
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SKIPPIPE: PARTIAL AND REORDERED PIPELINING
FRAMEWORK FOR TRAINING LLMS IN HETEROGE-
NEOUS NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Data and pipeline parallelism are ubiquitous for training of Large Language Models
(LLM) on distributed nodes. The need for cost-effective training has lead recent
work to explore efficient communication arrangement for end to end training.
Motivated by LLM’s resistance to layer skipping and layer reordering, in this paper
we explore stage (several consecutive layers) skipping in pipeline training, and
challenge the conventional practice of sequential pipeline execution. We derive
convergence and throughput constraints (guidelines) for pipelining with skipping
and swapping pipeline stages. Based on these constraints, we propose SkipPipe,
the first partial pipeline framework to reduce the end-to-end training time for
LLMs with negligible effect on convergence, which we verify analytically and
empirically. The core of SkipPipe is a path scheduling algorithm that optimizes
the paths for individual microbatches and reduces their end-to-end execution time,
complying with the given stage skipping ratio. We extensively evaluate SkipPipe
on LLaMa models from 500M to 1.5B parameters on up to 20 nodes, through
emulation and deployment prototypes. Our results show that SkipPipe reduces
training iteration time by up to 50% compared to full pipeline. Additionally,
our partial pipeline training also improves resistance to layer omission during
inference, experiencing a drop in perplexity of only 2% when running only 75% of
the model. Our code is available at https://anonymous.4open.science/
r/skippipe-43B2/.

1 INTRODUCTION

Deep transformer-based architectures (Vaswani et al., 2017) have recently enabled unprecedented
performance on complex language and cognitive tasks (Radford et al., 2018). These leaps can
be explained by the ever growing corpora of available data and by the increasing size of (Large)
Language Models (LLMs) (Touvron et al., 2023; Brown et al., 2020; Shoeybi et al., 2019). As a
consequence, models are now too large to fit and be efficiently trained on a single GPU.

Distributed training techniques, such as Pipeline Parallelism (PP) and Data Parallelism (DP), become
indispensable to efficiently train large models on distributed nodes (devices,GPUs). In the former the
model is split in stages, containing non-overlapping sections of the model, across a set of nodes, which
communicate sequentially between each other to run the whole model, thus forming a pipeline. In
the latter, multiple pipelines train the model independently on different data batches, communicating
between each other to synchronize the model weights after an update. Training with the standard
synchronous algorithms and renting private clusters to train models can easily cost more than tens of
thousands of dollars (Yuan et al., 2022), even for smaller models. Some prior work has proposed
training on smaller clusters over a heterogeneous network (different communication latency and
bandwidth between nodes), however in such a setting the communication between the GPUs is still
one of the main limiting factors (Yuan et al., 2022).

Recent work has aimed to improve cost effectiveness of LLM training via heterogeneity-aware
arrangement of the nodes (Yuan et al., 2022; Park et al., 2020; Um et al., 2024; Yan et al., 2024).
Such methods present efficient arrangement of the GPUs to minimize the communication overhead
in heterogeneous network settings. Yet, pipelining is done strictly following a sequential execution

1

https://anonymous.4open.science/r/skippipe-43B2/
https://anonymous.4open.science/r/skippipe-43B2/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: An example of partial pipeline parallelism scheduling where each colored (solid or dashed)
path represents a different microbatch. Each node in stage 0 sends out 2 microbatches, the first in solid,
the second in dashed. Green backgrounds show the forward pass, while orange - the backwards pass.
Arrows show the prioritisation of the microbatches from forward to backward pass within the same
node. An example of a collision can be seen on node 7 during the forward pass, which subsequently
delays the execution of the solid blue microbatch because of the dashed yellow microbatch.

of layers from beginning to the end for all microbatches (Huang et al., 2019; Qi et al., 2024; Yuan
et al., 2022). The works of Bhojanapalli et al. (2021); Fan et al. (2020); Elhoushi et al. (2024)
have demonstrated transformer architectures’ robustness against layer skipping and even layer
reordering during training and inference. We leverage this fact to propose a novel optimisation to
traditional training - SkipPipe, which is the first partial pipeline framework that skips and re-orders
pipeline stages. SkipPipe improves the training of the model on distributed nodes, with negligible
degradation in performance, and is also suitable for communication heterogeneous settings. Moreover,
the partial training via stage skipping in SkipPipe also improves the inference with layer/stage
skips, which is beneficial for fault tolerant inference and early-exit strategies.

To minimize the end-to-end training latency via stage skipping and reordering, SkipPipe is
composed of two modules: arranging nodes in stages, and a path scheduler for microbatches. For a
given (heterogeneous) network of nodes and pipeline stages of an LLM model, SkipPipe allocates
nodes to stages, where nodes in the same stage communicate in DP manner and nodes in different
stages communicate in PP. Then, differently from standard pipelining where each microbatch passes
through all stages sequentially along the same path, SkipPipe schedules partial paths for each
microbatch that skip some stages and/or runs others out of order. As illustrated in Figure 1, each
microbatch skips k% of the model where k is a user-defined parameter.

The key challenge is how to select the path such that the number of microbatch collisions is minimised
and the model convergence is not affected negatively. Our contributions can be summarised as follows:
(i) We propose a novel and effective partial and reordered pipelining framework for distributed LLM
training to reduce the communication overhead. (ii) We design a pipeline execution scheduler
optimising the throughput for heterogenous network of nodes by utilising skipping and swapping
stages and reducing collisions (overlapping microbatches executions). (iii) We evaluate our scheduler
and present up to 250% reduction in iteration time when training with SkipPipe compared to
training with a standard full-model framework in both emulated and real geo-distributed networks.
Also, we demonstrate that there is minimal convergence degradation. (iv) We show that the models
trained with SkipPipe also provide significant resistance to layer omission during inference, with
a perplexity drop of only 2% when skipping a quarter the model.

2 SYSTEM SETTING

System setup. There areN distributed nodes for training an LLM model of L layers, which is divided
in pipeline stages S := (S0, S1, . . . , Ss). Each stage Si holds an (equal)1 number of consecutive
layers Lj ...Lj+δ and there are no overlapping layers across stages.

We assume each node has the same memory capacity allowing them to operate the same number
of microbatches. Each node can communicate with any other and the communication cost between
nodes is modelled with (B,Λ) matrices where communication between nodes Ni and Nj has a cost
modelled by the latency λi,j ∈ Λ and bandwidth βi,j ∈ B. Thus for a message of size |msg|, its

1Not necessary for our solution, but for simplicity and clarity we focus on the homogeneous stage/node case.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

0 5000 10000 15000 20000 25000
Iteration

4

6

8

10

Va
lid

at
io

n
lo

ss

100% model
75% random
75% random (fix S0)
75% round robin (fix S0)

0 5000 10000 15000 20000 25000
Iteration

4

6

8

10

Va
lid

at
io

n
lo

ss

No swap
1 random swap
1 consecutive swap
2 consecutive swaps

(a) Impact of skipped layer selection. (b) Impact of stage swapping on full model.

Figure 2: Convergence of LLaMa-30M model. The validation loss is calculated for the whole model
for every 50th iteration.

communication takes λi,j +
|msg|
βi,j

seconds. While communication may not be symmetric, since each
link is used twice, once during forward and once during backward, we model latencies and bandwidth
as the average of the two directions (e.g., λ′

i,j =
λi,j+λj,i

2), as in Yuan et al. (2022).

Distributed Training. Each node is mapped to a single stage. To train the LLM with data and
pipeline parallelism, a batch is split into microbatches. Nodes sharing the same stage communicate
the gradient updates in DP, and nodes in different stages communicate activations in PP. We consider
synchronous updates in pipelining - the weight update of an iteration is done after all the corresponding
microbatches are processed. However, unlike common pipelining where each microbatch passes
through all stages in the sequential order, we propose partial and reordered pipelining.

Partial and Reordered Pipeline. The prior work pinpointed that transformer-based architectures
are robust to layer skipping, i.e., not executing a given layer (Bhojanapalli et al., 2021; Fan et al.,
2020). We term skipping layers (or stages) in distributed training - partial pipeline parallelism.
In the full pipeline scenario, microbatches traverse through the stages sequentially, e.g. S :=
(S0, S1, S2, S3, S4, S5). In our case microbatches can traverse through different sequences of stages,
due to skipping a given stage (S := (S0, S1, S4, S5)) or swapping the order of two stages (S :=
(S0, S1, S3, S2)). The key research question is thus which stages should each microbatch run through,
such that training time is minimized.

3 SKIPPIPE

In this section we present a novel approach to pipeline parallelism, employing skipping and swapping
to reduce the required resources and increase throughput without degrading the training performance
of LLMs. The goal is to find a viable partial pipeline schedule (paths of the microbatches) that
minimizes the overall training latency given the number of microbatches target.

Partial pipeline schedule Given a DP and PP arrangement of nodes (a graph) with communication
and computation limitations per link and node respectively, we find paths p1, p2... ∈ P (a sequence
of nodes) for each microbatch such that end-to-end time to execute all microbatches is minimized.
End-to-end time is the time for a single iteration between two data parallel rounds, including all PP
computations and communications. Each path pi travels a sequence of nodes from a starting node
back to itself (constituting forward and backward passes) where only k% of stages are skipped (and
no stages are repeated in the path). The ordering of nodes in the backward pass needs to be the same
as in the forward one. A path pi can be represented with respect to the stages (pi := Si1 , . . . , Sil) or
the nodes (pi := Ni1 , . . . , Nil) that it passes through, where l := (100− k)% of the stages.

3.1 GUIDELINE FOR PARTIAL PIPELINING SCHEDULER

Here, we explain our guideline for a partial pipeline scheduler that selects the paths for each micro-
batch through a motivation example. We present three convergence and two throughput constraints to
optimize the path selection. We derive the convergence constraints from our experimental results and
previous work and the throughput constraints are based on the hardware and network limitations.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Convergence Constraints. To study the effects of stage skipping and swapping on the LLM
convergence, we train a LLaMa-30M model (12 layers) divided in 6 stages with 2 layers each on
the TinyStories dataset with 5 microbatches of size of 32 samples in two sets of experiments. In
Figure 2 (a), we vary the selection of which stage to skip (for skipping percentage of 25%): random,
random with no skipping the first stage, and round robin with no skipping the first stage (skip each
intermediate stage equal number of times). By comparing the two random cases, we observe that the
first stage is more critical than other stages and should not be skipped. Similar effect is also observed
for larger transformer architectures (Bhojanapalli et al., 2021; Fan et al., 2020) and architectures with
residual connections (Veit et al., 2016). Additionally, when we compare the random and round-robin
cases, we see that convergence is better when each intermediate stage is skipped uniformly and
trained for an equal number of microbatches. Figure 2 (b) shows that swapping execution order of
two consecutive stages has negligible effect on the training loss, and swapping multiple stages or
stages that are not consecutive causes more degradation. Using these observations, we derive the
following Convergence Constraints for our path selection:

• CC1: A path pi never skips the first stage, i.e., Si1 = S0 ∀pi ∈ P .
• CC2: A path pi may run out of order at most two consecutive stages (1 swap), i.e., for a path
pi = Si1 , . . . , Sil , |ij − ij+1| ≤ 1 ∀j ∈ (1, l).

• CC3: Each stage Si (i ≥ 1) is skipped for an equal amount of paths.

Throughput Constraints. In standard pipeline training, the whole model is executed sequentially
and each node needs to receive activations of the microbatches from only one other node (the one
before it/after it) in the forward pass/backward pass. In other words, each node receives only one
microbatch to process at a time from each direction. However, as we introduce skips (and potentially
swaps) in execution, it is possible for a node to simultaneously receive two microbatches from two
different stages in the same direction, thus forcing the node to delay one of the microbatches. We
refer to such cases as collisions, which can significantly degrade the end-to-end latency of a batch.
To avoid collisions, we employ swaps to run stages out of order for a microbatch, thus utilising a
currently idle node to reduce instantaneous overutilisation of another.

In addition, because of the caching of the activations that is needed for the backward pass, the number
of active microbatches going through each node is limited by the memory of a node and denoted by
(m). Overall, we impose two Throughput Constraints:

• TC1: At most m paths can go through each node Ni.
• TC2: Minimize collisions by swapping the pipelining order.

Problem Formulation. We formalise the optimization problem of partial pipeline scheduler as
follows: For a given network of N nodes with bandwidth and latency matrices (B,Λ) and an LLM
model consisting of pipeline stages S, the number of microbatches M and limitation of active
microbatches m per device, the partial pipeline scheduler aims to find the paths P that minimizes the
maximum end-to-end latency across all microbatches of a given iteration:

P ← Scheduler(N ,B,Λ,S,M,m)

such that P := argminmaxE2E(pi)
P∈PALL, ∀pi∈P

with constraints CC1, CC2, CC3, TC1 and TC2

where E2E(·) is the end-to-end latency of a microbatch where the starting time of a microbatch
is also taken into account, and PALL is the set of all possible sets of paths. Forming the paths is
itself an NP-hard problem (as detailed in Section 3.3). We thus split the problem into two parts: first
allocation nodes in stages under a full pipeline schedule and then finding the partial pipeline schedule
for microbatches under the given node-to-stage mapping.

3.2 ALLOCATING NODES TO STAGES

For a given network of N nodes, cost matrices (B,Λ), and the pipeline stages S, the initial node
arrangement matches each node with a stage for standard full and sequential pipelining (no skips
or swaps). This problem is already analyzed for heterogeneous networks in DT-FM (Yuan et al.,
2022), solved through a two-phase optimiser: clustering of nodes for DP and then arrangement of
the connections for PP. DP clustering can be seen as graph partition problem where each cluster

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

corresponds to a stage and the partition cost is bounded by the slowest communication between
two nodes in the same stage. Then these clusters are ordered for PP, which can be represented as
an open-loop Traveling Salesman problem (Papadimitriou, 1977). This problem can be solved via
genetic algorithms as described in Yuan et al. (2022).

To allocate nodes to stages in SkipPipe, we modify the algorithm given in DT-FM for the un-
balanced cluster sizes. Following convergence constraints CC1 and CC3, the initial stage is never
skipped whereas all other stages are skipped equally, so that k% of the stages are skipped for each
microbatch. Assuming the nodes allocated in a stage is Si(n), we formulate the number of nodes per
stages with the following equation:

|Si(n)| = |S0(n)|
(
1− s

s− 1
· k

100

)
∀i ∈ (1, s). (1)

To balance the workload across stages, we allocate the nodes per stage using the ratio given above.
Thus, unlike DT-FM setting, we require more nodes in the first stage. With the optimised arrangement
of nodes in stages, we can look for paths through the system that would satisfy our constraints.

3.3 PARTIAL AND REORDERED PIPELINING

Once nodes are arranged into stages, we schedule the microbatches through the system by skipping
and reordering stages, which is the core of SkipPipe. It is important to note the difference between
a path and a microbatch. While a microbatch does travel down a path, multiple microbatches may
use the same path. For example, when a node completes a backwards pass for a given microbatch, it
can reuse the path it had just traversed, as it is the one that immediately has nodes with free memory.
Thus we find a set of paths for the first wave of microbatches and reuse them a number of times
during an iteration to meet the desired batch size.

Given our formulation, we model the problem as a continuous-time Multi Agent Path Finding (MAPF)
problem (Andreychuk et al., 2021). In such problems a number of agents with some starting location
must traverse a graph to reach their end goals. Thus, we reuse the graph of the node arrangement,
where the cost on each edge is the time to communicate one microbatch. Each agent represents
a microbatch which travels from a starting node in stage S0 to the same destination node while
passing s(100− k)/100 nodes in total. An agent can either wait at a node, move through the node
(computation), or move to a different node via the corresponding edge (communication). Each move
is associated with a given cost. In the continuous-time setting, actions do not take 1 unit of time, but
can be of arbitrary length. The problem has the additional constraints that no two agents can collide
(be on the same node at the same time). Thus, due to the nodes’ real physical limitations, we allow
traversal of only one agent at a time through a node (constraint TC2). To find a viable solution we
employ a modified version of the continuous-time Conflict-Based Search (CBS) (Andreychuk et al.,
2021) based on the changes described above.

The first four constraints (CC1, CC2, CC3, TC1) are merely about finding the paths, while constraint
TC2 deals with conflicts between two agents. CC1 and CC2 are individual constraints per agent
and thus can be solved by an A* search (Doran & Michie, 1966). We use A* (instead of the Safe
interval path planning used in Andreychuk et al. (2021)) that allows us to model the skips, swaps,
and the additional constraints better. However, CC3 and TC1 require inter-agent optimization as they
specify global constraints - limiting the number of agents that can go through a node per iteration.
This requires knowing all other agent’s paths, making an A* solver insufficient. We thus delegate
all constraints, apart from CC1 and CC2 to be resolved by CBS, with for CC3 and TC1 setting
a constraint that an agent cannot visit all nodes in a stage or a specific node respectively, from
(− inf, inf). However, this proves extremely costly for large graphs or large number of agents, as an
exponential number of possible solutions would need to be explored, before resolving TC2 constraints.
We thus approximate the optimal solution, by employing a heuristic idea: whenever possible we
exclude the slowest agents of each (starting) node from adding constraints as any additional constraint
would detrimentally affect the slowest path. First, we employ CBS to find a number of solutions
that satisfy CC1, CC2 and CC3 constraints.2 Then for these generated solutions we solve for TC1
constraints. Once no TC1 constraints are detected, TC2 constraints are checked. A constraint TC2 is

2We choose 32 solutions in our experiments, as this proved sufficient to find good solutions, without
expanding the subsequent search space too much.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

added for each relevant agent by specifying that they cannot visit the conflicting node for the duration
the other agent is traversing it.

3.4 PATH FINDING

Here we describe our path finding algorithm, the detailed steps of which can be found in Appx. C in
Algorithm 1. To find a set of paths satisfying the current constraints, we employ A* for each agent
with a time dimension. When an agent travels between two nodes, its time is increased by the time it
takes for a microbatch to travel down that link. Whenever an agent travels through a node, its time is
increased by the time the node takes to process a microbatch. If an agent is to visit a node and during
the processing time there is a constraint that prohibits the agent from being in that node, its time of
visiting the node is delayed to the end of constraint.

An agent must skip exactly k% of the stages. Thus when expanding a node, we do not consider the
starting node until this condition is met. When we visit again the starting node the time of a forward
and a backward pass, given all constraints, is estimated and the node is readded to the heap with that
cost and a special flag marking it as a potential final solution. When a node marked as a potential
solution is popped from the heap, it is returned as the current fastest path for that agent that satisfies
all current constraints.

Unlike traditional A* we do not make use of a visited set - we may consider a node during our search
multiple times. This is because how we expand the starting node in the A* search, may not be the
fastest way to do a forward + backward pass (which is why we re-add the starting node with the
special flag). When expanding an A* node, we exclude from the set of potential next nodes all nodes
that have been on that path or belong to a stage that has been visited. We may perform at most 1 swap
in the ordering of stages for a given path (CC2 constraint). Nodes that would go over this limit are
excluded from consideration.

3.5 THEORETICAL ANALYSIS OF SKIPPIPE

We base our analysis by relating the problem to that of Stochastic Depth (Huang et al., 2016), as
our method is similar to training in such manner with uniform survival chance per layer. Thus
convergence proof of SkipPipe is equivalent of the work of Hayou & Ayed (2021) demonstrating
that training with Stochastic Depth and survival chance of (pl := 100−k

100) with additional Gaussian
noise per input acts as a regularizer. This is formalised in the following theorem where δ is a binary
variable dictating if the given layer is used.

Theorem 3.1. (Hayou & Ayed, 2021) For input x, let yji be the activations of the j-th neuron before
the i-th layer, zl the activations after the l-th layer, layer l of N , pl = 100−k

100 , Xl,N = (δl−pl)µl,N (x),
with l ≤ i, µl,N (x) = ⟨zl,∇yl

yjl (x,1)⟩, and V arδ[Xl,N (x)] = pl(1− pl)µl,N (x)2, assume that:

• There exists a ∈ (0, 1
2) such that for all N and l ∈ N , pl ∈ (a, 1− a),

• limN→∞
maxk∈Nµk,N (x)∑

l∈N µl,N (x) = 0, i.e. no single layer dominates in the computation,

• v l
N ,∞(x) = limN→∞

∑N
l=1 V arδ[Xl,N (x)]

N exists and is finite.

Then, as limN→∞yjl (x, δ) ∼ yjl (x, p) +N (0, l
N v l

N ,∞(x))

The details of the proof are presented in Appendix F.

3.6 PERFORMANCE STABILIZATION

Based on the proof above, we can see that training with vanilla SkipPipe approximates training a
partial model. To improve the performance of the model in full-execution scenarios, we also added
occasional full-model training steps (i.e. steps where no skips or swaps are performed). Regarding the
frequency of the full-model training step, empirically we find that performing such a step once every
10 training steps (so 9 with skips and 1 full) yields good convergence results, without sacrificing the
throughput. In Appendix G.1 we present our experimental ablation study on this.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 EXPERIMENTAL RESULTS OF SKIPPIPE

We demonstrate that SkipPipe provides significant improvement in the iteration throughput and
provides faster convergence in terms of wall-clock time in geo-distributed settings. For all experiments
we do 1 full iteration every 10 iterations. All schedulers are limited to 1 swap per microbatch. For
throughput experiments, we investigate the speed up of our partial pipeline scheduler SkipPipe wrt.
the baseline SOTA schedulers on a LLaMa-1.5B model. For convergence results, we demonstrate two
types of training - pretraining from scratch (a LLaMa 500M model on the RedPajamas dataset (Weber
et al., 2024)) and supervised fine-tuning (a LLaMa 3.2 1B model on the Tulu dataset (Lambert et al.,
2024)), with different skip ratios. We observe that using SkipPipe, the models converge at the
same rate (with negligible difference in performance) but with a significantly higher throughput,
meaning that training converges much faster in wall-clock time.

4.1 THROUGHPUT

We evaluate the throughput improvement of SkipPipe by measuring the end to end time for
pipeline training of an iteration. We test a LLaMa-1.5B model distributed training (see Appendix A
for architecture details) with 3 different skipping ratios (0%, 25% and 33%) and different number of
nodes. We analyze the throughput with both simulated environment where we can control the network
delays and the real deployment. For the first case, we utilise H100 nodes and their communication
is simulated by the bandwidth and latency values given in DT-FM (Yuan et al., 2022). For the real
deployment, we rent T4 nodes on Google Cloud across 12 different locations and 5 continents.

4k Tokens 8k Tokens 16k Tokens
Tokens per microbatch

0

20

40

60

80

Ti
m

e
pe

r i
te

ra
tio

n
(s

)

18 nodes, 25% skip
DT-FM*
DT-FM-skip
SkipPipe (no TC2)
SkipPipe

(a) Heterogeneous simulated setup with 18 nodes
and 25% skip rate.

4k Tokens 8k Tokens 16k Tokens
Tokens per microbatch

0

25

50

75

100

125

150

175

200

Ti
m

e
pe

r i
te

ra
tio

n
(s

)

20 nodes, 33% skip
DT-FM*
DT-FM-skip
SkipPipe (no TC2)
SkipPipe

(b) Heterogeneous simulated setup with 20 nodes
and 33% skip rate.

Figure 3: Time per iteration of four schedulers with two skip percentages (25% and 33%) and three
token numbers (4K, 8K and 16K). DT-FM∗ representing the compensated results for the baseline with
no skips, DT-FM-skip uses node arrangement of DT-FM and skips k% with additional constraints
(see Appendix B.1), SkipPipe (no TC2) is our scheduler without TC2.

Simulation In Figure 3, we present the experimental results for two skip percentages (k :=25% and
33%) and 4 different schedulers. We compare our scheduler, SkipPipe, with (1) DT-FM: 0% skip
training using DT-FM scheduler, (2) DT-FM-skip: k% skip training using DT-FM scheduler with
additional constraints (see Appendix B.1), (3) SkipPipe (no TC2): k% skip training using our
scheduler SkipPipe where the collision constraint TC2 is ignored. We test with varying number of
microbatch sizes - of 1, 2 and 4, and use gradient accumulation for each. The time per iteration values
are averaged over 50 iterations. Since we optimise the schedule for a given node/stage allocation,
we measure the pipeline time and omit the data parallelism part where weight aggregation happens
because the aggregation time is the same for a fixed node/stage allocation regardless of the microbatch
paths. Finally, we perform one warm-up iteration where nodes discover each other.

In Figure 3a, we have the results for 25% skip case. We tested 4 stages with 18 nodes where the nodes
are distributed to the stages according to Equation 1: (6, 4, 4, 4), except the 0% skipping case used in
DT-FM baseline. To keep the node/stage sizes the same, for the DT-FM baseline, we use 16 nodes
where nodes are equally distributed (4, 4, 4, 4). To (over)compensate the baseline case using less
nodes, we project their performance by proportionally reducing the end-to-end latency. Specifically,
we multiply the latency of baseline by 16

18 , and these compensated latency results are represented by
DT-FM∗. Note that considering the communication of those additional nodes being ignored, this is a

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

lower bound of their performance. Here, SkipPipe achieves 35 − 45% improvement compared
to the baseline in the 8K and 16K tokens case. In Figure 3b, we have the results for 33% skip case
where we tested 6 stages with 20 nodes. Similarly to the above case, number of nodes per stage is
(5, 3, 3, 3, 3, 3), except the baseline, which is compensated by multiplying the corresponding latency
values with 18

20 . We observe that removal of collisions (TC2) provides a speedup of 10%, and all
constraints together yield to more than 45% speedup compared to DT-FM∗.

Real Deployment We test the throughput of SkipPipe in a real geo-distributed deployment
across 12 locations (see Appendix E for detailed results). We observe much higher speed up in our
deployment: 250% speed up relative to a DT-FM baseline. We attribute this greater speed up due to
the much higher variability in bandwidth between locations relative to the ones used in Yuan et al.
(2022). Additionally, as SkipPipe has lower memory consumption due to the skips, it can process
much higher number of microbatches in a single forward-backward wave. Thus, DT-FM needs more
forward-backward waves to reach the same batch size, incurring much higher time per iteration.
Furthermore, addition of skipping into DT-FM (DT-FM skip) does not optimize for collisions or
skips, thus being around 20% slower compared to our solution.

4.2 CONVERGENCE

Here we show that our scheduler SkipPipe does not degrade the convergence of the training
compared to the baseline. We verify this by training from scratch a LLaMa-500M on the RedPajamas
data (Weber et al., 2024) and finetuning LLaMa-1B model (Dubey et al., 2024) on the Tulu 3
dataset (Lambert et al., 2024) with three different skip rates - 0% (baseline), 25%, and 33% skips.

0.0 10000.0 20000.0 30000.0
Iteration

101

102

103

Va
lid

at
io

n
pe

rp
le

xi
ty

0%
25%
33%

(a) Training LLaMa-500M with RedPajamas.

0.0 5000.0
Iteration

0.7

0.8

0.9

1.0

1.1

Va
lid

at
io

n
Lo

ss

0%
25%

(b) Finetuning LLaMa-1B with Tulu 3 dataset.

Figure 4: Convergence of validation loss (of the full model) with 33%, 25% and 0% skip rates.

In Figure 4, we report the validation perplexity loss every 100th iteration by running the entire
model (regardless of the training schedule). Our experiments show that SkipPipe achieves similar
convergence to the baseline for both training (see Figure 4a) and finetuning (see Figure 4b), despite
training with a fraction of the model each time. Also, since SkipPipe has a much higher throughput,
convergence in terms of wall-clock time is significantly faster. We further evaluate the inference
perplexity of the final models on a few common common datasets in the first column of Table 1.
Similar to the convergence curves, we observe minimal negligible difference between the models
trained with SkipPipe and those without. We present inference performance of the 500M models in
the following section. Performance of the 1B finetuned models can be found in Appendix G.2.

4.3 FAULT TOLERANT INFERENCE

By training with SkipPipe, the models exhibit robust inference results even if some stages fail
(except the first one). We demonstrate this by evaluating the trained Llama-500M models (in Section
4.2) for various inference stage skip rates on Wikipedia (Computer, 2023), Gutenberg (pro), and
Stackexchange datasets (Computer, 2023). For each skip rate a corresponding number of stages is
dropped at random per sample.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Perplexity on several dataset across 1000 evaluation samples for various skip rates. The
inference/training skip rate shows the percentage of stages being skipped during inference/training.

Inf. skip rate 0% 25% 33% 50%
Training skip rate 0% 25% 33% 0% 25% 33% 0% 25% 33% 0% 25% 33%

Wikipedia ↓ 18.8 18.7 19.1 75.4 19.1 - 115 - 22.6 457.6 36.1 28.7
Gutenberg ↓ 26.8 27 27.6 143.8 28.3 - 214.3 - 35.3 488.1 53.7 45.9
Stackexchange ↓ 29.5 29.7 30.3 110 31 - 189.2 - 38.4 560 58.9 48.4

As seen in Table 1, our partial pipelining provides robustness against arbitrary stage removal during
inference time. Overall, we observe that for downstream task, our skip method provides similar
performance as a baseline schedule, as supported by the convergence graphs. Interestingly, when
executing only 75% of the model, our solution experiences less than 2% perplexity drop for models
trained with a 25% skip schedule. As these models are not instruction finetuned, we leave more
in-depth evaluation on downstream tasks as future work.

5 RELATED WORK

Efficient and Heterogeneity-aware Distributed Training. There have been several works to
improve (communication) efficiency of LLM training (Douillard et al., 2023; Peng et al., 2024;
Jaghouar et al., 2024) where they show that the communication overhead can be significantly reduced
by minimizing the synchronization for gradients in DP. Moreover, there are several heterogeneity-
aware scheduling methods (Yuan et al., 2022; Ryabinin et al., 2023; Park et al., 2020; Um et al.,
2024; Yan et al., 2024) proposing efficient DP and PP arrangement of the nodes to minimize the
communication overhead. Yet, pipelining is always done in a sequential execution of all layers (Huang
et al., 2019; Qi et al., 2024; Harlap et al., 2018; Park et al., 2020). To the best of our knowledge, no
prior work has studied the opportunity of optimizing for partial pipeline usage.

Skip Connections and Early Exit. Models employing skip connections have been known to
exhibit robustness to random layer omission and perturbation (Veit et al., 2016; Bhojanapalli et al.,
2021). Works such as Huang et al. (2016) demonstrated how larger models can be trained with less
resources, by skipping certain layers during training. LayerDrop (Fan et al., 2020) demonstrated
that models trained partially are more robust to layer omission during inference. Based on this work,
Layerskip (Elhoushi et al., 2024) proposed a novel training approach and loss function, which enabled
them to perform early exiting during inference - running only part of the model to generate tokens
and using the whole model only to verify their probability.

6 CONCLUSION AND FUTURE WORK

Training LLMs requires a significant number of GPUs and enormous training data. The have been
many works on communication and computation improvements for DP and PP methods aiming to
achieve a cost-effective training. Yet, existing PP methods are limited to the sequential execution of
the layers. In this paper we introduce a novel approach to partial and reordered pipeline parallelism,
SkipPipe, which allows stage skips and swaps of stages. Our experiments showed SkipPipe
achieves up to 50% throughput improvement without significantly affecting the convergence per
iteration. Due to resource limitations, we have tested with LLaMa-like models up to 1.5B parameters,
and we leave experiments with even larger models and different architectures as a future work.
Moreover, our partial training also produces models resistant to layer removals during inference,
which makes them suitable for early exit and fault tolerant inference. A LLaMa-500M model trained
with SkipPipe experiences a drop in perplexity of only 2% when skipping a quarter of the model.
As future work we aim to make use of this fault-tolerant inference for the purposes of early exiting.
Finally, while this paper focuses on the homogeneous nodes/ heterogeneous network, in future work,
we plan to extend our solution to the full heterogeneous setting where nodes can have different
memory and computational capacities.

4

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

We keep the code for the proposed SkipPipe and baselines on the following open sourced repository
anonymously: https://anonymous.4open.science/r/skippipe-43B2/. Our reposi-
tory contains the necessary scripts to execute the full training of foundational models on distributed
computing nodes, e.g., cloud nodes, from scratch.

8 ETHICAL STATEMENT

We conform to the ICLR code of ethics. Our work introduces an efficient manner of pretraining
and finetuning foundational model in geo-distributed networks, thus democratising access to LLM
training. We transparently report all findings and results to inform future research and applications.

We do not make use of LLMs for ideating or writing. LLMs were used for the purposes of this work
to train models and evaluate their performance and training time.

REFERENCES

Project gutenberg. https://huggingface.co/datasets/manu/project_gutenberg.
Accessed: 2025-08-11.

Anton Andreychuk, Konstantin S. Yakovlev, Eli Boyarski, and Roni Stern. Improving continuous-
time conflict based search. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event,
February 2-9, 2021, pp. 11220–11227. AAAI Press, 2021. doi: 10.1609/AAAI.V35I13.17338.
URL https://doi.org/10.1609/aaai.v35i13.17338.

Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, and An-
dreas Veit. Understanding robustness of transformers for image classification. In 2021 IEEE/CVF
International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October
10-17, 2021, pp. 10211–10221. IEEE, 2021. doi: 10.1109/ICCV48922.2021.01007. URL
https://doi.org/10.1109/ICCV48922.2021.01007.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin
(eds.), NeurIPS, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Together Computer. Redpajama: An open source recipe to reproduce llama training dataset, 2023.
URL https://github.com/togethercomputer/RedPajama-Data.

J. Doran and D. Michie. Experiments with the Graph Traverser Program. In Proc. of the Royal
Society, volume 294 Ser. A, 1966.

Arthur Douillard, Qixuang Feng, Andrei A. Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna
Kuncoro, Marc’Aurelio Ranzato, Arthur Szlam, and Jiajun Shen. Diloco: Distributed low-
communication training of language models. CoRR, abs/2311.08105, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron, Binh
Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell,
Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus

10

https://anonymous.4open.science/r/skippipe-43B2/
https://huggingface.co/datasets/manu/project_gutenberg
https://doi.org/10.1609/aaai.v35i13.17338
https://doi.org/10.1109/ICCV48922.2021.01007
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://github.com/togethercomputer/RedPajama-Data

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv
Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin,
Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Frank Zhang,
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme Nail, Grégoire Mialon, Guan
Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon
Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie
Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua
Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth
Heafield, Kevin Stone, and et al. The llama 3 herd of models. CoRR, abs/2407.21783, 2024. doi:
10.48550/ARXIV.2407.21783. URL https://doi.org/10.48550/arXiv.2407.21783.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen
Lai, Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, Ahmed A Aly, Beidi Chen,
and Carole-Jean Wu. Layerskip: Enabling early exit inference and self-speculative decoding. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok,
Thailand, August 11-16, 2024, pp. 12622–12642. Association for Computational Linguistics,
2024. doi: 10.18653/V1/2024.ACL-LONG.681. URL https://doi.org/10.18653/v1/
2024.acl-long.681.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand
with structured dropout. In 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https:
//openreview.net/forum?id=SylO2yStDr.

Wikimedia Foundation. Wikimedia downloads. URL https://dumps.wikimedia.org.

Aaron Harlap, Deepak Narayanan, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur, Gregory R.
Ganger, and Phillip B. Gibbons. Pipedream: Fast and efficient pipeline parallel DNN training.
CoRR, abs/1806.03377, 2018.

Soufiane Hayou and Fadhel Ayed. Regularization in resnet with stochastic depth. In Marc’Aurelio
Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.
15464–15474, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
82ba9d6eee3f026be339bb287651c3d8-Abstract.html.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks with
stochastic depth. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (eds.), Computer
Vision - ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands, October 11-14,
2016, Proceedings, Part IV, volume 9908 of Lecture Notes in Computer Science, pp. 646–661.
Springer, 2016. doi: 10.1007/978-3-319-46493-0_39. URL https://doi.org/10.1007/
978-3-319-46493-0_39.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Xu Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. Gpipe: Efficient training of giant
neural networks using pipeline parallelism. In NeurIPS, pp. 103–112, 2019.

Sami Jaghouar, Jack Min Ong, and Johannes Hagemann. Opendiloco: An open-source framework
for globally distributed low-communication training. CoRR, abs/2407.07852, 2024.

Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In Eduardo Blanco and Wei Lu (eds.),
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2018: System Demonstrations, Brussels, Belgium, October 31 - November 4, 2018, pp.
66–71. Association for Computational Linguistics, 2018. doi: 10.18653/V1/D18-2012. URL
https://doi.org/10.18653/v1/d18-2012.

11

https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.18653/v1/2024.acl-long.681
https://doi.org/10.18653/v1/2024.acl-long.681
https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=SylO2yStDr
https://dumps.wikimedia.org
https://proceedings.neurips.cc/paper/2021/hash/82ba9d6eee3f026be339bb287651c3d8-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/82ba9d6eee3f026be339bb287651c3d8-Abstract.html
https://doi.org/10.1007/978-3-319-46493-0_39
https://doi.org/10.1007/978-3-319-46493-0_39
https://doi.org/10.18653/v1/d18-2012

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria
Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca
Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tülu 3:
Pushing frontiers in open language model post-training. CoRR, abs/2411.15124, 2024. doi:
10.48550/ARXIV.2411.15124. URL https://doi.org/10.48550/arXiv.2411.15124.

Christos H. Papadimitriou. The euclidean travelling salesman problem is np-complete. Theo-
retical Computer Science, 4(3):237–244, 1977. ISSN 0304-3975. doi: https://doi.org/10.1016/
0304-3975(77)90012-3. URL https://www.sciencedirect.com/science/article/
pii/0304397577900123.

Jay H. Park, Gyeongchan Yun, Chang M. Yi, Nguyen T. Nguyen, Seungmin Lee, Jaesik Choi, Sam H.
Noh, and Young-ri Choi. Hetpipe: Enabling large DNN training on (whimpy) heterogeneous
GPU clusters through integration of pipelined model parallelism and data parallelism. In Ada
Gavrilovska and Erez Zadok (eds.), Proceedings of the 2020 USENIX Annual Technical Conference,
USENIX ATC 2020, July 15-17, 2020, pp. 307–321. USENIX Association, 2020. URL https:
//www.usenix.org/conference/atc20/presentation/park.

Bowen Peng, Jeffrey Quesnelle, and Diederik P Kingma. Decoupled momentum optimization. arXiv
preprint arXiv:2411.19870, 2024.

Penghui Qi, Xinyi Wan, Guangxing Huang, and Min Lin. Zero bubble (almost) pipeline parallelism.
In The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
tuzTN0eIO5.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training, 2018.

Max Ryabinin, Tim Dettmers, Michael Diskin, and Alexander Borzunov. SWARM parallelism:
Training large models can be surprisingly communication-efficient. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.),
International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii,
USA, volume 202 of Proceedings of Machine Learning Research, pp. 29416–29440. PMLR, 2023.
URL https://proceedings.mlr.press/v202/ryabinin23a.html.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
CoRR, abs/1909.08053, 2019. URL http://arxiv.org/abs/1909.08053.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. CoRR, abs/2302.13971, 2023. doi: 10.48550/ARXIV.2302.13971. URL https:
//doi.org/10.48550/arXiv.2302.13971.

Taegeon Um, Byungsoo Oh, Minyoung Kang, Woo-Yeon Lee, Goeun Kim, Dongseob Kim, Young-
taek Kim, Mohd Muzzammil, and Myeongjae Jeon. Metis: Fast automatic distributed training on
heterogeneous gpus. In USENIX ATC, pp. 563–578. USENIX Association, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pp. 5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Andreas Veit, Michael J. Wilber, and Serge J. Belongie. Residual networks behave like ensembles of
relatively shallow networks. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle
Guyon, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 29: Annual

12

https://doi.org/10.48550/arXiv.2411.15124
https://www.sciencedirect.com/science/article/pii/0304397577900123
https://www.sciencedirect.com/science/article/pii/0304397577900123
https://www.usenix.org/conference/atc20/presentation/park
https://www.usenix.org/conference/atc20/presentation/park
https://openreview.net/forum?id=tuzTN0eIO5
https://openreview.net/forum?id=tuzTN0eIO5
https://proceedings.mlr.press/v202/ryabinin23a.html
http://arxiv.org/abs/1909.08053
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, pp. 550–558, 2016. URL https://proceedings.neurips.cc/paper/2016/
hash/37bc2f75bf1bcfe8450a1a41c200364c-Abstract.html.

Maurice Weber, Daniel Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov,
Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, Ben Athiwaratkun, Rahul Cha-
lamala, Kezhen Chen, Max Ryabinin, Tri Dao, Percy Liang, Christopher Ré, Irina Rish, and
Ce Zhang. Redpajama: an open dataset for training large language models, 2024. URL
https://arxiv.org/abs/2411.12372.

Ran Yan, Youhe Jiang, Wangcheng Tao, Xiaonan Nie, Bin Cui, and Binhang Yuan. Flashflex: Accom-
modating large language model training over heterogeneous environment. CoRR, abs/2409.01143,
2024.

Binhang Yuan, Yongjun He, Jared Davis, Tianyi Zhang, Tri Dao, Beidi Chen, Percy Liang, Christopher
Ré, and Ce Zhang. Decentralized training of foundation models in heterogeneous environments.
In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
a37d615b61f999a5fa276adb14643476-Abstract-Conference.html.

13

https://proceedings.neurips.cc/paper/2016/hash/37bc2f75bf1bcfe8450a1a41c200364c-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/37bc2f75bf1bcfe8450a1a41c200364c-Abstract.html
https://arxiv.org/abs/2411.12372
http://papers.nips.cc/paper_files/paper/2022/hash/a37d615b61f999a5fa276adb14643476-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/a37d615b61f999a5fa276adb14643476-Abstract-Conference.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A MODEL CONFIGURATIONS

We perform all our experiments with LLaMa-based Touvron et al. (2023) model architectures with
the Sentence Piece Tokenizer Kudo & Richardson (2018). The different models and their parameters
are shown in Table 2.

Table 2: Model parameters.

Model Dim Heads Layers Context

LLaMa 50M 288 6 12 256
LLaMa 500M 1024 16 24 1024
LLaMa 1.5B Elhoushi et al. (2024) 2048 16 24 4096
LLaMa-3 1B Dubey et al. (2024) 2048 32 16 8192

B TEST CONFIGURATIONS

Configurations of the throughput tests are presented in Table 3. Stage sizes for the 33% case are
(5,3,3,3,3,3) (6 stages, 5 of size 3 and 1 of size 5), and for the 25% case - (6,4,4,4) (4 stages, 3 of size
4, 1 of size 6).

For the convergence test, 8 samples per microbatch were used, with a total batch size of 500k tokens.
Learning rate was set to 4× 10−4 and gradient norms were clipped to 1.0.

B.1 DT-FM-SKIP PATH SELECTION

Here we explain how the DT-FM-skip is determined. We choose paths that satisfy constraints CC1 in
an optimised arrangement of nodes in stages. DT-FM-skip serves as a skip baseline which is mainly
optimised for the initial node arrangement, but not necessarily for the partial microbatch paths.

In order to keep comparison fair, we chose to satisfy constraints TC1, as otherwise delays will be
introduced on nodes whose memory is exceeded, as it will need to wait for a backwards pass to come
through, before it can continue with this forward pass. Due to this, and our experiment setups, we
also inadvertently would satisfy constraints CC3. Thus the algorithm for determining the paths for
this baseline is identical to that of the non-collision aware one, except that the computation time of
each node and communication time between nodes is set to 1. Thus the algorithm does not optimise
for fastest paths or TC2 constraints.

C DETAILED PATH SELECTION ALGORITHM

In Algorithm 1 we present the steps of our path selection function.

D POSSIBLE EXTENSIONS OF OUR ALGORITHM

D.1 PATH COARSENING

Here we also present an alternative path finding method based on path coarsening that finds solutions
faster, but they may be sub-optimal. The reason for the sub-optimality is that it may increase idle
time on devices. However, in a strictly homogeneous device memory setting, it can ignore TC2
constraints. Thus, it is best suited for large systems of nodes with equal memory capabilities, where
an exact solution may be too costly to compute and due to the homogeneity of the system, most
quality solutions will have similar throughput.

Here we make use of path coarsening - grouping multiple paths into one meta-agent. Meta-agents
traverse a node sequentially, without interruption, and take the total amount of execution time of all

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 3: Test settings.

Skip Path finding World
size

Samples
per MB

Batch size
(tokens)

0% DTFM Yuan et al. (2022) 18→ 20a 1 184K
0% DTFM Yuan et al. (2022) 18→ 20a 2 368K
0% DTFM Yuan et al. (2022) 18→ 20a 4 737K
33% DT-FM-skip 20 1 184K
33% DT-FM-skip 20 2 368K
33% DT-FM-skip 20 4 737K
33% non-collision aware 20 1 184K
33% non-collision aware 20 2 368K
33% non-collision aware 20 4 737K
33% collision aware 20 1 184K
33% collision aware 20 2 368K
33% collision aware 20 4 737K
0% DTFM Yuan et al. (2022) 16→ 18b 1 147K
0% DTFM Yuan et al. (2022) 16→ 18b 2 294K
0% DTFM Yuan et al. (2022) 16→ 18b 4 589K
25% DT-FM-skip 18 1 147K
25% DT-FM-skip 18 2 294K
25% DT-FM-skip 18 4 589K
25% non-collision aware 18 1 147K
25% non-collision aware 18 2 294K
25% non-collision aware 18 4 589K
25% collision aware 18 1 147K
25% collision aware 18 2 294K
25% collision aware 18 4 589K
a In 33% skip experiment, we use 6 stages with (5, 3, 3, 3, 3, 3) nodes. DT-FM

0% skip does not use extra nodes in the first stage (as all stages are used equally).
To (over)compensate them using less nodes (while keeping the stage sizes the
same), we project their performance by linearly reducing the latency accordingly.
In other words, if an iteration of DT-FM case takes 20sn with 18 nodes, we
assume it would take 18sn with 20 nodes. Considering the communication of
those additional nodes being ignored, this is upper bound of their performance.

b Same with above except in 25% skip experiment, we use 4 stages with (6, 4, 4, 4)
nodes. Therefore, 16 nodes are projected to 18 nodes.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 1 Path Selection Function.

Require: S, k%, G - initial node/stage arrangement
Ensure: P

1: O ← ∅
2: Tconstraints ← ∅
3: Assign S0 to the first stage of Tpaths

4: Tpaths ← find paths via A*(G,Tconstraints)
5: Order Tpaths by their time to complete in ascending order
6: Tcost ← time for slowest agent to complete route
7: Insert T into Open
8: while |O| < 32 do
9: T ← best solution from Open

10: Check for Si in T which has more than |S|k% agents going through other than S0

11: if conflict then
12: K ← number of agents going through Si

13: Solution← new node
14: Solutionconstraints ← Tconstraints

15: for each Dm ∈ Si do
16: for each of the K − |P|k% fastest paths p ∈ P going through Si do
17: Solutionconstraints ← Solutionconstraints + (p,− inf, inf,Dm)
18: end for
19: end for
20: Solutionpaths ← find paths via A*(G,Solutionconstraints)
21: Order Solutionpaths by their time to complete in ascending order
22: Solutioncost ← time for slowest agent to complete route
23: Insert Solution into Open
24: else
25: O ← O ∪ T
26: end if
27: end while
28: while O is not empty do
29: T ← best solution from O
30: Check for conflicts TC1 or TC2 in T
31: if conflict of type TC1 then
32: Dk would be the node, whose m is exceeded as per TC1
33: K the paths that go through Dm

34: Solution← new node
35: for each of the K −m fastest paths p ∈ P going through Dk do
36: Solutionconstraints ← Solutionconstraints + (p,− inf, inf,Dk)
37: end for
38: Solutionpaths ← find paths via A*(G,Solutionconstraints)
39: Order Solutionpaths by their time to complete in ascending order
40: Solutioncost ← time for slowest agent to complete route
41: Insert Solution into O
42: else if conflict of type TC2 then
43: Two paths, pi and pj collide on Dk. Each of them is at the node during the intervals ts,i, te,i and

ts,j , te,j , respectively
44: Solution← new node
45: if E2E(pi) > E2E(pj) or |E2E(pj)− E2E(pj)| < δ then
46: Solutionconstraints ← Tconstraints + (pj , ts,i, te,i, Dk)
47: end if
48: if E2E(pi) < E2E(pj) or |E2E(pj)− E2E(pj)| < δ then
49: Solutionconstraints ← Tconstraints + (pi, ts,j , te,j , Dk)
50: end if
51: Solutionpaths ← find paths via A*(G,Solutionconstraints)
52: Order Solutionpaths by their time to complete in ascending order
53: Solutioncost ← time for slowest agent to complete route
54: Insert Solution into O
55: else
56: Return P ← Tpaths

57: end if
58: end while
59: Return ∅

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

the microbatches in the meta-agent. Meta-agents thus become 2-dimensional objects, rather than the
point-agents we were considering prior. The downside is that in heterogeneous environments, meta-
agents might become more stretched out or mode condensed as they traverse the system. Consider
three nodes arranged as A-B-C, taking time to process a microbatch of respectively 1, 2, and 1
seconds. communication between them is 1 second per microbatch. Initially, a meta-agent of 2
microbatches, would have a size of 2 seconds at node A. At node B, due to its delay of processing,
the agent will be resized to size of 4, even though the subsequent node would have a gap of 1 second
where it would be idle between the two microbatches. However, with meta-agents with multiple
paths this level of detail is lost in favour of faster solutions. The best benefit of path coarsening is in a
fully homogeneous node setting - equal processing time and equal memory for each. In such a setting
we can create meta-agents with number of microbatches in them equal to the memory of the nodes.
When finding the solution, all meta-agents will have mutually exclusive paths, thus no collisions need
to be considered. Proving the optimality of such a solution is beyond the scope of the paper.

In fact our solution has already made use of a degree of coarsening, as we optimise only the first
forward pass in an iteration. It is possible to find an even better solution across where no path is
reused by microbatches, however, due to the difficulty of finding such a solution even for a small
world and small number of agents, we have not performed further analysis.

D.2 MULTIPLE SWAPS

It is possible to increase the number of swaps by introducing some linear penalty for paths that have
swaps more than the desired amount, as a higher number of swaps hampers convergence, but may
increase throughput. It is also possible to define an additional constraint that sets a maximum number
of swaps across all paths, which would be delegated to CBS to resolve like constraint CC3, e.g. at
most |P| swaps across all paths. This would however greatly increase the time to find a quality
solution.

E GOOGLE CLOUD INTER-LOCATION TESTS

In this section we repeat the 33% experiment in Section 4.1, however instead of simulating the delays
and bandwidths, we rent 20 T4 nodes on Google Cloud across 12 different locations and 5 different
continents. The bandwidth between the locations is provided in Fig. 6. These were measured between
locations for 5 minutes of traffic. Bandwidth is given in GB/s.

We present our findings in Fig. 5. Compared to the DT-FM baseline, SkipPipe achieves almost 250%
speed up, which is much higher than our simulation results. We attribute this greater speed up due to
the much higher variability in bandwidth between locations relative to the ones used in Yuan et al.
(2022). Additionally, as SkipPipe has lower memory consumption due to the skips, it can process
much higher number of microbatches in a single forward-backward wave. Thus, DT-FM needs more
forward-backward waves to reach the same batch size. In comparison to DT-FM skip and SkipPipe
(no TC2), we see similar results as in our simulated ones where SkipPipe is 10-15% faster than with
no TC2 case and 35% faster than DT-FM skip case.

F CONVERGENCE PROOF

The theorem and proof are almost verbatim replicas of the ones given in Hayou & Ayed (2021). Here,
we repeat them with our notation for the sake of completeness.

We define a residual model of N layers as WN = (I + δnFn).. ◦ (I + δ1F1) where each δ is either 0
or 1, thus describing whether the given layer is used or not. The δ∗ vector terms all δ values, i.e. the
mask describing which layer/stage is used. A mask of 1 would mean that every layer is used.

For input x, let yjl be the activations of the j-th neuron before the l-th layer, and zl be the activation
output after the l-th layer. A neuron’s pre-activations can be approximated via first order Taylor
expansion around δ∗ = 1 as:

yji (x, δ
∗) ≈ yji (x, 1)+

1
N

∑i
l=1(pl−1)⟨zl,∇yl

yjl (x,1)⟩+
1√
N

∑i
l=1(δl−pl)⟨zl,∇yl

yjl (x,1)⟩. Let’s

term µl,N (x) = ⟨zl,∇yl
yjl (x,1)⟩, X1

l,N (x) = (pl − 1)µl,N (x) and X2
l,N (x) = (δl − pl)µl,N (x).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 5: Real deployment with 20 nodes and 33% skip rate (8k tokens).

Theorem F.1. Hayou & Ayed (2021) For input x, let yji be the activations of the j-th neuron before the
i-th layer, zl the activations after the l-th layer, layer l of N , pl = 100−k

100 , Xl,N = (δl − pl)µl,N (x),
with l ≤ i, µl,N (x) = ⟨zl,∇yl

yjl (x,1)⟩, and V arδ[Xl,N (x)] = pl(1− pl)µl,N (x)2, assume that:

• There exists a ∈ (0, 1
2) such that for all N and l ∈ N , pl ∈ (a, 1− a),

• limN→∞
maxk∈Nµk,N (x)∑

l∈N µl,N (x) = 0, i.e. no single layer dominates in the computation,

• v l
N ,∞(x) = limN→∞

∑N
l=1 V arδ[Xl,N (x)]

N exists and is finite.

Then, as limN→∞yjl (x, δ) ∼ yjl (x, p) +N (0, l
N v l

N ,∞(x))

The second assumption holds in practice, as otherwise it would imply a high degree of possible
pruning of layers. Additionally, Hayou & Ayed (2021) demonstrate that it holds for ResNet.

If it is shown that limN→∞
1√
N

∑
X2

l,N (x)→ N (0, l
N v l

N ,∞(x)), then it implies that the last term
mimics input-dependent gaussian noise.

In Theorem 3 and Lemma A4 of Hayou & Ayed (2021), it is shown that limn→∞
1
sn

∑
(Xn,i −

µn,i) = N (0, 1) and limn→∞
1
s2n

∑
E[(Xl,N)21{|Xl,N |>ϵsn}] = 0.

Using these results, it can be seen that limN→∞
∑

X2
l,N (x) → N (0, 1), which leads to

limN→∞
1√
N

∑
X2

l,N (x)→ N (0, l
N v l

N ,∞(x)).

The first half of the equation is equivalent to (as per Hayou & Ayed (2021)): yji (x, 1) +X1
l,N (x) =

yji (x, 1) + (pl − 1)µl,N (x) ∼ yji (x,p) i.e. the average resulting network of training with skipping.

G FURTHER EXPERIMENTAL RESULTS

G.1 TRAINING STABILIZATION

Here we study how vanilla SkipPipe (without occasional full-model executions) affect the convergence.
We study this on LLaMa 500M trained for 35k steps in 4 different settings - full model execution, every

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 6: Bandwidths between the 12 different Google cluster locations

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 4: Finetuned model evaluation results. For all higher is better. All results represent percentage
of correct questions solved

Task Baseline SkipPipe 25%

BoolQ ↑ 65.7% 66%
HellaSwag ↑ 55.4% 52.6%
OpenBookQA ↑ 36.2% 33.8%
ARC-easy ↑ 63.3% 56.4%
GSM8k ↑ 9.7% 5.9%

5th step doing a full model execution otherwise skipping 33% of stages, every 9th step performing a
full model, and a vanilla SkipPipe schedule, where no full model executions are performed. We see
the results of this experiment in Fig. 7. There is a noticeable gap in perplexity between the vanilla
schedule and the full model one. However, performing a full model run every 9th step drastically
diminishes this gap. We observe no added benefit if we perform this every 4th step.

0.0 10000.0 20000.0 30000.0
Iteration

101

102

103

Va
lid

at
io

n
pe

rp
le

xi
ty

Baseline
33%
33% 4:1
33% 9:1

Figure 7: Comparison of different schedules for training and their effect on convergence.

G.2 FINETUNED MODELS EVALUATION

We evaluate the two finetuned LLaMa 1B models on several common evaluation benchmarks. We
make use of multiple choice ones: HellaSwag, ARC-easy, BoolQ, OpenBookQA; and one open
ended: GSM8k. The results are presented in Table 4. While here the finetuned model with SkipPipe
has a noticeable drop in performance, this is partially due to the fact that this was a model pretrained
without skips, ergo the first few hundred iterations of finetuning were primarily spent learning these
shorter paths.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

G.3 INFERENCE PERFORMANCE OF LLAMA-7B

Here we reaffirm our findings from Section 3.1 in the context of Large Language Models used in
practice. While training billion parameter models is too expensive, here we focus on the inference
case to confirm some of our previous findings. To such an end, we conduct an empirical performance
study on skipping layers during inference on training a LLaMa-7B model Touvron et al. (2023),
on the WikiPedia dataset Foundation. We consider four layer skipping strategies: (i) 0% skipping
running the entire model end to end, (ii) 25% random skipping, (iii) 50% of random skipping, and (iv)
0% skipping and swapping the order of two chunks of size 4. We also repeat these four strategies by
fixing the first four layer (they never get skipped or swapped). We summarize their loss in figure Fig.
8. Additionally, we demonstrate in the same setting the effect on inference of skipping any arbitrary
stage in the LLaMa-7B model Touvron et al. (2023) during inference in 9.

Full model 75% model 50% model Chunk Swap

2

4

6

8

10

Va
lid

at
io

n
lo

ss

Full model 75% model 50% model Chunk Swap

2

3

4

5

6

Va
lid

at
io

n
lo

ss

(a) Fully random skipping. (b) Fixed first four layers.

Figure 8: The validation loss of LLaMa-7B under % of random skipping in pipeline training.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Layer Skipped

0

1

2

3

4

5

6

7

8

Va
lid

at
io

n
Lo

ss

Full Model
Loss with layer skipped

Figure 9: Validation loss when a given layer is skipped.

21

	Introduction
	System Setting
	SkipPipe
	Guideline for Partial Pipelining Scheduler
	 Allocating Nodes to Stages
	Partial and Reordered Pipelining
	Path finding
	Theoretical analysis of SkipPipe
	Performance stabilization

	Experimental Results of SkipPipe
	Throughput
	Convergence
	Fault tolerant inference

	Related work
	Conclusion and Future Work
	Reproducibility statement
	Ethical Statement
	Model Configurations
	Test Configurations
	DT-FM-skip path selection

	Detailed Path Selection Algorithm
	Possible Extensions of Our Algorithm
	Path Coarsening
	Multiple Swaps

	Google Cloud inter-location tests
	Convergence Proof
	Further Experimental Results
	Training stabilization
	Finetuned Models Evaluation
	Inference performance of LLama-7B

