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ABSTRACT

Data and pipeline parallelism are ubiquitous for training of Large Language Models
(LLM) on distributed nodes. The need for cost-effective training has lead recent
work to explore efficient communication arrangement for end to end training.
Motivated by LLM’s resistance to layer skipping and layer reordering, in this paper
we explore stage (several consecutive layers) skipping in pipeline training, and
challenge the conventional practice of sequential pipeline execution. We derive
convergence and throughput constraints (guidelines) for pipelining with skipping
and swapping pipeline stages. Based on these constraints, we propose SkipPipe,
the first partial pipeline framework to reduce the end-to-end training time for
LLMs with negligible effect on convergence, which we verify analytically and
empirically. The core of SkipPipe is a path scheduling algorithm that optimizes
the paths for individual microbatches and reduces their end-to-end execution time,
complying with the given stage skipping ratio. We extensively evaluate SkipPipe
on LLaMa models from 500M to 1.5B parameters on up to 20 nodes, through
emulation and deployment prototypes. Our results show that SkipPipe reduces
training iteration time by up to 50% compared to full pipeline. Additionally,
our partial pipeline training also improves resistance to layer omission during
inference, experiencing a drop in perplexity of only 2% when running only 75% of
the model. Our code is available at https://anonymous.4open.science/
r/skippipe-43B2/.

1 INTRODUCTION

Deep transformer-based architectures (Vaswani et al., 2017) have recently enabled unprecedented
performance on complex language and cognitive tasks (Radford et al., 2018). These leaps can
be explained by the ever growing corpora of available data and by the increasing size of (Large)
Language Models (LLMs) (Touvron et al., 2023; Brown et al., 2020; Shoeybi et al., 2019). As a
consequence, models are now too large to fit and be efficiently trained on a single GPU.

Distributed training techniques, such as Pipeline Parallelism (PP) and Data Parallelism (DP), become
indispensable to efficiently train large models on distributed nodes (devices,GPUs). In the former the
model is split in stages, containing non-overlapping sections of the model, across a set of nodes, which
communicate sequentially between each other to run the whole model, thus forming a pipeline. In
the latter, multiple pipelines train the model independently on different data batches, communicating
between each other to synchronize the model weights after an update. Training with the standard
synchronous algorithms and renting private clusters to train models can easily cost more than tens of
thousands of dollars (Yuan et al., 2022), even for smaller models. Some prior work has proposed
training on smaller clusters over a heterogeneous network (different communication latency and
bandwidth between nodes), however in such a setting the communication between the GPUs is still
one of the main limiting factors (Yuan et al., 2022).

Recent work has aimed to improve cost effectiveness of LLM training via heterogeneity-aware
arrangement of the nodes (Yuan et al., 2022; Park et al., 2020; Um et al., 2024; Yan et al., 2024).
Such methods present efficient arrangement of the GPUs to minimize the communication overhead
in heterogeneous network settings. Yet, pipelining is done strictly following a sequential execution
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Figure 1: An example of partial pipeline parallelism scheduling where each colored (solid or dashed)
path represents a different microbatch. Each node in stage 0 sends out 2 microbatches, the first in solid,
the second in dashed. Green backgrounds show the forward pass, while orange - the backwards pass.
Arrows show the prioritisation of the microbatches from forward to backward pass within the same
node. An example of a collision can be seen on node 7 during the forward pass, which subsequently
delays the execution of the solid blue microbatch because of the dashed yellow microbatch.

of layers from beginning to the end for all microbatches (Huang et al., 2019; Qi et al., 2024; Yuan
et al., 2022). The works of Bhojanapalli et al. (2021); Fan et al. (2020); Elhoushi et al. (2024)
have demonstrated transformer architectures’ robustness against layer skipping and even layer
reordering during training and inference. We leverage this fact to propose a novel optimisation to
traditional training - SkipPipe, which is the first partial pipeline framework that skips and re-orders
pipeline stages. SkipPipe improves the training of the model on distributed nodes, with negligible
degradation in performance, and is also suitable for communication heterogeneous settings. Moreover,
the partial training via stage skipping in SkipPipe also improves the inference with layer/stage
skips, which is beneficial for fault tolerant inference and early-exit strategies.

To minimize the end-to-end training latency via stage skipping and reordering, SkipPipe is
composed of two modules: arranging nodes in stages, and a path scheduler for microbatches. For a
given (heterogeneous) network of nodes and pipeline stages of an LLM model, SkipPipe allocates
nodes to stages, where nodes in the same stage communicate in DP manner and nodes in different
stages communicate in PP. Then, differently from standard pipelining where each microbatch passes
through all stages sequentially along the same path, SkipPipe schedules partial paths for each
microbatch that skip some stages and/or runs others out of order. As illustrated in Figure 1, each
microbatch skips k% of the model where k is a user-defined parameter.

The key challenge is how to select the path such that the number of microbatch collisions is minimised
and the model convergence is not affected negatively. Our contributions can be summarised as follows:
(i) We propose a novel and effective partial and reordered pipelining framework for distributed LLM
training to reduce the communication overhead. (ii) We design a pipeline execution scheduler
optimising the throughput for heterogenous network of nodes by utilising skipping and swapping
stages and reducing collisions (overlapping microbatches executions). (iii) We evaluate our scheduler
and present up to 250% reduction in iteration time when training with SkipPipe compared to
training with a standard full-model framework in both emulated and real geo-distributed networks.
Also, we demonstrate that there is minimal convergence degradation. (iv) We show that the models
trained with SkipPipe also provide significant resistance to layer omission during inference, with
a perplexity drop of only 2% when skipping a quarter the model.

2 SYSTEM SETTING

System setup. There areN distributed nodes for training an LLM model of L layers, which is divided
in pipeline stages S := (S0, S1, . . . , Ss). Each stage Si holds an (equal)1 number of consecutive
layers Lj ...Lj+δ and there are no overlapping layers across stages.

We assume each node has the same memory capacity allowing them to operate the same number
of microbatches. Each node can communicate with any other and the communication cost between
nodes is modelled with (B,Λ) matrices where communication between nodes Ni and Nj has a cost
modelled by the latency λi,j ∈ Λ and bandwidth βi,j ∈ B. Thus for a message of size |msg|, its

1Not necessary for our solution, but for simplicity and clarity we focus on the homogeneous stage/node case.
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(a) Impact of skipped layer selection. (b) Impact of stage swapping on full model.

Figure 2: Convergence of LLaMa-30M model. The validation loss is calculated for the whole model
for every 50th iteration.

communication takes λi,j +
|msg|
βi,j

seconds. While communication may not be symmetric, since each
link is used twice, once during forward and once during backward, we model latencies and bandwidth
as the average of the two directions (e.g., λ′

i,j =
λi,j+λj,i

2 ), as in Yuan et al. (2022).

Distributed Training. Each node is mapped to a single stage. To train the LLM with data and
pipeline parallelism, a batch is split into microbatches. Nodes sharing the same stage communicate
the gradient updates in DP, and nodes in different stages communicate activations in PP. We consider
synchronous updates in pipelining - the weight update of an iteration is done after all the corresponding
microbatches are processed. However, unlike common pipelining where each microbatch passes
through all stages in the sequential order, we propose partial and reordered pipelining.

Partial and Reordered Pipeline. The prior work pinpointed that transformer-based architectures
are robust to layer skipping, i.e., not executing a given layer (Bhojanapalli et al., 2021; Fan et al.,
2020). We term skipping layers (or stages) in distributed training - partial pipeline parallelism.
In the full pipeline scenario, microbatches traverse through the stages sequentially, e.g. S :=
(S0, S1, S2, S3, S4, S5). In our case microbatches can traverse through different sequences of stages,
due to skipping a given stage (S := (S0, S1, S4, S5)) or swapping the order of two stages (S :=
(S0, S1, S3, S2)). The key research question is thus which stages should each microbatch run through,
such that training time is minimized.

3 SKIPPIPE

In this section we present a novel approach to pipeline parallelism, employing skipping and swapping
to reduce the required resources and increase throughput without degrading the training performance
of LLMs. The goal is to find a viable partial pipeline schedule (paths of the microbatches) that
minimizes the overall training latency given the number of microbatches target.

Partial pipeline schedule Given a DP and PP arrangement of nodes (a graph) with communication
and computation limitations per link and node respectively, we find paths p1, p2... ∈ P (a sequence
of nodes) for each microbatch such that end-to-end time to execute all microbatches is minimized.
End-to-end time is the time for a single iteration between two data parallel rounds, including all PP
computations and communications. Each path pi travels a sequence of nodes from a starting node
back to itself (constituting forward and backward passes) where only k% of stages are skipped (and
no stages are repeated in the path). The ordering of nodes in the backward pass needs to be the same
as in the forward one. A path pi can be represented with respect to the stages (pi := Si1 , . . . , Sil ) or
the nodes (pi := Ni1 , . . . , Nil ) that it passes through, where l := (100− k)% of the stages.

3.1 GUIDELINE FOR PARTIAL PIPELINING SCHEDULER

Here, we explain our guideline for a partial pipeline scheduler that selects the paths for each micro-
batch through a motivation example. We present three convergence and two throughput constraints to
optimize the path selection. We derive the convergence constraints from our experimental results and
previous work and the throughput constraints are based on the hardware and network limitations.
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Convergence Constraints. To study the effects of stage skipping and swapping on the LLM
convergence, we train a LLaMa-30M model (12 layers) divided in 6 stages with 2 layers each on
the TinyStories dataset with 5 microbatches of size of 32 samples in two sets of experiments. In
Figure 2 (a), we vary the selection of which stage to skip (for skipping percentage of 25%): random,
random with no skipping the first stage, and round robin with no skipping the first stage (skip each
intermediate stage equal number of times). By comparing the two random cases, we observe that the
first stage is more critical than other stages and should not be skipped. Similar effect is also observed
for larger transformer architectures (Bhojanapalli et al., 2021; Fan et al., 2020) and architectures with
residual connections (Veit et al., 2016). Additionally, when we compare the random and round-robin
cases, we see that convergence is better when each intermediate stage is skipped uniformly and
trained for an equal number of microbatches. Figure 2 (b) shows that swapping execution order of
two consecutive stages has negligible effect on the training loss, and swapping multiple stages or
stages that are not consecutive causes more degradation. Using these observations, we derive the
following Convergence Constraints for our path selection:

• CC1: A path pi never skips the first stage, i.e., Si1 = S0 ∀pi ∈ P .
• CC2: A path pi may run out of order at most two consecutive stages (1 swap), i.e., for a path
pi = Si1 , . . . , Sil , |ij − ij+1| ≤ 1 ∀j ∈ (1, l).

• CC3: Each stage Si (i ≥ 1) is skipped for an equal amount of paths.

Throughput Constraints. In standard pipeline training, the whole model is executed sequentially
and each node needs to receive activations of the microbatches from only one other node (the one
before it/after it) in the forward pass/backward pass. In other words, each node receives only one
microbatch to process at a time from each direction. However, as we introduce skips (and potentially
swaps) in execution, it is possible for a node to simultaneously receive two microbatches from two
different stages in the same direction, thus forcing the node to delay one of the microbatches. We
refer to such cases as collisions, which can significantly degrade the end-to-end latency of a batch.
To avoid collisions, we employ swaps to run stages out of order for a microbatch, thus utilising a
currently idle node to reduce instantaneous overutilisation of another.

In addition, because of the caching of the activations that is needed for the backward pass, the number
of active microbatches going through each node is limited by the memory of a node and denoted by
(m). Overall, we impose two Throughput Constraints:

• TC1: At most m paths can go through each node Ni.
• TC2: Minimize collisions by swapping the pipelining order.

Problem Formulation. We formalise the optimization problem of partial pipeline scheduler as
follows: For a given network of N nodes with bandwidth and latency matrices (B,Λ) and an LLM
model consisting of pipeline stages S, the number of microbatches M and limitation of active
microbatches m per device, the partial pipeline scheduler aims to find the paths P that minimizes the
maximum end-to-end latency across all microbatches of a given iteration:

P ← Scheduler(N ,B,Λ,S,M,m)

such that P := argminmaxE2E(pi)
P∈PALL, ∀pi∈P

with constraints CC1, CC2, CC3, TC1 and TC2

where E2E(·) is the end-to-end latency of a microbatch where the starting time of a microbatch
is also taken into account, and PALL is the set of all possible sets of paths. Forming the paths is
itself an NP-hard problem (as detailed in Section 3.3). We thus split the problem into two parts: first
allocation nodes in stages under a full pipeline schedule and then finding the partial pipeline schedule
for microbatches under the given node-to-stage mapping.

3.2 ALLOCATING NODES TO STAGES

For a given network of N nodes, cost matrices (B,Λ), and the pipeline stages S, the initial node
arrangement matches each node with a stage for standard full and sequential pipelining (no skips
or swaps). This problem is already analyzed for heterogeneous networks in DT-FM (Yuan et al.,
2022), solved through a two-phase optimiser: clustering of nodes for DP and then arrangement of
the connections for PP. DP clustering can be seen as graph partition problem where each cluster
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corresponds to a stage and the partition cost is bounded by the slowest communication between
two nodes in the same stage. Then these clusters are ordered for PP, which can be represented as
an open-loop Traveling Salesman problem (Papadimitriou, 1977). This problem can be solved via
genetic algorithms as described in Yuan et al. (2022).

To allocate nodes to stages in SkipPipe, we modify the algorithm given in DT-FM for the un-
balanced cluster sizes. Following convergence constraints CC1 and CC3, the initial stage is never
skipped whereas all other stages are skipped equally, so that k% of the stages are skipped for each
microbatch. Assuming the nodes allocated in a stage is Si(n), we formulate the number of nodes per
stages with the following equation:

|Si(n)| = |S0(n)|
(
1− s

s− 1
· k

100

)
∀i ∈ (1, s). (1)

To balance the workload across stages, we allocate the nodes per stage using the ratio given above.
Thus, unlike DT-FM setting, we require more nodes in the first stage. With the optimised arrangement
of nodes in stages, we can look for paths through the system that would satisfy our constraints.

3.3 PARTIAL AND REORDERED PIPELINING

Once nodes are arranged into stages, we schedule the microbatches through the system by skipping
and reordering stages, which is the core of SkipPipe. It is important to note the difference between
a path and a microbatch. While a microbatch does travel down a path, multiple microbatches may
use the same path. For example, when a node completes a backwards pass for a given microbatch, it
can reuse the path it had just traversed, as it is the one that immediately has nodes with free memory.
Thus we find a set of paths for the first wave of microbatches and reuse them a number of times
during an iteration to meet the desired batch size.

Given our formulation, we model the problem as a continuous-time Multi Agent Path Finding (MAPF)
problem (Andreychuk et al., 2021). In such problems a number of agents with some starting location
must traverse a graph to reach their end goals. Thus, we reuse the graph of the node arrangement,
where the cost on each edge is the time to communicate one microbatch. Each agent represents
a microbatch which travels from a starting node in stage S0 to the same destination node while
passing s(100− k)/100 nodes in total. An agent can either wait at a node, move through the node
(computation), or move to a different node via the corresponding edge (communication). Each move
is associated with a given cost. In the continuous-time setting, actions do not take 1 unit of time, but
can be of arbitrary length. The problem has the additional constraints that no two agents can collide
(be on the same node at the same time). Thus, due to the nodes’ real physical limitations, we allow
traversal of only one agent at a time through a node (constraint TC2). To find a viable solution we
employ a modified version of the continuous-time Conflict-Based Search (CBS) (Andreychuk et al.,
2021) based on the changes described above.

The first four constraints (CC1, CC2, CC3, TC1) are merely about finding the paths, while constraint
TC2 deals with conflicts between two agents. CC1 and CC2 are individual constraints per agent
and thus can be solved by an A* search (Doran & Michie, 1966). We use A* (instead of the Safe
interval path planning used in Andreychuk et al. (2021)) that allows us to model the skips, swaps,
and the additional constraints better. However, CC3 and TC1 require inter-agent optimization as they
specify global constraints - limiting the number of agents that can go through a node per iteration.
This requires knowing all other agent’s paths, making an A* solver insufficient. We thus delegate
all constraints, apart from CC1 and CC2 to be resolved by CBS, with for CC3 and TC1 setting
a constraint that an agent cannot visit all nodes in a stage or a specific node respectively, from
(− inf, inf). However, this proves extremely costly for large graphs or large number of agents, as an
exponential number of possible solutions would need to be explored, before resolving TC2 constraints.
We thus approximate the optimal solution, by employing a heuristic idea: whenever possible we
exclude the slowest agents of each (starting) node from adding constraints as any additional constraint
would detrimentally affect the slowest path. First, we employ CBS to find a number of solutions
that satisfy CC1, CC2 and CC3 constraints.2 Then for these generated solutions we solve for TC1
constraints. Once no TC1 constraints are detected, TC2 constraints are checked. A constraint TC2 is

2We choose 32 solutions in our experiments, as this proved sufficient to find good solutions, without
expanding the subsequent search space too much.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

added for each relevant agent by specifying that they cannot visit the conflicting node for the duration
the other agent is traversing it.

3.4 PATH FINDING

Here we describe our path finding algorithm, the detailed steps of which can be found in Appx. C in
Algorithm 1. To find a set of paths satisfying the current constraints, we employ A* for each agent
with a time dimension. When an agent travels between two nodes, its time is increased by the time it
takes for a microbatch to travel down that link. Whenever an agent travels through a node, its time is
increased by the time the node takes to process a microbatch. If an agent is to visit a node and during
the processing time there is a constraint that prohibits the agent from being in that node, its time of
visiting the node is delayed to the end of constraint.

An agent must skip exactly k% of the stages. Thus when expanding a node, we do not consider the
starting node until this condition is met. When we visit again the starting node the time of a forward
and a backward pass, given all constraints, is estimated and the node is readded to the heap with that
cost and a special flag marking it as a potential final solution. When a node marked as a potential
solution is popped from the heap, it is returned as the current fastest path for that agent that satisfies
all current constraints.

Unlike traditional A* we do not make use of a visited set - we may consider a node during our search
multiple times. This is because how we expand the starting node in the A* search, may not be the
fastest way to do a forward + backward pass (which is why we re-add the starting node with the
special flag). When expanding an A* node, we exclude from the set of potential next nodes all nodes
that have been on that path or belong to a stage that has been visited. We may perform at most 1 swap
in the ordering of stages for a given path (CC2 constraint). Nodes that would go over this limit are
excluded from consideration.

3.5 THEORETICAL ANALYSIS OF SKIPPIPE

We base our analysis by relating the problem to that of Stochastic Depth (Huang et al., 2016), as
our method is similar to training in such manner with uniform survival chance per layer. Thus
convergence proof of SkipPipe is equivalent of the work of Hayou & Ayed (2021) demonstrating
that training with Stochastic Depth and survival chance of (pl := 100−k

100 ) with additional Gaussian
noise per input acts as a regularizer. This is formalised in the following theorem where δ is a binary
variable dictating if the given layer is used.

Theorem 3.1. (Hayou & Ayed, 2021) For input x, let yji be the activations of the j-th neuron before
the i-th layer, zl the activations after the l-th layer, layer l of N , pl = 100−k

100 , Xl,N = (δl−pl)µl,N (x),
with l ≤ i, µl,N (x) = ⟨zl,∇yl

yjl (x,1)⟩, and V arδ[Xl,N (x)] = pl(1− pl)µl,N (x)2, assume that:

• There exists a ∈ (0, 1
2 ) such that for all N and l ∈ N , pl ∈ (a, 1− a),

• limN→∞
maxk∈Nµk,N (x)∑

l∈N µl,N (x) = 0, i.e. no single layer dominates in the computation,

• v l
N ,∞(x) = limN→∞

∑N
l=1 V arδ[Xl,N (x)]

N exists and is finite.

Then, as limN→∞yjl (x, δ) ∼ yjl (x, p) +N (0, l
N v l

N ,∞(x))

The details of the proof are presented in Appendix F.

3.6 PERFORMANCE STABILIZATION

Based on the proof above, we can see that training with vanilla SkipPipe approximates training a
partial model. To improve the performance of the model in full-execution scenarios, we also added
occasional full-model training steps (i.e. steps where no skips or swaps are performed). Regarding the
frequency of the full-model training step, empirically we find that performing such a step once every
10 training steps (so 9 with skips and 1 full) yields good convergence results, without sacrificing the
throughput. In Appendix G.1 we present our experimental ablation study on this.
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4 EXPERIMENTAL RESULTS OF SKIPPIPE

We demonstrate that SkipPipe provides significant improvement in the iteration throughput and
provides faster convergence in terms of wall-clock time in geo-distributed settings. For all experiments
we do 1 full iteration every 10 iterations. All schedulers are limited to 1 swap per microbatch. For
throughput experiments, we investigate the speed up of our partial pipeline scheduler SkipPipe wrt.
the baseline SOTA schedulers on a LLaMa-1.5B model. For convergence results, we demonstrate two
types of training - pretraining from scratch (a LLaMa 500M model on the RedPajamas dataset (Weber
et al., 2024)) and supervised fine-tuning (a LLaMa 3.2 1B model on the Tulu dataset (Lambert et al.,
2024)), with different skip ratios. We observe that using SkipPipe, the models converge at the
same rate (with negligible difference in performance) but with a significantly higher throughput,
meaning that training converges much faster in wall-clock time.

4.1 THROUGHPUT

We evaluate the throughput improvement of SkipPipe by measuring the end to end time for
pipeline training of an iteration. We test a LLaMa-1.5B model distributed training (see Appendix A
for architecture details) with 3 different skipping ratios (0%, 25% and 33%) and different number of
nodes. We analyze the throughput with both simulated environment where we can control the network
delays and the real deployment. For the first case, we utilise H100 nodes and their communication
is simulated by the bandwidth and latency values given in DT-FM (Yuan et al., 2022). For the real
deployment, we rent T4 nodes on Google Cloud across 12 different locations and 5 continents.
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Figure 3: Time per iteration of four schedulers with two skip percentages (25% and 33%) and three
token numbers (4K, 8K and 16K). DT-FM∗ representing the compensated results for the baseline with
no skips, DT-FM-skip uses node arrangement of DT-FM and skips k% with additional constraints
(see Appendix B.1), SkipPipe (no TC2) is our scheduler without TC2.

Simulation In Figure 3, we present the experimental results for two skip percentages (k :=25% and
33%) and 4 different schedulers. We compare our scheduler, SkipPipe, with (1) DT-FM: 0% skip
training using DT-FM scheduler, (2) DT-FM-skip: k% skip training using DT-FM scheduler with
additional constraints (see Appendix B.1), (3) SkipPipe (no TC2): k% skip training using our
scheduler SkipPipe where the collision constraint TC2 is ignored. We test with varying number of
microbatch sizes - of 1, 2 and 4, and use gradient accumulation for each. The time per iteration values
are averaged over 50 iterations. Since we optimise the schedule for a given node/stage allocation,
we measure the pipeline time and omit the data parallelism part where weight aggregation happens
because the aggregation time is the same for a fixed node/stage allocation regardless of the microbatch
paths. Finally, we perform one warm-up iteration where nodes discover each other.

In Figure 3a, we have the results for 25% skip case. We tested 4 stages with 18 nodes where the nodes
are distributed to the stages according to Equation 1: (6, 4, 4, 4), except the 0% skipping case used in
DT-FM baseline. To keep the node/stage sizes the same, for the DT-FM baseline, we use 16 nodes
where nodes are equally distributed (4, 4, 4, 4). To (over)compensate the baseline case using less
nodes, we project their performance by proportionally reducing the end-to-end latency. Specifically,
we multiply the latency of baseline by 16

18 , and these compensated latency results are represented by
DT-FM∗. Note that considering the communication of those additional nodes being ignored, this is a
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lower bound of their performance. Here, SkipPipe achieves 35 − 45% improvement compared
to the baseline in the 8K and 16K tokens case. In Figure 3b, we have the results for 33% skip case
where we tested 6 stages with 20 nodes. Similarly to the above case, number of nodes per stage is
(5, 3, 3, 3, 3, 3), except the baseline, which is compensated by multiplying the corresponding latency
values with 18

20 . We observe that removal of collisions (TC2) provides a speedup of 10%, and all
constraints together yield to more than 45% speedup compared to DT-FM∗.

Real Deployment We test the throughput of SkipPipe in a real geo-distributed deployment
across 12 locations (see Appendix E for detailed results). We observe much higher speed up in our
deployment: 250% speed up relative to a DT-FM baseline. We attribute this greater speed up due to
the much higher variability in bandwidth between locations relative to the ones used in Yuan et al.
(2022). Additionally, as SkipPipe has lower memory consumption due to the skips, it can process
much higher number of microbatches in a single forward-backward wave. Thus, DT-FM needs more
forward-backward waves to reach the same batch size, incurring much higher time per iteration.
Furthermore, addition of skipping into DT-FM (DT-FM skip) does not optimize for collisions or
skips, thus being around 20% slower compared to our solution.

4.2 CONVERGENCE

Here we show that our scheduler SkipPipe does not degrade the convergence of the training
compared to the baseline. We verify this by training from scratch a LLaMa-500M on the RedPajamas
data (Weber et al., 2024) and finetuning LLaMa-1B model (Dubey et al., 2024) on the Tulu 3
dataset (Lambert et al., 2024) with three different skip rates - 0% (baseline), 25%, and 33% skips.
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(a) Training LLaMa-500M with RedPajamas.
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(b) Finetuning LLaMa-1B with Tulu 3 dataset.

Figure 4: Convergence of validation loss (of the full model) with 33%, 25% and 0% skip rates.

In Figure 4, we report the validation perplexity loss every 100th iteration by running the entire
model (regardless of the training schedule). Our experiments show that SkipPipe achieves similar
convergence to the baseline for both training (see Figure 4a) and finetuning (see Figure 4b), despite
training with a fraction of the model each time. Also, since SkipPipe has a much higher throughput,
convergence in terms of wall-clock time is significantly faster. We further evaluate the inference
perplexity of the final models on a few common common datasets in the first column of Table 1.
Similar to the convergence curves, we observe minimal negligible difference between the models
trained with SkipPipe and those without. We present inference performance of the 500M models in
the following section. Performance of the 1B finetuned models can be found in Appendix G.2.

4.3 FAULT TOLERANT INFERENCE

By training with SkipPipe, the models exhibit robust inference results even if some stages fail
(except the first one). We demonstrate this by evaluating the trained Llama-500M models (in Section
4.2) for various inference stage skip rates on Wikipedia (Computer, 2023), Gutenberg (pro), and
Stackexchange datasets (Computer, 2023). For each skip rate a corresponding number of stages is
dropped at random per sample.
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Table 1: Perplexity on several dataset across 1000 evaluation samples for various skip rates. The
inference/training skip rate shows the percentage of stages being skipped during inference/training.

Inf. skip rate 0% 25% 33% 50%
Training skip rate 0% 25% 33% 0% 25% 33% 0% 25% 33% 0% 25% 33%

Wikipedia ↓ 18.8 18.7 19.1 75.4 19.1 - 115 - 22.6 457.6 36.1 28.7
Gutenberg ↓ 26.8 27 27.6 143.8 28.3 - 214.3 - 35.3 488.1 53.7 45.9
Stackexchange ↓ 29.5 29.7 30.3 110 31 - 189.2 - 38.4 560 58.9 48.4

As seen in Table 1, our partial pipelining provides robustness against arbitrary stage removal during
inference time. Overall, we observe that for downstream task, our skip method provides similar
performance as a baseline schedule, as supported by the convergence graphs. Interestingly, when
executing only 75% of the model, our solution experiences less than 2% perplexity drop for models
trained with a 25% skip schedule. As these models are not instruction finetuned, we leave more
in-depth evaluation on downstream tasks as future work.

5 RELATED WORK

Efficient and Heterogeneity-aware Distributed Training. There have been several works to
improve (communication) efficiency of LLM training (Douillard et al., 2023; Peng et al., 2024;
Jaghouar et al., 2024) where they show that the communication overhead can be significantly reduced
by minimizing the synchronization for gradients in DP. Moreover, there are several heterogeneity-
aware scheduling methods (Yuan et al., 2022; Ryabinin et al., 2023; Park et al., 2020; Um et al.,
2024; Yan et al., 2024) proposing efficient DP and PP arrangement of the nodes to minimize the
communication overhead. Yet, pipelining is always done in a sequential execution of all layers (Huang
et al., 2019; Qi et al., 2024; Harlap et al., 2018; Park et al., 2020). To the best of our knowledge, no
prior work has studied the opportunity of optimizing for partial pipeline usage.

Skip Connections and Early Exit. Models employing skip connections have been known to
exhibit robustness to random layer omission and perturbation (Veit et al., 2016; Bhojanapalli et al.,
2021). Works such as Huang et al. (2016) demonstrated how larger models can be trained with less
resources, by skipping certain layers during training. LayerDrop (Fan et al., 2020) demonstrated
that models trained partially are more robust to layer omission during inference. Based on this work,
Layerskip (Elhoushi et al., 2024) proposed a novel training approach and loss function, which enabled
them to perform early exiting during inference - running only part of the model to generate tokens
and using the whole model only to verify their probability.

6 CONCLUSION AND FUTURE WORK

Training LLMs requires a significant number of GPUs and enormous training data. The have been
many works on communication and computation improvements for DP and PP methods aiming to
achieve a cost-effective training. Yet, existing PP methods are limited to the sequential execution of
the layers. In this paper we introduce a novel approach to partial and reordered pipeline parallelism,
SkipPipe, which allows stage skips and swaps of stages. Our experiments showed SkipPipe
achieves up to 50% throughput improvement without significantly affecting the convergence per
iteration. Due to resource limitations, we have tested with LLaMa-like models up to 1.5B parameters,
and we leave experiments with even larger models and different architectures as a future work.
Moreover, our partial training also produces models resistant to layer removals during inference,
which makes them suitable for early exit and fault tolerant inference. A LLaMa-500M model trained
with SkipPipe experiences a drop in perplexity of only 2% when skipping a quarter of the model.
As future work we aim to make use of this fault-tolerant inference for the purposes of early exiting.
Finally, while this paper focuses on the homogeneous nodes/ heterogeneous network, in future work,
we plan to extend our solution to the full heterogeneous setting where nodes can have different
memory and computational capacities.

4
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7 REPRODUCIBILITY STATEMENT

We keep the code for the proposed SkipPipe and baselines on the following open sourced repository
anonymously: https://anonymous.4open.science/r/skippipe-43B2/. Our reposi-
tory contains the necessary scripts to execute the full training of foundational models on distributed
computing nodes, e.g., cloud nodes, from scratch.

8 ETHICAL STATEMENT

We conform to the ICLR code of ethics. Our work introduces an efficient manner of pretraining
and finetuning foundational model in geo-distributed networks, thus democratising access to LLM
training. We transparently report all findings and results to inform future research and applications.

We do not make use of LLMs for ideating or writing. LLMs were used for the purposes of this work
to train models and evaluate their performance and training time.
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A MODEL CONFIGURATIONS

We perform all our experiments with LLaMa-based Touvron et al. (2023) model architectures with
the Sentence Piece Tokenizer Kudo & Richardson (2018). The different models and their parameters
are shown in Table 2.

Table 2: Model parameters.

Model Dim Heads Layers Context

LLaMa 50M 288 6 12 256
LLaMa 500M 1024 16 24 1024
LLaMa 1.5B Elhoushi et al. (2024) 2048 16 24 4096
LLaMa-3 1B Dubey et al. (2024) 2048 32 16 8192

B TEST CONFIGURATIONS

Configurations of the throughput tests are presented in Table 3. Stage sizes for the 33% case are
(5,3,3,3,3,3) (6 stages, 5 of size 3 and 1 of size 5), and for the 25% case - (6,4,4,4) (4 stages, 3 of size
4, 1 of size 6).

For the convergence test, 8 samples per microbatch were used, with a total batch size of 500k tokens.
Learning rate was set to 4× 10−4 and gradient norms were clipped to 1.0.

B.1 DT-FM-SKIP PATH SELECTION

Here we explain how the DT-FM-skip is determined. We choose paths that satisfy constraints CC1 in
an optimised arrangement of nodes in stages. DT-FM-skip serves as a skip baseline which is mainly
optimised for the initial node arrangement, but not necessarily for the partial microbatch paths.

In order to keep comparison fair, we chose to satisfy constraints TC1, as otherwise delays will be
introduced on nodes whose memory is exceeded, as it will need to wait for a backwards pass to come
through, before it can continue with this forward pass. Due to this, and our experiment setups, we
also inadvertently would satisfy constraints CC3. Thus the algorithm for determining the paths for
this baseline is identical to that of the non-collision aware one, except that the computation time of
each node and communication time between nodes is set to 1. Thus the algorithm does not optimise
for fastest paths or TC2 constraints.

C DETAILED PATH SELECTION ALGORITHM

In Algorithm 1 we present the steps of our path selection function.

D POSSIBLE EXTENSIONS OF OUR ALGORITHM

D.1 PATH COARSENING

Here we also present an alternative path finding method based on path coarsening that finds solutions
faster, but they may be sub-optimal. The reason for the sub-optimality is that it may increase idle
time on devices. However, in a strictly homogeneous device memory setting, it can ignore TC2
constraints. Thus, it is best suited for large systems of nodes with equal memory capabilities, where
an exact solution may be too costly to compute and due to the homogeneity of the system, most
quality solutions will have similar throughput.

Here we make use of path coarsening - grouping multiple paths into one meta-agent. Meta-agents
traverse a node sequentially, without interruption, and take the total amount of execution time of all

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 3: Test settings.

Skip Path finding World
size

Samples
per MB

Batch size
(tokens)

0% DTFM Yuan et al. (2022) 18→ 20a 1 184K
0% DTFM Yuan et al. (2022) 18→ 20a 2 368K
0% DTFM Yuan et al. (2022) 18→ 20a 4 737K
33% DT-FM-skip 20 1 184K
33% DT-FM-skip 20 2 368K
33% DT-FM-skip 20 4 737K
33% non-collision aware 20 1 184K
33% non-collision aware 20 2 368K
33% non-collision aware 20 4 737K
33% collision aware 20 1 184K
33% collision aware 20 2 368K
33% collision aware 20 4 737K
0% DTFM Yuan et al. (2022) 16→ 18b 1 147K
0% DTFM Yuan et al. (2022) 16→ 18b 2 294K
0% DTFM Yuan et al. (2022) 16→ 18b 4 589K
25% DT-FM-skip 18 1 147K
25% DT-FM-skip 18 2 294K
25% DT-FM-skip 18 4 589K
25% non-collision aware 18 1 147K
25% non-collision aware 18 2 294K
25% non-collision aware 18 4 589K
25% collision aware 18 1 147K
25% collision aware 18 2 294K
25% collision aware 18 4 589K
a In 33% skip experiment, we use 6 stages with (5, 3, 3, 3, 3, 3) nodes. DT-FM

0% skip does not use extra nodes in the first stage (as all stages are used equally).
To (over)compensate them using less nodes (while keeping the stage sizes the
same), we project their performance by linearly reducing the latency accordingly.
In other words, if an iteration of DT-FM case takes 20sn with 18 nodes, we
assume it would take 18sn with 20 nodes. Considering the communication of
those additional nodes being ignored, this is upper bound of their performance.

b Same with above except in 25% skip experiment, we use 4 stages with (6, 4, 4, 4)
nodes. Therefore, 16 nodes are projected to 18 nodes.
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Algorithm 1 Path Selection Function.

Require: S, k%, G - initial node/stage arrangement
Ensure: P

1: O ← ∅
2: Tconstraints ← ∅
3: Assign S0 to the first stage of Tpaths

4: Tpaths ← find paths via A*(G,Tconstraints)
5: Order Tpaths by their time to complete in ascending order
6: Tcost ← time for slowest agent to complete route
7: Insert T into Open
8: while |O| < 32 do
9: T ← best solution from Open

10: Check for Si in T which has more than |S|k% agents going through other than S0

11: if conflict then
12: K ← number of agents going through Si

13: Solution← new node
14: Solutionconstraints ← Tconstraints

15: for each Dm ∈ Si do
16: for each of the K − |P|k% fastest paths p ∈ P going through Si do
17: Solutionconstraints ← Solutionconstraints + (p,− inf, inf,Dm)
18: end for
19: end for
20: Solutionpaths ← find paths via A*(G,Solutionconstraints)
21: Order Solutionpaths by their time to complete in ascending order
22: Solutioncost ← time for slowest agent to complete route
23: Insert Solution into Open
24: else
25: O ← O ∪ T
26: end if
27: end while
28: while O is not empty do
29: T ← best solution from O
30: Check for conflicts TC1 or TC2 in T
31: if conflict of type TC1 then
32: Dk would be the node, whose m is exceeded as per TC1
33: K the paths that go through Dm

34: Solution← new node
35: for each of the K −m fastest paths p ∈ P going through Dk do
36: Solutionconstraints ← Solutionconstraints + (p,− inf, inf,Dk)
37: end for
38: Solutionpaths ← find paths via A*(G,Solutionconstraints)
39: Order Solutionpaths by their time to complete in ascending order
40: Solutioncost ← time for slowest agent to complete route
41: Insert Solution into O
42: else if conflict of type TC2 then
43: Two paths, pi and pj collide on Dk. Each of them is at the node during the intervals ts,i, te,i and

ts,j , te,j , respectively
44: Solution← new node
45: if E2E(pi) > E2E(pj) or |E2E(pj)− E2E(pj)| < δ then
46: Solutionconstraints ← Tconstraints + (pj , ts,i, te,i, Dk)
47: end if
48: if E2E(pi) < E2E(pj) or |E2E(pj)− E2E(pj)| < δ then
49: Solutionconstraints ← Tconstraints + (pi, ts,j , te,j , Dk)
50: end if
51: Solutionpaths ← find paths via A*(G,Solutionconstraints)
52: Order Solutionpaths by their time to complete in ascending order
53: Solutioncost ← time for slowest agent to complete route
54: Insert Solution into O
55: else
56: Return P ← Tpaths

57: end if
58: end while
59: Return ∅
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the microbatches in the meta-agent. Meta-agents thus become 2-dimensional objects, rather than the
point-agents we were considering prior. The downside is that in heterogeneous environments, meta-
agents might become more stretched out or mode condensed as they traverse the system. Consider
three nodes arranged as A-B-C, taking time to process a microbatch of respectively 1, 2, and 1
seconds. communication between them is 1 second per microbatch. Initially, a meta-agent of 2
microbatches, would have a size of 2 seconds at node A. At node B, due to its delay of processing,
the agent will be resized to size of 4, even though the subsequent node would have a gap of 1 second
where it would be idle between the two microbatches. However, with meta-agents with multiple
paths this level of detail is lost in favour of faster solutions. The best benefit of path coarsening is in a
fully homogeneous node setting - equal processing time and equal memory for each. In such a setting
we can create meta-agents with number of microbatches in them equal to the memory of the nodes.
When finding the solution, all meta-agents will have mutually exclusive paths, thus no collisions need
to be considered. Proving the optimality of such a solution is beyond the scope of the paper.

In fact our solution has already made use of a degree of coarsening, as we optimise only the first
forward pass in an iteration. It is possible to find an even better solution across where no path is
reused by microbatches, however, due to the difficulty of finding such a solution even for a small
world and small number of agents, we have not performed further analysis.

D.2 MULTIPLE SWAPS

It is possible to increase the number of swaps by introducing some linear penalty for paths that have
swaps more than the desired amount, as a higher number of swaps hampers convergence, but may
increase throughput. It is also possible to define an additional constraint that sets a maximum number
of swaps across all paths, which would be delegated to CBS to resolve like constraint CC3, e.g. at
most |P| swaps across all paths. This would however greatly increase the time to find a quality
solution.

E GOOGLE CLOUD INTER-LOCATION TESTS

In this section we repeat the 33% experiment in Section 4.1, however instead of simulating the delays
and bandwidths, we rent 20 T4 nodes on Google Cloud across 12 different locations and 5 different
continents. The bandwidth between the locations is provided in Fig. 6. These were measured between
locations for 5 minutes of traffic. Bandwidth is given in GB/s.

We present our findings in Fig. 5. Compared to the DT-FM baseline, SkipPipe achieves almost 250%
speed up, which is much higher than our simulation results. We attribute this greater speed up due to
the much higher variability in bandwidth between locations relative to the ones used in Yuan et al.
(2022). Additionally, as SkipPipe has lower memory consumption due to the skips, it can process
much higher number of microbatches in a single forward-backward wave. Thus, DT-FM needs more
forward-backward waves to reach the same batch size. In comparison to DT-FM skip and SkipPipe
(no TC2), we see similar results as in our simulated ones where SkipPipe is 10-15% faster than with
no TC2 case and 35% faster than DT-FM skip case.

F CONVERGENCE PROOF

The theorem and proof are almost verbatim replicas of the ones given in Hayou & Ayed (2021). Here,
we repeat them with our notation for the sake of completeness.

We define a residual model of N layers as WN = (I + δnFn).. ◦ (I + δ1F1) where each δ is either 0
or 1, thus describing whether the given layer is used or not. The δ∗ vector terms all δ values, i.e. the
mask describing which layer/stage is used. A mask of 1 would mean that every layer is used.

For input x, let yjl be the activations of the j-th neuron before the l-th layer, and zl be the activation
output after the l-th layer. A neuron’s pre-activations can be approximated via first order Taylor
expansion around δ∗ = 1 as:

yji (x, δ
∗) ≈ yji (x, 1)+

1
N

∑i
l=1(pl−1)⟨zl,∇yl

yjl (x,1)⟩+
1√
N

∑i
l=1(δl−pl)⟨zl,∇yl

yjl (x,1)⟩. Let’s

term µl,N (x) = ⟨zl,∇yl
yjl (x,1)⟩, X1

l,N (x) = (pl − 1)µl,N (x) and X2
l,N (x) = (δl − pl)µl,N (x).
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Figure 5: Real deployment with 20 nodes and 33% skip rate (8k tokens).

Theorem F.1. Hayou & Ayed (2021) For input x, let yji be the activations of the j-th neuron before the
i-th layer, zl the activations after the l-th layer, layer l of N , pl = 100−k

100 , Xl,N = (δl − pl)µl,N (x),
with l ≤ i, µl,N (x) = ⟨zl,∇yl

yjl (x,1)⟩, and V arδ[Xl,N (x)] = pl(1− pl)µl,N (x)2, assume that:

• There exists a ∈ (0, 1
2 ) such that for all N and l ∈ N , pl ∈ (a, 1− a),

• limN→∞
maxk∈Nµk,N (x)∑

l∈N µl,N (x) = 0, i.e. no single layer dominates in the computation,

• v l
N ,∞(x) = limN→∞

∑N
l=1 V arδ[Xl,N (x)]

N exists and is finite.

Then, as limN→∞yjl (x, δ) ∼ yjl (x, p) +N (0, l
N v l

N ,∞(x))

The second assumption holds in practice, as otherwise it would imply a high degree of possible
pruning of layers. Additionally, Hayou & Ayed (2021) demonstrate that it holds for ResNet.

If it is shown that limN→∞
1√
N

∑
X2

l,N (x)→ N (0, l
N v l

N ,∞(x)), then it implies that the last term
mimics input-dependent gaussian noise.

In Theorem 3 and Lemma A4 of Hayou & Ayed (2021), it is shown that limn→∞
1
sn

∑
(Xn,i −

µn,i) = N (0, 1) and limn→∞
1
s2n

∑
E[(Xl,N )21{|Xl,N |>ϵsn}] = 0.

Using these results, it can be seen that limN→∞
∑

X2
l,N (x) → N (0, 1), which leads to

limN→∞
1√
N

∑
X2

l,N (x)→ N (0, l
N v l

N ,∞(x)).

The first half of the equation is equivalent to (as per Hayou & Ayed (2021)): yji (x, 1) +X1
l,N (x) =

yji (x, 1) + (pl − 1)µl,N (x) ∼ yji (x,p) i.e. the average resulting network of training with skipping.

G FURTHER EXPERIMENTAL RESULTS

G.1 TRAINING STABILIZATION

Here we study how vanilla SkipPipe (without occasional full-model executions) affect the convergence.
We study this on LLaMa 500M trained for 35k steps in 4 different settings - full model execution, every
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Figure 6: Bandwidths between the 12 different Google cluster locations
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Table 4: Finetuned model evaluation results. For all higher is better. All results represent percentage
of correct questions solved

Task Baseline SkipPipe 25%

BoolQ ↑ 65.7% 66%
HellaSwag ↑ 55.4% 52.6%
OpenBookQA ↑ 36.2% 33.8%
ARC-easy ↑ 63.3% 56.4%
GSM8k ↑ 9.7% 5.9%

5th step doing a full model execution otherwise skipping 33% of stages, every 9th step performing a
full model, and a vanilla SkipPipe schedule, where no full model executions are performed. We see
the results of this experiment in Fig. 7. There is a noticeable gap in perplexity between the vanilla
schedule and the full model one. However, performing a full model run every 9th step drastically
diminishes this gap. We observe no added benefit if we perform this every 4th step.
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Figure 7: Comparison of different schedules for training and their effect on convergence.

G.2 FINETUNED MODELS EVALUATION

We evaluate the two finetuned LLaMa 1B models on several common evaluation benchmarks. We
make use of multiple choice ones: HellaSwag, ARC-easy, BoolQ, OpenBookQA; and one open
ended: GSM8k. The results are presented in Table 4. While here the finetuned model with SkipPipe
has a noticeable drop in performance, this is partially due to the fact that this was a model pretrained
without skips, ergo the first few hundred iterations of finetuning were primarily spent learning these
shorter paths.
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G.3 INFERENCE PERFORMANCE OF LLAMA-7B

Here we reaffirm our findings from Section 3.1 in the context of Large Language Models used in
practice. While training billion parameter models is too expensive, here we focus on the inference
case to confirm some of our previous findings. To such an end, we conduct an empirical performance
study on skipping layers during inference on training a LLaMa-7B model Touvron et al. (2023),
on the WikiPedia dataset Foundation. We consider four layer skipping strategies: (i) 0% skipping
running the entire model end to end, (ii) 25% random skipping, (iii) 50% of random skipping, and (iv)
0% skipping and swapping the order of two chunks of size 4. We also repeat these four strategies by
fixing the first four layer (they never get skipped or swapped). We summarize their loss in figure Fig.
8. Additionally, we demonstrate in the same setting the effect on inference of skipping any arbitrary
stage in the LLaMa-7B model Touvron et al. (2023) during inference in 9.
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(a) Fully random skipping. (b) Fixed first four layers.

Figure 8: The validation loss of LLaMa-7B under % of random skipping in pipeline training.
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Figure 9: Validation loss when a given layer is skipped.
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