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ABSTRACT

Neural networks have become the standard for image classification tasks. On one
hand, convolutional neural networks (CNNs) achieve state-of-the-art performance
by learning from a regular grid representation of images. On the other hand, graph
neural networks (GNNs) have shown promise in learning image classification from
an embedded superpixel graph. However, in the latter, studies have been restricted
to SLIC superpixels, where 1) a single target number of superpixels is arbitrarily
defined for an entire dataset irrespective of differences across images and 2) the
superpixels in a given image are of similar size despite intrinsic multiscale structure.
In this study, we investigate learning from a new principled representation in which
individual images are represented by an image-specific number of multiscale super-
pixels. We propose WaveMesh, a wavelet-based superpixeling algorithm, where
the number and sizes of superpixels in an image are systematically computed based
on the image content. We also present WavePool, a spatially heterogeneous pooling
scheme tailored to WaveMesh superpixels. We study the feasibility of learning
from the WaveMesh superpixel representation using SplineCNN, a state-of-the-art
network for image graph classification. We show that under the same network
architecture and training settings, SplineCNN with original Graclus-based pooling
learns from WaveMesh superpixels on-par with SLIC superpixels. Additionally,
we observe that the best performance is achieved when replacing Graclus-based
pooling with WavePool while using WaveMesh superpixels.

1 INTRODUCTION

Convolutional neural networks (CNNs) achieve state-of-the-art performance on a variety of image
classification tasks from different domains (Tan & Le, 2019; Gulshan et al., 2016). CNNs learn from
a regular pixel-grid representation of the images. Although not all pixels provide equal amount of
new information, by design the filters in the first layer of a CNN operate on each pixel from top-left
to bottom-right in the same way. Additionally, images are typically resized to a prescribed size before
feeding into a CNN. In applications that use standard CNN architectures or pre-trained models on a
new image classification dataset, the images are typically uniformly downsampled to meet the input
size requirements of the architecture being used. Uniform downsampling may be suboptimal as real
data naturally exhibits spatial and multiscale heterogeneity. Few studies have explored the impact
of input image resolution on model performance (Sabottke & Spieler, 2020), despite its recognized
importance (Lakhani, 2020).

Graph neural network (GNN) is a type of neural network that learns from graph structured data.
Recent studies have shown the performance of GNNs on image graph classification tasks (Monti
et al., 2017; Fey et al., 2018; Knyazev et al., 2019; Dwivedi et al., 2020). In this task, a GNN learns
to classify images from embedded graphs that represent superpixels in the images. However, prior
studies have been restricted to SLIC superpixels (Achanta et al., 2012). In this framework, a single
target number of superpixels is arbitrarily defined for an entire dataset irrespective of differences
across images, and the superpixels in a given image are of similar size despite intrinsic multiscale
structure. Our proposed approach circumvents these limitations, as shown in Figure 1.
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(a) (b)

Figure 1: (a) Average distribution of superpixel size averaged across MNIST training dataset for
different superpixel representation: none (left), WaveMesh (center), and SLIC (right). In each panel,
an insert shows the graph representation of a single sample for illustration. Size of a node in the graph
is proportional to the superpixel size. SLIC superpixels are not cubic yet the x-axis binning is chosen
to match other plots. (b) Boxplots of the # superpixels per image for CIFAR-10 training dataset.

The objectives of our work are twofold. First, we aim to rethink the process of downsampling and/or
superpixeling images by introducing a multiscale superpixel representation that can be considered as
in between the regular grid and similar-sized superpixel representations. Secondly, we systematically
study the feasibility of learning to classify images from embedded graphs that represent the multiscale
superpixels. In this context, the contributions of our study are as follows.

• We present WaveMesh, an algorithm to superpixel (compress) images in the pixel domain.
WaveMesh is based on the quadtree representation of the wavelet transform. Our sample-specific
method leads to non-uniformly distributed and multiscale superpixels. The number and size of
superpixels in an image are systematically computed by the algorithm based on the image content.
WaveMesh requires at most one tunable parameter.
• We propose WavePool, a spatially heterogeneous pooling method tailored to WaveMesh superpixels.

WavePool preserves spatial structure leading to interpretable intermediate outputs. WavePool
generalizes the classical pooling employed in CNNs, and easily integrates with existing GNNs.

• To evaluate the WaveMesh representation and the WavePool method for image graph classifica-
tion, we compare them with SLIC superpixels and graclus-based pooling by conducting several
experiments using SplineCNN, a network proposed by Fey et al. (2018).

2 RELATED WORK

Superpixeling. Grouping pixels to form superpixels was proposed by Ren & Malik (2003) as a
preprocessing mechanism that preserves most of the structure necessary for image segmentation.
Since then many superpixeling algorithms have been proposed including deep learning based methods
(Liu et al., 2011; Li & Chen, 2015; Tu et al., 2018; Giraud et al., 2018; Yang et al., 2020; Zhang et al.,
2020). The SLIC algorithm proposed by Achanta et al. (2012) is based on k-means clustering.

GNN for image graph classification. Prior studies have demonstrated the representational power
and generalization ability of GNNs on image graph classification tasks using SLIC superpixels.
Dwivedi et al. (2020) show that message passing graph convolution networks (GCNs) outperform
Weisfeiler-Lehman GNNs on MNIST and CIFAR-10 datasets. Recognizing the importance of spatial
and hierarchical structure inherent in images, Knyazev et al. (2019) model images as multigraphs
that represent SLIC superpixels computed at different user-defined scales, and then successfully
train GNNs on the multigraphs. SplineCNN proposed by Fey et al. (2018) is another network for
learning from irregularly structured data. It builds on the work of Monti et al. (2017), but uses a
spline convolution kernel instead of Gaussian mixture model kernels.

Graclus-based pooling. Pooling is used in GNNs to coarsen the graph by aggregating nodes within
specified clusters. Graclus is a kernel-based multilevel graph clustering algorithm that efficiently
clusters nodes in large graphs without any eigenvector computation. Graclus is used in many GNNs
to obtain a clustering on the nodes, which is then used by the pooling operator to coarsen the graph
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(Defferrard et al., 2016; Monti et al., 2017; Fey et al., 2018). Hereafter, we refer to pooling based on
graclus clustering as graclus-based pooling.

3 WAVEMESH: MULTISCALE WAVELET SUPERPIXELS

Input images

Graph generation

Superpixel meshes

Filtered images

Output graphs

Wavelet-based 

quadtree compression

Figure 2: Filtering images in wavelet space generates non-uniform superpixel meshes that are then
represented as embedded graphs. The leftmost images are preprocessed with the method described in
section 3 with a threshold value equal to five times the theoretical value. Natural images are from the
Pascal dataset (Everingham et al., 2010), and the medical image is from the NLST dataset.

The WaveMesh algorithm is broken down into its elementary steps below: 1) images are wavelet
transformed, 2) images are filtered in wavelet space by thresholding the wavelet coefficients, and 3) the
superpixel mesh is generated from the wavelet-filter mask. The algorithm is rooted in wavelet theory’s
seminal work (Mallat, 1989; Donoho & Johnstone, 1994b). The particular way in which wavelets
are used in this work is inspired by their related application in the physical sciences (Schneider &
Vasilyev, 2010; Bassenne et al., 2017; 2018).

3.1 STEP 1: WAVELET TRANSFORMATION OF THE INPUT IMAGE

Consider a two-dimensional (2D) image I discretely described by its pixel values I[x0] centered at
locations x0 = 2−1(i∆, j∆) of a N×N regular grid, where ∆ is the inter-pixel spacing and (i, j) =

1, 3, . . . , 2N − 1. A continuous wavelet representation of I is I(x) =
∑

x0
I
∧(0)

[x0]φ(0)(x− x0),
where x is the continuous pixel-space coordinate, and φ0(x− x0) are scaling functions that form a
orthonormal basis of low-pass filters centered at x0, with filter width ∆. The scaling functions have
unit energy

〈
φ0(x− x0)φ0(x− x0)

〉
= 1, where the bracket operator 〈y〉 = 1/(N∆)2

∫
y(x)dx

denotes the global average for a general 2D continuous field y(x). In practice, when dealing with

discrete signals, I
∧(0)

[x0] cannot be computed exactly, since I is only known at discrete points x0.

Instead, it is numerically discretized and the approximation coefficients I
∧(0)

[x0] are estimated as
an algebraic function of I[x0]. Assuming that φ0(x− x0) decays fast away from x = x0, we get

I
∧(0)

[x0] = I[x0]/N (Addison, 2017). This estimate for I
∧(0)

[x0] is the initialization stage of the
recursive wavelet multiresolution algorithm (MRA) of Mallat (1989), which enables the computation
of wavelet coefficients at coarser scales.

The decomposition of the finest-scale low-pass filter φ0(x− x0) in terms of narrow-band wavelet
filters ψ(s,d)(x − xs) with increasingly large filter width and a coarsest-scale scaling function
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φ(S)(x− xS) yields the full wavelet-series expansion of I ,

I(x) =

S∑
s=1

∑
xs

3∑
d=1

I

∧(s,d)
[xs]ψ(s,d)(x− xs) + I

∧(S)
[xS ]φ(S)(x− xS). (1)

Here, I

∧(s,d)
[xs] =

〈
I(x)ψ(s,d)(x− xs)

〉
and I

∧(S)
[xS ] =

〈
I(x)φ(S)(x− xS)

〉
are wavelet and

approximation coefficients at scale s and S, respectively, obtained from the orthonormality properties
of the wavelet and scaling functions. In this formulation, d = (1, 2, 3) is a wavelet directionality index,
and s = (1, 2 . . . , S) is a scale exponent, with S = log2N the number of resolution levels allowed
by the grid (5 for 32×32 images). Similarly, xs = 2s−1(i∆, j∆) is a scale-dependent wavelet grid of
(N/2s)×(N/2s) elements where the basis functions are centered, with i, j = 1, 3, . . . , N/2s−1 − 1.
The wavelet coefficients represent the local fluctuations of I centered at xs at scale s, while the
approximation coefficient is proportional to the global mean of I . At each scale, the filter width of
the wavelets is 2s∆.

In this study, the 2D orthonormal basis functions ψ(s,d)(x− xs) are products of one-dimensional
(1D) Haar wavelets (Meneveau, 1991). The definition of 2D wavelets as multiplicative products of 1D
wavelets is a particular choice that follows the MRA formulation (Mallat, 1989). Haar wavelets have
a narrow spatial support that provides a high degree of spatial localization. However, they display
large spectral leakage at high wavenumbers since infinite spectral and spatial resolutions cannot be
simultaneously attained due to limitations imposed by the uncertainty principle (Addison, 2017).
Different boundary conditions can be assumed for the field I . We do not require such a choice in this
study as we restrict ourselves to square images. However, the wavelet MRA framework is not limited
to square inputs and can be generalized to rectangular inputs (Addison, 2017; Kim et al., 2018).

The definition of 2D wavelets as multiplicative products of 1D wavelets is a particular choice that
follows the MRA formulation described by Mallat (1989), in which, the multivariate wavelets are
characterized by an isotropic scale and therefore render limited information about anisotropy in the
image. A large number of alternative basis functions have been recently proposed for replacing
traditional wavelets when analyzing multi-dimensional data that exhibit complex anisotropic struc-
tures such as filaments and sheets. These include, but are not limited to, curvelets, contourlets, and
shearlets (see Kutyniok & Labate (2012) for an extensive review on this topic).

3.2 STEP 2: FILTERING OF THE IMAGE IN WAVELET SPACE

The second step decomposes I as
I = I> + I≤, (2)

where the filtered I> and remainder I≤ components correspond to the highest and lowest energetic
wavelet modes of I , respectively. By construction, these two components are not spatially cross-
correlated, as implied by the orthogonality of the wavelets and by the filtering operation described
below. Note that large wavelet coefficients are associated with large fluctuations within the corre-
sponding region of the scale-dependent wavelet grid xs, these being markers of underlying coherent
structures. Under the assumptions that I≤ is additive Gaussian white noise, Donoho & Johnstone
(1994a) described a wavelet-based algorithm that is optimal for achieving the target decomposition
(2), since it minimizes the maximum L2-estimation error of I>. I> is obtained by retaining only the

wavelet coefficients I

∧(s,d)
whose absolute values satisfy

I

∧(s,d)
> (xs) =

{
I

∧(s,d)
(xs) if |I

∧(s,d)
(xs)| ≥ T,

0 otherwise,
(3)

for all scales s, positions xs and directions d. In Equation 3, T is a theoretical threshold defined as

T =
√

2σ2
I≤

lnN2, (4)

where σ2
I≤

is the unknown variance of I≤. In this study, the iterative method of Azzalini et al. (2005) is
employed, which converges to T starting from a first iteration where σ2

I≤
in Equation 4 is substituted

by the variance σ2
I of the total image I . This iterative procedure does not introduce significant

computational overhead, since only one wavelet transform is required independently of the number
of iterations. The algorithm does not introduce any hyperparameter when the theoretical threshold
value is used. Note that the threshold is image-dependent, thereby ensuring that the algorithm adapts
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the number of superpixels to each image appropriately. The above filtering operation is equivalent to
applying a binary filter mask to wavelet coefficients, denoted as wavelet-filter mask below.

The iterative method is deemed as converged when the relative variation in the estimated threshold
T is less than 0.1% across consecutive iterations. A maximum of O(10) iterations were required
to obtain the results presented below. The overall computational cost is O(niM), where ni is the
number of iterations and M is the number of pixels in the image (Azzalini et al., 2005). In this work,
we allow for further reduction in number of superpixels by varying the threshold T to take larger
values. Figure 2 illustrates the application of this wavelet filtering method on four images, wherein
for RGB images filtering is applied to each channel independently. Most of the structural and edge
information is preserved at all scales. However, a drawback of the method is that the superpixel
boundaries are necessarily regular and axis-aligned.

3.3 STEP 3: GENERATING THE SUPERPIXEL MESH FROM THE WAVELET-FILTER MASK

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2

3

1

2 2

3

(a) Quadtree of (tagged) wavelet coefficients

(b) Pruned quadtree of filtered wavelet coefficients

(c) Generating WaveMesh superpixels from filtered wavelet coefficients

Wavelet scale 3 Wavelet scale 2 Wavelet scale 1 Superpixels

Figure 3: Illustration of the wavelet-based quadtree compression algorithm for an 8×8 image, along
with the resulting adapted grid. Starting from the coarsest possible wavelet grid that contains just
one superpixel, the algorithm adapts the grid by recursively splitting it. If the wavelet coefficient
corresponding to a region is tagged (denoted by blue color), then that region is split into 2×2
superpixels.

To generate superpixels for a given image, the final step is a grid adaptation based on the wavelet-filter
mask described in subsection 3.2. The result is a non-uniform grid of multiscale superpixels adapted
around regions of the image with high variability.

Quadtree representation. The algorithm is perhaps best understood by representing the wavelet
coefficients in a quadtree (Finkel & Bentley, 1974), a tree data structure in which each node has
exactly four children. A quadtree-based representation of wavelet coefficients was previously shown
to be an efficient data structure for wavelet-based image compression (Banham & Sullivan, 1992;
Wakin et al., 2003). Here, the height of this quadtree equals the number of decomposition levels
S in the wavelet transform. Each vertex at a given level s is associated with a triplet of wavelet

coefficients [I

∧(s,d=0)
(xs), I

∧(s,d=1)
(xs), I

∧(s,d=2)
(xs)]. All vertices from a given level correspond to

wavelet coefficients across all locations at a given scale. The children vertices of a root vertex are the
wavelet coefficients from that region in space at smaller scales. The quadtree representation of the
wavelet coefficients of an 8×8 image is schematically represented in Figure 3(a). The number on
each vertex indicates the scale, from the smallest scale s=1 associated with 2×2 pixel patches up to
the largest scale s=3 associated with the entire 8×8 image. The pixel regions associated with each
wavelet coefficient are delineated by solid lines in the three leftmost figures in Figure 3(c).

Node tagging. The vertices in the tree are tagged according to the filtering algorithm described
in subsection 3.2. The tagged elements of the tree denoted by blue filled color in Figure 3(a,b)
correspond to those with absolute values larger than the threshold T , and therefore correspond to
locations in the image with important spatial variability. In the 2D case, tagging is applied if at least
one of the 3 wavelet coefficients of I per location is larger than the threshold. Additional tagging
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by green-filled color is applied to wavelet coefficients that are smaller than the threshold T but
that correspond to a spatial region with at least one tagged wavelet coefficient at a smaller scale.
This corresponds to tagging all the ancestors of previously tagged vertices. This tagging procedure
enforces cubic superpixels by ensuring that when there is a coherent structure at scale s but not at a
larger scale s+1, the wavelet coefficient at scale s+1 at that location are also tagged, hence triggering
local grid refinement at level s+1. Non-tagged vertices are pruned as shown in Figure 3(b).

Mesh generation. Starting from the coarsest possible wavelet grid xs = xS that contains just
one superpixel, the algorithm adapts the grid by recursively splitting it as follows. If the wavelet
coefficient corresponding to a region is tagged, then that region is split into 2×2 superpixels, which
locally refines the grid. The algorithm is stopped otherwise. The same recursive loop is then applied
to the refined superpixels. The final configuration of the adapted grid is obtained when none of the
wavelet coefficients in any the superpixels are tagged. An example of final adapted grid is shown in
Figure 3(c). The dashed lines correspond to the superpixel refinement due to the vertex being tagged.
Adapted grids from real images are shown in Figure 2 where the superpixel meshes exhibit desired
level of heterogeneity with multiscale refinement around edges. For RGB images, the most restrictive
mesh is employed at every location and scale. In other words, tagging for the full image is applied if
at least of the channels is tagged.

4 WAVEPOOL: SPATIALLY HETEROGENEOUS POOLING

(a) Before pooling

1

2 2

3

2

3 3

(b) After 1 pooling (c) After 2 pooling

Figure 4: Illustration of WavePool from wavelet quadtree representation. Leaf nodes (2×2 superpix-
els) are recursively pooled. In the lower panel, dashed squares and lines correspond to nodes and
edges in the region adjacency graph (RAG) representation of the superpixel mesh, respectively.

The proposed spatially heterogeneous pooling, WavePool, is best explained using the wavelet co-
efficient quadtree representation described in subsection 3.3. One WavePool operation consists in
aggregating all the leaf nodes of the wavelet quadtree. In the pixel domain, this step essentially
corresponds to merging patches of 2×2 superpixels into a parent superpixel, and aggregating the node
features with a choice of pooling function (mean or max typically). Figure 4 illustrates WavePool
on a simple superpixel mesh and its effect on both the quadtree (Figure 4 upper panel) and region
adjacency graph (Figure 4 lower panel) representation. In a region adjacency graph (RAG), nodes
correspond to superpixels, and edges connect neighboring superpixels. We show RAG in Figure 4
because we train GNNs to learn from embedded RAGs. RAG is not a tree and should not be confused
with the wavelet coefficient quadtree.

By construction, WavePool generalizes the classical CNN pooling operation. For a regular superpixel
grid as in Figure 5, WavePool exactly matches the conventional 2×2 pooling in CNN. Although more
general than its CNN counterpart, WavePool is restricted to WaveMesh superpixels or more broadly
to any quadtree based superpixel representation (Tanimoto & Pavlidis (1975); Zhang et al. (2018)),
unlike graclus-based pooling. However, graclus-based pooling does not converge to CNN pooling
even when applied to regular superpixel grids as shown in Figure 5.

5 EXPERIMENTS AND RESULTS

DATASETS. We performed image graph classification experiments on SLIC and WaveMesh superpix-
els from 3 datasets: MNIST, Fashion-MNIST, and CIFAR-10 (LeCun et al., 1998; Xiao et al., 2017;
Krizhevsky et al., 2009). We represent superpixels by embedded region adjacency graphs (RAG),
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Figure 5: Illustration of WavePool versus graclus-based pooling on a regular superpixel grid.
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Figure 6: Model architecture. WaveMesh superpixel graph of an example image (digit 4) from
MNIST dataset passing through SplineCNN with WavePool. Nodes represent superpixel centers.

where nodes correspond to superpixels, and edges connect neighboring superpixels. Node embed-
dings are mean intensity of superpixels. Edges in the graph are directed with pseudo-coordinates as
in Fey et al. (2018). For more details on the datasets, refer to subsection A.1.

EXPERIMENTAL SETTINGS. We conduct experiments on two configurations based on a SplineCNN
implementation available in PyTorch Geometric (Fey & Lenssen, 2019). The configurations are:

1. SplineConv((3, 3), 1, 32) –> Pool –> SplineConv((3, 3), 32, 64) –> Pool –> Global mean pool –>
FC(128) –> FC(10). This configuration has 30506 parameters.

2. SplineConv((3, 3), 1, 32) –> Pool –> SplineConv((3, 3), 32, 64) –> Pool –>
SplineConv((3, 3), 64, 128) –> Pool –> Global mean pool –> FC(256) –> FC(10). This
configuration has 139178 parameters.

Through the experiments we aim to: 1) Compare how SplineCNN performs on SLIC and WaveMesh
superpixels under the same network architecture and training settings; 2) Understand the effect of
WavePool on learning from WaveMesh superpixels, everything else being the same. The PyTorch
Geometric implementation of SplineCNN uses Adam optimizer with an initial learning rate of 0.01,
which is decreased by a factor of 10 after 15 and 25 epochs. Since the goal of our experiments is not
tune the best model for WaveMesh superpixel representation, we conducted all experiments without
any hyperparameter tuning. We use the same training settings and train the network for 30 epochs
on MNIST and Fashion-MNIST, and for 75 epochs on CIFAR-10. The pooling function is max for
both WavePool and graclus-based pooling. All experiments are repeated 5 times, and the mean train
and test accuracy are reported along with the standard deviation. Figure 6 is a visual illustration of a
WaveMesh superpixel graph passing through SplineCNN network with WavePool.

MNIST. Results on the MNIST dataset from our experiments and prior work are shown in Table 1.
We report the mean and standard deviation values for train and test accuracy, and precision. We
didn’t include recall since averaged one-versus-all recall and accuracy are equal for balanced datasets.
Experiments 1–4 uses WaveMesh superpixels obtained using the theoretical threshold T as described
in subsection 3.2. Experiments 3 and 4 are same as 1 and 2, but uses a network (config 2) with
more parameters. Across these four experiments we first observe that SplineCNN is successful in
learning to classify images from the WaveMesh representation. We also observe that the network
with WavePool performs better than the one with graclus-based pooling. Experiments 7–10 are
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same as 1–4 but with lesser WaveMesh superpixels. These experiments were done to compare with
experiments 13–14 that report results from prior work on SLIC superpixels where each image has
exactly 75 superpixels. To reduce the number of WaveMesh superpixels in an image to about 75, we
increased the theoretical threshold T in our algorithm. From the results for experiments 7–10, we
observe that the network with WavePool performs similar to or better than graclus-based pooling.
Experiments 5–6 and 11–12 are on SLIC superpixels that we generated using the scikit-learn package.
Comparing experiments 1–4 with 5 and 6, and 7–10 with 11 and 12, we observe that SplineCNN
learns just as well or better from WaveMesh superpixels.

# Superpixel #Nodes Config Pooling Train acc Test acc Precision

1 WaveMesh 238±50 1 Graclus 92.33±0.09 89.63±0.45 89.71±0.44
2 WaveMesh 238±50 1 WavePool 95.75±0.08 95.44±0.12 95.40±0.13

3 WaveMesh 238±50 2 Graclus 98.39± 0.05 96.80±0.11 96.86±0.08
4 WaveMesh 238±50 2 WavePool 99.68± 0.03 98.68±0.08 98.67±0.08

5 SLIC 241±5 1 Graclus 95.50±0.21 95.51±0.29 95.48±0.30
6 SLIC 241±5 2 Graclus 98.07±0.04 97.83±0.11 97.83±0.11

7 WaveMesh 57±12 1 Graclus 93.34±0.04 92.53±0.15 92.47±0.15
8 WaveMesh 57±12 1 WavePool 96.30±0.10 93.74±0.17 93.72±0.16

9 WaveMesh 57±12 2 Graclus 95.68±0.09 94.21±0.21 94.24±0.22
10 WaveMesh 57±12 2 WavePool 99.23±0.04 93.84±0.48 93.93±0.40

11 SLIC 59±2 1 Graclus 92.34±0.11 91.18±0.22 91.13±0.21
12 SLIC 59±2 2 Graclus 94.13±0.08 92.99±0.22 93.01±0.20

13 SLIC (Monti et al., 2017) 75±0 – Graclus – 91.11 –
14 SLIC (Fey et al., 2018) 75±0 – Graclus – 95.22 –

Table 1: Results on MNIST dataset. Mean±SD (%) are reported for each evaluation metric.

# Superpixel #Nodes Config Pooling Train acc Test acc Precision

1 WaveMesh 436±129 1 Graclus 80.36±0.39 65.35±2.94 73.84±2.87
2 WaveMesh 436±129 1 WavePool 85.77±0.18 76.60±0.83 79.34±0.49

3 WaveMesh 436±129 2 Graclus 85.40±0.10 75.69±1.47 79.40±0.36
4 WaveMesh 436±129 2 WavePool 92.58±0.07 83.66±1.49 83.86±1.53

5 WaveMesh 261±35 1 Graclus 81.32±0.13 76.75 ± 0.33 77.78±0.33
6 WaveMesh 261±35 1 WavePool 85.91±0.10 81.35±0.69 81.99±0.48

7 WaveMesh 261±35 2 Graclus 85.18±0.18 79.78±0.46 80.47±0.52
8 WaveMesh 261±35 2 WavePool 92.34±0.15 87.65±0.36 87.66±0.32

9 SLIC 259±7 1 Graclus 82.91±0.08 81.49±0.38 81.21±0.41
10 SLIC 259±7 2 Graclus 86.71±0.10 85.00±0.32 84.86±0.35

11 WaveMesh 134±22 1 Graclus 80.92±0.16 78.85±0.09 78.87±0.06
12 WaveMesh 134±22 1 WavePool 85.18±0.13 80.42±0.33 80.80±0.29

13 WaveMesh 134±22 2 Graclus 83.84±0.13 80.60±0.21 80.97±0.41
14 WaveMesh 134±22 2 WavePool 90.98±0.13 82.65±0.52 82.95±0.64

15 SLIC 118±4 1 Graclus 81.46±0.16 79.59±0.34 79.18±0.34
16 SLIC 118±4 2 Graclus 84.11±0.15 82.12±0.27 82.08±0.23

17 SLIC (Avelar et al., 2020) ≤ 75 – – – 83.07 –

Table 2: Results on Fashion-MNIST. Mean±SD (%) are reported for each evaluation metric.

FASHION-MNIST AND CIFAR-10. Experiments similar to MNIST were performed on these two
datasets. Results are reported in Tables 2 and 3. For both datasets, experiments 1–4 were performed
on WaveMesh superpixels obtained using the theoretical threshold T in our algorithm. In Table 3,
experiments 7–9 report results from (Dwivedi et al., 2020), where RingGNN and Gated GCN perform
the worst and best. Results for MoNet are shown because SplineCNN builds on the work of MoNet.
For the case of Fashion-MNIST, experiments 1–4 with more superpixels have similar train accuracy
as in experiments 5–8. However, the trained model in experiments 1–4 performed poorly on test data
when compared to experiments 5–8. It is unclear why this happened. More detailed error analysis is
included in the subsection A.3.

From our experiments on 3 benchmark datasets, we observe that under the same network architec-
ture and training settings, SplineCNN with original graclus-based pooling learns from WaveMesh
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# Superpixel #Nodes Config Pooling Train acc Test acc Precision

1 WaveMesh 197±82 1 Graclus 52.63±0.36 43.36±0.72 47.66±0.48
2 WaveMesh 197±82 1 WavePool 55.04±0.21 52.58±0.21 52.22±0.21

3 WaveMesh 197±82 2 Graclus 60.28±0.18 50.42±0.27 54.77±0.24
4 WaveMesh 197±82 2 WavePool 70.25±0.30 56.89±0.31 57.03±0.31

5 SLIC 215±15 1 Graclus 50.96± 0.51 45.87±0.28 47.59±0.41
6 SLIC 215±15 2 Graclus 59.09± 0.20 50.69±0.45 53.89±0.17

7 SLIC (RingGNN) 85–150 105165 – 19.56±16.40 19.30±16.12 –
8 SLIC (MoNet) 85–150 104229 – 65.92±2.52 54.66±0.52 –
9 SLIC (Gated GCN) 85–150 104357 – 94.55±1.02 67.31±0.31 –

Table 3: Results on CIFAR-10. Experiments 7–9 report min and max number of nodes in column 3,
and the number of parameters in the model in column 4 (Dwivedi et al., 2020).
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Figure 7: Mean test accuracy versus mean number of superpixels for all three datasets for both
network configuration. The plot compares the accuracy of WaveMesh and WavePool combination
with SLIC and Graclus combination.

superpixels on-par with SLIC superpixels. Additionally, under the same settings, we observe that
the best performance is achieved when replacing graclus-based pooling with WavePool while using
WaveMesh superpixels. This is shown in Figure 7 for all three datasets. We believe this increase in per-
formance is because WavePool accounts for spatial heterogeneity while aggregating nodes. Overall,
we conclude that WaveMesh is a reasonable sample-specific multiscale superpixeling method.

6 CONCLUSION

Over the last 5 years powerful GNNs have been developed for a variety of tasks on graph structured
data. Nonetheless, for image graph classification tasks, GNN studies have been restricted to graphs
that model a regular grid or similar-sized SLIC superpixel representations. Looking at images through
the lens of GNNs enables rethinking the process of downsampling, and offers new possibilities
for image representations that explore the landscape between the regular grid and similar-sized
superpixel representations. Towards this goal, we introduced WaveMesh, a superpixeling algorithm
that computes spatially heterogeneous superpixels of varying sizes within an image. We also proposed
WavePool, a new pooling scheme tailored to WaveMesh superpixels. We investigate the performance
of both methods across three benchmark datasets. Our experiments comparing WaveMesh superpixels
with SLIC superpixels and WavePool with graclus-based pooling demonstrated promising results.
Multiscale spatially heterogeneous superpixels warrant further attention. As a future direction, we
encourage researchers to benchmark GNN models on WaveMesh superpixels and explore architectures
custom to WaveMesh superpixels. In particular, we envision greater interest in this direction of
research from the medical machine learning community where high resolution images are ubiquitous
(see subsection A.4).
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A APPENDIX

A.1 DATASETS

1. MNIST: 28×28 grayscale images, 60k train and 10k test, 10 categories.
2. Fashion-MNIST: 28×28 grayscale images, 60k train and 10k test, 10 categories.
3. CIFAR-10: 32×32 color images, 50k train and 10k test, 10 categories.

SLIC superpixels were generated using the scikit-image library by setting the compactness parameter
to 0.25 (van der Walt et al., 2014). A small value of compactness parameter was chosen to ensure
that superpixels shapes are not all square. While computing WaveMesh superpixels MNIST and
Fashion-MNIST images are padded with zeros to make them 32×32. See Figure 8 for examples of
region adjacency graphs generated from CIFAR-10 images using WaveMesh superpixels.

Figure 8: WaveMesh superpixels represented by region adjacency graphs (RAG). (a) Images from
the CIFAR-10 dataset. (b) RAGs representing WaveMesh superpixels obtained using the theoretical
threshold T for images shown in (a). (c) RAGs representing WaveMesh superpixels obtained using a
threshold equal to 2T . Size of nodes in the graph are proportional to the corresponding superpixel
size.
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A.2 ADDITIONAL NOTES ON STEP 2: FILTERING OF THE IMAGE IN WAVELET SPACE

Note that the energy-based, spatially local filter outlined in this study is fundamentally different
from Fourier-based spectral filtering, in that the latter is a scale-sharp filter that acts globally in pixel
space and does not allow the discrimination of localized, energetic structures. Additionally, unlike
Fourier-based filters, the present method does not require periodicity.

A.3 ERROR ANALYSIS

Figure 9: MNIST error analysis: The top row corresponds to experiments on WaveMesh superpixels
with WavePool in config 2. The bottom row corresponds to experiments on SLIC superpixels with
Graclus pooling in config 2. Left quadrant shows the confusion matrix and the right quadrant shows
the error rate matrix averaged over all runs of an experiment. Experiment numbers from Table 1 are
indicated below each matrix.

MNIST. In Figure 9, the confusion matrix looks good for all the experiments as most images are on
the main diagonal. The actual class is along the rows and predicted class is along the columns. In
Figure 9, the error rate matrix for each experiment in the right quadrant is obtained by dividing each
value in the confusion matrix by the number of images in the corresponding class, and by filling the
main diagonal with zeros.

• SLIC with Graclus. Comparing the error rate matrices of experiments 6 and 12, in both cases
many digit 4 images are being misclassified as 9, and as the number of superpixel reduces, many
digit 7 images are also being misclassified as 9.

• WaveMesh with WavePool. Comparing the error rate matrices of experiments 6 and 12In exper-
iment 4 many digit 4 images are wrongly classified as 9. However, in experiment 10, with the
number of superpixels equal to one-fifth of experiment 4, many 9s are being misclassified as 4 and
many 3s are being misclassified as 2.

FASHION-MNIST. In Figure 10,

• from the confusion matrices, we can conclude that the model performs best in classifying images
from the classes trouser, sandal, sneaker, bag, ankleboot. This is true both with WaveMesh and
SLIC superpixels.

• from the error rate matrices we can conclude that shirt is getting misclassified the most. Also,
the columns for classes shirt, coat and pullover are quite bright, indicating that many images are
getting misclassified into these classes.
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Figure 10: FashionMNIST error analysis: The top row corresponds to experiments on WaveMesh
superpixels with WavePool in config 2. The bottom row corresponds to experiments on SLIC
superpixels with Graclus pooling in config 2. Left quadrant shows the confusion matrix and the right
quadrant shows the error rate matrix averaged over all runs of an experiment. Experiment numbers
from Table 2 are indicated below each matrix.

Figure 11: Error rate matrix for experiment 4 from Table 2. Comparing this matrix with that of
experiment 8 from Figure 10, we observe that many more images of pullover and coat are getting
misclassified as shirt in this experiment when compared to experiment 8.

Overall, from the error analysis for MNIST and Fashion-MNIST, we observe that misclassification
patterns are not very different for WaveMesh and SLIC superpixels.
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A.4 WAVEMESH APPLIED TO MEDICAL IMAGES

Figure 12: Left: Chest X-ray image of size 1024×1024. Center: WaveMesh superpixel mesh. Right:
Wavelet filtered chest X-ray image.

The chest X-ray image shown in Figure 12 is from the NIH chest X-ray dataset (Wang et al., 2017).
The image has 1024×1024 pixels. These X-ray images are typically downsampled to 256×256
before using them for training a CNN model. In the center in Figure 12, we show the WaveMesh
superpixel mesh obtained using our algorithm. It has 3843 multiscale superpixels. We note that
3843 < 2562 < 10242. Infact, the compression ratio is 1 : 17 : 273.
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