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Abstract

Generative enzyme design reduces wet lab costs by virtually screening high-reward
variants of a wild-type enzyme from a vast, high-dimensional search space. This
becomes particularly challenging when multiple substrates and reactions for the
same enzyme yield complex reward functions, such as Enzyme Kinetic Parame-
ters (EKP), compounded by increasing biosafety constraints from stakeholders.
This paper presents an integrated framework with a Generative Flow Networks
(GFlowNets) model tailored for enzyme design and a fine-tuned protein language
model for predicting EKP. Different from existing related work, our framework
handles the complex EKP landscape introduced by the hydrolysis reaction mixture
with the enzymatic reaction. By preliminary experiments, our framework shows it
can generate high-reward enzyme variants under biosafety constraints faster than
alternative related methods.

1 Introduction

With the advancements of biotechnology and protein engineering, enzymes are increasingly utilized
across various sectors, including food industry [Raveendran et al., 2018], medicine [Voller et al.,
1976], agriculture [Bowles et al., 2014], environmental science [Bollag, 1992], etc. While wild
enzymes exhibit efficient catalytic activity, their performance for specific substrates often requires cal-
ibration [Tiffany et al., 1972]. The technology of improving the substrate specificity of enzyme [Carter
and Wells, 1987] has a broad impact on biological sciences, particularly in areas such as metabolic
engineering [Bonk et al., 2018], and synthetic biology [Urlacher and Girhard, 2019]. Consequently,
the directed evolution of enzymes [Schmidt-Dannert and Arnold, 1999] for more efficiency in a
specific reaction becomes a cornerstone technology.

As an enabler to the computational directed evolution of enzymes, the Enzyme Kinetic Parame-
ters (EKP) [Choi et al., 2017] are crucial for understanding the efficiency of a specific enzymatic
reaction. Traditionally, the EKP’s measurement is through experimental methods which require
meticulous laboratory work [Eisenthal and Cornish-Bowden, 1974]. However, recent advancements
in computational methods [Kiss et al., 2013] have provided new ways to predict and analyze these
parameters. Some of these computational approaches utilize foundation models (FM) e.g. protein
language models [Bepler and Berger, 2021]. Framework based on protein language models which
are fine-tuned for the prediction of EKP, have also been developed to carry out these predictions.
UniKP [Yu et al., 2023a], for instance, excels in predicting the kinetic parameters for enzymes in
reactions with one specific substrate.
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Figure 1: SD stands for structure divergence, the units are ignored in the caption for brevity. The
bumpy curved surface in the rightmost reward landscape could be partially due to the penalty over
the overall catalytic efficiency for toxicity.

The modes to the EKP function of different enzyme variants become even more complex when two or
more substrates are involved in the reaction, e.g. when the enzymatic reaction is often accompanied
by a Hydrolysis reaction [Qi and He, 2006] in which water (H2O) acts as a receptor substrate,
because of two reasons. First, although the divergence between the enzyme’s structure is monotonic
to the divergence between the enzyme’s sequence by experiments [Chothia and Lesk, 1986], the
binding energy is not. This can be better illustrated by the experiment of homing endonuclease I-AniI
in [Thyme et al., 2009], where a small change in enzyme structure leads to significant differences
in binding energy. Secondly, the simultaneous occurrence of two reactions, even when both exhibit
monotonic functions for their kinetic parameters, can lead to complex patterns that introduce multiple
modes to the reward function that represents the overall catalytic efficiency of reactions. We could
imagine the curved spaces in Figure 1 for illustration propose of this phenomenon.

The above phenomenon confines the applicable domain of existing biological sequence design
methods, e.g. directly using the predicted utility as the reward function for a Reinforcement Learning
agent Angermueller et al. [2019], for enzyme’s design especially when the safety of synthetic
biological sequence [Hoffmann et al., 2023] needs to be addressed. To this end, we propose a
novel framework based on Generative Flow Networks (GFlowNet) [Bengio et al., 2021], a genre
of generative model known for its capability to effectively sample the multiple modes to the utility
functions of complex biological sequences [Jain et al., 2022]. Our core hypothesis is that by increasing
the diversity of generated sequences, we can enhance our chance of identifying an enzyme design
that is not only more efficient but also safer.

Our main contribution is a holistic framework that integrates generative models for enzyme design and
the foundation models for the prediction of EKP. To the best of our knowledge, this work marks the
first application of GFlowNet in enzyme design for substrates with a secondary Hydrolysis reaction.
By preliminary experiments, our framework has shown its efficiency of generating high-reward
enzyme variants within biosafety constraints faster than alternative related methods.

2 Preliminary

Our overall goal is to propose, for efficient wet lab verification, a batch of K most catalytic efficient
enzyme variants Bi = {xi

1, ..., x
i
k} under the constraints of a biosafety measure, given the dataset

Di = ∪i−1
j=1{xj} of currently visited variants in each round i ∈ {1, ..., N}. We use Generative Flow

Networks (GFlowNets) [Bengio et al., 2021] to generate a trajectory of mutations starting from a
given amino acid sequence D0 = {SEQ(E0)} of the wild enzyme E0 to achieve this goal. In this
section, we first introduce two key enablers to facilitate our design.
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2.1 Prediction of Catalytic Efficiency

Assume an enzymatic reaction shown in Eqn. 1, and let E represent the enzyme, S represent the
substrate, ES represent the enzyme-substrate (E–S) complex, and P represent the product:

E + S
k1−−⇀↽−−
k−1

ES
k2−→ E + P (1)

where k1, k−1, and k2 represent their conversion rates to each other. Kcat = k2 is the enzyme
turnover number, Km = (k−1 + k2)/k1 is Michaelis constant, and Kcat/Km) is enzyme catalytic
efficiency. Km is a parameter that describes the affinity between the enzyme and the substrate. It
was proposed by German biochemist Leonor Michaelis and Canadian physician Mott Menton in the
Michaelis-Menton kinetic equation in 1913.

The method of UniKP [Yu et al., 2023a] uses pre-training language models to capture the characteris-
tics of enzyme sequences and substrate structures, thereby achieving accurate prediction of enzyme
kinetic parameters. Concretely, UniKP uses a fine-tuned protein language model [Elnaggar et al.,
2021] to predict enzyme kinetic parameters EKP(S,E) by encoding the amino acid sequences
of the enzyme SEQ(E) in concatenation with the simplified molecular linear input specification
(SMILES) string of the substrate SMILES(S) and other information such as environmental factors
to perform the prediction of EKP.

2.2 Verification of Biosafety

The increasing accessibility to powerful and affordable synthetic biology technologies puts us at risk
of inadvertent or deliberate creation and dissemination of pathogens [Hoffmann et al., 2023]. It is
widely accepted that it is imperative and strategic for the regulatory bodies to provide safeguarding
frameworks that evaluate potential risks associated with synthetic sequences, considering factors like
pathogenicity, environmental impact, and potential for horizontal gene transfer. Traditionally, there
are two key ways to measure biosafety:

• In Silico: use computation tools to predict the behavior of synthetic sequences in biological
systems, assessing their stability, potential interactions, and unintended consequences.

• In Vitro: conducting a wet lab experiment to observe the effects of synthetic sequences,
allowing for the assessment of toxicity, infectivity, and other biological responses.

Our framework integrates an improved version [Sharma et al., 2022] from a series of in-silico tools
for assessing protein toxicity, of which the original version [Gupta et al., 2013] is a classifier trained
over a dataset containing toxic peptides having 35 or fewer residues from various databases and
non-toxic peptides randomly obtained from protein databases e.g. SwissProt [Boeckmann et al.,
2003].

3 Methods

As the core generative model of the introduced framework, GFlowNets are designed to approximate
an edge flow function defined over a graph G. The objective is to ensure that the terminal flow
matches the reward function R(x) while maintaining flow consistency. This is accomplished by
establishing a loss function whose global minimum satisfies the consistency requirement. The initial
formulation [Bengio et al., 2021] of this approach utilizes a learning objective akin to temporal
difference methods, also referred to as flow-matching:

LFM (s; θ) =

(
log

∑
s′∈Parent(s) Fθ(s

′ → s)∑
s′′∈Child(s) Fθ(s → s′′)

)2

(2)

In [Bengio et al., 2021] proves that when trajectories are sampled from an exploratory training policy
with full support, the edge flow that maintains consistency is obtained by minimizing Eqn. 2. At the
same time, the probability of arriving at the ‘final state’ by this flow, which samples mutated enzyme
variants x with a probability PFθ

= Fθ(s→s′)∑
s′′∈child Fθ(s→s′′) , is proportional to their reward R(x).
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In our design, we use the overall catalytic efficiency measured by the above-introduced UniKP
framework as the reward function R(x) in GFlowNets. The more efficient enzyme variants will
receive a higher reward. Concretely, the predicted parameter Kcat/Km of the enzyme is used
to quantify the catalytic efficiency for a single reaction, and when two reactions are together the
following formula is used to compute the overall catalytic efficiency.

R(x) = EKPB
α(EKPA − β ∗EKPC) (3)

• EKPB: The predicted catalytic efficiency Kcat/Km of enzyme E for donor substrate SB .
• EKPA: The predicted catalytic efficiency Kcat/Km of enzyme E for acceptor SA.
• EKPC: The predicted catalytic efficiency Kcat/Km of enzyme E for water.
• α and β: weight parameters used to adjust the reward function.

The prediction of EKP(SEQ(E),SMILES(S)) is enabled by the inference of a pre-trained UniKP
model over different combinations of one substrate S with the target enzyme E.

3.1 Generating Mutations

The process of GFlowNet to generate new enzyme variants is through a series of actions, each
resulting in a new mutation to a wild-type enzyme (one that exists in nature). Details are as follows:

We start from an initial state, which is the initial amino acid sequence of wild-type enzyme SEQ(E0).

First, select an action. At each step, GFlowNet randomizes an action at with probability propor-
tional to GFlownet’s current policy, parameterized as π(s) through the neural network. The action
determines how to modify the current state st. Concretely, the st is a candidate mutation to SEQ(E0).
The action continuously modifies the current mutation by one of the following three choices:

• 1) substitute the target position with another amino acid,
• 2) increment the target position of mutation by one (with a maximum of StepSize),
• 3) increment the target position of mutation by StepSize (with a maximum of StepNums).

Update the current state, then repeat. The current state st is updated to a new state st+1 based on
the selection. The process of selecting actions and updating states is repeated until a final state sn is
reached, which represents an enzyme variant x.

Stop at final states. The final state can be reached when either of the two conditions are met: 1)
the action at generated by GFlownet represents a ‘stop’ action, or 2) all available states are visited
exhaustively. The validity of a final state also has to be verified by a biosafety assurance step which
will be described later in this section.

3.2 Learning GFlowNets

Calculate Reward Once a final state is arrived, the reward R(x) of the generated enzyme variant
is calculated using Eqn. 3. More specifically, it involves three steps as follows:

• Convert the amino acid sequence of candidate enzyme variants and substrate SMILES
structure into a vector representation.

• Use the pre-trained UniKP model to predict the comprehensive vector and calculate each of
the enzyme’s Kcat/Km parameters, namely EKPA, EKPB , and EKPC in Eqn. 3.

• Set the hyper-parameters α and β then feed them with the predicted Kcat/Km parameters
in the above step into the R(x) formula for calculation, and record each generated enzyme
variant and its corresponding reward value. The reward value is subject to be penalized by
multiplying a factor γ range between 0 and 1 for sequences that are classified as toxic.

Set Reward Threshold Only when the reward value of the variant is higher than the threshold set
by top K (e.g. K=16) highest rewarding enzyme variants, it can be considered a high-reward enzyme
variant and should be recorded for reporting. The searching process can be early stopped when all
top K is found. The threshold was pre-computed in our experiments, however, it is worth further
investigation on how to set the threshold in practice.
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Calculate Policy Gradient After arriving at a batch size K number of final states, the framework
calculates the policy gradient based on the loss function given by Eqn. 2, and adjust the parameters of
the GFlowNets to increase the probability of generating high-reward variants.

Generate New Variants Generate new enzyme variants using the updated GFlowNets’ policy.
The new strategy, updated by the back-propagation of policy gradients, should be more inclined to
generate high-reward enzyme variants. Then according to the new strategy, we repeat the above steps
until all safe high-reward enzyme variants are found or the number of training steps is reached.

Assessing Consistency To monitor the convergence of the policy generated by GFlowNets, we
assess the empirical consistency of PFθ

occasionally. Concretely, the density of each final state
visited so far is calculated and compared with the true density given by the reward function R(x).

3.3 Biosafety Assurance

For every enzyme variant mutated by a final state, we use a pre-trained classifier 1 to measure its
toxicity. Our framework first converts each final state into a mutated sequence, then relies on the
predicted label (toxic/non-toxic) of the classifier over this sequence to decide whether to record a
corresponding final state into a batch for output or repeat the generative process of GFlownets to
sample more variants to meet the biosafety requirements. Compared with the reward function, this
step is performed more frequently, because for every ‘stop’ action it has to be called the classifier.
To this end, we choose a simpler (comparing to the protein foundation model used for R(x)) but
effective (achieved testing accuracy around 90% according to [Rathore et al., 2024]) model.

4 Experiments

(a) ‘Ribbon Diagram’ for the 3D molecular structure of a
enzyme variant for EstCE1 generated by our framework.

(b) The contact map of Expected Position
Error (EPE) for aligned residues in the pre-
dicted structure of the enzyme variant in (a).

(c) What different colors represent in the ‘Ribbon Diagram’ in (a).

Figure 2: A generated variant of EstCE1, evaluated by AlphaFold3 server [Abramson et al., 2024].

4.1 Initial Dataset

We chose the EstCE1 as the enzyme E0 in initial dataset D0 for our experiments because of follows:

1https://github.com/raghavagps/toxinpred2
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• Efficient acyl transfer activity: EstCE1 is an efficient acyl transferase with significant
catalytic activity for esterification, irreversible amidation of amines and carbamoylation.
This enables it to exhibit excellent catalytic performance in acyl transfer reactions and is an
ideal starting point for optimization studies.

• Unique structural properties: EstCE1 adopts a β-lactamase folding structure and has a
catalytic triad (S65, K68 and Y171) located at the interface of the α/β subdomain and a
more flexible helix. Its active site is covered by a significantly expanded Ω-loop, which can
effectively block the central part of the R1 subsite facilitating acyl transfer activity.

• Conserved WGG motif: The conserved WGG motif near the catalytic triad has an important
impact on the formation of the hydrophobic cavity at the substrate binding site, helping
to improve the substrate affinity and catalytic efficiency of the enzyme. These structural
features give EstCE1 strong catalytic ability in acyl transfer reactions.

• Rich research foundation: EstCE1 has been widely studied in existing studies and proven
to have efficient acyl transfer-ability. Further optimization and improvements on EstCE1
can not only make full use of its known catalytic properties but also have a better chance of
reaching a practical level of catalytic performance.

4.2 Evaluation Protocol

In this section, we present experimental results comparing different algorithms for exploring the
single-point mutation of EstCE1. Our experiments setting, following the protocol as [Bengio et al.,
2021], aims to show the effectiveness of our GFlowNets-based method (can be labeled as "flownet"
in the legend) against MCMC (Markov Chain Monte Carlo), PPO (Proximal Policy Optimization),
and a random baseline. The evaluation protocol has several key varying parameters as follows:

• α: the exponential factor in reward function - This is varied across three different magnitudes
(0.5, 1, 1.5) to test the algorithm’s robustness under different intensities of reactions.

• β: the hydrolysis factor in reward function - This is varied across two different magnitudes
(0.1, 0.5) to test the algorithm’s robustness under the mixed hydrolysis reaction.

• Number of states visited: This is the primary x-axis in both plots, ranging from 0 to 8 ∗ 103,
subject to early stopping. It represents the exploration budget or time given to each algorithm.

The evaluation metrics used are:

• Empirical L1 error measures the consistency of the estimated density compared to the true
density for the distribution of the final states.

• Number of safe high-reward enzyme variants found measures the diversity of high-reward
enzyme variants discovered, with the horizontal line delineating the maximum possible
number in a single-point mutation for EstCE1.

By varying these parameters and comparing them with multiple baselines, we aim to provide a
comprehensive review of our method’s performance in designing catalytic efficient enzyme variants.
The penalty factor γ introduced before is sensitive to different algorithms and tuning of other hyper-
parameter settings. In our practice, introducing the penalty in the reward function does not always
improve the overall performance and may sometimes lead to difficulties in convergence. Therefore,
we did not include it here but left it for future investigation.

4.3 Results and Discussions

The Fig. 3a on the above left reveals several interesting trends. Our framework (solid lines) consis-
tently outperforms the MCMC method (dashed lines) for both parameter settings, achieving lower
error rates across most ranges. Notably, the GflowNets with the configuration of α = 1 and β = 0.5
(blue solid line) show the best performance overall, the fastest reaching the lowest error rate at the
steps of early stopping. The difference in performance between the two parameter settings (β = 0.1
vs β = 0.5) is more pronounced for the MCMC method than for GFlowNets. This suggests that the
GFlowNets approach may be more robust to parameter tuning, in addition to being more capable of
achieving better results when optimally configured. The diminishing decreasing rate and fluctuation
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(a) Comparison between GFlowNets (labeled as
"flownet") and MCMC, each with two settings of
β (e.g. labeled as ‘b0.1’) and a fixed α (= 1).

(b) We compare the number of top K (=16) enzyme variants
found by each algorithm and setting. Blue, orange, and
green lines each stand for α = 1.5, 1.0, 0.5.

Figure 3: Our framework (w/ GFlowNets) consistently outperforms the alternative in both figures.
We fix a StepSize and StepNums both of 20 and record the mean for 3 runs every 10 training steps.

in empirical error for MCMC at the beginning of the range indicates that GFlowNets benefits more
significantly from increased sampling, with the potential for further investigation.

Fig. 3b compares several methodologies with a fixed β = 0.5. The GfFlowNets (flownets) algorithm
used in our framework is compared using three distinct α values (1.5, 1, and 0.5) settings with three
baselines: Markov Chain Monte Carlo (MCMC), Proximal Policy Optimization (PPO), and a random
search baseline. The results demonstrate a clear performance hierarchy among these approaches.
Generally speaking, algorithms with higher alpha values (e.g., 1.5) settings demonstrate enhanced
efficiency, discovering a greater number of variants in fewer state visitations. This suggests that
increasing alpha values may also facilitate a more effective exploration of the enzyme variant search
space.

Both MCMC and PPO algorithms display comparable performance profiles, generally surpassing the
random search baseline but falling short of the efficiency demonstrated by GFlowNets. As anticipated,
the random search method exhibits the least efficient performance among Compared to all baselines,
GFlowNets achieve the search goal significantly faster than other algorithms, indicating their superior
efficiency in thoroughly exploring the variant space.

The above observations, putting them all together, partially validate our hypothesis that by increasing
the diversity of sampled mutation trajectories, we can arrive at the high-reward enzyme variants under
biosafety constraints with fewer budgets in terms of dry lab iterations.

5 Related Work

Alphafold, as noted by Abramson et al. [2024], exemplifies a significant advancement in deep
learning (DL) applications for protein structure prediction, marking a pivotal achievement in the field
of bioinformatics Sapoval et al. [2022]. One of the industrial applications of protein engineering is
enzyme engineering, which can hence greatly benefit from the rapid advancements in DL techniques.
These advancements have enabled the tailoring of enzymes for specific functions, as highlighted
by [Singh et al., 2021] and [Yu et al., 2023b]. The consensus within the scientific community
is that deep learning will revolutionize and enhance enzyme design [Goldman et al., 2022]. For
example, MusiteDeep, a deep-learning-based web server, exemplifies the use of DL for predicting
and visualizing protein post-translational modification sites [Wang et al., 2020]. Furthermore, the
application of artificial intelligence in enzyme and pathway design for metabolic engineering has also
shown promising results Jang et al. [2022].

Recent advances in generative AI open new avenues for the automated design of biological sequences,
although the field of protein design has undergone significant transformations over the past four
decades [Chronowska et al., 2024]. Despite these advancements, existing enzyme design databases
remain relatively small compared to the vast diversity and abundance of potential enzyme variants. In-
novative methods based on generative AI, such as machine learning-guided co-optimization of fitness
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and diversity, have shown promise in accelerating the accumulation of enzyme design data [Ding et al.,
2024]. A primary consideration in engineering new enzymes is enhancing their catalytic efficiency,
which deep learning has successfully addressed by predicting genome-scale Michaelis constants from
structural features [Kroll et al., 2021]. Recent efforts have leveraged foundational models in machine
learning to facilitate few-shot and zero-shot predictions for unseen enzyme variants through transfer
learning [Yu et al., 2023a]. In addition to catalytic efficiency, biosafety has become increasingly
crucial in the context of synthetic biology’s rapid industrialization. Machine learning models can
streamline biosafety assessments by serving as in-silico proxies for evaluating the toxicity of new
sequence designs [Gupta et al., 2013].

To integrate these predictors for protein’s property, reinforcement learning-based agents can be
employed to create novel enzyme designs [Angermueller et al., 2019]. However, utilizing predicted
properties directly as reward functions in these models can lead to practical challenges. Recent
developments in GFlowNets have demonstrated unique advantages for biological sequence design
tasks, enabling the generation of more diverse candidates and mitigating the risk of converging on
suboptimal solutions. The most salient point of difference between GFlowNets [Bengio et al., 2021]
and Reinforcement Learning (RL) [Angermueller et al., 2019] for biological sequence design lies in
the definition of the objective function. The flow function in GFlowNets estimates the proportion
of the total reward of a state or transition, while the value function of RL estimates the expected
amortized total rewards starting from a state or transition. The reward function of GFlowNets focuses
on the distribution of the final state, which enables efficient sampling of high-reward final states.

6 Conclusions

This paper introduces a comprehensive system for enzyme engineering that combines a Generative
Flow Network model with an EKP predictor based on a protein language model for designing enzyme
variants. Unlike previous approaches, our system is equipped to handle the enzymatic reaction
mixed with hydrolysis reaction and provides biosafety assurance. In the future, how to fine-tune
the pre-trained protein language model to support the prediction of catalytic efficiency for multiple
substrates in mixture reactions is worth further investigation.
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