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Abstract001

The integration of Large Language Models002
(LLMs) with retrieval systems has shown003
promising potential in retrieving documents004
(docs) or advertisements (ads) for a given query.005
Existing LLM-based retrieval methods gener-006
ate numeric or content-based DocIDs to re-007
trieve docs/ads. However, the one-to-few map-008
ping between numeric IDs and docs, along009
with the time-consuming content extraction,010
leads to semantic inefficiency and limits the011
scalability of existing methods on large-scale012
corpora. In this paper, we propose the Real-013
time Ad REtrieval (RARE) framework, which014
leverages LLM-generated text called Commer-015
cial Intentions (CIs) as an intermediate seman-016
tic representation to directly retrieve ads for017
queries in real-time. These CIs are generated by018
a customized LLM injected with commercial019
knowledge, enhancing its domain relevance.020
Each CI corresponds to multiple ads, yielding021
a lightweight and scalable set of CIs. RARE022
has been implemented in a real-world online023
system, handling daily search volumes in bil-024
lions. The online implementation has yielded025
significant benefits: a 5.04% increase in con-026
sumption, a 6.37% rise in Gross Merchandise027
Volume (GMV), a 1.28% enhancement in click-028
through rate (CTR) and a 5.29% increase in029
shallow conversions. Extensive offline experi-030
ments show RARE’s superiority over ten com-031
petitive baselines in four major categories.032

1 Introduction033

An advertising system is a commercial application034

designed to generate revenue by presenting targeted035

ads to users, primarily consisting of two modules:036

ad retrieval and ranking. As a crucial component,037

ad retrieval swiftly filters relevant advertisements038

from vast libraries containing millions or even bil-039

lions of candidates in response to user queries. Tra-040

ditional ad retrieval models follow a two-stage pro-041

cess (Wang et al., 2024a, Ramos et al., 2003, Huang042

et al., 2013), first retrieving keywords from queries043

and then using those keywords to fetch ads. How- 044

ever, existing two-stage retrieval methods amplify 045

the difference between user queries and manually 046

chosen keywords, resulting in numerous missed re- 047

trieval issues. The query-ad single-stage approach 048

(Gong et al., 2023, Gao et al., 2020) addresses 049

missed recall by directly retrieving ads but still 050

struggles with understanding deeper commercial 051

intentions due to limited reasoning capabilities and 052

domain knowledge. 053

In recent years, LLMs (Zhao et al., 2023) have 054

garnered widespread attention and made remark- 055

able achievements in the fields of search and rec- 056

ommendation (Lin et al., 2025; Shi et al., 2025; 057

Tang et al., 2024b; Pradeep et al., 2023). Most 058

LLM-based retrieval methods first create an index 059

of docs by training the model to link docs with their 060

identifiers (DocIDs). During retrieval, the model 061

processes a query and generates the correspond- 062

ing DocIDs (Li et al., 2024a). For example, DSI 063

(Tay et al., 2022) employs numeric IDs to repre- 064

sent documents and establish connections between 065

user queries and numeric IDs. LTRGR (Li et al., 066

2024b) extracts document content, i.e., article title 067

and body, to represent the document and implement 068

the retrieval from a user query to a document. 069

Using heavy DocIDs (Zeng et al., 2023) presents 070

several drawbacks. Firstly, the inference efficiency 071

is low due to the one-to-few mapping between Do- 072

cIDs and candidates (Wang et al., 2024b), making 073

it difficult to achieve real-time generation in large- 074

scale scenarios. Secondly, representing docs/ads 075

solely with heavy DocIDs fails to fully leverage 076

the capabilities of LLMs in commercial intent min- 077

ing and their advanced text generation abilities, 078

thus hindering the effective exploration of the ad- 079

vertiser’s intent. Thirdly, it exhibits poor gener- 080

alization. When new candidates emerge, it often 081

requires retraining the model or updating the FM- 082

index (Ferragina and Manzini, 2000) to accommo- 083

date their DocIDs, making it difficult to quickly 084
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update or remove candidates. Due to the require-085

ment for real-time fetching of large sets of ads086

aligned with the user’s commercial intent in ad re-087

trieval, the existing semantically inefficient DocIDs088

are impractical and unsuitable for the task. There-089

fore, leveraging the powerful semantic capabilities090

of LLMs to design more effective semantic tokens091

for indexing, along with developing a more com-092

prehensive end-to-end architecture, has become a093

crucial challenge.094

To address this challenge, we developed a095

real-time LLM-generative ad retrieval framework096

named RARE. This framework utilizes LLM-097

generated commercial intentions (CIs) as an in-098

termediate semantic representation to directly con-099

nect queries to ads, rather than relying on manually100

chosen keywords or heavy document identifiers.101

Specifically, RARE initially utilizes a knowledge-102

injected LLM (offline) to generate CIs for the ads103

in the corpus. It then selects a limited but compre-104

hensive set of CIs and constructs a dynamic index105

that maps these CIs to their corresponding ads in a106

one-to-many relationship. Upon receiving a query,107

the RARE uses customized LLM (online) to gener-108

ate CIs in real-time and retrieves the corresponding109

ads from the pre-built index.110

A key innovation of RARE lies in utilizing CIs111

generated by a customized LLM to serve as inter-112

mediate semantic DocIDs for linking query and113

ads. Customized LLM is developed by knowl-114

edge injection and format fine-tuning of the base115

LLM. Knowledge injection involves incorporating116

domain-specific information to enhance expertise117

in the advertising domain. Format fine-tuning en-118

sures that the LLM outputs only CIs and improves119

decoding efficiency. CIs are defined as aggrega-120

tions of keywords, generated by the customized121

LLM based on relevant materials of ads. Com-122

pared to existing carefully designed DocIDs, CIs123

fully leverages the text generation capabilities of124

LLMs. The one-to-many correspondence between125

CIs and ads makes the decoding process highly ef-126

ficient. For new ads, RARE can generates CIs with127

the technique of constrained beam search, without128

the need to retrain the mode. Keyword bidding129

in the traditional query-keyword-ads paradigm in-130

troduces the possibility of index manipulation. In131

contrast to keywords, CIs are generated by LLMs132

equipped with world knowledge and commercial133

expertise, allowing for a better exploration of the134

commercial intent behind ads and queries.135

The main contributions of our work are as fol-136

lows: (1) We propose a novel end-to-end genera- 137

tive retrieval framework named RARE to achieve 138

real-time retrieval, which is the first known work 139

on LLM-generative architecture that displays real- 140

time retrieving on tens-of-millions scale system. 141

(2) We propose a method for knowledge injection 142

and format fine-tuning to enable the base LLM to 143

uncover the deep commercial intentions of adver- 144

tisers and users, expressed as CIs. (3) We have 145

deployed an online system based on LLMs for real- 146

time inference and ad retrieval, which serves tens 147

of millions of users in real-world scenarios every- 148

day. (4) We conduct online A/B testing and offline 149

experiments to verify the effectiveness of RARE. 150

A/B testing has yielded a 5.04% increase in con- 151

sumption, a 6.37% increase in Gross Merchandise 152

Value (GMV), a 1.28% increase in Click-Through 153

Rate (CTR), a 5.29% increase in shallow conver- 154

sions, and a remarkable 24.77% increase in deep 155

conversions. Simultaneously, in terms of offline 156

evaluation metrics, RARE demonstrates superior 157

performance in HR@500, MAP, and ACR metrics 158

compared to 10 other competitive baselines. 159

2 Related Works 160

Ad Retrieval. Traditional ad retrieval (Zhao and 161

Liu, 2024; Wang et al., 2024c) typically follows a 162

query-keyword-ad architecture, where queries re- 163

trieve keywords that are then used to pull ads. This 164

approach includes both word-based and semantic- 165

based methods. Word-based methods (Ramos 166

et al., 2003; Robertson et al., 2009) parse user 167

queries to obtain keywords and use an inverted in- 168

dex to retrieve candidate ads. Semantic-based meth- 169

ods (Huang et al., 2013; Yates et al., 2021) use a 170

dual encoder to obtain embeddings for queries and 171

keywords in a shared semantic space, enabling re- 172

trieval based on semantic similarities. These meth- 173

ods rely on manually chosen keywords resulting in 174

numerous missed retrieval issues. Nowadays, some 175

researchers have leveraged LLMs for generative 176

doc/ad retrieval (Sun et al., 2024; Lin et al., 2024; 177

Tang et al., 2024a). However, existing methods 178

still face challenges in achieving real-time retrieval 179

from large-scale online repository. 180

Generative-based LLMs Retriever. Generative 181

based retrievers utilize the generative capabilities 182

of LLMs to construct end-to-end retrieval models. 183

Some approaches, such as DSI (Tay et al., 2022), 184

NCI (Wang et al., 2022), Tiger (Rajput et al., 2024), 185

use document IDs as the generation target to im- 186
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Figure 1: The Real-time LLM-Generative Ad Retrieval framework (RARE) processes user queries by generating
commercial intentions (CIs) through LLM/caching, which are subsequently used to retrieve ads from the dynamic
index. The customized LLM are created by injecting knowledge and learning rules based on vanilla LLM.

plement query retrieval for docs/ads. These meth-187

ods leverage LLMs to learn the correspondence188

between docs/ads and their IDs, directly generat-189

ing the ID of the relevant docs/ads for query re-190

trieval. Other approaches, such as SEAL (Bevilac-191

qua et al., 2022)and LTRGR (Li et al., 2024b), use192

document content as an intermediary to achieve193

document retrieval. They employ FM-Index to gen-194

erate fragments that appear in the document, facili-195

tating query-to-document retrieval. MINDER (Li196

et al., 2023) employs pseudo-queries and document197

content for retrieval, but this significantly increases198

indexing volume, making it unsuitable for scenar-199

ios with large candidate sets.200

Semantic DocIDs. LLM-generative retrieval typ-201

ically employs DocIDs to perform query-to-202

document retrieval tasks. Existing DocIDs mainly203

include numeric IDs and document content. For204

instance, the numeric IDs in Tiger is represented205

as a tuple of discrete semantic tokens. In LTRGR,206

document content consists of predefined sequences207

that appear within the document. However, the se-208

mantic tokens used in these approaches are ID-like209

features, which suffer from low decoding efficiency210

since each DocID corresponds to few candidates.211

For new candidate docs or ads, it is necessary to212

retrain the model or rebuild the FM-Index to obtain213

their DocIDs, making it challenging to fast update214

or delete ads.215

3 Method216

In this paper, we introduce a novel end-to-end gen-217

erative retrieval architecture designed for online218

retrieval, named Real-time Ad retrieval (RARE).219

RARE effectively shortens the link structure, which 220

allows advertisements to overcome the limitations 221

of keyword bidding and helps advertisers acquire 222

more accurate traffic, as illustrated in Figure 2. 223

3.1 An End-to-end Generative Architecture 224

Upon receiving a user query, RARE first analyzes 225

it to generate corresponding Commercial Intents 226

(CIs)—text with specific linguistic meaning—and 227

then utilizes these CIs to retrieve the final ads. In 228

the following, we detail the indexing of CIs to ads 229

and explain the retrieval process. 230

Indexing. RARE first generates CIs for the entire 231

ad corpus and determines the commercial intention 232

set, then the inverted index of CIs-Ads are built. 233

For subsequent new ads, we perform constrained 234

inference based on the current commercial inten- 235

tion set to ensure that each new candidate can be 236

accurately updated in the index. Notably, CIs are 237

texts with specific linguistic meanings generated by 238

customized LLM to mine the commercial intention 239

of ads. Further details on the implementation are 240

discussed in Section 3.3. 241

Retrieval. The real-time generation of CIs for 242

queries is based on a combination of offline caching 243

strategies and online inference. The inferred CIs 244

of high-frequency queries are stored in the cache. 245

When a query arrives, RARE first checks whether 246

the current query matches an entry in the cache. 247

If a match is found, RARE directly retrieves the 248

corresponding CIs to fetch ads. Otherwise, RARE 249

uses the customized LLM with constrained beam 250

search for real-time inference. The detailed imple- 251

mentations are introduced in 3.4. 252

3



Traditional retrieval methods

keywords retrieval

keywords sorting
and truncation

keywords pull
advertisings

ads sorting and
truncation

LLM-Generative Retrieval

Query Analysis

Ads Ranking

LLM Supervised
Fine-tuning

1B online 13B offline

Constrained Decoding

Ad Generation

Figure 2: Comparison of RARE and Traditional Re-
trieval Methods. The Direct Generation of Candidate
Ads from User Queries Shortens Link Structure.

The traditional query-keyword-ads architecture253

utilizes manually purchased keywords as search254

targets, subsequently retrieving ads based on a255

fixed/predetermined index linking keywords to256

ads. In contrast, our RARE framework uses ad-257

vertisements themselves as retrieval targets and258

utilizes CIs as a dynamic bridge to index these259

ads, enhancing the system’s flexibility and accu-260

racy. CIs, generated by LLMs using comprehensive261

information from ads/queries, facilitate the genera-262

tion of high-quality ad candidates and deeper user263

intent modeling.264

3.2 Customized LLM265

To enhance the LLM’s understanding of commer-266

cial and advertising knowledge and to generate267

more accurate CIs, we performed knowledge in-268

jection into the base LLM. To achieve real-time269

inference, where the model directly outputs CIs270

based on the query without intermediate reasoning271

process, we conducted format fine-tuning on the272

LLM. Details on the customization of LLM and273

the data organization are present in Appendix A.274

Stage 1: Knowledge Injection. This stage pri-275

marily involves injecting commercial and advertis-276

ing knowledge into the base LLM. We collected277

knowledge from advertising systems and produced278

synthesized data, which were then injected into279

base LLM-1B and base LLM-13B models for on-280

line and offline scenarios, respectively. For the281

detailed information of knowledge data, please see 282

the Table 4 of Appendix A. The knowledge injec- 283

tion process can be formalized as follows: 284

θ
′
= h(θ,K), (1) 285

where the comprehensive function h takes the LLM 286

model parameters θ, and the advertising knowledge 287

data K as inputs, and outputs the updated model 288

parameters θ
′
. Subsequently, the new parameters 289

θ
′

are utilized to generate predictions, i.e., 290

y = P (y|x; θ′
). (2) 291

Stage 2: Format Fine-Tuning. Building on the 292

LLM enhanced with commercial knowledge, this 293

stage focuses on refining the format of the gener- 294

ated CIs and increasing their diversity. The training 295

data for format fine-tuning is obtained from real- 296

world online data after making necessary format 297

adjustments. For the detailed information of fine- 298

tuning data, please see the Table 4 of Appendix A. 299

The generation loss of format fine-tuning is shown 300

as follows: 301

L(θ) =
1

N

N∑
i=1

Ti∑
t=1

logp(yi,t|yi<t, xi; θ), (3) 302

where fine-tuning data set is D = (xi, yi)
N
i=1, xi 303

is the input sequence and yi is the target output 304

sequence. The probability p(·) is the probability 305

predicted by the model with parameters θ base on 306

xi and the previously generated words yi<t. 307

The customization of LLM significantly en- 308

hances its ability to understand and extract the 309

intentions behind ads and user queries. The cus- 310

tomized LLM compresses and summarizes ads into 311

a commercial intention space, clustering similar 312

ads.This process enhances diversity by reducing ho- 313

mogeneous retrieval, leading to improved retrieval 314

performance both online and offline. 315

3.3 Indexing 316

We use the customized LLM to generate the Com- 317

mercial Intentions (CIs) of ads and then construct 318

the inverted index of CIs-Ads. 319

Commercial Intentions (CIs). CIs are short 320

texts generated by the customized LLM that de- 321

scribe the commercial intentions of users or ads. 322

Given a prompt containing ad information (such as 323

4



prompt When users search for Dior 999, please provide
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Figure 3: Constrained Beam Search Decoding Process.

ad title, landing page) or a user query, the genera-324

tion of CIs is formalized as:325

CIs =arg max
y<1>...y<b>

T∑
t=1

logP (y<1>
t , y<2>

t ...

y<b>
t |x, y<1>

t−1 , y<2>
t−1 ...y<b>

t−1 ),

(4)

326

where y<i>
t is the output of the top-i commercial327

intention at time t, b is the beam size, and T is the328

maximum length of the CIs.329

Example. When the ad pertains to "flowers",330

RARE not only generates multiple business in-331

tents related to flowers—such as buying flowers on-332

line, finding a local flower shop, comparing flower333

prices, ordering flower delivery, and arranging flow-334

ers—but also includes intents for occasions like335

"Mother’s Day" and "Valentine’s Day". The CIs336

proposed in RARE can more accurately align with337

the traffic advertisers want to reach.338

Ad Indexing Building. Initially, We use the cus-339

tomized LLM to generate CIs for all ads in the340

library, based on information such as the ads’ ti-341

tles, landing pages, and delivery materials. Sub-342

sequently, we perform operations such as deleting343

irrelevant CIs and clustering to refine the generated344

results, resulting in a refined set of approximately 2345

million CIs. For new ads, we employ a constrained346

beam search technique to generate an average of 30347

CIs per ad. This approach ensures that each new ad348

can be effectively indexed. In addition, we update349

the CIs set monthly to introduce new products and350

refine commercial intents.351

Utilizing generated CIs to index ads offers nu-352

merous advatages, including accurate extraction353

of both ad content and user intent, as well as high354

efficiency and robust generalization capabilities.355

For new ads, our approach performs only simple 356

inference rather than retraining the model. 357

3.4 Efficient inference 358

Efficient inference is essential for real-time re- 359

trieval from millions of candidate sets, as spon- 360

sored search advertising has strict requirements on 361

retrieval time. In this section, we mainly introduce 362

efficient decoding methods including constrained 363

decoding and caching technology. 364

Constrained Beam Search. In this work, we em- 365

ploy a constrained beam search algorithm for gener- 366

ating commercial intentions(CIs), ensuring that the 367

model’s outputs are confined to a predefined CIs. 368

We have developed a CUDA-based implementa- 369

tion of the constrained beam search and integrated 370

it with the LLM inference process to enable paral- 371

lel generation of beam-size CIs, thereby enhancing 372

decoding efficiency. Furthermore, we introduced 373

a truncation function within the constrained beam 374

search framework, which allows for the discarding 375

of individual tokens with lower scores to improve 376

the accuracy of the model’s output. The specific 377

restriction process is illustrated in Figure 3. 378

Caching Technology. The search system ex- 379

hibits a pronounced long-tail effect, where 5% of 380

the queries account for 60% of the total query re- 381

quests. To enhance inference efficiency, we per- 382

form offline inference and storage for these high- 383

frequency queries. When a user submits a query, 384

the system first checks the offline cache. If a match 385

is found, the result is returned immediately. If no 386

match is found, the inference service processes the 387

request. 388

Offline processing is less time-sensitive, allow- 389

ing us to utilize a large model—a 13B LLM—to 390

handle these queries. Online inference has strin- 391

gent time constraints, typically requiring comple- 392

tion within milliseconds, so a small size 1B model 393

is used. By caching millions of head queries of- 394

fline, we can reduce online machine consumption 395

by 70%, which not only decreases the time required 396

for inference but also enhances the quality of CIs 397

for head queries. 398

4 Experiments 399

In this section, we primarily introduce our exper- 400

imental settings, discuss the effect of RARE on 401

offline metrics and online systems, and present the 402

results of ablation studies. 403
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Method HR@50 HR@100 HR@500 MAP ACR

Word-based BM25 0.0870 0.1336 0.3807 0.1232 76.01%

Semantic-based
Bert-small 0.0995 0.1518 0.4311 0.1719 78.65%
Bert-base 0.1038 0.1511 0.4714 0.1739 80.50%

SimBert-v2-R 0.0978 0.1428 0.3419 0.1797 81.07%

Generative
Retrieval

SimBert-v2-G 0.0572 0.0792 0.1026 0.1405 43.27%
T5 0.0265 0.0447 0.1130 0.1036 83.31%

LLM-based
Generative
Retrieval

Qwen-1.8B 0.0527 0.0986 0.4099 0.1168 96.13%
Hunyuan-2B 0.0491 0.0937 0.3904 0.1038 96.09%

DSI 0.0258 0.0480 0.1764 0.0745 96.15%
Substr 0.0225 0.0341 0.0744 0.1042 96.15%

Ours RARE 0.0985 0.1541 0.5134 0.1845 95.05%

Table 1: Comparison of RARE and Baseline Models in Offline Scenarios.

Real-Time
Online Scenarios Consumption GMV CTR Shallow

Conversions
Deep

Conversions

WTS(anonymous) +5.04% +6.37% +1.28% +5.29% +24.77%
DSP(anonymous) +7.18% +5.03% - +6.85% +5.93%
QBS(anonymous) +4.50% +5.02% -0.74% +17.07% +7.86%

Table 2: Application of RARE to Real-World Search Systems. Results of Online A/B Testing.

4.1 Experimental Settings404

Training Dataset. To facilitate knowledge injec-405

tion into the vanilla LLM, we utilized commercial406

knowledge and synthetic data. The raw data was407

derived from real online logs and was processed408

to generate the final synthetic data by having open-409

source LLMs perform tasks such as query intent410

mining and ad intent mining. Format fine-tuning411

primarily involves the CIs of queries and advertise-412

ments. These data are sourced from real online413

interactions and are combined according to fixed414

rules. For details, please refer to Table 4.415

Evaluation Dataset. To evaluate the model’s ef-416

fectiveness, we collected pairs of head queries and417

corresponding clicked ads online over the course of418

one day in the real-world scenario. After cleaning419

the data, we obtained 5,000 queries and 150,000420

ads to serve as the ground truth, with each query421

having a maximum of 1,000 ad candidates.422

Baselines. We compare RARE with 10 com-423

petitive baselines across 4 major categories, in-424

cluding word-based BM25, semantic-based BERT,425

generative-based T5 and LLM-based Qwen, etc.426

BM25 segment the query to be calculated into427

w1, w2, ..., wn, and then calculate the relevance 428

score of each wi and the keyword. Finally, these 429

scores are accumulated to finally get the text simi- 430

larity calculation result. 431

BERT-small employs a 4-layer transformer net- 432

work with a hidden layer size of 768 and the num- 433

ber of parameters is approximately 52.14M. BERT- 434

base utilizes a 12-layer transformer network with a 435

hidden layer size of 768 and 12 heads. The num- 436

ber of parameters is about 110M. We used online 437

clicked data as positive examples, and randomly 438

sampled within the batch as negative examples. We 439

trained the BERT using contrastive learning tech- 440

niques. The trained BERT was used to obtain the 441

embeddings of the query and keywords and then 442

use HNSW (Malkov and Yashunin, 2018) to re- 443

trieve candidate keywords for the query. SimbBert- 444

v2-R (Su, 2021) is a model that integrates both 445

generation and retrieval capabilities. It serves as a 446

robust baseline for sentence vectors and can also 447

be utilized for automatic text generation. In our 448

work, we reproduced the Simbert-v2-base1 model 449

and trained it on millions of online click query- 450

keyword pairs. This resulted in two specialized 451

1https://github.com/ZhuiyiTechnology/roformer-sim
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versions: Simbert-v2-G, designed for keyword gen-452

eration, and Simbert-v2-R, intended for calculating453

keyword sentence vectors. We also reproduced454

T5-base2, a strong baseline for generative recall,455

and fine-tuned it on a large number of online click456

queries and keywords.457

DSI is a typical method that employs seman-458

tic ID-based retrieval. Initially, we fine-tune the459

HunYuan-1B model to learn the correspondence460

between ads and their respective IDs. Subsequently,461

we feed the query along with the IDs correspond-462

ing to the clicked ads into the HunYuan model463

for further training. Qwen-1.8B and Hunyuan-2B464

are models with the same scale of parameters as465

RARE. We incorporated format fine-tuning into466

the Qwen 1.8B and Hunyuan-2B models to ensure467

that they generate outputs exclusively focused on468

CIs, without including any additional information.469

A LLM without constrained decoding may gener-470

ate CI without corresponding advertisements. To471

address this issue, we employ HNSW retrieval to472

find the most similar CI within the library of CIs,473

using it as the final result for the CI generated by474

the LLM.475

Evaluation Metrics. We use ACR (Fan et al.,476

2019), Hit Ratio (HR@K) (Alsini et al., 2020) and477

Mean Average Precision (MAP) (Cormack and Ly-478

nam, 2006) to evaluate the effectiveness of RARE.479

Ad Coverage Rate (ACR) in ad retrieval means480

coverage, which is the proportion of requests with481

ad recall. As shown in Formula 5, Ad Pave View482

(AdPV) is the number of requests with ad recall,483

and Pave View (PV) is the number of requests.484

ACR = AdPV/PV (5)485

Hit Ratio (HR@K) is shown in Formula 6, where486

Ground Truth (GT) represents set of candidate ads,487

and Hits@K represents the number of relevant ads488

within the top-K retrieved candidates that belong489

to the ground truth set.490

HR@K =
Hits@K

|GT |
(6)491

Mean Average Precision(MAP) is the average492

of Average Precision (AP) of all queries (Q), as493

shown in formula 7.494

MAP =

∑
q∈QAPq

Q
(7)495

2https://github.com/bojone/t5_in_bert4keras

Average Precision (AP) is shown in formula 8, 496

where Ωq represents the ground-truth results, pqj 497

represents the position of adj in the generated list, 498

and pqj < pqi means that adj ranks before adi in 499

the generated list. 500

APq =
1

Ωq

∑
i∈Ωq

∑
j∈Ωq

h(pqj < pqi) + 1

pqi
(8) 501

Implementation Details. We utilize an anony- 502

mous base LLM as the backbone, with parameter 503

sizes of 1B and 13B. For the offline cache, we 504

employ a 13B model with a beam size of 256, a 505

temperature of 0.8, and a maximum output length 506

of 6. For online inference, we use a 1B model with 507

a beam size of 50, a temperature of 0.7, and a max- 508

imum output length of 4 to ensure that inference 509

latency remains within 60 milliseconds. RARE 510

will assign appropriate CIs to newly added adver- 511

tisements and products within the existing CI set, 512

and will update the CIs-Ads index on an hourly 513

basis. The entire CIs set is updated monthly, allow- 514

ing new products to receive more fine-grained and 515

accurate CIs. Additionally, we periodically inject 516

new commercial information into the LLM, such 517

as new brand names and product details, to ensure 518

its knowledge remains up to date. 519

4.2 Experimental Results 520

Offline Evaluation. We compared RARE with 521

10 retrieval methods in 4 categories on the indus- 522

trial evaluation dataset. Results are shown in Ta- 523

ble 1. The RARE model excels in HR@500 and 524

MAP while maintaining a high ACR, demonstrat- 525

ing its ability to understand user search intent and 526

optimize ad delivery. Notably, it achieves a ACR 527

exceeding 90%, and its high HR@500 metric con- 528

firms its strong capacity to retrieve commercially 529

valuable ads. This synergy indicates the model’s 530

success in balancing user intent comprehension 531

with commercial value-driven ad retrieval. 532
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Figure 4: RARE Outperforms Online Benchmark Mod-
els Across Major Real-World Industries.
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Method HR@500 MAP ACR Avg CIs Accuracy

w/o. KI 0.1706 0.1540 59.51% 22.78 90.4%
w/o. CBS 0.1868 0.1687 67.12% 4.84 95.2%

w/o. CBS & KI 0.1562 0.1592 48.28% 9.09 94.5%
RARE 0.5134 0.1845 95.05% 74.49 96.5%

Table 3: Ablation Studies on RARE.

Online A/B Testing. We apply RARE to three533

different online retrieval scenarios (with billions534

of daily requests): WTS, DSP and QBS. During a535

one-month A/B testing experiment with a 20% user536

sample, we observed significant benefits across537

multiple scenarios, including increased system rev-538

enue, enhanced user experience, and boosted ad-539

vertiser conversions. Take WTS as an example, we540

achieved a 5.04% increase in consumption (cost),541

a 6.37% increase in GMV, a 1.28% increase in542

CTR and a 5.29% increase in shallow conversions.543

Significant improvements of CTR and conversions544

demonstrate that RARE can effectively understand545

user intent and deliver high-quality ads. The eval-546

uation of RARE across eight popular real-world547

industries, as shown in Figure 4, further demon-548

strates its effectiveness in various scenarios.549

Online Inference Support. We analyzed tens of550

thousands of data points to determine the average551

time consumption for various output lengths dur-552

ing the real-time online inference process, and the553

results are shown in Figure 5. Our CIs have an aver-554

age token count of 3, ensuring that online real-time555

inference meets safety thresholds. To facilitate on-556

line inference, we developed a specialized GPU557

cluster with hundreds of L40, achieving effective558

load balancing and peak GPU utilization rates up to559

90%. We quantized the well-trained model to FP8560

precision, enabling each L40 to handle about 30561

Queries Per Second. Efficient caching techniques562

increased the cache hit rate to approximately 65%563

for head queries. These supports enhanced gener-564

ation quality while reducing computational costs565

notably.566

Ablation Study. We conducted two types of ab-567

lation studies to investigate the contribution of each568

component. First, table 3 displays the results of569

RARE on ad retrieval under various settings. w/o.570

KI refers to RARE without knowledge injection. Its571

recall rate is only 59.51%, significantly lower than572

RARE’s 95.05%. This demonstrates that without573

knowledge injection, the LLM struggles to under-574
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Figure 5: Time Consumption for Different Lengths.

stand intents of user queries and ads. w/o. CBS 575

refers to RARE without constrained beam search. 576

Its average number of CIs is only 4.84, significantly 577

lower than RARE’s 74.49. This indicates that con- 578

strained beam search can substantially increase the 579

diversity of commercial intents generated by the 580

LLM. w/o.CBS & KI refers to RARE without both 581

constrained beam search and knowledge injection. 582

It is evident that its HR@500, MAP, and ACR met- 583

rics are the lowest among the compared methods. 584

Second, table 5 in Appendix C presents a qualita- 585

tive analysis of each component’s contribution to 586

RARE through a case study. 587

5 Conclusion 588

In this paper, we propose a LLM-generative Real- 589

time Ad REtrieval called RARE. This framework 590

utilizes commercial intentions (CIs) as semantic 591

representation that retrieve ads directly for querys. 592

To mine deeper intentions of ads and users, we 593

inject commercial knowledge and conduct for- 594

mat fine-tuning on vanilla LLM to obtain the cus- 595

tomized LLM. Besides, we employs constrained 596

decoding, which allows the model to generate CIs 597

from a fixed set in parallel. The proposed archi- 598

tecture enables real-time generation and retrieval 599

from a library containing tens of millions of ads. 600

Evaluations on offline data and online A/B test- 601

ing indicate that our architecture achieves state-of- 602

the-art (SOTA) advertising retrieval performance, 603

while substantially improving search system rev- 604

enue, user experience and advertiser conversion. 605
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Limitations606

We briefly outline limitations of our work. The607

end-to-end generation architecture proposed in this608

paper primarily facilitates the generation process609

from query/ad to commercial intention, while the610

correlation between query and ad is managed by611

downstream processes. In future work, we aim612

to integrate correlation assessment into LLMs,613

thereby empowering the model to evaluate the per-614

tinence between prompts and commercial intents615

concurrently with the generation phase. We antici-616

pate that this integration of generative and discrim-617

inative capabilities will significantly augment the618

efficacy of the generation process.619
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A Fine-tuning Data807

In this section, we mainly introduce the details of808

fine-tuning data. Fine-tuning of customized LLM809

mainly includes two stages, namely knowledge in-810

jection and format fine-tuning. The fine-tuning811

data of knowledge injection mainly includes query812

intent mining, advertising intent mining and ad-813

vertising words buying. We input prompts con-814

taining advertisement and user information into815

open-source LLMs (e.g., ChatGPT) to obtain out-816

puts that include rich reasoning processes and guid-817

ance information, which are then injected into the818

base LLM as knowledge data. Injecting a large819

amount of data during the fine-tuning phase can820

cause LLMs to lose their general knowledge and821

reasoning capabilities. Therefore, in this phase of822

fine-tuning, we selected only 2,000 instances for823

each task. Table 4 shows the fine-tuning data of824

these two stages in detail.825

B Related Work826

Beam Search. As a decoding strategy for heuris-827

tic search, beam search has been widely used in828

many works. For example, DSI uses beam search829

to generate a sorted list of candidate documents,830

and Tiger uses beam search to generate multiple831

candidate product IDs at once. As early as a few832

years ago, the combination of seq2seq and con-833

strained Beam Search has achieved a win-win ef-834

fect and efficiency in entity linking and document835

retrieval. For example, GENRE (De Cao et al.,836

2020) applied constrained Beam Search to docu-837

ment retrieval tasks and achieved SOTA.838

Query-kwds-ads Architecture. Traditional839

query-kwds-ads approaches suffer from two critical840

drawbacks: (1) Keywords are manually selected by841

advertisers, resulting in varying quality and poten-842

tial issues of either being too broad or too narrow,843

leading to inefficient traffic matching. (2) Adver-844

tisers often purchase a large number of keywords,845

which hampers the efficiency of ad retrieval after846

keyword inversion, imposing a significant burden847

on the system. In contrast, CIs are generated by a848

domain knowledge-injected LLM, enabling them849

to better represent the intentions of advertisers and850

achieve more precise matching with relevant traf-851

fic. This not only brings economic benefits but852

also ensures the long-term healthy operation of the853

system.854

Encoder-based LLMs Retriever Encoder-855

based retrievers leverage the semantic capabil-856

ities of LLMs to obtain text embedding (Hou 857

et al., 2024). For instance, cpt-text (Neelakan- 858

tan et al., 2022) uses contrastive learning to train 859

GPT-3 (Brown, 2020) from scratch, generating 860

high-quality embedding of text. GTR (Ni et al., 861

2021) utilizes the T5 (Raffel et al., 2020) model, 862

fine-tuning it to derive text vector representations. 863

NoteLLM (Zhang et al., 2024) achieves text-image 864

embeddings by incorporating additional training 865

tasks and modifying the LLM model structure. 866

C Qualitative Analysis 867

Table 5 provides an intuitive example to analyze the 868

role of each component in RARE. we can observe 869

the following: (1) Zero-shot LLM lacks a reasoning 870

process for prompts, relying mainly on the surface- 871

level understanding of queries, which results in nu- 872

merous poor cases. (2) Knowledge injection stage 873

teaches LLM how to reason, enabling it to analyze 874

the query in the first step, provide commercial in- 875

tentions in the second step, and judge relevance 876

in the third step. However, this approach lacks di- 877

versity. (3) Format fine-tuning stage instructs the 878

model to follow rules while generating more di- 879

verse results. Since most of the training data in 880

this stage comes from online data, the commercial 881

intentions are relatively rich. However, due to the 882

free generation process, the number of commercial 883

intentions is limited. (4) Incorporating constrained 884

decoding can increase the number of commercial 885

intentions while ensuring relevance and diversity. 886
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Task Name Prompt Output Data
Size

Knowledge Injection
Task1. query intent mining

As a search advertising system, given the

user query = xxx, identify the commercial

intentions based on the user’s search charac-

teristics. Provide ten commercial intentions

for each category from different intents, and

finally, compile all the results into a single

line separated by commas, step by step.

Output from open source LLM
models (e.g. ChatGPT):Sure, let’s

break down the process step by step

to identify commercial intentions

based on the user query "xxx". Step

1: Identify Categories... Step 2:

Identify Commercial Intentions for

Each Category... Step 3:Compile All

Results into a Single Line...

2000

Knowledge Injection
Task2. ad intent mining

As an advertiser, given the ad title = xxx,

identify the commercial intentions for ad

based on search characteristics. Provide

ten commercial intentions for each category

from different intents, and finally, compile

all the results into a single line separated by

commas, step by step.

Output from open source LLM
models (e.g. ChatGPT): Sure, let’s

break down the process step by step

to identify commercial intentions

based on the ad title "xxx" Step 1:

Identify Categories... Step 2: Iden-

tify Commercial Intentions for Each

Category... Step 3: Compile All Re-

sults into a Single Line....

2000

Knowledge Injection
Task3. ad generation

As a search advertising system, your task is

to recommend suitable ads for user queries.

To meet the user’s potential intent and ensure

the relevance between the query and the ad

title, you should provide a diverse range of

ads. Given the query = xxx, please generate

ten appropriate ad titles for each intent based

on search characteristics, step by step.

Output from open source LLM
models (e.g. ChatGPT): Sure, let’s

break down the process step by step

to generate ten appropriate ad titles

for each intent based on the user

query "xxx". Step 1: Identify In-

tents... Step 2: Generate Ad Titles

for Each Intent...

2000

Knowledge Injection
Task4. query understanding

As a search advertising system, your task

is to rewrite and expand the user’s query to

ensure it meets the diverse needs of users.

The rewritten terms should be as varied as

possible. For instance, if the query is "SF

Express," the expanded terms could include

"cross-border logistics", "express shipping",

"express delivery", "express service" and "lo-

gistics warehousing". Following this exam-

ple, when the query is = xxx, provide the ex-

panded terms that meet these requirements,

step by step.

Output from open source LLM
models (e.g. ChatGPT): Sure, let’s

break down the process step by step

to rewrite and expand the user’s

query "xxx" to ensure it meets the di-

verse needs of users. The expanded

terms should cover a wide range of

related topics and intents. Step 1:

Identify Core Concepts... Step 2:

Identify Related Categories and In-

tents... Step 3: Generate Expanded

Terms for Each Category... Step 4:

Compile All Expanded Terms...

2000

Format Fine-tuning
Task1. query generates CIs

As a search advertising system, given a user

query of xxx, please provide a broader range

of commercial intentions that still align with

the user’s potential intentions.

From real world online data: com-

mercial intention 1;commercial in-

tention 2;commercial intention 3.....

2000

Format Fine-tuning
Task2. ad generates CIs

As a search advertiser, given the ad title =

xxx, please identify the commercial inten-

tions of the ad based on the characteristics

of the search and various user intentions.

From real world online data: com-

mercial intention 1;commercial in-

tention 2;commercial intention 3.....

2000

Table 4: Details of fine-tuning data for customized LLM.
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prompt: When users search for shantytown housing, please provide the corresponding commercial
intentions.
vanilla llm: (A total of 26 commercial intentions, but some of them are poorly relevant)
commercial intentions: shantytown, demolition, housing supply, price, user feedback, case sharing...,
etc.
w/o. CBS&FFT (A total of 9 commercial intentions, with good correlation and insufficient diversity.)
Step 1: Mining user query intent
Shantytown reconstruction is a government-led urban renewal project involving demolition....
Step 2: Generate commercial intentions
Shantytown reconstruction policy, demolition compensation standards.....
Step3: Ensure commercial intentions are relevant to the query
commercial intentions such as shantytown reconstruction policy, Demolition compensation standards...
Final result: shantytown reconstruction policy, demolition compensation standards.....
w/o. CBS (A total of 12 commercial intentions, with good correlation and diversity, but a small
number)
Anjuke rents a house, second-hand housing, house hunting...
RARE (A total of with 142 commercial intentions, with with good correlation, good diversity and
large number)
Anjuke house hunting, demolition compensation, new house decoration, renovation of old houses,
public housing application......

Table 5: Commercial intention generation effects based on different fine-tuning methods.
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