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Abstract
While multilingual training is now an essen-001
tial ingredient in machine translation (MT) sys-002
tems, recent work has demonstrated that it has003
different effects in different multilingual set-004
tings, such as many-to-one, one-to-many, and005
many-to-many learning. These training set-006
tings expose the encoder and the decoder in a007
machine translation model with different data008
distributions. In this paper, we examine how009
different varieties of multilingual training con-010
tribute to learning these two components of the011
MT model. Specifically, we compare bilingual012
models with encoders and/or decoders initial-013
ized by multilingual training. We show that014
multilingual training is beneficial to encoders015
in general, while it only benefits decoders for016
low-resource languages (LRLs). We further017
find the important attention heads for each lan-018
guage pair and compare their correlations dur-019
ing inference. Our analysis sheds light on how020
multilingual translation models work and also021
enables us to propose methods to improve per-022
formance by training with highly related lan-023
guages. Our many-to-one models for high-024
resource languages and one-to-many models025
for LRL outperform the best results reported026
by Aharoni et al. (2019).1027

1 Introduction028

Multilingual training regimens (Dong et al., 2015;029

Firat et al., 2016; Ha et al., 2016) are now a key ele-030

ment of natural language processing, especially for031

low-resource languages (LRLs) (Neubig and Hu,032

2018; Aharoni et al., 2019). These algorithms are033

presumed to be helpful because they leverage syn-034

tactic or semantic similarities between languages,035

and transfer processing abilities across language036

boundaries.037

In general, English is used as a central language038

due to its data availability, and three different multi-039

lingual training settings are considered: (1) one-to-040

many: training a model with languages pairs from041

1We will release our scripts once accepted.

English to many other languages. (2) many-to-one: 042

training a model with languages pairs from many 043

languages to English (3) many-to-many: training 044

a model with the union of the above two settings’ 045

data. (1) and (3) can be used for English to other 046

(En-X) translation, while (2) and (3) can be used 047

for other to English (X-En) translation. 048

However, multilingual training has not proven 049

equally helpful in every setting. Arivazhagan et al. 050

(2019) showed that many-to-one training improves 051

performance over bilingual baselines more than 052

one-to-many does. In this paper we consider this re- 053

sult from the point of view of the components of the 054

MT model. In the many-to-one setting, inputs of 055

the model are from different language distributions 056

so the encoder can be considered a multi-domain 057

model, whereas the decoder is trained on a single 058

distribution. In the one-to-many setting, it is the 059

opposite: the encoder shares data, and the decoder 060

is multi-domain. While there are recent studies ana- 061

lyzing multilingual translation models (Kudugunta 062

et al., 2019; Voita et al., 2019a; Aji et al., 2020; 063

Mueller et al., 2020), in general they do not (1) ex- 064

amine the impact of different multilingual training 065

settings such as one-to-many and many-to-one, and 066

(2) they do not examine the different components 067

such as encoder and the decoder separately. 068

This motivates us to ask “how do various types 069

of multilingual training interact with learning of 070

the encoder and decoder?” To answer this ques- 071

tion, we set up controlled experiments that decou- 072

ple the contribution to the encoder and the decoder 073

in various training settings. We first train multilin- 074

gual models using many-to-one, one-to-many, or 075

many-to-many training paradigms. We then com- 076

pare training bilingual models with and without 077

initializing the encoder or the decoder with param- 078

eters learnt by multilingual training. We find that, 079

for LRLs, multilingual training is beneficial to both 080

the encoder and the decoder. However, surprisingly, 081

for high-resource languages (HRL), we found mul- 082
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Lang. az be gl sk ar de he it

Size (K) 6 5 10 61 214 168 212 205

Table 1: Training data size.

tilingual training only beneficial to encoder but not083

to the decoder.084

To further analyze the result, we examine "to085

what degree are the learnt parameters shared086

across languages?". We use the head importance087

estimation method proposed by Michel et al. (2019)088

as a tool to identify the important attention heads089

in the model, and measure the consistency between090

the heads sets that are important for different lan-091

guage pairs. The results suggest that the encoder092

does share parameters across different languages093

in all settings. On the other hand, the decoder094

can treat the representation from the encoder in a095

language-agnostic way for X-En translation, and096

less parameter sharing is observed for En-X trans-097

lation. Our analyses on parameter sharing also098

provides a possible explanation of Kudugunta et al.099

(2019)’s observation that the representation from100

the encoder is target-language-dependent .101

Our investigation of how multilingual training102

works leads us to a method for improving MT mod-103

els. With the comprehensive experiments in mul-104

tilingual settings, for translation in HRL (Ar-En,105

De-En, He-En, It-En), we discover that fine-tuning106

multilingual model with target bilingual data out-107

performs the best results in Aharoni et al. (2019)108

by 2.99 to 4.63 BLEU score . With the analy-109

sis on the parameter sharing in the decoder, we110

are able to identify related languages. Fine-tuning111

jointly with the identified related languages boosts112

low-resource translation (En-Az, En-Be, En-Go,113

En-Sk) over the best results in Aharoni et al. (2019)114

by 1.66 to 4.44 BLEU score. Compared to Neubig115

and Hu (2018), our method does not require lin-116

guist knowledge, and thus may be more useful for117

less-studied low-resource languages.118

In sum, our contributions are in three-fold. First,119

our experiments can be used as a diagnostic tool120

for multilingual translation to investigate how an121

encoder and a decoder benefit from multilingual122

training. Second, our results provide insights into123

how multilingual translation works. Third, we im-124

prove the translation models based on the findings125

from our analysis, showing a promising path for fu-126

ture research on multilingual machine translation.127

2 Experimental Settings for Multilingual 128

Training 129

Before stepping into our analysis, we first explain 130

our experimental setup. The publicly available 131

TED Talks Dataset (Qi et al., 2018) is used to train 132

all our machine translation models. Following Neu- 133

big and Hu (2018), we break words into subwords 134

with BPE jointly learnt over all source languages 135

using the sentencepiece toolkit. The vocabu- 136

lary size is 32000. We perform experiments with 137

the Transformer architecture (Vaswani et al., 2017) 138

using the hyper parameters same as in (Arivazha- 139

gan et al., 2019) 2. All models are implemented 140

and trained using Fairseq 0.10.0 (Ott et al., 2019). 141

We trained multilingual translation models with 60 142

different languages on the TED Talks Dataset with 143

the three settings described in Section 1: one-to- 144

many, many-to-one and many-to-many. For one-to- 145

many and many-to-many settings, we add a special 146

language token to the input of the encoder to indi- 147

cate the target language. Following Aharoni et al. 148

(2019), we evaluate our models with BLEU score 149

(Papineni et al., 2002; Post, 2018) on the selected 150

8 languages. They are representative for different 151

language families (Qi et al., 2018). The size of the 152

training is shown in Table 1. 153

3 How Multilingual Training Benefits 154

Each Component 155

Previous studies have shown that the multilingual 156

training results are generally stronger than the bilin- 157

gual training (Arivazhagan et al., 2019). To under- 158

stand how multilingual training benefits NMT, we 159

analyze the effect of multilingual training on dif- 160

ferent components of an NMT model, specifically, 161

the encoder and decoder. 162

3.1 Experiments Design 163

To study how multilingual training benefits each 164

component, we train models on bilingual data with 165

components initialized differently as follows: 166

• Bilingual Only: Models trained from scratch 167

with no components initialized with parame- 168

ters learnt from multilingual training. 169

• Load encoder/decoder: Models with train- 170

able parameters of either encoder or decoder 171

26 layers in both the encoder and the decoder, 8 atten-
tion head, state dimension=512, ffn dimension=2048, label
smoothing=0.1
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Model
→ en

az be gl sk ar de he it

All-En 9.1 15.2 27.4 25.4 23.9 28.3 27.9 31.5
All-All 8.1 12.6 22.8 24.6 21.7 27.1 26.1 31.1

Bilingual Only 2.1 1.4 2.8 18.5 28.5 32.0 34.8 35.7

All-En

Load Enc. 2.8 1.8 5.9 18.1 30.6 35.5 36.9 35.7
Load Dec. 2.5 1.8 5.7 17.8 27.2 30.3 33.2 35.7

Freeze Enc. 5.0 6.0 19.3 26.3 28.4 33.0 33.6 36.4
Freeze Dec. 3.4 4.1 16.9 24.7 28.1 31.4 33.4 33.6
Load Both 11.5 19.0 29.9 28.00 30.4 33.1 36.2 36.7

All-All

Load Enc. 5.4 7.0 20.6 28.0 30.9 35.7 37.1 38.1
Load Dec. 1.4 0.5 0.9 20.4 28.9 32.2 34.0 35.3

Freeze Enc. 3.3 5.0 9.3 23.8 25.9 32.4 32.2 34.2
Freeze Dec. 2.0 6.2 20.1 26.9 30.1 34.4 35.9 36.8
Load Both 11.3 19.4 31.8 29.6 31.3 36.0 37.8 38.7

Table 2: Results of translating into English. All in the model name refers to using all 60 languages.

initialized with parameters learnt from multi-172

lingual training.173

• Load both: Models with parameters of both174

encoder and decoder initialized with param-175

eters learnt from multilingual training. This176

can be seen as fine-tuning the multilingual177

model on bilingual data.178

The motivation for this paradigm is that if mul-179

tilingual training is beneficial to a component,180

then initializing the parameters of that component181

should result in improvements over random ini-182

tialization and training on only bilingual data. If183

load encoder outperforms bilingual only, then we184

can say that multilingual training is beneficial for185

the encoder, and if load decoder outperforms we186

can make the analogous conclusion for the decoder.187

Thus comparing these models reveals how each188

component benefit from multilingual training.189

We also consider a load and freeze setting190

(Thompson et al., 2018), where we initialize a com-191

ponent from a multilingual model and freeze its192

weights when fine-tuning on bilingual data. For193

example, in the load decoder setting, we train the194

loaded decoder with a randomly initialized encoder.195

We suspect that learning with randomly initialized196

component might ruin the other component which197

is well-trained with multilingual data, especially in198

the beginning of the training. Thus, we addition-199

ally experiment with this load and freeze setting to200

ensure the multilingual-trained component is not201

deteriorated. 202

3.2 Results and Discussion 203

The overall results of X-En and En-X are shown in 204

Table 2 and Table 3, respectively. Because they are 205

highly dependent on the training data size (Table 1), 206

we discuss the results in two groups: HRL (HRL; 207

referring to ar, de, he, and it) and LRL (LRL; re- 208

ferring to az, be, gl, sk).3 209

3.2.1 Low-Resource Language Results 210

For LRLs, we find that multilingual training is 211

generally beneficial to both the encoders and the 212

decoders in all of the three multilingual models. 213

Both load encoder and load and freeze decoder can 214

achieve performance better than the bilingual base- 215

line. This suggests that the parameters in the en- 216

coder and the decoder learnt by multilingual train- 217

ing do contain information that is not effectively 218

learnt from the smaller bilingual data. 219

The results also suggest that multilingual train- 220

ing is more beneficial for the encoders than for the 221

decoders. In all cases, either load encoder or freeze 222

encoder outperforms both load decoder and load 223

and freeze decoder. However, multilingual training 224

of the encoder and the decoder are complementary; 225

loading both the encoder and the decoder can usu- 226

ally improve the performance over loading only 227

one component. 228

3sk has intermediate size, and its behavior is not always
consistent with the other LRL.
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Model
en→

az be gl sk ar de he it

En-All 4.9 9.0 24.2 21.9 15.1 27.9 24.1 33.3
All-All 3.1 6.2 20.5 18.4 12.7 24.5 21.1 30.5

Bilingual Baseline 1.3 1.9 3.9 13.1 15.6 27.1 25.4 32.0

En-All

Load Enc. 3.0 5.6 16.7 21.7 17.2 30.0 27.5 34.6
Load Dec. 1.3 2.0 8.1 17.4 16.0 26.7 25.8 32.6

Freeze Enc. 2.7 4.6 14.7 21.1 9.7 24.4 22.6 33.4
Freeze Dec. 1.9 3.7 14.5 17.6 16.2 28.0 25.9 33.3

Load All 6.4 14.7 26.9 23.5 17.1 31.1 28.2 34.9

All-All

Load Enc. 2.4 5.0 16.9 21.4 16.9 29.8 27.4 34.4
Load Dec. 1.1 2.2 7.0 17.5 16.0 28.1 25.6 32.5

Freeze Enc. 2.1 0.5 12.6 19.4 10.2 24.4 24.3 33.1
Freeze Dec. 0.9 4.7 15.0 18.8 15.1 27.5 24.9 32.4

Load All 6.1 13.0 26.4 23.2 17.0 30.3 27.9 34.6

Table 3: Results of translating from English. All in the model name refers to using all 60 languages.

3.2.2 High-Resource Language Results229

On HRLs, we find that multilingual training is gen-230

erally beneficial to the encoders in all of the three231

multilingual models, while it is not beneficial for232

the decoders in some settings. Load encoder al-233

ways outperform the baseline models, but for the234

All-En model on X-En translation, and the All-All235

model on En-X translation, neither load decoder236

nor load and freeze decoder outperform the base-237

line model.238

We also observe that multilingual training is gen-239

erally more beneficial to the encoders than to the240

decoders. In all of the cases, load encoder can241

achieve performance competitive to load both (bet-242

ter or less by within 1 BLEU score). However, in243

all of the cases, both load decoder and load and244

freeze decoder have performance worse than load245

both. Therefore, multilingual training is not as246

beneficial to the decoders as to the encoders.247

3.3 Discussion248

For LRL, because the size of bilingual training249

data is small, it is not surprising that multilingual250

training is beneficial for both the encoder and the251

decoder. However, our results are somewhat more252

surprising for HRL — it is not trivial that multi-253

lingual training is not as beneficial. In the next254

section, we focus on explaining the phenomena255

observed on HRL by investigating how parameters256

are shared across languages.257

4 How Multilingual Parameters are 258

Shared in Each Component 259

Given the previous results, we are interested in 260

exactly how parameters are shared among differ- 261

ent language pairs. Given that we are using the 262

Transformer architecture, for which multi-head at- 263

tention is a fundamental component, we use the 264

attention heads as a proxy to analyze how multi- 265

lingual models work differently when translating 266

between different languages. Specifically, we ana- 267

lyze our models by identifying the attention heads 268

that are important when translating a language pair. 269

Measuring the consistency between the sets of im- 270

portant attention heads for two language pairs gives 271

us hints on the extent of parameter sharing. 272

4.1 Head Importance Estimation 273

First, we provide some background on head impor- 274

tance estimation, specifically the method proposed 275

by Michel et al. (2019). 276

Given a set of multi-head attention modules, 277

each of which can be written as 278

MHAtt(x) =
Nh∑
h=1

ξhAtt
W

(h)
q ,W

(h)
k ,W

(h)
v

(x), (1) 279

where Nh is the number of attention heads, and 280

ξh = 1 for all h. 281

The importance of a head can be estimated as 282

Ĩh = Ex∼X

∣∣∣∣∂L(x)∂ξh

∣∣∣∣ . (2) 283

4



given a loss function L and input X . Then, the im-284

portance score of each head in an attention module285

is normalized286

Ih =
Ĩh√∑Nh
i I2h

. (3)287

Note that when the input X is different, the esti-288

mated importance score can be different. Therefore,289

when different language pairs are fed in, the impor-290

tant heads identified can be different. We denote291

the set of attention head scores estimated on trans-292

lation from language la to language lb as H(la, lb).293

We denote the scores of attention heads in a com-294

ponent by using superscript. For example, Henc295

represents the scores of the heads in a encoder.296

4.2 Measuring Parameter Sharing by297

Correlation of Head Scores298

With the attention head importance scores esti-299

mated by Equation 3, we can investigate how pa-300

rameters are shared across languages. For each301

of the En-All, All-En, All-All multilingual mod-302

els, we estimated a set of head-importance scores303

H(la, lb) for each language pair (la, lb) in the train-304

ing setting. We calculate the head scores with the305

training loss function (MLE with label smoothing)306

and 100K randomly sampled sentences in the train-307

ing set.308

To investigate how much parameters are shared309

by two pairs of languages (la, lb) and (lc, ld),310

we measure the agreement between H(la, lb) and311

H(lc, ld). If a head is important for both of (la, lb)312

and (lc, ld), then important parameters for translat-313

ing are shared. Thus high agreement suggests high314

parameter sharing.315

To quantify the agreement between two score316

sets, we use Spearman’s rank correlation (Spear-317

man, 1987). A rank-based correlation metric is318

used because the importance estimation was origi-319

nally proposed to order attention heads in a model.320

Higher correlation implies higher agreement and321

thus implies higher parameter sharing. For each322

of the En-All, All-En, All-All models, we calcu-323

late the correlation between H(la, lb) and H(lc, ld)324

for all language pairs (la, lb) and (lc, ld) that are325

used to train the model. The detailed correlation326

computation process can be found in Appendix A.327

We plot the correlation matrices of the head scores328

(included in appendix) and summarize them in Ta-329

ble 4.330

Model Lang. Pair Henc Hdec

All-En X-En .871 (.086) .973 (.023)
En-All En-X .806 (.153) .720 (.150)
All-All X-En .898 (.073) .967 (.029)
All-All En-X .813 (.126) .762 (.141)

Table 4: Correlation between the attention head scores
when estimated using different language pairs.

4.3 How Multilingual Translation Models 331

Share 332

Results in Table 4 combined with Section 3 pro- 333

vides the insights into how multilingual translation 334

models work with respect to cross-lingual sharing: 335

Encoder for En-X: It is natural that the encoder 336

from En-X likely benefit from multilingual train- 337

ing because it can generate representations tailored 338

for different target languages with shared param- 339

eters. En-X is a set of language pairs where the 340

source language is always English. Therefore, if 341

the prepended target language token is ignored, the 342

inputs of the encoders for all pairs in En-X are 343

from one identical distribution. This is in contrast 344

to X-En pairs, where the inputs are in different lan- 345

guages. However, for the encoders, we observe 346

from Table 4 that the average correlation scores of 347

En-X pairs (0.806 and 0.813), are lower than the 348

correlation scores of X-En pairs (0.871 and 0.898). 349

Kudugunta et al. discovers that the representation 350

of the encoder is target-language-dependent. Thus 351

we conjecture that some parameters may be used to 352

generate representation tailored for the target lan- 353

guages. At the same time, since the inputs are from 354

a single distribution (English) for different target 355

languages, a large portion of parameters may still 356

be shareable across target languages. Therefore, in 357

this case, multilingual training is beneficial. 358

Encoder for X-En: For X-En language pairs, the 359

input of the encoder is multilingual, which means 360

the input from different X-En language pairs has 361

distinct distribution. However, the correlation be- 362

tween different source languages is still high. It 363

shows that high parameters sharing in the encoder 364

is possible. 365

Decoder for En-X: The decoders for En-X have 366

the lowest correlation. From the correlation matrix, 367

we do see some parameter sharing between some 368

language pairs. However, larger model capacity 369

might be required for a model to be proficient in 370
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all the languages.371

Decoder for X-En: The decoder have average372

correlation as high as 0.973 and 0.967 for All-En373

and All-All models respectively. This suggests that374

to decode intermediate representation encoded by375

the encoder, the decoder use almost the same set376

of parameters. However, Kudugunta et al. shows377

that the representation encoded by the encoder is378

not language-agnostic. A possible explanation is379

that the important parameters of the decoder are380

highly determined by the target output, which is381

always in English. Therefore, even though the382

encoder representation is not language-agnostic, it383

is still difficult to learn parameters reflecting the384

difference. It suggests why multilingual training385

does not benefit the decoder in the X-En setting.386

The set of English sentences is almost the same387

for all the HRL pairs in the TED Talks dataset,388

so multilingual training can hardly provide more389

unique English sentences than bilingual training390

does. If the decoder is dedicated for generation,391

multilingual training cannot expose the decoder to392

more diverse data. Therefore the multilingually393

trained decoder does not perform better than the394

bilingual one.395

5 Improving Translation Based on the396

Degree of Parameter Sharing397

Insights from the previous section provide us with398

a new way to choose languages for multilingual399

training. In previous work (Lin et al., 2019),400

choosing on languages with similar linguistic prop-401

erties is a popular practice. However, Mueller402

et al. (2020) found the effect is highly language-403

dependent. Sometimes training with similar lan-404

guages might be worse than training on a set of405

unrelated languages. Here we otherwise propose406

an entirely model-driven way to find related lan-407

guages to improve multilingual translation models.408

We explore choosing languages where parameters409

can be better shared.410

5.1 Improving X-En by Related En-X Pairs411

In the All-All model, we notice low parameter shar-412

ing between En-X and X-En pairs. The average cor-413

relation between Henc(En,X) and Henc(X,En)414

is 0.44 (std: 0.17). The average correlation between415

Hdec(En,X) andHdec(X,En) is 0.49 (std: 0.13).416

It provides a possible explanation why training with417

both the En-X and the X-En pairs only brings little418

improvement over training with only En-X alone 419

or with X-En alone. 420

The low correlation combined with results in 421

Section 3 motivate us to experiment on improv- 422

ing X-En with related En-X pairs. Section 3 423

shows that the multilingual decoder has less ad- 424

vantage than the encoder. This may suggest the 425

inefficiency of parameter sharing in the decoder. 426

Therefore we experiment on choosing a set of re- 427

lated languages based on the degree of parame- 428

ter in the decoder. We choose the language set 429

L such that for all l ∈ L, the average correla- 430

tion 1
60

∑60
li=1Corr(H

dec(En, l), Hdec(li, En)) is 431

higher than 0.60. 432

Results are shown in Table 5. Even though fine- 433

tuning on related languages improves the overall 434

performance, it is not better than fine-tuning on the 435

All-En pairs only. Also, the average correlation 436

between Hdec(En, la) and Hdec(lb, En) is not im- 437

proved. Our experiment demonstrates the difficulty 438

of sharing parameters between All-En pairs and En- 439

All pairs. We leave this problem for future work. 440

5.2 Improving En-X by Language Clusters 441

The low correlation between attention head scores 442

of language pairs motivates us to improve the per- 443

formance of En-X using related language pairs. As 444

shown in Table 4, the decoders have the lowest 445

correlation scores. We conjecture that it is due to 446

the difficulty of sharing parameters between dis- 447

tant languages. Thus, we seek for finding related 448

language sets, in each of which parameters can be 449

shared. 450

Again, we resort to the attention head importance 451

scores to find the related languages. Our intuition 452

is that related languages would share many parame- 453

ters in between and training a model on related lan- 454

guages would be helpful. As a sanity check of our 455

idea, we first use t-SNE (Maaten and Hinton, 2008) 456

to reduce the dimension of head-importance scores 457

H(la, lb). We only focus on heads in the decoders, 458

because the correlation score between H(En,lc) and 459

H(En,ld) is lower in average for the decoders. The 460

result visualized in Figure 1 illustrates that, the 461

distance between H(En,lc) and H(En,ld) tend to be 462

shorter if languages lc and ld are linguistically re- 463

lated. Hence, determining related languages with 464

head score H(En,l) should be reasonable. 465

We then fine-tune multilingual models on related 466

language clusters. Related languages clusters are 467

determined by k-mean++ (Arthur and Vassilvitskii, 468
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Model az be gl sk ar de he it

All-All 8.1 12.6 22.8 24.6 21.7 27.1 26.1 31.1
+ f.t. on All-En 10.5 17.5 29.7 28.1 25.9 31.3 30.5 34.0
+ f.t. on All-En & related 10.5 17.4 28.3 27.0 25.1 30.0 29.9 32.7

Table 5: Performance of All-All model fine-tuned on All-En pairs and fine-tuned on the union of All-En pairs and
related En-All languages.

Model az be gl sk ar de he it

Bilingual Baseline 1.3 1.9 3.9 13.1 15.6 27.1 25.4 32.0
All-All 3.1 6.2 20.5 18.4 12.7 24.5 21.1 30.5
All-All w/ f.t. on related clusters 7.9 12.8 27.5 24.9 - 30.2 27.0 35.4
All-All w/ f.t. on random groups 6.9 13.3 22.5 24.3 - - 27.5 35.2
En-All 4.9 9.00 24.2 21.9 15.1 27.9 24.1 33.3
En-All w/ f.t. on related clusters 7.9 13.9 21.0 26.2 16.7 30.4 27.1 35.4
En-All w/ f.t. on random groups 7.0 13.1 23.1 24.7 - - 27.6 35.2
Load En-All w/ f.t. on closest 7.8 15.2 28.6

Table 6: Performance of En-All model without and with fine-tuning on language clusters.

2007) with k = 5. We consider clusters that cover469

all of the four low-resource languages. For the All-470

All model, one of the cluster we consider contains471

Be, Gl, De, He, It, and the other one contains Az.472

For the En-All model, we also experiment with473

two clusters. One includes Ar, De, He, It, and474

the other includes Az, Be, Gl, Sk. As a baseline,475

we also experiment with random groups. They476

are groups generated by randomly splitting the 59477

target languages.478

The results are shown in Table 6. For both the479

En-All and the All-All model, except En-Gl, fine-480

tuning on clusters can improve performance on all481

the considered language pairs consistently. For482

LRLs, fine-tuning on related language clusters is483

also better than fine-tuning on random groups in484

general. To verify whether this improvement is485

brought by increased parameter sharing in the de-486

coders, we check the correlation between Hdec af-487

ter fine-tuning. The results shown in Table 7 shows488

improvements after fine-tuning on the clusters.489

For low-resource language pairs En-Az, En-Be,490

En-Sk on the En-All model, we notice that only few491

languages are highly correlated with them (with492

correlation > 0.80). Therefore, we also experiment493

with fine-tuning the En-All model with only the lan-494

guage pairs with high correlation scores (> 0.80)495

for each of the three pairs , which boosts the per-496

formance of En-Be to 15.2 and En-Sk to 28.6.497

Model Hdec w/o f.t. Hdec w/ f.t.

All-All .762 (.141) .894 (.069)
En-All (HL) .855 (.066) .866 (.065)
En-All (LL) .826 (.096) .834 (.091)

Table 7: Correlation between the decoder attention
head scores when estimated using the language pairs
in the cluster. HL and LL represent the cluster that in-
cludes HRL and the one that includes LRL respectively.
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Figure 1: Visualization of the En-All decoder head
scores of languages by t-SNE.
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6 Related Work498

The early attempts of multilingual training for ma-499

chine translation use a single model to translate500

between multiple languages (Dong et al., 2015; Fi-501

rat et al., 2016; Ha et al., 2016). Those works find502

multilingual NMT models are appealing because503

they not only give us a simple paradigm to han-504

dle mapping between multiple languages, but also505

improve performance on low and zero-resource506

languages pairs (Gu et al., 2018). However, how507

multilingual training contributes to components in508

the translation model still remains unknown.509

There are some attempts at analyzing and ex-510

plaining the translation models. Thompson et al.511

(2018) analyze the contribution of different com-512

ponents of NMT model to domain adaptation by513

freezing the weights of components during contin-514

ued training. Arivazhagan et al. (2019) provide an515

comprehensive study on the state-of-the-art multi-516

lingual NMT model in different training and testing517

scenarios. Sachan and Neubig (2018) experiment518

with different parameter sharing strategies in Trans-519

former models, showing that sharing parameters520

of embedding, key and query performs well for521

one-to-many settings. Artetxe et al. (2020) shows522

the strong transferability of monolingual represen-523

tation to different languages. The intermediate rep-524

resentation of BERT can be language-agnostic if525

we freeze the embeddings during training. The de-526

ficiency of the one-to-many setting is explored in527

(Johnson et al., 2017). They find only the many-to-528

one setting consistently improves the performance529

across languages. Wang et al. (2018) also explore530

problems of the one-to-many setting, and show531

language-specific components are effective to im-532

prove the performance. Voita et al. (2019a) ana-533

lyzes how generated sentences of NMT models are534

influenced by context in the encoder and decoder.535

The attempt to investigate encoder and decoder536

separately is similar to our work.537

Multi-head attention has been shown effective538

in different NLP tasks. Beyond improving perfor-539

mance, multi-head attention can help with subject-540

verb agreement (Tang et al., 2018), and some heads541

are predictive of dependency structures (Raganato542

and Tiedemann, 2018). Htut et al. (2019) and Clark543

et al. (2019) report that heads in BERT attend sig-544

nificantly more to words in certain syntactic po-545

sition. They show some heads seem to special-546

ize in certain types of syntactic relations. Michel547

et al. (2019), Voita et al. (2019b), and Behnke and548

Heafield (2020) study the importance of different 549

attention heads in NMT models, and suggest that 550

we can prune those attention heads which are less 551

important. Brix et al. (2020) also shows pruning 552

NMT models can improve the sparsity level to op- 553

timize the memory usage and inference speed. 554

However, all previous works do not directly in- 555

vestigate how encoder and decoder of NMT models 556

benefit from multilingual training, which is the key 557

question of why multilingual training works. To 558

our best knowledge, we are the first to tackle the 559

question, and our analysis can be used to further 560

improve multilingual NMT models. 561

7 Conclusion 562

In this work, we have the following findings: 1) In 563

Section 3, we examine how multilingual training 564

contributes to each of the components in a machine 565

translation model. We discover that, while mul- 566

tilingual training is beneficial to the encoders, it 567

is less beneficial to the decoders. 2) In Section 4, 568

our analysis of important attention heads provides 569

insight into the behavior of multilingual compo- 570

nents. Results suggest that the encoder in the En- 571

All model may generate target-language-specific 572

representation, while the behavior of the decoder of 573

the All-En model may be source-language-agnostic. 574

In addition, in the All-All model, we observe indi- 575

cations of lower parameter sharing between X-En 576

pairs and En-X pairs. 3) In Section 5, we explore 577

approaches to improve the model based on our find- 578

ings. On En-X translation, we outperform the best 579

results in (Aharoni et al., 2019). With our proposed 580

analysis as diagnostic tools, future work may fur- 581

ther improve the multilingual systems. 582

Our findings provide some possible future direc- 583

tions. First, parameter sharing between En-X and 584

X-En pairs in the All-All model seems low. Im- 585

proving the sharing may improve the performance. 586

Second, the decoder in the All-En model seems to 587

behave in a source-language-agnostic way. It may 588

not be optimal since the representation from the en- 589

coder is not source-language-agnostic (Kudugunta 590

et al., 2019). To mitigate this issue, either the en- 591

coder is required to encode inputs into language- 592

agnostic representation, or the decoder should be- 593

have in different ways according to the input repre- 594

sentation. We leave the exploration in future work. 595
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A Correlation of Head Scores810

Here we detail the computation of the correlation811

of head scores for two pairs of languages (la, lb)812

and (lc, ld). The steps are as follow:813

1. The the two language pairs’ head importance814

scores H(la, lb) and H(lc, ld) are estimated815

with Equation 3. Since there are many heads816

in a Transformer model, both H(la, lb) and817

H(lc, ld) are vectors.818

2. We flatten the scores inH(la, lb) andH(lc, ld)819

into two arrays of scalars. We treat the two820

arrays as the observations of two variables.821

Then we use Spearman correlation to com-822

pute the correlation between the two variables.823

In other words, the input of the Spearman cor-824

relation function is the two arrays.825

B Related Related Language Pairs826

The related language pairs used in Section 5 are:827

en-zh_cn en-it en-es en-vi en-zh_tw en-nl en-fr828

en-fr_ca en-th en-pt_br en-ru.829

C Language Clusters830

En-All model:831

• en-ja en-ko en-zh en-zh-cn en-zh-tw832

• en-az en-be en-bs en-cs en-da en-eo en-et en-833

eu en-fi en-gl en-hr en-hu en-lt en-mk en-nb834

en-pl en-sk en-sl en-sq en-sr en-sv en-tr en-uk835

• en-bn en-hi en-hy en-ka en-ku en-mr en-my836

en-ta en-th en-ur837

• en-ar en-bg en-de en-el en-es en-fa en-fr en-fr-838

ca en-he en-id en-it en-ms en-nl en-pt en-pt-br839

en-ro en-ru en-vi840

• en-kk en-mn841

All-All:842

• en-be, en-bg, en-bs, en-cs, en-de, en-el, en-es,843

en-fr, en-fr-ca, en-gl, en-he, en-hr, en-it, en-844

lt, en-mk, en-pl, en-pt, en-pt-br, en-ro, en-ru,845

en-sk, en-sl, en-sq, en-sr, en-uk846

• en-ar, en-fa, en-ja, en-ko, en-th, en-vi, en-zh,847

en-zh-cn, en-zh-tw848

• en-bn, en-hi, en-hy, en-ka, en-ku, en-mr, en-849

my, en-ur850

• en-az, en-da, en-eo, en-et, en-fi, en-hu, en-id, 851

en-ms, en-nb, en-nl, en-sv, en-tr 852

• en-eu, en-kk, en-mn, en-ta 853

D Random Clusters 854

• en-pt en-fa en-fr en-kk en-hi en-da en-hu en- 855

de en-nl en-ar en-hy en-zh-cn 856

• en-sr en-fi en-be en-ko en-ru en-ur en-it en-id 857

en-el en-eu en-sq en-zh en-bs en-bn en-sv en- 858

bg en-my en-ro en-ta en-sl en-et en-ku en-mn 859

en-uk en-he en-tr 860

• en-mk en-mr 861

• en-ms en-pl en-pt-br en-cs en-zh-tw en-es 862

• en-vi en-eo en-hr en-nb en-fr-ca en-az en-sk 863

en-ka en-lt en-th en-ja en-gl 864

Theses random clusters are generated by (1) shuf- 865

fling the 59 languages, (2) randomly selecting po- 866

sitions. The results 5 segments separated by the 4 867

positions are the 5 clusters. 868

E Closest Languages 869

The closest languages used in Section ?? are: 870

• Az: en-az en-eu en-fi en-tr 871

• Be: en-be en-it en-uk 872

• Gl: en-gl en-pt en-es en-lt en-it en-pt_br 873

F Experimental Details 874

• Infrastructure: All the experiments can be con- 875

ducted on one single RTX 2080Ti GPU. 876

• Evaluation: We report the BLEU score calcu- 877

lated by FairSeq. 878

• Version of FairSeq: We use v0.10.0 879

(https://github.com/pytorch/ 880

fairseq/tree/v0.10.0) 881

• Dataset: It can be downloaded from 882

https://github.com/neulab/ 883

word-embeddings-for-nmt. 884
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Figure 2: Correlation matrix between language pairs. The top-left corner is the correlation between the encoder
head scores Henc, while the bottom-right corner is the correlation between the decoder head scores Hdec. The
top matrix is the correlation matrix of the All-All model, while the bottom-left and the bottom-right ones are the
correlation matrices of the All-En and the En-All models respectively.

Figure 3: Correlation matrix between language pairs after fine-tuning on related languages. The top-left corner is
the correlation between the encoder head scoresHenc, while the bottom-right corner is the correlation between the
decoder head scores Hdec.

Figure 4: Correlation matrix between language pairs af-
ter fine-tuning on the languages clusters. The first fig-
ure is the matrix of the fine-tuned All-All model. The
second and the third ones are the matrix of the En-All
model fine-tuned on the language clusters containing
the high-resource and the LRL respectively. The top-
left corner is the correlation between the encoder head
scoresHenc, while the bottom-right corner is the corre-
lation between the decoder head scores Hdec.
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