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Abstract
In this paper, we consider how to conduct statisti-
cal inference in a high-dimensional linear model
where the response variable has missing values.
Motivated by the fact that the missingness mech-
anism, albeit usually regarded as a nuisance, is
largely unknown and difficult to specify, we adopt
the conditional likelihood approach such that this
nuisance can be completely ignored in our pro-
cedure. We establish the asymptotic theory of
the proposed estimate and develop an easy-to-
implement algorithm via some data manipulation
strategy. Furthermore, we propose a data pertur-
bation method for the variance estimation. The
proposed methodology has broad potential for
application in patient-reported outcomes or elec-
tronic health records. Although we do not have
space to present our numerical results in this four-
page extended abstract, we will definitely do so
at the workshop if it is selected.

1. Introduction
A major step to achieve scientific discovery is to identify
useful associations among different features and to quantify
their uncertainties. This usually warrants building a regres-
sion model between an outcome variable and a set of covari-
ates and estimating the coefficient as well as the precision of
the estimate. Besides the traditional low-dimensional setting
with a fixed and much smaller (than the sample size) dimen-
sionality of the parameter, the modern high-dimensional
regression usually posits a sparse parameter of interest and
the well-studied regularization technique is frequently used
to recover the sparsity.

In this paper, we analyze the high-dimensional setting, al-
though the primary challenging difficulty we aim to address
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is the missing data issue, an inevitable concern in various
disciplines ranging from biomedicine to social science. In
the literature, the validity of a statistical method devised
for missing data usually heavily depends on the assumption
postulated on the so-called missingness mechanism (Little
& Rubin, 2002); however, those assumptions are hard, if not
infeasible, to be empirically verified. Due to the fact that the
missingness mechanism is largely unknown and practically
difficult to specify in applications, and that the occurrence
of missing data is usually not the investigator’s primary in-
terest but complicates the statistical analysis, it is sensible
to mainly study the regression model for the outcome while
regarding the mechanism model as a nuisance and imposing
a flexible assumption at the minimum level such that the
protection to its model misspecification can be attained at
the maximum level.

Therefore, we adopt a semiparametric framework consist-
ing of a parametric regression, e.g., a linear model, for
the outcome where the statistical task is to estimate the
unknown parameter, perform variable selection and con-
duct post-selection inference, and a nonparametric and un-
known nuisance for the missingness mechanism. Yet, this
framework is not readily identifiable. In the past few years,
statisticians have made great effort to advance the study of
model identification by introducing a so-called instrument.
The instrument could be a shadow variable (Shao & Zhao,
2013; Wang et al., 2014; Zhao & Shao, 2015; Miao & Tch-
etgen Tchetgen, 2016; Zhao & Ma, 2018; Miao et al., 2019)
or an instrumental variable (Tchetgen Tchetgen & Wirth,
2017; Sun et al., 2018). Both approaches are reasonable
and are suitable for different applications. We adopt the
shadow variable approach in this paper primarily by virtue
of the transparency of the regression model for the out-
come. The details of the shadow variable will be presented
in Section 2, but to be concise here, the shadow variable
Z is simply one component of the covariate X: it could be
multi-dimensional but we only discuss the one-dimensional
case for the sake of maximum flexibility of the missingness
mechanism. Based upon the existence of the shadow vari-
able, we consider a conditional likelihood approach which
will result in a nuisance-free procedure for estimation as
well as for statistical inference.
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Besides, there are two other features that are worth men-
tioning. The first is about our algorithm and computation.
Although the conditional likelihood function we use looks
complicated at first sight, through some data manipulation
strategy, it can be analytically written as the likelihood of a
conventional logistic regression with some prespecified for-
mat. Hence, our objective function can be readily optimized
by many existing software packages; this greatly alleviates
the computational burden of our procedure. Second, we
provide both parameter estimation and variance estimation
under high-dimensionality where we establish the so-called
oracle property of the parameter estimate and also provide
an easy-to-implement data-driven method for the variance
estimation via a data perturbation technique.

2. Methodology
Denote the outcome variable Y and covariate X. We as-
sume X = (U

T

, Z)
T

where U is p-dimensional and Z is
univariate, with detailed interpretation later. In this paper,
we consider the linear model

Y = α+ β
T

U + γZ + ε, (1)

where β is also p-dimensional, α and γ are scalars and
γ 6= 0, ε ∼ N(0, σ2). We consider the situation that Y has
missing values while X is fully observed. We introduce
a binary variable R to indicate missingness: R = 1 if Y
is observed and R = 0 if missing. To allow the greatest
flexibility of the missingness mechanism model, we assume

pr(R = 1 | Y,X) = pr(R = 1 | Y,U) = s(Y,U), (2)

where s(·) merely represents an unknown and unspecified
function not depending on Z. We reiterate that, since the
assumption (2), in a nonparametric fashion, does not specify
a concrete form of s(·), one does not need to be worrisome
of the mechanism model misspecification. Also, since it
allows the dependence on Y , besides missing-completely-at-
random (MCAR) and many scenarios of missing-at-random
(MAR), the assumption (2) also contains various situations
of missing-not-at-random (MNAR).

We term Z the shadow variable following the work of (Miao
& Tchetgen Tchetgen, 2016; Zhao & Ma, 2018; Miao et al.,
2019; Zhao & Ma, 2019). Its existence depends on whether
it is sensible that Z and R are conditionally independent
(given Y and U) and that Y heavily relies on Z (γ 6= 0).
There are many examples in the literature documenting
that the existence of Z is clinically sensible. Practically,
a surrogate or a proxy of the outcome variable Y , which
should not concurrently affect the missingness mechanism,
might be a good choice for the shadow variable Z.

We assume independent and identically distributed observa-
tions {ri, yi,ui, zi} for i = 1, ..., N and the first n subjects

are free of missing data. Now we present a s(y,u)-free
procedure via the use of the conditional likelihood.

Denote V = (Y,U
T

)
T

. We start with

n∏
i=1

p(vi | zi, ri = 1) =

n∏
i=1

s(vi)

g(zi)
p(vi | zi), (3)

where g(zi) = pr(ri = 1 | zi) =
∫

pr(ri = 1 | v)p(v |
zi)dv and p(· | ·) is a generic notation for conditional
probability density/mass function. If V were univariate,
we denoteR as the rank statistic of {v1, ..., vn}, then

n∏
i=1

p(vi | zi, ri = 1)

= p(v1, ..., vn | z1, ..., zn, r1 = · · · = rn = 1)

= p(v(1), ..., v(n),R | z1, ..., zn, r1 = · · · = rn = 1)

= p(R | v(1), ..., v(n), z1, ..., zn, r1 = · · · = rn = 1)

×p(v(1), ..., v(n) | z1, ..., zn, r1 = · · · = rn = 1).(4)

The conditional likelihood that we use, the first term on the
right hand side of (4), is exactly

p(R | v(1), ..., v(n), z1, ..., zn, r1 = · · · = rn = 1)

=
p(v1, ..., vn | z1, ..., zn, r1 = · · · = rn = 1)

p(v(1), ..., v(n) | z1, ..., zn, r1 = · · · = rn = 1)

=

∏n
i=1 p(vi | zi, ri = 1)

Σω∈Ω

∏n
i=1 p(vω(i) | zi, ri = 1)

=

∏n
i=1 p(vi | zi)

Σω∈Ω

∏n
i=1 p(vω(i) | zi)

, (5)

where Ω represents the collection of all one-to-one map-
pings from {1, ..., n} to {1, ..., n}. Now (5) is nuisance-
free and can be used to estimate the unknown parameters in
p(vi | zi).

Although V is multi-dimensional in our case, the idea pre-
sented above can still be applied and it leads to∏n

i=1 p(yi,ui | zi, ri = 1)

Σω∈Ω

∏n
i=1 p(yω(i),uω(i) | zi, ri = 1)

=

∏n
i=1 p(yi,ui | zi)

Σω∈Ω

∏n
i=1 p(yω(i),uω(i) | zi)

. (6)

Furthermore, to simplify the computation, we adopt the
pairwise fashion of (6) following the previous discussion in
(Liang & Qin, 2000), which results

∏
1≤i<j≤n

p(yi,ui | zi)p(yj ,uj | zj)
p(yi,ui | zi)p(yj ,uj | zj) + p(yi,ui | zj)p(yj ,uj | zi)

.

After plugging in the model (1) and some algebra, the
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objective eventually becomes to minimize

L(θ) =

(
N

2

)−1 ∑
1≤i<j≤N

φij(θ) (7)

=

(
N

2

)−1 ∑
1≤i<j≤N

rirj log{1 +Wij exp(θ
T

dij)},

where θ = (γ̃, β̃
T

)
T

, γ̃ = γ/σ2, β̃ = γ̃β, dij =

(−yi\jzi\j ,u
T

i\jzi\j)
T

, yi\j = yi − yj , ui\j = ui − uj ,
zi\j = zi − zj and

Wij =
p(zi | uj)p(zj | ui)
p(zi | ui)p(zj | uj)

. (8)

Denote the minimizer of (7) as θ̂. By checking that ∂
2φij(θ)

∂θ∂θT ,
equaling to

rirj{1 +Wij exp(θ
T

dij)}−2Wij exp(θ
T

dij)dijd
T

ij ,

is positive definite, the Hessian matrix is also positive defi-
nite, hence θ̂ uniquely exists. To compute θ̂, one also needs
a model for Wij . Fortunately, this model only depends
on fully observed data xi and xj . Essentially any existing
parametric, semiparametric or nonparametric modeling tech-
niques for p(z | u) can be used, and Wij can be estimated
accordingly. Throughout, we denote Ŵij as an available
well-behaved estimator of Wij .

One can notice that, due to the assumption (2) which allows
the greatest flexibility of the mechanism model and the
adoption of the conditional likelihood, not all parameters
α, β, γ and σ2 are estimable. Nevertheless, the parameter
β, which quantifies the association between Y and U, is of
primarily scientific interest and can be fully estimable. Our
following paper focuses on the estimation and inference of
β, as well as the variable selection procedure based on β.

In the past two decades, it has become a standard practice to
consider the so-called high-dimensional setting where one
usually assumes that β is sparse. While it is a prominent
problem to consider the variable selection and post-selection
inference when the data set is prone to missing values (Zhao
et al., 2018; Yang et al., 2019; Jiang et al., 2020), the lit-
erature is quite scarce primarily because the treatment of
missingness mechanism under high-dimensionality is cum-
bersome. In this paper, based on the idea presented above,
we address the parameter estimation, variable selection and
post-selection problems under model (1).

3. Computation
Directly minimizing L(θ) is feasible; however, it is very
computationally challenging. From re-arranging the terms

in L(θ), we realize that it can be rewritten as the negative
log-likelihood function of a standard logistic regression
model. To be more specific, let k be the index of pair (i, j)
with k = 1, ...,K and K =

(
n
2

)
. Then

L(θ) =
1

K

K∑
k=1

log
{

1 + exp
(
skθ

T

tk + log Ŵk

)}
, (9)

where sk = −sign(zi\j), tk = (|zi\j |yi\j ,−|zi\j |u
T

i\j)
T

.
Denote gk = I{zi\j > 0}, then one can show that the sum-

mand in (9), log
{

1 + exp
(
skθ

T

tk + log Ŵk

)}
, equals,

−
[
gk
(
θ

T

tk + sk log Ŵk

)
− log

{
1 + exp

(
θ

T

tk + sk log Ŵk

)}]
,

which is the contribution of the k-th subject to the neg-
ative log-likelihood function of a logistic regression with
gk be the response, θ be the coefficients, tk be the covari-
ate, sk log Ŵk be the offset term, and there is no intercept.
Therefore, θ̂ can be obtained by fitting the aforementioned
logistic regression.

Regularization is a powerful technique to identify the zero
elements of a sparse parameter in a regression model. Var-
ious penalty functions have been extensively studied such
as LASSO (Tibshirani, 1996), SCAD (Fan & Li, 2001), and
MCP (Zhang, 2010). In particular, we mainly study the
adaptive LASSO penalty (Zou, 2006) with the objective of
minimizing the following function

Lλ(θ) = L(θ) +

p∑
j=1

λ

∣∣∣∣̂̃βj∣∣∣∣−1 ∣∣∣β̃j∣∣∣ , (10)

where λ > 0 is the tuning parameter. Following (Zou, 2006),̂̃
βj is a root-N -consistent estimator of β̃j ; for example, one
can use the estimator via minimizing the unregularized ob-
jective function (7). Obviously, adding a penalty term to
L(θ) does not change its fundamental characteristic; Lλ(θ)
is essentially the regularized log-likelihood of a logistic
regression model with the similar features as discussed in
(9).

The value of tuning parameter λ is associated with the com-
plexity of the selected model. The criteria to choose λ has
been extensively studied in the literature, such as the cross
validation and various information-based criteria. In this pa-
per, we follow the Bayesian information criterion (BIC) to
determine λ. Specifically, we choose λ to be the minimizer
of the following BIC function

BIC(λ) = 2L(θ) + pλ
log(n)

n
, (11)

where pλ is the number of nonzero elements in ̂̃βλ, the
minimizer of (10).
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4. Asymptotic Theory
In this Section, we first derive the asymptotic representation
of θ̂, the minimizer of L(θ) without regularization, then
that of θ̂λ, the minimizer of our main objective function
(10).

The asymptotic theory of θ̂ involves a model of p(z | u),
which does not contain any missing values hence any sta-
tistical model, either parametric, or semiparametric, or non-
parametric, can be used. For simplicity, we only discuss the
parametric case here, and any further elaborations can be
similarly performed. For a parametric model p(z | u;η),
one can apply the standard maximum likelihood estimate η̂.
Here, we simply assume

√
N (η̂ − η0) (12)

= −G−1
√
N

1

N

N∑
i=1

∂

∂η
log {p(zi | ui;η0)}+ op(1),

with G = E
[

∂2

∂η∂ηT log {p(z | u;η0)}
]

and

E‖ ∂2

∂η∂ηT log {p(z | u;η0)} ‖2 < ∞. With this pre-

requisite, we have the following result for θ̂.

Theorem 1. Assume E
∥∥∥∂2φij(θ0,η0)

∂θ∂θT

∥∥∥2

< ∞. Then
√
N
(
θ̂ − θ0

)
d−→ N

(
0,A−1ΣA−1

)
, where A =

E
{
∂2φij(θ0,η0)

∂θ∂θT

}
, Σ = 4E

{
λ12(θ0,η0)λ13(θ0,η0)

T
}

,

λij(θ0,η0) = BG−1Mij(η0) − Nij(θ0,η0),

B = E
{
∂2φij(θ0,η0)

∂θ∂ηT

}
, Mij(η0) =

1
2

{
∂
∂η log p(zi | ui;η0) + ∂

∂η log p(zj | uj ;η0)
}

, and

Nij(θ0,η0) =
∂φij(θ0,η0)

∂θ .

Recall that θ = (γ̃, β̃T)T. Without loss of generality,
we assume that the first p0 parameters in β̃ are nonzero,
where 1 ≤ p0 < p. For simplicity, we denote θT =

(γ̃, β̃1, ..., β̃p0)T as the vector of nonzero components and
θTC = (β̃p0+1, ..., β̃p)

T as the vector of zeros. Let A =
∂2φij(θ0,η0)

∂θ∂θT , a (p+ 1)× (p+ 1) matrix, can be partitioned

as A =

(
A1 A2

A
T

2 A3

)
, where A1 is a (p0 + 1) × (p0 + 1)

submatrix corresponding to θT . Recall that in Theorem 1,
we define Σ = 4E

{
λ12(θ0,η0)λ13(θ0,η0)

T
}

, also a
(p+1)×(p+1) matrix. Now we assume it can be partitioned

as Σ =

(
Σ1 Σ2

Σ
T

2 Σ3

)
, where Σ1 is a (p0 + 1) × (p0 + 1)

submatrix corresponding to θT as well. Then we present the
asymptotic normality for the nonzero components as well
as the consistency in variable selection, the so-called oracle
property of θ̂λ.

Theorem 2. Assume θ0 exists and is unique, A1 is posi-
tive definite, E‖∂φij(θ0,η0)

∂θ ‖2 < ∞ for each θ in a neigh-
bourhood of θ0. In addition, we assume

√
Nλ → 0 and

Nλ→∞. Then
√
N
(
θ̂λ,T − θ0,T

)
d−→ N

(
0,A−1

1 Σ1A
−1
1

)
.

In addition, let TN = {j ∈ {1, ..., p} :
̂̃
βj,λ 6= 0} and

T = {j ∈ {1, ..., p} : β̃j,0 6= 0}, then

lim
N→∞

pr(TN = T ) = 1.

5. Variance Estimation
Although the above theory provides a rigorous justifica-
tion for the asymptotic property of θ̂λ, in practice, how-
ever, it does not guide the standard error estimation. Here
we propose a data perturbation approach for the variance
estimation. Specifically, following (Cai et al., 2005), we
generate a set of independent and identically distributed
positive random variables Ξ = {ξi, i = 1, ..., N} with
E(ξi) = 1 and var(ξi) = 1, e.g., the standard exponential
distribution. Since it is based on a U-statistic structure,
we perturb our objective function by adding κij = ξiξj
to each of its pairwise term. We first obtain the estimator
θ̂? by minimizing the perturbed version of (7), L?(θ) =(
N
2

)−1∑
1≤i<j≤N κijφij(θ). Then we obtain the estimator

θ̂?λ by minimizing the perturbed version of (10):

L?λ(θ) =

(
N

2

)−1 ∑
1≤i<j≤N

κijφij(θ) +

p∑
j=1

λ∣∣∣∣̂̃β?j ∣∣∣∣
∣∣∣β̃j∣∣∣ ,

where the optimal λ is also computed by the BIC.

Following the theory of (Kosorok, 2007) and (Minnier
et al., 2011), under some regularity conditions, one can
first show that

√
N
(
θ̂?λ,T − θ0,T

)
converges in distribu-

tion to N(0,A−1
1 Σ1A

−1
1 ), the same limiting distribution

of
√
N
(
θ̂λ − θ0

)
. Furthermore, pr∗

(
θ̂?λ,TC = 0

)
→ 1,

where pr∗ is the probability measure generated by the origi-
nal data we have X and the perturbation data Ξ. In addition,
one can show that the distribution of

√
N
(
θ̂?λ,T − θ̂λ,T

)
conditional on the data can be used to approximate the
unconditional distribution of

√
N
(
θ̂λ,T − θ0,T

)
and that

pr∗
(
θ̂?λ,TC = 0 | X

)
→ 1.

To achieve a confidence region for θj , the j-th coordinate
in θ, the lower and upper bounds can be formed by θ̂?λ,j,α/2
and θ̂?λ,j,1−α/2 respectively, where θ̂?λ,j,q represents the q-th

quantile of
{
θ̂?λ,j,m,m = 1, ...,M

}
.
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