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ABSTRACT

This paper studies online bidding subject to simultaneous budget and return-on-
investment (ROI) constraints, which encodes the goal of balancing high volume
and profitability. We formulate the problem as a general constrained online learn-
ing problem that can be applied to diverse bidding settings (e.g., first-price or
second-price auctions) and feedback regimes (e.g., full or partial information),
among others. We introduce L2FOB, a Look-ahead Lyapunov Framework for
Online Bidding with strong empirical and theoretical performance. By combin-
ing optimistic reward and pessimistic cost estimation with the look-ahead virtual
queue mechanism, L2FOB delivers safe and optimal bidding decisions. We pro-
vide adaptive guarantees: L2FOB achieves O (€, (T, p) + (v*/p)&.(T, p)) regret

and O(E,(T,p) + &.(T,p)) anytime ROI constraint violation, where &, (T, p)
and &.(T, p) are cumulative estimation errors over 7" rounds, p is the average per-
round budget, and v* is the offline optimal average reward. We instantiate L2ZFOB
in several online bidding settings, demonstrating guarantees that match or improve
upon the best-known results. These results are derived from the novel look-ahead
design and Lyapunov stability analysis. Numerical experiments further validate
our theoretical guarantees.

1 INTRODUCTION

Autobidding systems play an increasingly central role in the online advertising ecosystem, which
channels hundreds of billions of dollars annually, continues to grow rapidly, and already accounts for
the majority of total ad spend|Aggarwal et al.|(2024); leMarketer| (2025)). Operationally, a significant
portion of digital ad inventory is allocated through real-time auctions that clear in milliseconds at an
Internet scale. Platforms run billions of these auctions daily, making bidding strategy design a criti-
cal problem. Typically, an advertiser aims to maximize cumulative payoff over a fixed horizon (e.g.,
a day or a week) while respecting both a limited budget and a target return-on-investment (ROI) that
captures profitability requirements during the period. With both budget and ROI constraints, online
bidding must balance volume (e.g., impressions/clicks) and profitability: spending too fast sacrifices
late-stage opportunities, spending too slowly leaves inventory unused, and pursuing volume at low
ROI undermines profitability. This paper tackles this problem and presents a modular framework
for safe and optimal online bidding under both budget and ROI constraints.

Most prior work studies online bidding under only budget constraints, where total expenditure is
limited Balseiro & Gur|(2019)); Balseiro et al.|(2020); (Chen et al.| (2024); Wang et al.|(2023));/Guo &
Liu/ (2025)). Budget constraints are comparatively easier to handle because costs are non-negative,
so feasibility reduces to controlling a one-sided cumulative resource. However, modern advertise-
ment markets require profitability control Golrezaei et al.|(2021b)), introducing ROI constraints with
both packing and covering property: per-step violations can be offset over time, so long-horizon
planning is essential. While Castiglioni et al.| (2022) adopts an appropriate violation metric for ROI
constraints, their analysis requires Slater’s condition (existence of a strictly feasible policy). Such
an assumption is difficult to certify for ROI constraints and incompatible with budget hard-stopping
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in many markets. In Castiglioni et al.|(2025)), an online bidding formulation incorporates both bud-
get and ROI constraints, but their metric counts the number of constraint violations rather than the
amount of violation. As a result, the proposed algorithm does not fully navigate the tradeoff between
payoff and constraint violations. Moreover, existing approaches are tailored to specific environments
and settings: for example, first-price or second-price auctions, bandits or convex optimization, and
full information or partial information. There is no unified framework that captures the practical
online bidding paradigm, which leads to the following:

Can we design a unified, modular framework for safe and optimal online bidding under both budget
and ROI constraints, with adaptive provable guarantees without Slater’s condition?

In this paper, we propose L2FOB (Look-ahead Lyapunov Framework for Online Bidding), which
provides a positive answer to this question. Our main contributions are as follows:

* Unified problem formulation. We formulate online bidding as a general constrained online learn-
ing problem: an agent maximizes cumulative reward subject to budget and ROI constraints. Un-
like prior work tied to specific auction models, we present a unified framework by treating reward
(v, b) and cost ¢(v, b) as general functions of context v and bid b. As long as general online re-
gression oracles for reward and cost are provided, as is common in the literature Foster & Rakhlin
(2020); |Slivkins et al.| (2023), our framework is applied to different bidding environments with
adaptive theoretical guarantees, providing a unified approach to online bidding.

* Algorithm design. L2FOB builds upon primal-dual methods for constrained online learning |Yu
& Neely (2020); [Slivkins et al.| (2023); (Guo & Liu (2024), but adopts a Lyapunov perspective
with look-ahead virtual queues and potential-shaped multipliers. To balance reward with budget
and ROI constraints, L2ZFOB maintains two virtual queues, (), (budget) and @), (ROI), which
track real-time constraint satisfaction. Unlike these previous works where virtual queues directly
accumulate violations, L2FOB only tracks “unsafe decisions” via the clip operator (-)*, yield-
ing stricter safety and stronger guarantees. In the primal decision, rather than using fixed queue
lengths, L2FOB introduces look-ahead queues that predict the induced violation before acting,
enabling more precise violation control. We adopt a convex potential function to provide more
flexible stability control. Together, these choices enable a modular framework with provably
strong guarantees for online bidding optimization.

* Theoretical guarantees. L2FOB provides general, strong, and adaptive theoretical guarantees: it
achieves O (£, (T, p) + (v*/p)Ec(T, p)) regret and O (E,(T', p) +E.(T, p)) anytime ROI violation,
where &, (T, p) and (T, p) are the cumulative reward and cost estimation errors of the regression
oracle, p is the average budget per round, and v* is the offline optimal average reward. These
results are established with hard stopping due to budget constraints and without assuming Slater’s
condition, providing guarantees that are more applicable in practice. We instantiate the framework
for first-price auctions with budget constraints and for second-price auctions with both budget and
ROI constraints, derive tighter guarantees, and apply it to constrained contextual bandits to match
the best-known results. Detailed instantiations and comparisons are provided in Section[5] We run
experiments in corresponding settings and demonstrate superior performance. Full details appear
in Appendix [D]

2 MODEL AND PRELIMINARIES

In this section, we formalize the general paradigm of online bidding under budget and return-on-
investment (ROI) constraints and introduce the associated performance metrics.

Safe Online Bidding under Constraints. In this work, we study online auctions from the perspec-
tive of a single bidder interacting with a large population over 7" rounds. In each round ¢, the bidder
observes a context v; € X drawn from a known distribution, submits a bid b; € R, and receives
stochastic feedback r; = (v, b) + €7, ¢t = c(vy, by) + &5, where the unknown reward function and

{r,
t

cost function are (v, b) € [0, Rmax] and c(v, bt) € [0, Crax], € °} denote random noise terms.

To keep the formulation modular and widely applicable, we deliberately leave the forms of the
context, reward, and cost unspecified. For example, the context could be the private value of the
bidder and the reward is r (v, b;) = I{b; = d;}(vy — b:), where d; is the highest competing bid,
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under first-price payments the cost is ¢(vg, by) = I{b; > d;}bs. Our framework also covers settings
where v; encodes predictive features such as pCTR (predicted click-through rate) / pCVR (predicted
conversion rate), in which case the reward and cost can be user-specified functions, thereby unifying
a broad class of online bidding models within a single problem formulation. For each round ¢ €
[T7], the objective is to choose bidding decisions that maximize cumulative expected revenue while
ensuring the return-on-investment (ROI) remains at least -y and the daily spend stays within a budget
cap B. Formally, we consider the following constrained optimization problem'
T

T
max (v, by) s.t.Zc(vt,bt < B, Z (v, b) = Z (v, be), (D

(L3 t=1 =

Assumptions and Baselines. We first introduce some basic notations and definitions. The optimal
bid action b* is defined as the solution to the following offline problem:

m?XIE [r(v,0)] s.t.E[c(v,b)] <p, E[r(v,b)] = ~E [c(v,b)]. 2)

Let v* := E[r(vt, b*)] denote the optimal expected reward, 7 < T denote the stopping time at
which the budget is exhausted under an algorithm, i.e.,

T = argmin{T | Z (v, b) = B} . 3)

7'e[T] t=1
The regret of an algorithm over horizon 7' is defined as
Regret(T) = Tv* — E [Z r(vt, bt)} , 4)
t=1

where {b,}; denotes the bidding sequence of the decision maker.

While the bidding rule guarantees the budget constraint, we assess compliance with the ROI con-
straint via the following stronger anytime violation measures:

VROI =E [7 2 vs; s) - 2 r(vsabs)] . (5)

To establish a unified framework for the safe online bidding problem in diverse settings, we introduce
the following general online regression oracle assumption.

Assumption 1 There exist online learning oracles {O}, . such that the reward and cost estimators
7¢(x,b) and ¢;(x, b) satisfy the following conditions with a high probability of at least 1 — p

|7t (v, 0) —7(v,b)| < €] (p),
&t (v,b) — c(v,b)| < e§(p), ve X, beRT te[T]|’

where we define the general cumulative error as E.(T,p) := thl e;(p) and E.(T,p) :=
T _c
-1 56 (p).

Our oracle assumption is mild and encompasses standard optimistic regression oracles. Classical op-
timism in the face of uncertainty designs already satisfy it|Li et al.|(2010); [Foster et al.| (2018)); |Fos-
ter & Rakhlin| (2020); for constrained online learning/bidding, the estimators in|Guo & Liul (2025));
Wang et al.| (2023)); |[Vijayan et al.| (2025); (Castiglioni et al.| (2025)) also satisfy it. Richer function
classes can also be accommodated by building confidence bounds via neural random features as in
Zhou et al.| (2020). Although the realized estimation error does depend on the data distribution in-
duced by the policy, the oracle error bounds are uniform over all action selection rules satisfying the
boundedness and noise conditions. Hence, these bounds are effectively independent of the specific
sampling strategy.

Under Assumption [T} we can construct optimistic and pessimistic plug-in estimators as follows:
7t(v,b) := 7(v,b) + e; (optimistic / upper confidence bound reward),
¢t(v,b) := ¢ (v,b) —ef (pessimistic / lower confidence bound cost).

On the high-probability event w (which occurs with probability at least 1 — p), the following results
hold simultaneously for all (v, b) and all ¢ € [T']:

0 < 7¢(v,b) —r(v,b) < 27, 0 < e(v,b) — ¢ (v,b) < 2ef.



Published as a conference paper at ICLR 2026

3 SAFE ONLINE BIDDING ALGORITHM

We propose L2FOB (Look-ahead Lyapunov Framework for Online Bidding), a modular, safe, and
optimal online bidding framework under budget and ROI constraints. Our framework leverages
online regression oracles to produce optimistic reward and pessimistic cost estimates. To enforce the
constraints, L2FOB maintains two virtual queues, @), and (), to track budget and ROI feasibility,
and uses the convex potential function ®(-) to guarantee safety. At the core is a look-ahead virtual-
queue mechanism that incorporates predicted one-step constraint violations to refine the reward-
constraint tradeoff. Prior works require Slater’s condition for ROI constraints, namely, the existence
of a strictly feasible margin E[r(v,b)] = vE[c(v,b)] + £, £ > 0, which means the ROI target has
slack. The designs of L2FOB allow us to provide provable safe and optimal guarantees without
Slater’s condition.

Algorithm 1 Look-ahead Lyapunov Framework for Online Bidding (L2FOB)
Require: Convex potential ®(-) = (-)?; initial estimators 71(-,-) and ¢ (-,-), virtual queues
Q,(0) = Q4(0) = 0and , = 1, = V/T.

1: fort =1to T do
2: Observe: bidding opportunity with context v, from the learning oracles.
3: Construct estimators: 7 (-, ) and ¢ (-, -).
4: Look-ahead virtual queue updates: for any b > 0,
Qﬁ(t’b) = Qp(t_ 1) +nP(EU[ét(vvb)] —P)+, (6)
Qy(1,5) = Qy(t = 1) + 1y By [76 (v, b) — o(v, b)) )
5: Bid action: choose b; as maximizer of
Pe(vt,0) = ' (Qp(t,0))11, (Ey[Ce(v,0)] = p) T = @' (Q (£, b)) (Eu [v¢4 (v, b) =74 (v, ) ). (8)
6: Submit bid b;: observe reward r; and cost ¢;.
7: Virtual queue updates:
Qult) = Qult = 1)+ (Eufer(v,b)] ~ ), ©)
Qx(t) = Qy(t = 1) + 1y (Eo[¢e (v, b) — (v, be)]) T (10)
8: Estimators update: update 7,1 and ¢, 1.
9: Stopping rule: if 22:1 ¢(vs, bs) = B then break.
10: end for

* Look-Ahead Virtual Queue Tracing. The key design that distinguishes L2FOB from prior
work is the look-ahead virtual queue tracing. While Slivkins et al.| (2023); [Han et al.| (2023);
Guo & Liu| (2024; [2025) update dual variables only after observing cost feedback, L2FOB
computes look-ahead virtual queues for each candidate bid before the decision. The queues
act as dynamic pacing variables that modulate exploration and conservatism. By incorporat-
ing predicted violations into the queues, L2FOB internalizes feasibility at decision time rather
than merely tracking the past, yielding more precise safety control. L2FOB passes the queues
through a convex potential function ®(-) and uses its derivative as the time-varying multipliers
Ap(t) = ®(Q,(¢, 1)), A\ (t) := @ (Q(t,b)). The choice of Lyapunov function is often re-
garded as more of an art than a strict technique, with different designs yielding different analytical
outcomes. For example, ®(x) is set to be e” in |Sinha & Vaze| (2024)) to achieve the best-known
results in constrained online convex optimization. In this paper, we show that the classical choice
O(x) = 22 is sufficient; however, we retain a tunable design to enable L2FOB to flexibly control
constraint violations.

 Safe Online Bidding Decision. Given context v; and the optimistic and pessimistic estimators,
L2FOB selects b, € Rt by greedily maximizing the surrogate objective in . This resembles a
primal-dual step where the primal module maximizes an approximate Lagrangian

L(vg, b) = 7(ve, b) = N5 (t) (c(ve, b) — p) — A2 (t) (ve(ve, b) — r(vy, b)),
with A\*(¢) and A\*(t) denoting the offline optimal dual variables. However, L2FOB has the fol-
lowing key differences: First, we apply the clip (-)* so that penalties activate only when the
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estimated constraints are violated, which lets the algorithm focus on reward maximization when
constraints appear satisfied and supports a more flexible penalty design. Second, L2FOB enforces
constraints in a mean-field fashion, where E,[-] denotes expectation over the context marginal.
This focuses the penalty on systematic risk rather than per-context noise and yields smoother
safety control. Moreover, the dual approximators utilize a convex potential ®(-) in conjunction
with a look-ahead virtual queue mechanism, which enhances violation detection and mitigates
overly aggressive updates. Unlike|Guo & Liu|(2025); Wang et al.|(2023)); (Castiglioni et al.|(2025),
which are tailored to specific problem environments and settings, L2ZFOB adapts broadly through
the general online regression oracle assumption.

In summary, L2FOB is a modular framework that combines general optimistic and pessimistic esti-
mation with look-ahead virtual queue tracing and potential-shaped multipliers. It can apply to vari-
ous bidding environments by applying dedicated online regression oracles. The look-ahead design
is indeed closely related in spirit to one-step model predictive control, where a Lyapunov function
is used as a surrogate for long-term performance, and the controller chooses the current action by
greedily optimizing a one-step prediction that combines immediate reward/cost with the change in
this function Rawlings et al.|(2020). The key difference is that the “state” of our Lyapunov function
is given by virtual queues that track constraints rather than the plant state.

4 MAIN RESULTS AND PROOF SKETCH

In this section, we first provide the regret and violation guarantee of the L2FOB algorithm in the
following main theorem.

Theorem 1 Under Assumption[l} the L2ZFOB framework achieves

Regret(T) = O <€T(T,p) + V:EC(T7 p)> , Vroi(t) = O (&-(T,p) + E.(T,p)), Yt e [T].

To our knowledge, Theorem|I] proves the first adaptive guarantees on both regret and ROI violation
for safe online bidding. The bounds scale with the oracle errors &,.(7T, p) and E.(T, p). Moreover,
we provide a stronger anytime ROI violation that guarantees safety over the whole time horizon.
Theorem [I] shows that any learning procedure satisfying Assumption [I] can be plugged into the
framework. In Section E} we instantiate Theoremﬂ]in the settings of [Wang et al.|(2023)), |Castiglioni
et al.| (2025), and |Guo et al.| (2025), demonstrating how the framework adapts to these environ-
ments. In the settings considered by Wang et al.| (2023); [Castiglioni et al.| (2025), we show that
L2FOB achieves improved theoretical guarantees via Theorem [I] In the constrained bandit setting
of|Guo et al.|(2025)), our results match the best-known guarantees and can be further tightened given
sufficiently accurate learning oracles.

Remark 1 While we do not provide a strict zero-violation guarantee, all these results are obtained
without assuming Slater’s condition, which makes them more generally applicable. When Slater’s
condition does hold, a strict zero-violation guarantee can be enforced by solving a tightened problem
with a safety margin (e.g., replacing y with v+ 6 for some § > 0), as in|Liu et al.|(2021); |Castiglioni
et al.|(2025). Even without such a tightening, our method already achieves low constraint violation
by controlling the stricter metric E [Zi:l (Eu[ye(v, bs) —7(v,bs)]) +] , as established in the proofs

in Section

4.1 PROOF OF THEOREMIII

In this section, we provide a proof sketch of Theorem|I] a detailed version can be found in Appendix
We first present the following key lemma, which provides a unified bound on regret and Lyapunov
drift and serves as the key for proving Theorem 1]

Lemma 1 Let b, be the bidding action of the L2ZFOB algorithm, then for any bidding action b, the
following inequality holds
o0, b) — 7o(ve,be) + D(Qp(1)) — B(Qp(t — 1)) + B(Q (1)) — B(Qs (t — 1))
<46: + CI)/(Q/J (tv b))np(]Ev [ét (U7 b)] - p)Jr + (I)/(Q"/ (ta b))n’y (EU I:’Yét (U7 b) - ’Ft (Uv b)])+7



Published as a conference paper at ICLR 2026

We use a convex potential function ®(-) to provide more flexible control of the virtual queues. We
adopt the most common quadratic function ®(x) = 22 but allow it to be tunable to provide more
flexible violation control. This design, together with the rectified constraint and the look-ahead
virtual queues, yields the following lemma, which removes the need for Slater’s condition (existence
of a strictly feasible solution) assumed in |Slivkins et al.|(2023)); \Guo & Liu| (20245 2025). Note that
Guo et al.| (2025) circumvents Slater’s condition through a mean-field approach that leverages the
context distribution, but it focuses on contextual bandits with a single constraint. Through the above
key lemma, we then derive the Lyapunov stability of L2ZFOB.

Lyapunov Stability. Lyapunov drift analysis has long been used to certify the stability of control
policies in networking and operations research Hajekl (1982); [Eryilmaz & Srikant| (2012), where
stability is enforced by controlling queue lengths. In our setting, we leverage virtual queues to
track the constraint violation over time. We adopt this perspective by modeling the budget and
ROI constraints with the virtual queues (), and @)-, which can be viewed as stochastic/Markovian
processes. The following lemma, derived from Lemmal[T] formalizes this stability property of virtual
queues and provides an explicit bound on the virtual queues.

Lemma 2 Under the L2ZFOB algorithm, the following inequality holds for any t € [T,

E[Q,()] = OWT), E[Q,(t)] = OWT).
The lemma implies stability of the budget and ROI constraints under L2ZFOB over the whole horizon
T'. Based on it, we can now derive the corresponding regret and anytime ROI violation guarantees.

Constraint Violation. We begin with a simple observation. The relationship between queue lengths
and cumulative violation follows directly from the update rules in (9) and (10).

Mp Z(Ev[ét(vvbt)] - P) Qﬂ y Ty Z v ’YCs(U b, ) e(vvbS)])Jr < Q’Y(t)v (11)

t=1 s=1
To derive a guarantee on ROI violation, we employ the following decomposition, which decouples
the anytime violation into oracle estimation error terms and estimated violation.

Zvc 0urbs) — (v, by >] <E [vahc(v,bs) r(v,bsm*]

<E l (Eu[ves(v,bs) — 75 (v, bS)])Jr] +&(T,p) +vEc(T,p)

<E[Q+(t)]/ny + E-(T,p) + vE(T, p).

Finally, applying Lemma 2] to bound the expected queue lengths yields the violation bound in The-
orem|[I] Then, we provide the proof of regret bound.

Regret (before stopping and after stopping): We begin by introducing the decomposition of regret
in (), which separates the decision process into the reward gap before stopping and after stopping.

T T .
Regret(T) = E lz (v, b* Z (v, by 1 < V*E[T — 7] lZ r(vg, b*) — r(vt7bt))]

Regret after stopping

Regret before stopping

For regret before stopping, we apply Lemma with b = b*, rearrange the terms, sum the resulting
inequality up to the stopping time 7 < 7', and take expectations, which yields

E [Z (r (g, b*) — r(vt,bt»] <4) e +E [Z ' (Qp(t, %)) (Eo[ e (v, 0%)] - p>+]

+E lZ O(Qy (1, 6%))ny (o [yér (v, 0%) — 74(v, b"‘)])*}

t=1
The following lemma, which provides an upper bound on the cross terms, completes the proof of
the regret bound after stopping.
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Lemma 3 Let b* be the optimal solution to (IZ]), then the following results hold that,

g
i

For regret after stopping, we first recall the definition of stopping time 7 that is 7 =

argmin {T/ | Z;':l c(vg, by) = B} , which gives
T'e[T]

M*

(Qp(t b )) ( [ét(vvb*)] p)+] < 27][) max/T2 (1)7

1

< 2"7’77 ma,x/jj2 (1)

M*

O (Qy (£, "))y (B [yEe (0,0%) — e (v, 6%)])

1

Z é(ve,be) —p) +7p + Z ct(vt, be) — Ce(ve, b)) = B,

t=1

Taking the expectation and rearranging the inequality, we have

1 T
E[T - 7] = ;E[B —7p] l ¢ (v, by) — Z ce(ve, by) — E¢(ve, by))

2,
g%E li (Ey[¢t(v,b0)] = p) | + Ec(T, p)

Combining with the fact in (TT), we complete the proof of Theorem I]

5 INSTANTIATIONS OF THE MODULAR ALGORITHM: SETTINGS, RESULTS,
AND COMPARISONS

In this section, we instantiate L2FOB in several online bidding environments and learning models,
specify the oracle choices and their cumulative errors, and derive regret and violation bounds via
Theorem E} For first-price auctions in [Wang et al.| (2023), using the same empirical estimators, we
obtain a regret bound O((1 + v*/ oNT ), improving their result by a factor of 1/p. Note that|Wang
et al.| (2023)) does not incorporate ROI constraints. For second-price auctions under the uncertainty
problem in [Castiglioni et al.| (2025)), while they do not provide an ROI violation metric, instantiat-
ing their estimators within L2FOB yields sublinear regret and sublinear violation, and our analysis
explicitly considers hard-stopping in the regret, which theirs does not. For constrained contextual
bandits/Guo et al.|(2025), which deliver state-of-the-art guarantees without Slater’s condition, adopt-
ing the same learning oracles allows L2FOB to match their guarantees. Moreover, when stronger
estimators are available, our framework can provide refined regret and violation bounds, whereas
their algorithm cannot. Note that across all these settings, our results provide an anytime guarantee
on ROI violation, whereas prior studies state guarantees only at the terminal horizon 7'.

5.1 FIRST-PRICE AUCTION UNDER BUDGET CONSTRAINTS

We consider the same setting as|Wang et al.|(2023)), where a single advertiser participates in repeated
first-price auctions over 7" rounds with a total spend budget B = T'p. In round ¢, the bidder has
private value v; € [0, Vpnqz |, Submits a bid b; € RT, faces the highest competing bid d¢, and wins iff
by = d;. Let &y := I{b; > d;}. Then the reward and cost functions are

Tt(vtybt) = $t(vt - bt)7 Ct(vt7bt) = x4by,

and the process stops when the budget is exhausted (or at 7)), i.e., feasibility requires
> ci(v, b)) < B for the stopping time 7 < T. Equivalently, the expected reward and cost
(conditioning on d; only) can be written via the win probability G(b) := Pr(d; < b) as

r(v,b) = (v —b)G(b), c(v,b) = bG(b).

In Wang et al.| (2023), the first-price-with-budget models inherently satisfy Assumption El When
the platform reveals d after each round, estimate the win CDF by the empirical CDF G,(b) =
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A S0 I{d, < b} and use
F(v,b) = (v — b)Gy(b), & (v,b) = bGy(b).

Uniform concentration then yields high-probability oracle error bounds €}, £f, ensuring that As-
sumption |I|holds. Specifically, we have

E(T,p) = 0(1 /T 1n %) E(T,p) = o(q /T %),

Plugging the above cumulative learning error into Theorem L2FOB achieves O((l +v*/ p)\/T)
regret and O(+/T)) anytime ROI violation, where O(-) hides logarithmic factors in 7.

Remark 2 Our guarantee substantially lmproves over|Wang et al.|(2023). Although they report a
O(N/T) regret, the dependences on p and v* are hidden, and the exact bound is O (1+ V*/p WT)
(see Appendix B.3 of\Wang et al.|(2023))). Consequently, their result is meaningful only in the large
budget regime B = Tp = O(T), since v*/p? grows without bound as the budget shrinks. In
contrast, our bound scales as O((l + v*/p)VT ) and remains informative under small budgets
B = Q(\/T ). Moreover, \Wang et al.|(2023) only considers budget constraints, whereas L2FOB
handles both budget and ROI constraints and provides explicit guarantees on regret and on the
cumulative amount of violation. For budget constraints, Slater’s condition typically holds because
the bidder can choose a null (zero-spend) action; nevertheless, L2ZFOB does not require it, enabling
harder settings in which every bid incurs a positive cost or a minimum spend is mandated.

5.2 BIDDING UNDER UNCERTAINTY WITH BUDGET AND ROI CONSTRAINTS

We adopt the setting of (Castiglioni et al.| (2025])), which emphasizes uncertainty in online bidding: the

revenue and cost of advertising campaigns are unknown and must be learned online from sequential

data. An advertiser manages N subcampaigns over 71" rounds. In round ¢, abid z;; € X; < R*

is chosen for each subcampaign Cj, yielding expected clicks n;(z;+) and expected cost ¢;(z; ).

With per—click values v;, the round-¢ expected revenue is Zj\’:l vjn;(xj¢). Then the per-round
optimization problem is

N
max Z vn(T4) St ==y
(@055 ;3 Zj 16(5,0)

Within a round, each subcampaign’s bid is fixed, but bids may be updated across rounds. Set the
action to be the vector b; := x4 and define

N N
Zj 105 (@5e)
S Z (250) <

N
'Ut7 bt Z U] btj Ut7 bt Z bt,j

This embeds the multi—subcampalgn problem directly into our constrained online learning formu-
lation, and it satisfies our regression-oracle assumption by plugging in the estimators for n;(-) and
¢;(-). Following |Castiglioni et al.|(2025), model n,;(-) and ¢;(-) with independent Gaussian pro-

cesses and use UCB/LCB envelopes. Let U]( ") 1(x) and a(t) 1(x) be posterior standard deviations
and ~y; the usual GP-UCB confidence schedule Then the oracle errors can be taken as

T

& = @( %Uﬁ)tq(xjut))’ gy = @( 'Yt‘fjf)t 1(9%,15))

Then, by standard Gaussian-process concentration results Srinivas et al.| (2009); [Krause & Ong
(2011); |Kim & Sanz-Alonso| (2025)) and following the derivation in |Castiglioni et al.| (2025), we
obtain

N
TZ'V]T) o(T.p) = TZ%,T),
j=1

where v, 7 is the GP information gain for subcampaign j. Instantiating L2ZFOB with the GP-UCB
oracles and applying Theorem (1] yields

Regret(T) = O((l + V*/p)M), Vror(t) = O(M)a vt e [T].
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Remark 3 In this setting, L2ZFOB is, to the best of our knowledge, the first method to attain optimal-
order regret together with ROI violation guarantees. By contrast, |Castiglioni et al.|(2025) quantifies
safety by the number of violating rounds. Their analysis implies that achieving sublinear regret
entails O(T) violating rounds under this count-based metric, and their regret analysis does not ac-
count for budget-induced hard-stopping. Counting violations is improper for online bidding, where
pacing can recycle unspent budget and small, controlled per-round violations can be offset later.
L2FOB instead measures and controls the cumulative ROI violation and explicitly models the hard-
stopping induced by the budget, yielding guarantees that are stronger in theory and better aligned
with practice than |Castiglioni et al.| (2025). Moreover, L2ZFOB can leverage recent advances in
Bayesian optimization analysis|Ilwazaki & Takeno|(2025)) to tighten oracle errors, further improving
regret and violation bounds.

5.3 CONSTRAINED CONTEXTUAL BANDITS FOR BIDDING

We next study the constrained contextual bandit formulation for online bidding in|Guo et al.[(2025).
Contextual bandits fit our framework naturally: the bid can be modeled as a discrete action b; € A or
as a policy mapping contexts to actions. The reward and cost are unknown, context-dependent func-
tions that must be learned online from noisy bandit feedback. They made a similar assumption on
learning oracle errors, which gives &,.(T,p) = O(VT), E.(T,p) = O(v/T). Instantiating L2FOB
with these oracles and applying Theorem [I] gives

Regret(T) = O((1 + v*/p)VT), Vroi(t) = O(VT), Vt € [T].

Our results match the best-known guarantees for constrained contextual bandits, as established by
Guo et al.| (2025). Their approach also requires prior knowledge of the context distribution to en-
force constraints in a mean-field manner. However, although |Guo et al.[ (2025) considers general
constraints, it does not explicitly handle multiple simultaneous constraints, so its applicability to
online bidding with both budget and ROI constraints is unclear. L2FOB offers anytime control of
violations, thereby covering the metric Vror(7) in |Guo et al.| (2025). Moreover, our results are
modular and adaptive, depending explicitly on oracle errors, which enables refined guarantees as
highlighted in the remark below.

Remark 4 (Bridging the gap.) The regret lower bound for non-contextual bandits with budget con-
straints is proved to be Q(v/Tv* + (V*/p)\/?) in|Badanidiyuru et al.|(2018). For contextual ban-

dits with budget constraints, the best-known guarantee is O ((1 +v*/p)V/T ) as shown in|Guo et al.
(2025)), which leaves a gap between contextual and non-contextual settings. If one could design
learning oracles with E,.(T,p) = O(\/ TV*), E(T,p) = O(\/E), then Theorem |l| would yield

Regret(T) = O(VTv* + (v*/p)V/B), which matches the non-contextual lower bound. This hy-
pothesis is plausible because these error bounds hold in the non-contextual case|\Badanidiyuru et al.
(2018)). At present, it is unclear how to attain such adaptive learning oracles in contextual settings.
Even if such oracles were available, the methods of|Guo & Liu|(2025)); |Guo et al.|(2025) would still
not reach this bound because their dual updates made it hard to introduce a flexible choice of 1,
which our look-ahead design enables.

6 CONCLUSION

In this paper, we study safe online bidding under budget and return-on-investment (ROI) constraints,
where the budget imposes a hard stopping condition and the ROI enforces a long-run profitability
threshold. We introduced L2FOB, a Look-ahead Lyapunov Framework for Online Bidding that
pairs optimistic/pessimistic estimators with look-ahead virtual queue penalties and yields adaptive
bounds on regret and cumulative violation without requiring Slater’s condition. Our algorithm pro-
vides a modular, safe, and optimal framework. We instantiate L2FOB in several online bidding
environments and show that the resulting guarantees match or improve the best-known results. The
experiments further validate the theoretical results.



Published as a conference paper at ICLR 2026

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China under Grant
62302305.

REFERENCES

Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert Schapire. Taming
the monster: A fast and simple algorithm for contextual bandits. In International Conference on
Machine Learning, pp. 1638—-1646. PMLR, 2014.

Gagan Aggarwal, Ashwinkumar Badanidiyuru, Santiago R Balseiro, Kshipra Bhawalkar, Yuan
Deng, Zhe Feng, Gagan Goel, Christopher Liaw, Haihao Lu, Mohammad Mahdian, et al. Auto-
bidding and auctions in online advertising: A survey. ACM SIGecom Exchanges, 22(1):159-183,
2024.

Shipra Agrawal and Nikhil Devanur. Linear contextual bandits with knapsacks. Advances in Neural
Information Processing Systems, 29, 2016.

Shipra Agrawal and Nikhil R Devanur. Bandits with concave rewards and convex knapsacks. In Pro-
ceedings of the fifteenth ACM conference on Economics and computation, pp. 989—1006, 2014.

Ashwinkumar Badanidiyuru, John Langford, and Aleksandrs Slivkins. Resourceful contextual ban-
dits. In Conference on Learning Theory, pp. 1109-1134. PMLR, 2014.

Ashwinkumar Badanidiyuru, Robert Kleinberg, and Aleksandrs Slivkins. Bandits with knapsacks.
Journal of the ACM (JACM), 65(3):1-55, 2018.

Ashwinkumar Badanidiyuru, Zhe Feng, and Guru Guruganesh. Learning to bid in contextual first
price auctions. In Proceedings of the ACM Web Conference 2023, pp. 3489-3497, 2023.

Santiago Balseiro, Negin Golrezaei, Mohammad Mahdian, Vahab Mirrokni, and Jon Schneider.
Contextual bandits with cross-learning. Advances in Neural Information Processing Systems, 32,
2019.

Santiago Balseiro, Haihao Lu, and Vahab Mirrokni. Dual mirror descent for online allocation prob-
lems. In International Conference on Machine Learning, pp. 613-628. PMLR, 2020.

Santiago R Balseiro and Yonatan Gur. Learning in repeated auctions with budgets: Regret mini-
mization and equilibrium. Management Science, 65(9):3952-3968, 2019.

Santiago R Balseiro, Haihao Lu, and Vahab Mirrokni. The best of many worlds:: Dual mirror
descent for online allocation problems. Operations Research, 71(1):101-119, 2023.

Dimitris Bertsimas, David Gamarnik, and John N Tsitsiklis. Performance of multiclass markovian
queueing networks via piecewise linear lyapunov functions. Annals of Applied Probability, pp.
1384-1428, 2001.

Matteo Castiglioni, Andrea Celli, Alberto Marchesi, Giulia Romano, and Nicola Gatti. A unifying
framework for online optimization with long-term constraints. Advances in Neural Information
Processing Systems, 35:33589-33602, 2022.

Matteo Castiglioni, Andrea Celli, and Christian Kroer. Online learning under budget and roi con-
straints via weak adaptivity. In International Conference on Machine Learning, pp. 5792-5816.
PMLR, 2024.

Matteo Castiglioni, Alessandro Nuara, Giulia Romano, Giorgio Spadaro, Francesco Trovo, and
Nicola Gatti. Safe online bid optimization with return on investment and budget constraints. In
Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.
1, pp. 73-81, 2025.

Zhaohua Chen, Chang Wang, Qian Wang, Yuqi Pan, Zhuming Shi, Zheng Cai, Yukun Ren, Zhi-
hua Zhu, and Xiaotie Deng. Dynamic budget throttling in repeated second-price auctions. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 9598-9606, 2024.

10



Published as a conference paper at ICLR 2026

Evgenii Chzhen, Christophe Giraud, Zhen Li, and Gilles Stoltz. Small total-cost constraints in
contextual bandits with knapsacks, with application to fairness. Advances in Neural Information
Processing Systems, 36, 2024.

Miroslav Dudik, Daniel Hsu, Satyen Kale, Nikos Karampatziakis, John Langford, Lev Reyzin, and
Tong Zhang. Efficient optimal learning for contextual bandits. In Proceedings of the Twenty-
Seventh Conference on Uncertainty in Artificial Intelligence, pp. 169-178. AUAI Press, 2011.
ISBN 9780974903972.

eMarketer. Worldwide ad spending forecast 2025, 2025. URL https://www.emarketer.
com/content/worldwide—ad-spending—-forecast—2025. Accessed 2025-09-04.

Atilla Eryilmaz and R Srikant. Asymptotically tight steady-state queue length bounds implied by
drift conditions. Queueing Systems: Theory and Applications, 72(3-4):311-359, 2012.

Zhe Feng, Swati Padmanabhan, and Di Wang. Online bidding algorithms for return-on-spend con-
strained advertisers. In Proceedings of the ACM Web Conference 2023, pp. 3550-3560, 2023.

Dylan Foster and Alexander Rakhlin. Beyond ucb: Optimal and efficient contextual bandits with
regression oracles. In International Conference on Machine Learning, pp. 3199-3210. PMLR,
2020.

Dylan Foster, Alekh Agarwal, Miroslav Dudik, Haipeng Luo, and Robert Schapire. Practical con-
textual bandits with regression oracles. In International Conference on Machine Learning, pp.
1539-1548. PMLR, 2018.

Negin Golrezaei, Patrick Jaillet, Jason Cheuk Nam Liang, and Vahab Mirrokni. Bidding and pricing
in budget and roi constrained markets. arXiv preprint arXiv:2107.07725, 8(8.1):3, 2021a.

Negin Golrezaei, Ilan Lobel, and Renato Paes Leme. Auction design for roi-constrained buyers. In
Proceedings of the Web Conference 2021, pp. 3941-3952, 2021b.

Hengquan Guo and Xin Liu. Stochastic constrained contextual bandits via lyapunov optimization
based estimation to decision framework. In The Thirty Seventh Annual Conference on Learning
Theory, pp. 2204-2231. PMLR, 2024.

Hengquan Guo and Xin Liu. On stochastic contextual bandits with knapsacks in small budget
regime. In Proceedings of the International Conference on Learning Representations, 2025.

Hengquan Guo, Lingkai Zu, and Xin Liu. Triple-optimistic learning for stochastic contextual bandits
with general constraints. In International conference on machine learning. PMLR, 2025.

Bruce Hajek. Hitting-time and occupation-time bounds implied by drift analysis with applications.
Advances in Applied probability, 14(3):502-525, 1982.

Yanjun Han, Tsachy Weissman, and Zhengyuan Zhou. Optimal no-regret learning in repeated first-
price auctions. Operations Research, 73(1):209-238, 2025.

Yuxuan Han, Jialin Zeng, Yang Wang, Yang Xiang, and Jiheng Zhang. Optimal contextual bandits
with knapsacks under realizability via regression oracles. In International Conference on Artificial
Intelligence and Statistics, pp. 5011-5035. PMLR, 2023.

Shogo Iwazaki and Shion Takeno. Improved regret analysis in gaussian process bandits: Optimal-
ity for noiseless reward, rkhs norm, and non-stationary variance. In Forty-second International
Conference on Machine Learning, 2025.

Hwanwoo Kim and Daniel Sanz-Alonso. Enhancing gaussian process surrogates for optimization
and posterior approximation via random exploration. SIAM/ASA Journal on Uncertainty Quan-
tification, 13(3):1054—-1084, 2025.

Andreas Krause and Cheng Ong. Contextual gaussian process bandit optimization. In J. Shawe-

Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger (eds.), Advances in Neural Infor-
mation Processing Systems, volume 24. Curran Associates, Inc., 2011.

11


https://www.emarketer.com/content/worldwide-ad-spending-forecast-2025
https://www.emarketer.com/content/worldwide-ad-spending-forecast-2025

Published as a conference paper at ICLR 2026

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference
on World wide web, pp. 661-670, 2010.

Xin Liu, Bin Li, Pengyi Shi, and Lei Ying. An efficient pessimistic-optimistic algorithm for stochas-
tic linear bandits with general constraints. Advances in Neural Information Processing Systems,
34:24075-24086, 2021.

Brendan Lucier, Sarath Pattathil, Aleksandrs Slivkins, and Mengxiao Zhang. Autobidders with
budget and roi constraints: Efficiency, regret, and pacing dynamics. In The Thirty Seventh Annual
Conference on Learning Theory, pp. 3642-3643. PMLR, 2024.

Michael Neely. Stochastic network optimization with application to communication and queueing
systems. Springer Nature, 2022.

Tao Qin and Tie-Yan Liu. Introducing letor 4.0 datasets. arXiv preprint arXiv:1306.2597, 2013.

James Blake Rawlings, David Q Mayne, Moritz Diehl, et al. Model predictive control: theory,
computation, and design, volume 2. Nob Hill Publishing Madison, WI, 2020.

David Simchi-Levi and Yunzong Xu. Bypassing the monster: A faster and simpler optimal algorithm
for contextual bandits under realizability. Mathematics of Operations Research, 47(3):1904—
1931, 2022.

Abhishek Sinha and Rahul Vaze. Optimal algorithms for online convex optimization with adversarial
constraints. Advances in Neural Information Processing Systems, 37:41274-41302, 2024.

Vidyashankar Sivakumar, Shiliang Zuo, and Arindam Banerjee. Smoothed adversarial linear con-
textual bandits with knapsacks. In International Conference on Machine Learning, pp. 20253—
20277. PMLR, 2022.

Aleksandrs Slivkins, Karthik Abinav Sankararaman, and Dylan J. Foster. Contextual bandits with
packing and covering constraints: A modular lagrangian approach via regression. In Annual
Conference Computational Learning Theory, 2023.

Rayadurgam Srikant and Lei Ying. Communication networks: An optimization, control and stochas-
tic networks perspective. Cambridge University Press, 2014.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. ~Gaussian pro-
cess optimization in the bandit setting: No regret and experimental design. arXiv preprint
arXiv:0912.3995, 2009.

Liang Tang, Yexi Jiang, Lei Li, and Tao Li. Ensemble contextual bandits for personalized recom-
mendation. In Proceedings of the S8th ACM Conference on Recommender Systems, pp. 73-80,
2014.

Leandros Tassiulas and Anthony Ephremides. Stability properties of constrained queueing systems
and scheduling policies for maximum throughput in multihop radio networks. /EEE TRANSAC-
TIONS ON AUTOMATIC CONTROL, 31(12), 1992.

Rahul Vaze and Abhishek Sinha. Online bidding algorithms with strict return on spend (ros) con-
straint. CoRR, 2025.

Sushant Vijayan, Zhe Feng, Swati Padmanabhan, Karthikeyan Shanmugam, Arun Suggala, and
Di Wang. Online bidding under ros constraints without knowing the value. In Proceedings of the
ACM on Web Conference 2025, pp. 3096-3107, 2025.

Qian Wang, Zongjun Yang, Xiaotie Deng, and Yuqing Kong. Learning to bid in repeated first-price
auctions with budgets. In International Conference on Machine Learning, pp. 36494-36513.
PMLR, 2023.

Huasen Wu, Rayadurgam Srikant, Xin Liu, and Chong Jiang. Algorithms with logarithmic or sublin-
ear regret for constrained contextual bandits. Advances in Neural Information Processing Systems,
28, 2015.

12



Published as a conference paper at ICLR 2026

Hao Yu and Michael J Neely. A low complexity algorithm with o(v/T") regret and o(1) constraint
violations for online convex optimization with long term constraints. The Journal of Machine
Learning Research, 21(1):1-24, 2020.

Wei Zhang, Yanjun Han, Zhengyuan Zhou, Aaron Flores, and Tsachy Weissman. Leveraging the
hints: Adaptive bidding in repeated first-price auctions. Advances in Neural Information Process-
ing Systems, 35:21329-21341, 2022.

Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with ucb-based exploration.
In International conference on machine learning, pp. 11492-11502. PMLR, 2020.

13



Published as a conference paper at ICLR 2026

A RELATED WORKS

Learning in repeated auctions with constraints has been studied across auction formats, feedback
regimes, and safety notions. For first-price auctions with a single advertiser and a hard budget,
Wang et al.| (2023) propose primal-dual methods with O(\/T ) regret under both full-information
and one-sided feedback; In |Tang et al.| (2014); Balseiro et al.| (2020} 2023)), second-price auctions
with budget constraints is also considered, where [Tang et al.|(2014)) claims their results holds under
large budget regime ; Badanidiyuru et al.|(2023) study first-price auction while focusing on the linear
model setting; with only binary win/loss signals, Balseiro et al.| (2019) employ cross-learning to
obtain O(T2/ 3) regret, and |Zhang et al. (2022) exploit side information “hints” about the maximum
competing bid. In Han et al. (2025), they leverage graph-feedback and partial-order structure in
first-price markets to attain optimal regret rates. |Feng et al.| (2023); |Golrezaei et al.| (2021a) studied
second-price auctions with budget and return-on-spend (RoS) constraints and |Vaze & Sinhal (2025)
considered the case with only RoS constraints. |Castiglioni et al.| (2025) study budget and ROI
constrained bidding under full uncertainty via Bayesian optimization. Their safety metric counts
violating rounds rather than measuring cumulative violations. [Castiglioni et al.| (2024) studies a
general online learning problem with both budget and ROI constraints, but in a setting without
context. They do not require prior knowledge of the Slater constant, although they still assume that
a Slater condition holds. |[Vijayan et al.| (2025) also adopts UCB/LCB style estimators to design
algorithms and establishes O(\/T) regret and violation bounds under budget and RoS constraints.
However, they do not consider hard stopping upon budget exhaustion and focus on a bandit-only
setting. To avoid assuming Slater’s condition, their algorithm solves a linear program each round,
which introduces additional computational overhead. There are also works on multi-agent bidding
dynamics [Balseiro & Gur|(2019); |Lucier et al.| (2024)), which analyze equilibria and regret; this line
differs from our single-advertiser focus. Despite this progress, there is no single framework that
uniformly handles general reward/cost models, heterogeneous feedback, and simultaneous budget
and ROI constraints with amount-based safety guarantees. Moreover, analyses focused on budget
constraints often suppress the dependence on the average spend rate p = B/T, obscuring behavior
in small-budget regimes common in practice.

Another parallel line of work studies contextual bandits (CB) with constraints. Early CB algo-
rithms relied on classification oracles [Dudik et al.| (2011); Agarwal et al.| (2014), whereas later
work developed regression oracle methods |[Foster et al.| (2018)); |Foster & Rakhlin| (2020); Simchi-
Levi & Xul (2022) that are more computationally practical and broadly applicable. Our oracle as-
sumption subsumes these regression-based designs but is more general: we allow arbitrary function
classes and plug-in estimators (including, but not limited to, contextual bandit regressors). Within
constrained CB, much attention has focused on knapsack (budget) constraints [Badanidiyuru et al.
(2014); |Agrawal & Devanur| (2014); [Wu et al.| (2015); |Agrawal & Devanur| (2016)); Badanidiyuru
et al.[ (2018)); [Sivakumar et al.| (2022); |(Chzhen et al.| (2024); \Guo & Liul (2025). For linear models
under Slater’s condition, optimal guarantees of O((1 + v*/b)/T) have been established |Agrawal
& Devanur| (2016) and be further extended to general function class in|Guo & Liu|(2025), but these
results address only budget control, whereas practical bidding must also enforce profitability (ROI).
Long-run constraints with cumulative-violation metrics were studied in Slivkins et al.|(2023)), which
achieved O(\/T /§) regret and violation under Slater’s condition. Subsequent work (Guo & Liu
(2024);/Guo et al.|(2025) tried to relax Slater, where|Guo et al.| (2025) obtained O((1+v*/b) VT ) re-
gret for knapsack and O(+/T') regret and violation for certain long-term constraints without Slater’s
condition. However, it neither offers modular, adaptive guarantees nor provides a single mechanism
that simultaneously handles budget and general long-term constraints. In contrast, our framework
unifies budget and ROI control, eliminates the need for Slater’s condition, and remains compatible
with general regression oracles, yielding adaptive guarantees across modeling choices.

B DISCUSSION ON LYAPUNOV STABILITY

Lyapunov drift analysis has been widely used to study the stability of control policies in stochas-
tic queueing networks (see Hajek| (1982); Tassiulas & Ephremides|(1992)). A policy is called stable
when the induced queue lengths remain finite or uniformly bounded, and smaller queues typically in-
dicate better performance. Modern analytical frameworks providing upper bounds on queue lengths
to ensure stability are developed in/Bertsimas et al.[(2001)); [Eryilmaz & Srikant|(2012). For a broader
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introduction to Lyapunov optimization and its applications, we refer readers to|Neely|(2022));|Srikant
& Ying (2014).

C COMPARISON TABLE

In this section, we provide a detailed comparison of settings in Section 3]

Budget ROI ROI  Budget Slater’s o
Reference R . Regret S . oes Generalization
constraint constraint violation regime condition free
Wang et al.|(2023) ‘ v X é((1 + ’;—f)ﬁ) x Q) x X
This work v v O(+ ZWVT) OWT) QWT) v v
Table 1: Our results and related work in the first-price auction.
Budget ROI ROI Budget Slater’s o
Reference constraint constraint Regret violation = regime condition free Generalization
Castiglioni et al. (2025} ‘ v v O(VTTy) x x v x
This work ‘ v v @((1 + %)«/TWEN) O(TVEy) QUVT) v v

Table 2: Our results and related work in online bidding under uncertainty, where 7{ N = Z?]:l Y4,T-

Budget ROI ROI  Budget Slater’s o
Reference . . Regret L. . Py Generalization
constraint constraint violation regime condition free
Guo et al. |(2025) ‘ v x @((1 + %)\/T) x  QWT) v x
This work \ v v @((1 + %)ﬁ) O(WT) QWT) v v

Table 3: Our results and related work in the contextual bandit.

D EXPERIMENTS

In this section, we evaluate the proposed algorithm across different auction settings and learning
methods. Specifically, we first reproduce the first-price auction environment of [Wang et al.| (2023));
we then consider the constrained bandit setting of |(Guo et al.[(2025]), where the reward is modeled as
advertisement relevance; we also conduct a sensitivity analysis on the choice of 7, in the first-price
auction environment.

t
For each experiment, we report the average reward % Zi:l r and the real-time ROI Z:’ =1 Z . Each

s=1Cs

curve shows the mean over 20 independent runs with different random seeds, and shaded regions
indicate 95% confidence intervals.

While L2FOB theoretically assumes access to the context distribution to perform mean-field evalua-
tion of the constraints, we deploy a variant that directly utilizes the current context v; when selecting
b; in practice. Under this implementation, L2FOB still achieves superior performance in all experi-
ments, demonstrating strong robustness.

D.1 FIRST-PRICE AUCTION UNDER BOTH BUDGET AND ROI CONSTRAINTS
In this setting, we follow the empirical setup of[Wang et al.|(2023)) and additionally impose a return-

on-investment (ROI) constraint to evaluate the algorithm’s profitability. Specifically, the time hori-
zon is set as T = 10* with a total budget B = 102, yielding a per-round budget p = B/T = 0.01.
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The ROI threshold is v = 1.8. The private value (context) is sampled as v; ~ N(0.6, 0.1), and the
competing bid as d; ~ N(0.4, 0.1). We restrict v; to the interval [0, 1], and any values of v; or d;
exceeding 1 are truncated to 1.

For the baseline of Wang et al.| (2023), we set the step size to ¢ = 1/+/T, as specified in their paper.
For L2FOB, we use constant learning rates for the dual variables, with 1, = 7, = 0.6. This choice
does not conflict with our setup in L2ZFOB. As noted after Theorem (I} our framework allows 7,
and 7, beyond the ©(v/T') scaling. When the oracle errors are of order O(V/T), constant order
choices of 71, and 7, also suffice. Intuitively, 7, ,} governs the trade-off between reward and the
budget/ROI constraints. Thanks to our rectified design that incorporates the clip operator (-)*, even
relatively large values of 7y, ,; have a limited adverse impact on performance; see the sensitivity

study in Appendix [D.3]

— L2FOB
Wang et al. (2023)

[e)]
] L §0.75—
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Figure 1: The averaged reward and averaged ROI of L2FOB and algorithm in [Wang et al.| (2023) in
first-price auction setting.

The results in Figure [T] show that L2FOB significantly outperforms the algorithm of [Wang et al.
(2023)) in both reward and ROI under the first-price auction setting. L2FOB satisfies the ROI thresh-
old stably over time, consistent with our anytime ROI violation guarantee (Theorem|I). By contrast,
the method of [Wang et al.|(2023)), which does not explicitly enforce an ROI constraint, fails to reach
the target profitability level and maintains a persistently low ROI. Moreover, L2ZFOB achieves higher
and more stable average rewards throughout the horizon.

D.2 CONSTRAINED CONTEXTUAL BANDIT FOR BIDDING

We also consider the constrained contextual bandit setting in |(Guo et al.| (2025)). In this setting, we
conduct experiments on the large-scale learning-to-rank dataset MSLR-WEB30k |Qin & Liu|(2013),
where each bidding action yields a corresponding relevance score. Following the experimental con-
figuration of |Guo et al.| (2025), we set v = 1.3, T' = 5000, and B = 1000, yielding a per-round
budget of p = B/T = 0.2. Within the bandit abstraction, the action (bid) b; corresponds to selecting
an arm. We take the contextual feature v; and the reward r; from the dataset, and sample the cost as
¢t ~ N(0.2, 0.02). To better approximate real-world noise, we corrupt both the observed rewards
and costs by adding Gaussian noise N'(0, 0.05).

As in|Guo et al.|(2025), we use a gradient-boosted tree estimator as the learning oracle for the reward
model and estimate the cost via empirical means. For the scaling terms, we also set 1, = 7, = 0.6
in our algorithm. Because |Guo et al.| (2025)) considers a single-constraint setting, we adapt their
method to a multiple-constraint setting that simultaneously enforces both a budget constraint and
an ROI constraint. The experimental results are reported in Figure 2] While our adaptation enables
the algorithm of |Guo et al.| (2025) to operate under both budget and ROI constraints, the results
show that our algorithm consistently outperforms|Guo et al.|(2025) in both average reward and ROL.
Moreover, L2ZFOB maintains stable ROI performance over the time horizon and ultimately satisfies
the ROI target.
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Figure 2: The averaged reward and averaged ROI of L2FOB and algorithm in |Guo et al.|[(2025) in
the constrained contextual bandit setting.

D.3 SENSITIVITY ANALYSIS

Recall that in L2FOB we set n, = 0y = v/T. However, L2FOB allows a more flexible choice
of these scaling terms, both theoretically and empirically. Specifically, 7, ,; may range from
constant order ©(1) up to O(T) without affecting our theoretical guarantees. This is due to our
rectified design that incorporates the clipping operator (-)* on the constraints, which allows the
algorithm to focus on optimizing reward for actions predicted to be safe. Consequently, once the
scaling terms are sufficiently large, further increases have little impact on performance. We focus

on studying the influence of ROI scaling terms 7, and evaluate four representative values, that is
1 € {0.06, 0.6, 6, 60}.

0.07 ny=0.06 2.01
0.06 —] w08
° — m=60 151 |/
@ 0.05 — ny=60.0 S
H g
o 0.041 1o
% 1.0
¢ 0.03 ©
g § ny=0.06
:% 0.02 Z 0.5 — ny=0.6
0.011 — ny=6.0
— ny=60.0
0.00 0.04 ---- ROl threshold
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Round Round

Figure 3: Sensitivity study on scaling term 7.

Figure |3| aligns with our theoretical analysis of the scaling terms. Specifically, setting 7, €
{0.06,0.6, 6} strikes a mild tradeoff between cumulative reward and ROI violation. However, when
we set 1), = 60, the performance differs only slightly from 7, = 6. This aligns with our theoretical
analysis: thanks to the rectified design of L2FOB, the algorithm does not become over-conservative
under large constraint scaling, allowing more flexible control.

E DETAILED PROOFS

E.1 PROOF OF LEMMA[I]

Lemma 4 (Restatement of Lemmal[l) Let b; be the bidding action selected by the L2ZFOB algo-
rithm at round t. Then, for any bidding action b € R, the following inequality holds:

Fr(ve, 0) — Fe(ve, b)) + (Qp(t)) — R(Qp(t — 1)) + P(Q4(2)) — 2(Q4(t — 1))
<45: + (I)/(Qp(t’ b))np(Ev [ét(v’ b)] - P)+ + ¢/<Q’Y(t> b))n’y(Ev [fyét(vv b) - 7225(”’ b)])+7
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To give the proof, we first give the following lemma that bridges the decision process with the
potential drift:

Lemma 5 Let ®(-) be any convex potential function, and update Q ,(t) and Q- (t) according to @)
and (|7_U|) Then, for every round t,

D(Qu(1)) < 2(Qp(t — 1)) + 2 (Qp(1))np(Eu[e(v, be)] — p)

B(Q4(1)) < D(Q4(t — 1)) + (Q~ (1)) my (Bulvee (v, be) — 7e(v, b)) *
Proof 1 We prove the first inequality, then the second follows by the same argument. By convexity
(and differentiability) of @, for any x,y we have ®(y) < ®(z) + @' (y)(y — z). Withy = Q,(t) and
z=Qp(t-1)

®(Qp(1) < @(Qp(t—1)) + 2'(Qp(1)) (Q(t) = Qp(t = 1))
= (p(Qp(t - 1)) + (I)/(Qp(t))np(Ev[ + (v, bt)] - p)+7

where the last equality holds due to the update rule in (9).

From the decision rule in (8), we can directly obtain that for any bid decision b, the following
inequality holds:

Pe(ve,0) — ' (Qu(t, 0))mp (B[ (v,0)] = p) " = @(Q~ (£, 0))71 (Eu [y (v, b) — (v, b)]) "
<P (v, be) = D (Qp(8))mp (Eu[Ce (v, be)] — )™ — '(Qy (8))my (Bu[7Er (v, be) — (v, be)]) T,

where we have Q,(t) = Q,(t,b;) and Q. (t) = Q~(t, b;) according to the definition. Rearrange the
inequality, we can get:

Pe(ve,0) = Pe(vr, be) + D(Qp(8))1p(Eu[ee(ve, be)] — p) ™ + ®(Qy (1)1 (Bu [y (ve, be) — 7 (ve, be)]) ™
<O(Qp(t, 0))mp(Ey[Ee(ve,0)] — p) T + @'(Q (2, b))y (B [7¢4(ve,b) — 74 (e, B)]) T
We can then apply Lemma 5]to get:
(01, 6) = Fu(vr,be) + D(Qp(8)) = DQp(t = 1)) + B(Q, (1)) — Qs (= 1))
<®(Qp(t,0))1p(Bo[ce(ve,0)] — p) T + @' (Q (¢, b))y (B [7¢4(ve,b) — 7 (e, B)]) T
Add r (v, b) — r(ve, by) on both sides and rearrange the inequality, we can get:
(01, ) = (v, be) + Q1) = B(Qut = 1) + 2(Qs (1) = B(Qy (¢~ 1)
<r(vg, b) — 7 (vg, b) + 7 (vg, by) — 7 (e, by)
+ @' (Qp(t, 0))1p (Bo[Ce(vr, )] — p) T + ' (Qy (£, )y (Eu[vEr(ve, b) — (e, b)])
<[r(ve, b) — Fe(v,0)| + [Pe(ve, be) — (v, by)|
+@'(Qu(t,0))1p(Eo[C(ve, )] = p) T + ' (Qy (t,0))11y (Eu[v¢e(ve, b) — 7 (v, 0)]) T
<dep + @(Qu(t, 0))np (o[ (ve, b)] = p) T + @'(Q4 (t,0))my (Bo[784 (v, b) — e (ve, D)),

where the last inequality holds from the online regression oracle assumption and the optimistic
reward estimators, thereby completing the proof.

E.2 PROOF OF LEMMA [3]

Lemma 6 (Restatement of Lemma[3) Let b* be an optimal solution to (E[) Then, with stopping
time T,

E [Z @ (Qp(t,5))my (o[ (0, 0%)] — m*] < 020/ T = O(1),

lz (Qx (,0%)) 1 (Eu [y (v, %) — (v, 0%)]) " | < 20,7 Cla/T? = O(1).
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We prove the first result, then the second follows by the same argument. On the high-probability
event w from Assumptlonl we have, forall ¢t € [T] and all (v,b) € X x RY,

7t(v,b) = r(v,b), c(v,b) = & (v,b).
Applying the law of total expectation,

E | Y@ (Qp(t,0%)) 1, (B (¢ (v, b*)] —m*}

<E Z ‘I)'(Qp(t, b*))np[ét(v7 b*) = c(v, b*)]ﬂw]

Z Qp (t,b%) np[ét(v,b*) - c(v,b*)]ﬂo‘)}

<2T277PC’

maxp’

where the last step uses ®(x) = z? so that ®’'(z) = 2z, the bound of cost function, the fact that
Q,(t) < Qp(T) < TCpas and P(@) < p to uniformly bound the summand on &. Choosing
p = T—* yields the final results.

E.3 PROOF OF LEMMA[2]

Lemma 7 (Restatement of Lemma[2) Under the L2FOB algorithm, for any t € [T,
E[Q, ()] < Cy, E[Q,(1)] < Cy,

where s
Oq = (5TRma£C + 277p mal/T + 277’77 7na,L/T2) .

Applying Lemma taking expectations, setting b = b*, and summing the resulting inequality over
t yields

E lZ (r(vs, b%) — T(Usvbs))l +E[®(Q,(1))] + E[2(Q~(1))]
<4ZEZ+E[Z (Qp(s,0™))n,(E [és(v,b*)]—p)Jr}
s=1 =1

+E lZ '(Q- (5, 0%))ny By [7¢s (v, 0%) — 75 (v, b*)]*]

s=1

<457“ (T7p) + +2nPC'r2nax/T2 + 277"/,7072naz/T2’
where the last inequality follows from Lemma [3|together with the preceding arguments. Rearrange
the inequality, and we obtain

E[2(Q,(1))] + E[®(Q~())]

<4g (T p) + 277P mam/T + 21777 mam/,IV2 + E

t

Z r(vs, bs) vs,b*))l

<4E(T,p) + 277;)(/”7W/T2 + 2 Craz/T? + T Riaa,
We let the potential function ®(x) = 22, then this inequality yields that
E[Qp ()] + E[Q~ ()] <]E[Qp(t)2] + E[Qv( )*]
<AE (T, p) + 20,C2 00/ T? + 207 YCitae /T + T Rinax
<5T Rimaz + 20pCriae/ T + 2037 Crrae /T

where the first inequality holds according to Jensen’s inequality, the last inequality holds due to
the property of the reward function. Since E[Q,(¢)]* = 0 and E[Q(¢)]*> > 0, then by setting

Cy = (5T Rpaw + 21,02, /T +20,7C2, .../ T?) Y2, we complete the proof of Lyapunov stability.

max
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E.4 PROOF OF REGRET

Recall that we have the following decomposition of regret:

T T T
*
E (v, b* g r(ve, be) | < VFE[T — 7] E (v, 0%) — r(ve, be))
%,_/
t=1 t=1 t=1
Regret after stopping —

Regret before stopping

We first derive the result for regret before stopping. Recall Lemmal[l] let b = b* and rearrange the
inequality, we have
7t (v, b*) — 74 (ve, bt)
<def + 21(Qp(t, b))y (Bo[ée (v0,6%)] = p) T + (@~ (£, 0%))nyBu[vé: (v, %) — 740, b%)]
2(Q)(t = 1)) = 2(Qp(1)) + (Rt — 1)) = D(Q,(1)).

Summing up the above inequality over T and taking the expectation, we have
E lz (r(vr, ) — r(vt,bt))]
<1 i o+ lE (Qp 1,5y (B 24 (0, 6%)] — p>+] FE[B(Q,(0) + 8(Q4(0)]
lj (@ () (Bl (0, b°) ft(v,b*)])*]
<4tﬁle;; VE lz (Qp1, 671 (B[40, 57)] p>+]

VE [Z @' (Q (%)), (Bu 64 (0, 5%) w,b*)])*]

t=1

where the first inequality follows by telescoping the potential functions, the second by the initializa-
tion Qy, 1}(0) = 0 and ®(0) = 0. Then we can apply Lemmato derive that

|5

”M*

Ut’ Ut,bt ] <4i 5: + E li Qp t b* np(Ev[ét(Uab*)] - p)+1

+E [Z @ (Qn (%)) (Bu[162(0,5%) ﬂ(ub*)])*}

<4€T (T7 p) + 2771)072nax/T2 + 27]7'7072nax/T2
:O(gr(Ta p))

For regret after stopping, Recall the definition of stopping time 7 that

7 = argmin {T/ | 2 c(vg, by) = B} ,
T'e[T] t=1
which gives

Z Ct ’Ut,bt +7'p+ Z Cy Ut7bt) (Ut,bt)) = B,

t=1

Taking the expectation and rearranging the inequality, we have

E[T — 7] :%E[B -
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[Z Ct ’Ut,bt Z Ct ’Ut,bt ('Ut,bt))

t=1

1
<- ( E[Q,(T)] + &(T,p)
P \"Tp
1/C
<7 <q + gc(T7p)> 9
P \Tp

where the second inequality holds since in (T, we show that

1o 3 Ealer(v.5)] — )T < Q7).

Applying the law of expectation indicates that

E [Z(ét(vt» bi) — P)]

|
=
—
gl

~
Il
—

(Ey[Ge(v,be)] — P)}

A
=

v—

[~

\*
I
-

(Ev[e:(v,00)] — P)*]

_1
< E[@p(T)]-

This implies that the cumulative estimated violation is upper bounded by the terminal virtual queue,
then we can apply Lemma [2]to derive the last inequality. Combining all these terms, we complete
the proof of regret bound in Theorem T}

E.5 PROOF OF CONSTRAINT VIOLATION

Recall in (IT)), we have the following results for estimation violation of ROI constraint,
t
Ty Z (Ey[v¢: (v, bs) — 75(v, b5)]) T < Q (1)
s=1

For constraint violation we can derive the following decomposition that

E Z"}/C ”US, s (Us’bs)]
=E i Ev 70 v, b (U’bs)]‘|

s=1

s=1

<E Z o[ye(v, by) (v,bs)])Jr]

<E | Y (Bo[rés(v,05) = 5 (0,05)) " + D (E[y(c(v,bs) — &5(0,b5)]) "

| s=1 s=1
+ E [Zt: 7"5 v, b (Uabs)])+1
<E lz (Eo[vés(v,bs) — 7s(v, bS)])-‘_} + & (T, p) +vE(T, p)
<E[%”(t)] +&(T,p) + 7E(T, p)-
<% +E(T,p) +vEe(T, ).

Then, applying Lemma [2] we can derive the constraint violation, which completes the proof of
Theorem [T}
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STATEMENT ON LARGE LANGUAGE MODELS (LLMS) USAGES

The large language model was used only as a general-purpose writing aid for English grammar
checking and minor polishing. The LLM did not contribute to research ideation, problem formula-
tion, algorithm design, experiment setup, analysis, or substantive writing of any technical content.
All methods, results, and conclusions were conceived, written, and verified by the authors.
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