can be always rewritten in the DNF form, So there are also finitely many intrinsically
different FOC2(k + 1) logical classifiers on Gb. Similarly, we can bound the number of differ-
ent DNF by f(k + 1) = 22

2(N+1)f(k)

, where 2(N + 1)f(k) is the number of "building blocks"
which are sub-formulas with smaller quantifier depth or outermost symbol ∃, 22(N+1)f(k) is the
number of different conjunctions on these building blocks, and f(k + 1) = 22

2(N+1)f(k)

is the
number of different DNFs on these conjunctions. Parse tree size of each of these DNFs is at most
1 + 22(N+1)f(k)(1 + 2(N + 1)f(k)(1 + f(k))) ≤ 22

2(N+1)f(k)

= f(k + 1). The LHS is from the
inductive assumption that each FOC2(k) formula has a equivalent representation within f(k) parse
tree size. The inequality is because we know f(k) ≥ 1000. Thus, we can upper bound the number of
intrinsically different FOC2(k + 1) formulas on Gb and their parse tree size both by f(k + 1).

Lemma 27. For any two pairs (G1, v1) and (G2, v2), where G1 and G2 are two bounded graphs
from Gb and v1 and v2 are two nodes in G1 and G2, respectively. If all logical classifiers in FOC2(L)
can’t distinguish v1,v2, then any R2-GNN with layer no more than L can’t distinguish them as well.

Proof. By one-hot feature initialization function of R2-GNN, FOC2(0) can distinguish all different
one-hot intial features, so the lemma trivially holds for the base case (L = 0).

For the inductive step, we suppose Lemma 27 holds for all L ≤ k, then we can assume v1,v2 can’t be
distinguished by FOC2(k + 1). Let N = k + 1

G1 and G2 are bounded graphs from Gb, so FOC2(N) has finitely many intrinsically different
classifiers according to Proposition 26. Let T T N (v) denote the FOC2(N)-truth-table satisfied by
v. According to Definition 25, we know that for any T ∈ T (FOC2(N)), there exists a FOC2(N)
classifier φT such that for any node v on Gi, where i ∈ 1, 2, T T N (v) = T ⇔ (Gi,v) |= φT .

Assume there is an R2-GNN A that distinguish v1,v2 with layer L = k + 1. Let Â denote its first
k layers. By update rule of R2-GNN illustrated in Equation 2, output of A on node v of graph G,
x
(k+1)
v only dependent on the following three things:

• output of Â on v, x(k)
v

• multiset of outputs of Â on r-type neighbors of v for each r ∈ P2, {x(k)
u |u ∈ NG,r(v)}

• multiset of outputs of Â on all nodes in the graph, {x(k)
u |u ∈ NG,r(v)}

By induction, since v1,v2 can’t be distinguished by FOC2(k), they has same feature outputted by Â.
Then there are two remaining possibilities.

• {{T T k(u)|u ∈ NG1,r(v1)}} ≠ {{T T k(u)|u ∈ NG2,r(v2)}} for some binary predicate r.
Therefore, there exists a FOC2(k)-truth-table T , such that v1,v2 have differently many r-
type neighbors that satisfies φT . Without loss of generality, suppose v1,v2 have n1,n2(n1 <
n2) such neighbors respectively. we can write a FOC2(k + 1) formula ∃≥n2y(r(x,y) ∧
φT (y)) that distinguishes v1 and v2, which contradicts the precondition that they can’t be
distinguished by FOC2(k + 1) classifiers.

• {{T T k(u)|u ∈ V (G1)}} ≠ {{T T k(u)|u ∈ V (G2)}}. Therefore, there exists a FOC2(k)-
truth-table T , such that G1,G2 have differently many nodes that satisfies φT . Without loss
of generality, suppose G1,G2 have n1,n2(n1 < n2) such nodes respectively. we can write
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a FOC2(k + 1) formula ∃≥n2yφT (y) that distinguishes v1 and v2, which contradicts the
precondition that they can’t be distinguished by FOC2(k + 1) classifiers.

Since all possibilities contradicts the precondition that v1,v2 can’t be distinguished by FOC2(k + 1),
such an A that distinguishes v1,v2 doesn’t exist.

We can now gather all of these to prove Theorem 5 and Theorem 6.

Proof. For any R2-GNN A, suppose it has L layers. For any graph G ∈ Gb and its node v, let
T T L(v) denote the FOC2(L)-truth-table satisfied by v. For any T ∈ T (FOC2(L)), since Gb is a
bounded graph class, using Proposition 26, there exists a FOC2(L) classifier φT such that for any
node v in graph G ∈ Gb, T T L(v) = T ⇔ (G,v) |= φT . Moreover, by Proposition 26, since T is a
truth table on at most f(L) formulas, φT can be written as a conjunction over f(L) literals, which
means φT has parse tree size at most 1 + f(L)2 since by Proposition 26, every formula in FOC2(L)
is equivalent to some FOC2 formula with parsee tree size at most f(L).

By Lemma 27, If two nodes v1,v2 have same FOC2(L)-truth-table (T T L(v1) = T T L(v2)), they
can’t be distinguished by A. Let S denote the subset of T (FOC2(L)) that satisfies A. By Propo-
sition 26 and Definition 25, Φ := {φT |T ∈ S} is a finite set with |Φ| ≤ 2f(L), then disjunction
of formulas in Φ, (

∨
T∈S φT ) is a FOC2 classifier that equals to A under bounded graph class Gb.

Furthermore, by the above upper bound of parse tree size of any φT , (
∨

T∈S φT ) has parse tree
size no more than 1 + 2f(L)(1 + f(L)2) ≤ 22f(L), where the inequality is from f(L) ≥ 1000. We
complete the proof.

E Proof of Theorem 9

Theorem 9. R2-GNN ⊆ R2-GNN ◦F on any universal graph class Gu.

Proof. Assume that we have a predicate set P = P1 ∪ P2, K = |P2| and let P ′ = P ∪
{primal,aux1,aux2} denote the predicate set after transformation F . For any R2-GNN A un-
der P , we want to construct another R2-GNN A′ under P ′, such that for any graph G under P and its
node v, v has the same feature outputted by A(G,v) and A′(F (G),v). Let L denote the layer number
of A.

We prove this theorem by induction over the number of layers L. In the base (L = 0), our result
trivially holds since the one-hot initialization over P ′ contains all unary predicate information in P .
Now suppose the result holds for L ≤ k, so it suffices to prove it when L = k + 1.

For the transformed graph F (G), primal(v) is true if and only if v is the node in the original graph
G. Without loss of generality, if we use one-hot feature initialization on P ′, we can always keep an
additional dimension in the node feature vector xv to show whether primal(v) is true, its value is
always 0/1, in the proof below when we use x to denote the feature vectors, we omit this special
dimension for simplicity. But keep in mind that this dimension always keeps so we can distinguish
original nodes and added nodes.

Recall that an R2-GNN is defined by {C(i),(A
(i)
j )Ki=1,R

(i)}Li=1. By induction, let Â denote the first
k layers of A, and let Â′ denote the R2-GNN equivalent with Â on F transformation such that
Â = Â′ ◦ F . We will append three layers to Â′ to construct A′ that is equivalent to A. Without loss
of generality, we can assume all layers in A have same dimension length d. Suppose L′ is the layer
number of Â′, so we will append layer L′ + 1,L′ + 2,L′ + 3. for all l ∈ {L′ + 1,L′ + 2,L′ + 3},
let {Ca,(l),Cp,(l),(A

∗,(l)
j )Kj=1,A

∗,(l)
aux1,A

∗,(l)
aux2,R

∗,(l)} denote the parameters in l-th layer of A. Here,

A
∗,(l)
aux1,A

∗,(l)
aux2 denotes the aggregation function corresponding to two new predicates aux1,aux2,

added in transformation F , and Cp,(l),Ca,(l) are different combination function that used for primal
nodes and non-primal nodes. Note that with the help of the special dimension mentioned above, we
can distinguish primal nodes and non-primal nodes. Therefore, It’s safe to use different combination
functions for these two kinds of nodes. Note that here since we add two predicates aux1,aux2, the
input for combination function should be in the form Cp(x0,(xj)

K
j=1,xaux1,xaux2,xg) where x0 is

the feature vector of the former layer, and xj ,1 ≤ j ≤ K denote the output of aggregation function

23



A
∗,(l)
j , xaux1,xaux2 denote the output of aggregation function A∗,(l)

aux1,A
∗,(l)
aux2, and xg denotes the

feature outputted by global readout function R∗,(l). For aggregation function and global readout
function, their inputs are denoted by X, meaning a multiset of feature vector. Note that all aggregation
functions and readout functions won’t change the feature dimension, only combination functions
Cp,(l),Ca,(l) will transform dl−1 dimension features to dl dimension features.

1). layer L′ +1: input dimension is d, output dimension is d′ = Kd. For feature vector x with length
d′, let x(i), i ∈ {1, . . . ,K} denote its i-th slice in dimension [(i − 1)d + 1,id]. Let [x1, . . . ,xm]
denote concatenation of x1, . . . ,xm, and let [x]n denote concatenation of n copies of x, 0n denote
zero vectors of length n. parameters for this layer are defined below:

Cp,(L′+1)(x0,(xj)
K
j=1,xaux1,xaux2,xg) = [x0,0d

′−d] (19)

Ca,(L′+1)(x0,(xj)
K
j=1,xaux1,xaux2,xg) = [xaux1]

K (20)

A
∗,(L′+1)
aux1 (X) =

∑
x∈X

x (21)

Other parameters in this layer are set to functions that always output zero-vector.

We can see here that the layer L′ + 1 do the following thing:

For all primal nodes a and its non-primal neighbor eab, pass concatenation of K copies of xa to xeab
,

and remains the feature of primal nodes unchanged.

2). layer L′ + 2, also has dimension d′ = Kd, has following parameters.

Cp,(L′+2)(x0,(xj)
K
j=1,xaux1,xaux2,xg) = x0 (22)

Ca,(L′+2)(x0,(xj)
K
j=1,xaux1,xaux2,xg) =

K∑
j=1

xj (23)

∀j ∈ [1,K],A
∗,(L′+2)
j (X) = [0(j−1)d,

∑
x∈X

x(j),0(K−j)d] (24)

All other parameters in this layer are set to function that always outputs zero vectors. This layer do
the following thing:

For all primal nodes, keep the feature unchanged, for all added node pair eab,eba. Switch their feature,
but for all ri ∈ P2, if there is no ri relation between a,b, the i-th slice of xeab

and xeba will be set to
0.

3). layer L′ + 3, has dimension d, and following parameters.

Cp,(L′+3)(x0,(xj)
K
j=1,xaux1,xaux2,xg) = C(L)(x

(1)
0 ,(x

(j)
aux1)

K
j=1,x

(1)
g ) (25)

R∗,(L′+3)(X) = [R(L)({{x(1)
v |xv ∈ X,primal(v)}}),0d

′−d] (26)

A
∗,(L′+3)
aux1 (X) = [A

(L)
1 ({{x(1)|x ∈ X}})......A(L)

K ({{x(K)|x ∈ X}})] (27)

Note that C(L),A
(L)
j ,R(L) are all parameters in the last layer of A mentioned previously. All other

parameters in this layer are set to functions that always output zero vectors. We can see that this layer
simulates the work of last layer of A as follows:

• For all 1 ≤ j ≤ K, use the j-th slice of feature vector x(j) to simulate A(L)
j and store results

of aggregation function A(L)
j on this slice.

• Global readout trivially emulates what R(L) does, but only reads features for primal nodes.
It can be done since we always have a special dimension in feature to say whether it’s a
primal node.

• We just simulate what C(L) does on primal nodes. For 1 ≤ j ≤ K The type rj aggregation
result (output of A(L)

j ) used for input of C(L) is exactly j-th slice of return value of

A
∗,(L′+3)
aux1 .
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By construction above, A′ is a desired model that have the same output as A.

F Proof of Theorem 10

Theorem 10. FOC2 ⊆ R2-GNN ◦F on any universal graph class Gu.

Proof. For any FOC2 classifier φ under predicate set P , we want to construct a 0/1-GNN A on
P ′ = P ∪ {primal,aux1,aux2} equivalent to φ with graph transformation F .

Recall that FOC2 = RSFOC2 shown in Lemma 22 and 0/1-GNNs ⊆ R2-GNNs, it suffices to
prove that 0/1-GNN◦F capture RSFOC2. By Lemma 19, since ∧, ∨ ,¬ are closed under 0/1-GNN
it suffices to show that when φ is in the form ∃≥n

(
φS(x,y) ∧ φ′(y)

)
,S ⊆ P2, we can capture it.

We prove by induction over quantifier depth m of φ. Since 0-depth formulas are only about unary
predicate that can be extracted from one-hot initial feature, our theorem trivially holds for m = 0.
Now, we assume it also holds for m ≤ k, it suffices to prove the case when m = k + 1. Then there
are two possibilities:

1. When S ̸= ∅:

Consider the following logical classifier under P ′:

φ̂S(x) :=
(∧
r∈S

∃xr(x,y)
)
∧
(∧
r/∈S

¬∃xr(x,y)
)

(28)

φ̂S(x) restricts that for any r ∈ P ′, x has r-type neighbor if and only if r ∈ S. Review the
definition of transformation F , we know that for any added node eab, (F (G),eab) |= φ̂S if and only
if (G,a,b) |= φS(a,b), where φS(x,y) is the relation-specification formula defined in Definition 21
That is to say for any ri,1 ≤ i ≤ K, there is relation ri between a,b if and only if i ∈ S.

Now consider the following formula:

φ̂ := ∃≥ny

(
aux1(x,y) ∧ φ̂S(y) ∧

(
∃x
(
aux2(x,y) ∧ (∃y(aux1(x,y) ∧ φ′(y)))

)))
(29)

For any graph G and its node v, it’s easy to see that (G,v) |= φ ⇔ (F (G),v) |= φ̂. Therefore we
only need to capture φ̂ by 0/1-GNN on every primal node of transformed graphs. By induction,
since quantifier depth of φ′(y) is no more than k, we know φ′(y) is in 0/1-GNN. φ̂ is generated
from φ′(y) using rules ∧ and ∃y

(
r(x,y) ∧ φ′(y)

)
. By Lemma 19, ∧ is closed under 0/1-GNN. For

∃y
(
r(x,y) ∧ φ′(y)

)
, we find that the construction needed is the same as construction for single-

element S on single-edge graph class Gs used in Theorem 4. Therefore, since we can manage these
two rules, we can also finish the construction for φ̂, which is equivalent to φ on primal nodes of
transformed graph.

2. When S = ∅
First, consider the following two logical classifiers:

φ̄(x) :=
(

primal(x) ∧ φ′(x)
)

(30)

φ̄ says a node is primal, and satisfies φ′(x). Since φ′(x) has quantifier depth no more than k, and
∧ is closed under 0/1-GNN. There is a 0/1-GNN A1 equivalent to φ̄ on transformed graph. Then,
consider the following formula.

φ̃(x) := ∃y
(
aux2(x,y) ∧ (∃x,aux11(x,y) ∧ φ′(x))

)
(31)

φ̃(x) evaluates on added nodes eab on transformed graph, eab satisfies it iff b satisfies φ′

Now for a graph G and its node v, define n1 as the number of nodes on F (G) that satisfies φ̄,
and define n2 as the number of aux1-type neighbors of v on F (G) that satisfies φ̃. Since φ(x) =
∃≥ny(φ∅(x,y) ∧ φ′(y)) It’s easy to see that (G,v) |= φ if and only if n1 − n2 ≥ n.
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Formally speaking, for a node set S, let |S| denote number of nodes in S, we define the following
classifier c such that for any graph G and its node a, c(F (G),a) = 1 ⇔ (G,a) |= φ

c(F (G),a) = 1 ⇔ |{v|v ∈ V (F (G)), (F (G),v) |= φ̄}|−|{v|v ∈ NF (G),aux11(v), (F (G),v) |= φ̃}| ≥ n
(32)

So how to construct a model A to capture classifier c? First, by induction φ̄,φ̃ are all formulas with
quantifier depth no more than k so by previous argument there are 0/1-GNN models Ā,Ã that capture
them respectively. Then we can use feature concatenation technic introduced in Equation (6) to
construct a model Â based on Ā,Ã, such that Â has two-dimensional output, whose first and second
dimensions have the same output as Ā,Ã respectively.

Then, suppose Â has L layers, The only thing we need to do is to append a new layer L+ 1 to Â,
it has output dimension 1. parameters of it are {C(L+1),(A

(L+1)
j )Kj=1,A

(L+1)
aux1 ,A

(L+1)
aux2 ,R

(L+1)} as
defined in Equation (5). The parameter settings are as follows:

R(L+1)
1,1 = 1,A(L+1)

aux1,(1,2) = −1,b(L+1)
1 = 1 − n. Other parameters are set to 0, where A(L+1)

aux1,(1,2)

denotes the value in the first row and second column of A(L+1)
aux1 .

In this construction, we have

x
(L+1)
v = max(0,min(1,

∑
u∈V (F (G)) x

(L)
u,1−

∑
u∈NF (G),aux1(v)

x
(L)
u,2−(n−1))), which has exactly

the same output as classifier c defined above in Equation (32). Therefore, A is a desired model.

G Proof of Theorem 11

Theorem 11. R2-GNN ◦F ⊆ FOC2 on any bounded graph class Gb.

Before we go into theorem itself, we first introduce Lemma 28 that will be used in following proof.
Lemma 28. Let φ(x,y) denote a FOC2 formula with two free variables, for any natural number n,
the following sentence can be captured by FOC2:

There exists no less than n ordered node pairs (a,b) such that (G,a,b) |= φ.

Let c denote the graph classifier such that c(G) = 1 iff G satisfies the sentence above.

Proof. The basic intuition is to define mi,1 ≤ i < n as the number of nodes a, such that there are
exactly i nodes b that φ(a,b) is true. Specially, we define mn as the number of nodes a, such that
there are at least n nodes b that φ(a,b) is true. Since

∑n
i=1 imi exactly counts the number of valid

ordered pairs when mn = 0, and it guarantees the existence of at least n valid ordered pairs when
mn > 0. It’s not hard to see that for any graph G, c(G) = 1 ⇔

∑n
i=1 imi ≥ n. Futhermore, fix a

valid sequence (m1......mn) such that
∑n

i=1 imi ≥ n, there has to be another sequence (k1......kn)
such that n ≤

∑n
i=1 iki ≤ 2n and ki ≤ mi for all 1 ≤ i ≤ n. Therefore, We can enumerate all

possibilities of valid (k1......kn), and for each valid (k1......kn) sequence, we judge whether there
are at least ki such nodes a for every 1 ≤ i ≤ n.

Formally, φi(x) := ∃[i]yφ(x,y) can judge whether a node a has exactly i partners b such that
φ(a,b) = 1, where ∃[i]yφ(x,y) denotes "there are exactly i such nodes y" which is the abbreviation
of formula (∃≥iyφ(x,y))∧(¬∃≥i+1yφ(x,y)). The FOC2 formula equivalent to our desired sentence
c is as follows: ∨

∑n
i=1 n≤iki≤2n

(n−1∧
i=1

∃≥kix
(
∃[i]yφ(x,y)

))
∧
(
∃≥knx

(
∃≥nyφ(x,y)

))
(33)

This FOC2 formula is equivalent to our desired classifier c.

With the Lemma 28, we now start to prove Theorem 11.

Proof. By Theorem 5, it follows that R2-GNNs ◦F ⊆ FOC2 ◦ F . Therefore it suffices to show
FOC2 ◦ F ⊆ FOC2.
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By Lemma 22, it suffices to show RSFOC2 ◦F ⊆ FOC2. Since ∧,∨ ,¬ are common rules. We only
need to show for any RSFOC2 formula of form φ(x) := ∃≥ny(φS(x,y)∧φ′(y)) under transformed
predicate set P ′ = P ∪ {aux1,aux2,primal}, there exists an FOC2 formula φ1 such that for any
graph G under P and its node v, (G,v) |= φ1 ⇔ (F (G),v) |= φ.

In order to show this, we consider a stronger result:

For any such formula φ, including the existence of valid φ1, we claim there also exists an FOC2

formula φ2 with two free variables such that the following holds: for any graph G under P and
its added node eab on F (G), (G,a,b) |= φ2 ⇔ (F (G),eab) |= φ. Call φ1,φ2 as first/second
discriminant of φ.

Now we need to prove the existence of φ1 and φ2.

We prove by induction over quantifier depthm of φ, Since we only add a single unary predicate primal
in P ′, any φ(x) with quantifier depth 0 can be rewritten as (primal(x) ∧ φ1(x)) ∨ (¬primal(x) ∧
φ2(x)), where φ1(x),φ2(x) are two formulas that only contain predicates in P . Therefore, φ1 can be
naturally seen as the first discriminant of φ. Moreover, since φ2(x) always evaluates on non-primal
nodes, it is equivalent to ⊥ or ⊤ under ¬primal(x) constraint. Therefore, the corresponding ⊥ or ⊤
can be seen as the second discriminant, so our theorem trivially holds for m = 0. Now assume it
holds for m ≤ k, we can assume quantifier depth of φ = ∃≥ny(φS(x,y) ∧ φ′(y)) is m = k + 1.

Consider the construction rules of transformation F , for any two primal nodes in F (G), there is no
relation between them, for a primal node a and an added node eab, there is exactly a single relation of
type aux1 between them. For a pair of added nodes eab,eba, there are a bunch of relations from the
original graph G and an additional aux2 relation between them. Therefore, it suffices to only consider
three possible kinds of S ⊆ P2 ∪ {aux1,aux2} according to three cases mentiond above. Then, we
will construct first/second determinants for each of these three cases. Since φ′(y) has quantifier depth
no more than k, by induction let φ̂1,φ̂2 be first/second discriminants of φ′ by induction.

1. S = {aux1}:

for primal node a, φ(a) means the following: there exists at least n nodes b, such that there is
some relation between a,b on G and the added node eab on F (G) satisfies φ′. Therefore, the first
determinant of φ can be defined as following:

φ1(x) := ∃≥ny,
( ∨
r∈P2

r(x,y)
)
∧φ̂2(x,y) (34)

for added nodes eab on F (G), φ(eab) means a satisfies φ′, so the second determinant of φ is the
following:

n = 1 : φ2(x,y) := φ̂1(x), n > 1 : φ2(x,y) := ⊥ (35)

2.S = {aux2} ∪ T,T ⊆ P2,T ̸= ∅
primal nodes don’t have aux2 neighbors, so first determinant is trivially false.

φ1(x) := ⊥ (36)

For added node eab, eab satisfies φ iff there are exactly relations between a,b of types in T , and
eba satisfies φ′. Therefore the second determinant is as follows, where φT (x,y) is the relation-
specification formula under P introduced in Definition 21

n = 1 : φ2(x,y) := φT (x,y) ∧ φ̂2(y,x), n > 1 : φ2(x,y) := ⊥ (37)

3. S = ∅
For a subset S ⊆ P2 ∪ {aux1,aux2}, let φS(x,y) denote the relation-specification formula under
P2 ∪ {aux1,aux2} defined in Definition 21.

Since we consider on bounded graph class Gb, node number is bounded by a natural number N . For
any node a on F (G), letm denote the number of nodes b on F (G) such that φ′(b) = 1, letm0 denote
the number of nodes b on F (G) such that φ′(b) = 1 and there is a single relation aux1, between (a,b)
on F (G), (That is equivalent to φ{aux1}(a,b) = 1). For any T ⊆ P2, let mT denote the number of
nodes b on F (G) such that φ′(b) = 1 and a,b has exactly relations of types in T ∪ {aux2} on F (G),
(That is equivalent to φT∪{aux2}(a,b) = 1).
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Note that the number of nodes b on F (G) such that a,b don’t have any relation, (That is equivalent
to φ∅(a,b) = 1) and φ′(b) = 1 equals to m −m0 −

∑
T⊆P2

mT . Therefore, for any transformed
graph F (G) and its node v, (F (G),v) |= φ ⇔ m −m0 −

∑
T⊆P2

mT ≥ n. Since |V (G)| ≤ N

for all G in bounded graph class Gb, transformed graph F (G) has node number no more than N2.
Therefore, we can enumerate all possibilities of m,m0,mT ≤ N2,T ⊂ P2 such that the above
inequality holds, and for each possibility, we judge whehter there exists exactly such number of nodes
for each corresponding parameter. Formally speaking, φ can be rewritten as the following form:

φ̃m,m0
(x) :=

(
∃[m]yφ′(y)

)
∧(∃[m0]y(φ{aux1}(x,y) ∧ φ′(y)))

)
(38)

φ(x) ≡
∨

m−m0−
∑

T⊆P2
mT≥n,0≤m,m0,mT≤N2

(
φ̃m,m0

(x)∧
( ∧
T⊆P2

∃[mT ]y,(φT∪{aux2}(x,y)∧φ′(y))
))

(39)
where ∃[m]y denotes there are exactly m nodes y.

Since first/second determinant can be constructed trivially under combination of ∧, ∨ ,¬, and
we’ve shown how to construct determinants for formulas of form ∃≥ny(φS(x,y) ∧ φ′(y)) when
S = {aux1} and S = {aux2} ∪ T,T ⊆ P2 in the previous two cases. Therefore, in Equation (38)
and Equation (39), the only left part is the formula of form ∃[m]yφ′(y). The only remaining work is
to show how to construct first/second determinants for formula in form φ(x) := ∃≥nyφ′(y).

Let m1 denote the number of primal nodes y that satisfies φ′(y) and let m2 denote the number
of non-primal nodes y that satisfies φ′(y). It’s not hard to see that for any node v on F (G),
(F (G),v) |= φ ⇔ m1 + m2 ≥ n. Therefore, φ(x) = ∃≥nyφ′(y) that evaluates on F (G) is
equivalent to the following sentence that evaluates on G: “There exists two natural numbers m1,m2

such that the following conditions hold: 1. m1 +m2 = n. 2. There are at least m1 nodes b on G
that satisfies φ̂1, (equivalent to (F (G),b) |= φ′). 3. There are at least m2 ordered node pairs a,b on
G such that a,b has some relation and (G,a,b) |= φ̂2, (equivalent to (F (G),eab) |= φ′)."

Formally speaking, rewrite the sentence above as formula under P , we get the following construction
for first/second determinants of φ.

φ1(x) = φ2(x,y) =
∨

m1+m2=n

(
(∃≥m1y,φ̂1(y)) ∧ φm2

)
(40)

where φm2
is the FOC2 formula that expresses “There exists at least m2 ordered node pairs

(a,b) such that (G,a,b) |= φ̂2(x,y) ∧ (
∨

r∈P2
r(x,y))". We’ve shown the existence of φm2

in
Lemma 28

H Proof of Theorem 15

Theorem 15. time-and-graph ⊊ R2-TGNN ◦FT = time-then-graph.

For a graph G with n nodes, let HV ∈ Rn×dv denote node feature matrix, and HE ∈ Rn×n×de

denote edge feature matrix, where HE
ij denote the edge feature vector from i to j.

First we need to define the GNN used in their frameworks. Note that for the comparison fairness, we
add the the global readout to the node feature update as we do in R2-GNNs. It recursively calculates
the feature vector HV,(l)

i of the node i at each layer 1 ≤ l ≤ L as follows:

HV,(l)
i = u(l)

(
g(l)({{(HV,(l−1)

i ,HV,(l−1)
j ,HE

ij) | j ∈ N (i)}}), r(l)({{HV,(l−1)
j |j ∈ V }})

)
(41)

where N (i) denotes the set of all nodes that adjacent to i, and u(l),g(l),r(l) are learnable functions.
Note that here the GNN framework is a little different from the general definition defined in Equa-
tion (2). However, this framework is hard to fully implement and many previous works implementing
time-and-graph or time-then-graph Gao and Ribeiro [2022] (Li et al. [2019], Seo et al. [2016],
Chen et al. [2018], Manessi et al. [2020], Sankar et al. [2018],Rossi et al. [2020b]) don’t reach the
expressiveness of Equation (41). This definition is more for the theoretical analysis. In contrast, our
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definition for GNN in Equation (1) and Equation (2) is more practical since it is fully captured by a
bunch of commonly used models such as Schlichtkrull et al. [2018]. For notation simplicity, for a
GNN A, let HV,(L) = A(HV ,HE) denote the node feature outputted by A using HV ,HE as initial
features.

Proposition 29. (Gao and Ribeiro [2022]):time-and-graph ⊊ time-then-grahp

The above proposition is from Theorem 1 of Gao and Ribeiro [2022]. Therefore, in order to complete
the proof of Theorem 15, we only need to prove R2-TGNN ◦FT = time-then-graph.

Let G = {G1, . . . , GT } denote a temporal knowledge graph, and At ∈ Rn×|P1|,Et ∈
Rn×n×|P2|, 1 ≤ t ≤ T denonte one-hot encoding feature of unary facts and binary facts on timestamp
t, where P1,P2 are unary and binary predicate sets.

The updating rule of a time-then-graph model can be generalized as follows:

∀i ∈ V, HV
i = RNN([A1

i ......AT
i ]) (42)

∀i,j ∈ V, HE
i,j = RNN([E1

i,j ......ET
i,j ]) (43)

X := A(HV ,HE) (44)

where A is a GNN defined above, RNN is an arbitrary Recurrent Neural Network. X ∈ Rn×d is the
final node feature output of time-then-graph.

First we need to prove time-then-graph ⊆ R2-TGNN◦FT . That is, for any time-then-graph model,
we want to construct an equivalent R2-TGNN A′ to capture it on transformed graph. We can use
nodes added after transformation to store the edge feature HE , and use primal nodes to store the node
feature HV . By simulating RNN through choosing specific functions in R2-TGNN, we can easily
construct a R2-TGNN A′ such that for any node i, and any node pair i,j with at least one edge in
history, xi = HV

i and xeij = HE
i,j hold, where xi and xeij are features of corresponding primal node

i and added node eij outputted by A′.

Note that A′ is a R2-TGNN, it can be represented as A′
1......A′

T , where each A′
t, 1 ≤ t ≤ T is a

R2-GNN. A′ has simulated work of RNN, so the remaining work is to simulate A(HV ,HE). We do
the simulation over induction on layer number L of A.

When L = 0, output of A is exactly HV , which has been simulated by A′ above.

Suppose L = k + 1, let Ã denote R2-GNN extracted from A but without the last layer k + 1. By
induction, we can construct a R2-TGNN Ã′ that simulates Ã(HV ,HE). Then we need to append
three layers to Ã′ to simulate the last layer of A.

Let u(L),g(L),r(L) denote parameters of the last layer of A. Using notations in Equation (2), let
{C(l),(A

(l)
j )

|P2|
j=1,A

(l)
aux1,A

(l)
aux2,R

(l)}3l=1 denote parameters of the three layers appended to Ã′
T . They

are defined as follows:

First, we can choose specific function in the first two added layers, such that the following holds:

1. For any added node eij , feature outputted by the new model is x(2)
eij = [HE

ij ,x
′
i,x

′
j ], where x(2)

denotes the feature outputted by the second added layer, and x′
i,x

′
j are node features of i,j outputted

by Ã′. For a feature x of added node of this form, we define x0,x1,x2 as corresponding feature slices
where HE

ij ,x
′
i,x

′
j have been stored.

2. For any primal node, its feature x only stores x′
i in x1, and x0,x2 are all slices of dummy bits.

Let X be a multiset of features that represents function input. For the last added layer, we can choose
specific functions as follows:

R(3)(X) := r(L)({{x1|x ∈ X,primal(x)}}) (45)

A
(3)
aux1(X) := g(L)({{(x1,x2,x0)|x ∈ X}}) (46)

C(3)(xaux1,xg) := u(L)(xaux1,xg) (47)
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where xaux1,xg are outputs ofR(3) andA(3)
aux1, and all useless inputs of C(3) are omitted. Comparing

this construction with Equation (41). It’s east to see that after the last layer appended, we can construct
an equivalent R2-TGNN A′ that captures A on transformed graph. By inductive argument, we prove
time-then-graph ⊆ R 2-TGNN ◦FT .

Then we need to show R2-TGNN ◦FT ⊆ time-then-graph.

In Theorem 16, we will prove R2-TGNN ◦FT = R2-GNN ◦F ◦H . Its proof doesn’t dependent on
Theorem 15, so let’s assume it’s true for now. Then, instead of proving R2-TGNN ◦FT , it’s sufficient
to show R2-GNN ◦F ◦H ⊆ time-then-graph.

Let PT
1 , P

T
2 denote the set of temporalized unary and binary predicate sets defined in Definition 12.

Based on most expressive ability of Recurrent Neural Networks shown in Siegelmann and Sontag
[1992], we can get a most expressive representation for unary and binary fact sequences through
RNN. A most expressive RNN representation function is always injective, thus there exists a decoder
function translating most-expressive representations back to raw sequences. Therefore, we are able
to find an appropriate RNN such that its output features HV ,HE in Equation (42), Equation (43)
contain all information needed to reconstruct all temporalized unary and binary facts related to the
corresponding nodes.

For any R2-GNN A on transformed collpsed temporal knowledge graph, we want to construct an
equivalent time-then-graph model {RNN,A′} to capture A. In order to show the existence of the
time-then-graph model, we will do an inductive construction over layer number L of A. Here in
order to build inductive argument, we will consider a following stronger result and aim to prove
it: In additional to the existence of A′, we claim there also exists a function fA with the following
property: For any two nodes a,b with at least one edge, fA(x′

a,x
′
b,HE

ab) = xeab
, where x′

a,x
′
b,HE

ab
are features of a, b and edge information between a,b outputted by A′, and xeab

is the feature of
added node eab outputted by A ◦ F ◦H . It suffices to show that there exists such function fA as well
as a time-then-graph model {RNN,A′} such that the following conditions hold:

For any graph G and its node a,b ∈ V (G),

1. HV,(l)
a = [xa,Enc({{xeaj |j ∈ N (a)}})].

2.If there is at least one edge between a,b in history, fA(HV,(l)
a ,HV,(l)

b ,HE
ab) = xeab

. Otherwise,
fA(HV,(l)

a ,HV,(l)
b ,HE

ab) = 0

where HV,(l)
a ,HV,(l)

b are node features outputted by A′, while xa,xeab
are node features outputted by

A on transformed collpased graph. Enc(X) is some injective encoding that stores all information
of multiset X. For a node feature HV,(l)

a of above form, let HV,(l)
a,0 := xa,HV,(l)

a,1 = Enc({{xeaj
|j ∈

N (a)}}) denote two slices that store independent information in different positions.

For the base case L = 0. the node feature only depends on temporalized unary facts related to the
corresponding node. Since by RNN we can use most expressiveness representation to capture all
unary facts. A specific RNN already captures A when L = 0. Moreover, there is no added node eab
that relates to any unary fact, so a constant function already satisfies the condition of fA when L = 0.
Therefore, our result holds for L = 0

Assume L = k+1, let Â denote the model generated by the first k layers of A. By induction, there is
time-then-graph model Â′ and function fÂ′ that captures output of Â′ on transformed collapsed graph.
We can append a layer to Â′ to build A′ that simulates A. Let {C(L),(A

(L)
j )

T |P2|
j=1 ,A

(L)
aux1,A

(L)
aux2,R

(L)}
denote the building blocks of layer L of A, and let u∗,g∗,r∗ denote functions used in the layer that
will be appended to Â′. They are defined below:

g∗({{(HV,(l−1)
i ,HV,(l−1)

j ,HE
ij |j ∈ N (i))}}) := A

(L)
aux1({{fÂ′(HV,(l−1)

i ,HV,(l−1)
j ,HE

ij)|j ∈ N (i)}})
(48)

r∗({{HV,(l−1)
j |j ∈ V (G)}}) = R(L)

(
{{HV,(l−1)

j,0 |j ∈ V (G)}} ∪ (
⋃

j∈V (G)

Dec(HV,(l−1)
j,1 ))

)
(49)

u∗(xg,xr) = C(L)(xg,xr) (50)
where xg,xr are outputs of g∗ and r∗. Dec(X) is a decoder function that do inverse mapping of
Enc(X) mentioned above, so Dec(HV,(l−1)

j,1 ) is actually {{xeaj
|j ∈ N (a)}}. Note that primal nodes
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in transformed graph only has type aux1- neighbors, so two inputs xg,xr, one for aux1 aggregation
output and one for global readout are already enough for computing the value. Comparing the three
rules above with Equation (2), we can see that our new model A′ perfectly captures A.

We’ve captured A, and the remaining work is to construct fA defined above to complete inductive
assumption. We can just choose a function that simulates message passing between pairs of added
nodes eab and eba as well as message passing between eab and a, and that function satisfies the
condition for fA. Formally speaking, fA can be defined below:

fA(HV,(l)
i ,HV,(l)

j ,HE
ij) := SimAL

(HV,(l−1)
i ,H(l−1)

g ,gij ,gji,HE
ij) (51)

gij := fÂ′(HV,(l−1)
i ,HV,(l−1)

j ,HE
ij),H(l−1)

g := {{HV,(l−1)
i |i ∈ V (G)}} (52)

Let’s explain this equation, SimAL
(a,g,s,b,e) is a local simulation function which simulates single-

iteration message passing in the following scenario:

Suppose there is a graphH with three constants V (H) = {a,eab,eba}. There is an aux1 edge between
a and eab, an aux2 edge between eab and eba, and additional edges of different types between eab
and eba. The description of additional edges can be founded in e. Initial node features of a,eab,eba
are set to a,s,b respectively. and the global readout output is g. Finally, run L-th layer of A on H ,
and SimAL

is node feature of eab outputted by AL.

Note that if we use appropriate injective encoding or just use concatenation technic,
H(l−1)

g ,HV,(l−1)
i ,HV,(l−1)

j can be accessed from HV,(l)
i ,HV,(l)

i . Therefore the above definition for fA
is well-defined. Moreover, in the above explanation we can see that fA(HV,(l−1)

i ,HV,(l−1)
j ,HE

ij) is
exactly node feature of eij outputted by A on the transformed collapsed graph, so our proof finishes.

I Proof of Theorem 16

Theorem 16. R2-TGNN ◦FT = R2-TGNN ◦F ◦H .

First, we recall the definition for R2-TGNN as in Equation (53):

xt
v = At

(
Gt,v,yt

)
where yt

v = [IGt(v) : xt−1
v ],∀v ∈ V (Gt) (53)

We say a R2-TGNN is homogeneous if A1, . . . ,AT share the same parameters. In particular, we first
prove Lemma 30, namely, homogeneous R2-TGNN and R2-TGNN (where paramters in A1, . . . ,AT

may differ) have the same expressiveness.
Lemma 30. homogenous R2-TGNN = R2-TGNN

Proof. The forward direction homogeneous R2-TGNN⊆ R2-TGNN trivially holds. It suffices to
prove the backward direction.

Let A : {At}Tt=1 denote a R2-TGNN. Without loss of generality, we can assume all models in each
timestamps have the same layer number L. Then for each 1 ≤ t ≤ T , we can assume all At can be
represented by {C(l)

t ,(A
(l)
t,j)

|P2|
j=1,R

(l)
t }Ll=1. Futhormore, without loss of generality, we can assume all

output dimensions for A(l)
t,j ,R

(l)
t and C(l)

t are d. As for input dimension, all of these functions also
have input dimension d for 2 ≤ l ≤ L. Specially, by updating rules of R2-TGNN Equation (53), in
the initialization stage of each timestamp we have to concat a feature with length |P1| to output of the
former timestamp, so the input dimension for A(1)

t,j ,R
(1)
t ,C

(1)
t is d+ |P1|.

We can construct an equivalent homogeneous R2-TGNN with L layers represented by
{C∗,(l),(A

∗,(l)
j )

|P2|
j=1,R

∗,(l)}Ll=1. For 2 ≤ l ≤ L, C∗,(l)A
∗,(l)
j ,R∗,(l) use output and input feature

dimension d′ = Td. Similar to the discussion about feature dimension above, since we need to
concat the unary predicates information before each timestamp, for layer l = 1, C∗,(1),A

∗,(1)
j ,R∗,(1)

have input dimension d′ + |P1| and output dimension d′. For dimension alignment, x0
v used in

Equation (53) is defined as zero-vector with length d′.
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Next let’s define some symbols for notation simplicity. For a feature vector x, let x[i,j] denotes
the slice of x in dimension [i,j]. By the discussion above, in the following construction process we
will only need feature x with dimension d′ or d′ + |P1|. When x has dimension d′, x(i) denotes
x[(i− 1)d+ 1,id], otherwise it denotes x[|P1|+ (i− 1)d+ 1,|P1|+ id] . Let [x1......xT ] or [xt]

T
t=1

denotes the concatenation of a sequence of feature x1......xT , and [x]n denote concatenation of n
copies of x, 0n denotes zero vectors of length n. Furthermore. Let X denotes a multiset of x. Follows
the updating rules defined in Equation (2), for all 1 ≤ j ≤ |P2|,1 ≤ l ≤ L,A

∗,(l)
j ,R∗,(l) should

get input of form X, and the combination function C∗,(l) should get input of form (x0,(xj)
|P2|
j=1,xg),

where x0 is from the node itself, (xj)
|P2|
j=1 are from aggregation functions (A

∗,(l)
j )

|P2|
j=1 and xg is

from the global readout R∗,(l). The dimension of x or X should match the input dimension of
corresponding function. For all 1 ≤ l ≤ L, parameters in layer l for the new model are defined below

l = 1 : C∗,(l)(x0,(xj)
|P2|
j=1,xg) := [C

(l)
t ([x0[1,|P1|],x(t−1)

0 ],(x
(t)
j )

|P2|
j=1,x

(t)
g )]Tt=1 (54)

2 ≤ l ≤ L : C∗,(l)(x0,(xj)
|P2|
j=1,xg) := [C

(l)
t (x

(t)
0 ,(x

(t)
j )

|P2|
j=1,x

(t)
g )]Tt=1 (55)

∀j ∈ [K],l = 1 : A
∗,(l)
j (X) = [A

(l)
t,j({{[x[1,|P1|],x(t−1)]|x ∈ X}})]Tt=1 (56)

l = 1 : R∗,(l)(X) = [R
(l)
t ({{[x[1,|P1|],x(t−1)]|x ∈ X}})]Tt=1 (57)

∀j ∈ [K],2 ≤ l ≤ L : A
∗,(l)
j (X) = [A

(l)
t,j({{x

(t)|x ∈ X}})]Tt=1 (58)

2 ≤ l ≤ L : R∗,(l)(X) = [R
(l)
t ({{x(t)|x ∈ X}})]Tt=1 (59)

The core trick is to use T disjoint slices x(1)......x(T ) to simulate T different models A1......AT at the
same time, Since these slices are isolated from each other, a proper construction above can be found.
The only speciality is that in layer l = 1, we have to incorporate the unary predicate information
x[1,|P1|] into each slice. By the construction above, we can see that for any node v, x(T )

v is exactly
the its feature outputted by A. Therefore, we finally construct an homogeneous R2-TGNN equivalent
with A.

Now, we start to prove Theorem 16.
Theorem 16. R2-TGNNs ◦FT = R2-GNNs ◦F ◦H on any universal graph class Gu.

Proof. Since R2-TGNN ◦FT only uses a part of predicates of P ′ = F (H(P )) in each timestamp,
the forward direction R2-TGNN ◦FT ⊆ R2-GNN ◦F ◦H trivially holds.

For any R2-GNN A under P ′, we want to construct an R2-TGNN A′ under FT (P ) such that for any
temporal knowledge graph G, A′ outputs the same feature vectors as A on FT (G). We can assume
A is represented as (C(l),(A

(l)
j )Kj=1,A

(l)
aux1,A

(l)
aux2,R

(l))Ll=1, where K = T |P2|.

First, by setting feature dimension to be d′ = T |P |+ 3. We can construct an R2-TGNN A′ whose
output feature stores all facts in F (H(G)) for any graph G. Formally speaking, A′ should satisfy the
following condition:

For any primal node a, its feature outputted by A′ ◦ FT should store all unary facts of form
Ai(a),Ai ∈ T |P1| or primal(a) on F (H(G)). For any non-primal node eab, its feature outputted
by A′ ◦ FT should store all binary facts of form ri(a,b),ri ∈ T |P2| or raux1(a,b),raux2(a,b) where
b is another node on F (H(G)).

The A′ is easy to construct since we have enough dimension size to store different predicates
independently, and these facts are completely encoded into the initial features of corresponding
timestamp. Let (A′

1......A′
T ) denote A′.

Next, in order to simulate A, we need to append some layers to A′
T . Let L denote the layer number

of A, we need to append L layers represented as (C∗,(l),(A
∗,(l)
j )

|P2|
j=1,A

∗,(l)
aux1,A

∗,(l)
aux2,R

∗,(l))Ll=1

Since we have enough information encoded in features, we can start to simulate A. Since neighbor
distribution of primal nodes don’t change between FT (G)T and F (H(G)), it’s easy to simulate all
messages passed to primal nodes as destinations by A∗,(l)

aux1. For messages passed to non-primal node
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Figure 6: Hierarchic expressiveness.

eab as destination, it can be divided into messages from a and messages from eba. The first class of
messages is easy to simulate since the aux1 edge between eab and a is the same on FT (G)T and
F (H(G)).

For the second class of messages, since edges of type ri,1 ≤ i ≤ T |P2| may be lost in FT (G)T , we
have to simulate these messages only by the unchanged edge of type aux2. It can be realized by
following construction:

1 ≤ l ≤ L,A
∗,(l)
aux2(X) = [[A

′,(l)
j (X))]Kj=1,A

(l)
aux2(X)] (60)

where K = T |P2|, A′,(l)
j (X) := A

(l)
j (X) if and only if eba has neighbor rj on F (H(G)) , otherwise

A
′(l)
j (X) := 0. Note that X is exactly the feature of eba, and we can access the information about its

rj neighbors from feature since A′ has stored information about these facts.

In conclusion, we’ve simulated all messages between neighbors. Furthermore, since node sets on
FT (G)T and F (H(G)) are the same, global readout R(l) is also easy to simulate by R∗,(l). Finally,
using the original combination function C(l), we can construct an R2-TGNN on FT equivalent to A
on F (H(G)) for any temporal knowledge graph G.

J Proof of Theorem 17

Based on Theorem 15, Theorem 16 and Corollary 11.2, in order to prove Theorem 17, it suffices to
show the following theorems.
Theorem 31. If time range T > 1 R2-TGNN ⊊ R2-GNN ◦H .
Theorem 32. If time range T > 1 R2-TGNN ⊈ time-and-graph.

Proof. Since a formal proof Theorem 32 relates to too many details in definition of time-and-graph
(Please refer to Gao and Ribeiro [2022]) which is not the focus here. We will just a brief proof
sketch of Theorem 32: That’s because time-and-graph can not capture a chain of information that
is continuously scattered in time intervals. Specifically, φ(x) := ∃≥1y,

(
r21(x,y) ∧ (∃≥1x,r11(y,x))

)
can’t be captured by time-and-graph but φ(x) is in R2-TGNN.

We mainly give a detaild proof of Theorem 31: Since in each timestamp t, R2-TGNN only uses a part
of predicates in temporalized predicate set P ′ = H(P ), R2-TGNN ⊆ R2-GNN ◦H trivially holds.
To show R2-TGNN is strictly weaker than R2-GNN ◦H . Consider the following classifier:

Let time range T = 2, and let r be a binary predicate in P2. Note that there are two different
predicates r1,r2 in P ′ = H(P ). Consider the following temporal graph G with 5 nodes {1,2,3,4,5}.
its two snapshots G1,G2 are as follows:

G1 = {r(1,2),r(4,5)}
G2 = {r(2,3)}.

It follows that after transformation H , the static version of G is:

H(G) = {r1(1,2),r1(4,5),r2(2,3)}.

Consider the logical classifier ∃y
(
r1(x,y) ∧ (∃xr2(x,y))

)
under P ′.It can be captured by some

R2-GNN under P ′. Therefore, R2-GNN ◦H can distinguish nodes 1,4.
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datasets φ1 φ2 φ3 φ4

Avg # Nodes 477 477 477 477
Time_range 2 2 2 10

# Unary predicate 2 2 2 3
# Binary predicate(non-temporalized) 1 1 1 3
Avg # Degree (in single timestamp) 3 3 3 5

Avg # positive percentage 50.7 52 25.3 73.3
Table 4: statistical information for synthetic datasets.

datasets AIFB MUTAG Brain-10
# Nodes 8285 23644 5000

Time_Range \ \ 12
# Relation types 45 23 20

# Edges 29043 74227 1761414
# Classes 4 2 10

# Train Nodes 140 272 4500
# Test Nodes 36 68 500

Table 5: statistical information for Real datasets.

hyper-parameter range
learning rate 0.01
combination mean/max/add

aggregation/readout mean/max/add
layer 1,2,3

hidden dimension 10,64,100
Table 6: Hyper-parameters.

However, any R2-TGNN based on updating rules in Equation (53) can’t distinguish these two nodes,
so R2-TGNN is strictly weaker than R2-GNN ◦H .

Based on Theorem 31, we can consider logical classifier φ3 := ∃≥2y(p11(x,y) ∧ p21(x,y)). Note that
this classifier is just renaming version of Figure 1. Therefore φ3 can’t be captured by R2-GNN ◦H ,
not to say weaker framework R2-GNN by Theorem 31.

.

K Experiment Supplementary

K.1 Synthetic dataset generation

For each synthetic datasets, we generate 7000 graphs as tranining set and 500 graphs as test set. Each
graph has 50 − 1000 nodes. In graph generation, we fix the expected edge density δ. In order to
generate a graph with n nodes, we pick δn pairs of distinct nodes uniformly randomly. For each
selected node pair a,b, each timestamp t and each binary relation type r, we add rt(a,b) and rt(a,b)
into the graph with independent probability 1

2 .

K.2 Statistical Information for Datasets

We list the information for synthetic dataset in Table 4 and real-world dataset in Table 5. Note
that synthetic datasets contains many graphs, but real-world datasets only contains a single graph.
Therefore, for real-world dataset, we have two disjoint node set as train split and test split for training
and testing respectively. In training, the model can see the subgraph induced by train split and
unlabelled nodes, in testing, the model can see the whole graph but only evaluate the performance on
test split.

34



FOC2 classifier φ1 φ2 φ3 φ4

R-GAT ◦H 100 61.4 88.6 82.0
R2-GAT ◦H 100 93.5 95.0 82.2

R2-GAT ◦F ◦H 100 98.2 100 95.8
Table 7: Extra results on synthetic datasets

AIFB MUTAG DGS AM
# of nodes 8285 23644 333845 1666764
# of edges 29043 74227 916199 5988321
R-GCN 95.8 73.2 83.1 89.3
R-GAT 96.9 74.4 86.9 90.0
R-GNN 91.7 76.5 81.2 89.5
R2-GNN 91.7 85.3 85.5 89.9

R2-GNN ◦F 97.2 88.2 88.0 91.4
Table 8: Extra results for static real-world datasets.

Models GRU-GCN◦FT TGN ◦FT R-TGNN R-TGNN ◦FT R2-TGNN R2-TGNN◦FT

Brain-10 95.0 94.2 85.0 90.9 94.8 94.0
Table 9: Extra results for temporal real-world dataset Brain-10.

K.3 Hyper-parameters

For all experiments, we did grid search according to Table 6.

K.4 More Results

Apart from those presented in main part, we have some extra experimental results here:

1. Extra results on synthetic datasets but using different base model architecture, where R-GAT
refers to Busbridge et al. [2019] and R2-GAT refers to its extension with global readout. Please
Refer to Table 7. These results show the generality of our results on different base models within the
framework.

2. Extra results for static real-world datasets. Add a base model R-GATBusbridge et al. [2019] and
two larger real-world datasets DGS and AM from Schlichtkrull et al. [2018]. Please refer to Table 8.
From the results for two bigger datasets DGM and AM, we can see our framework outperforms the
other baselines, which confirms the scalability of our method and theoretical results. These results
show our method is effective both on small and large graphs.

3. Extra results for temporal real-world dataset Brain-10. Please refer to Table 9. These results
implies that our method is effective on different base models in temporal settings. Moreover, we can
see separate improvements from global readout and graph transformation respectively. As we said in
the main part, the drop in the last column may be due to the intrinsic drawbacks of current real-world
datasets. Many real-world datasets can not be perfectly modeled as first-order-logic classifier. This
non-logical property may lead to less convincing experimental results. As Barceló et al. [2020]
commented, these commonly used benchmarks are inadequate for testing advanced GNN variants.
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